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An Outline

I. Algebraic Theory of Regular Languages
Varieties of regular languages, syntactic monoid,

Eilenberg correspondence and its generalizations.

II. Varieties of Automata
Minimal DFA, closure operators, Eilenberg type

correspondence.

III. Automata Enriched with an Algebraic Structure
Ordered automata, meet-automata, DL-automata,

Eilenberg type correspondence.
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Thanks

The presented point of view is based on numerous interesting
discussions on the topic with my colleagues Michal Kunc and
Libor Polák.
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Examples

Goal of the study: effective characterizations of certain
natural classes of regular languages.
Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.

Ondřej Klíma Automata Enriched with an Algebraic Structure 5/60



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Introduction – Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Examples

Goal of the study: effective characterizations of certain
natural classes of regular languages.
Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.

Theorem (Schützenberger – 1966)

A regular language L is star-free if and only if its syntactic

monoid is aperiodic.

Theorem (Simon — 1972)

A regular language L is piecewise testable if and only if the

syntactic monoid of L is J -trivial.

General framework – Eilenberg correspondence.
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Varieties of Languages

Definition

A variety of languages V associates to every finite alphabet A a
class V(A) of regular languages over A in such a way that

V(A) is closed under finite unions, finite intersections and
complements (in particular ∅,A∗ ∈ V(A)),

V(A) is closed under quotients, i.e.
L ∈ V(A), u, v ∈ A∗ implies
u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),

V is closed under preimages in morphisms, i.e.
f : B∗ → A∗, L ∈ V(A) implies
f−1(L) = { v ∈ B∗ | f (v) ∈ L } ∈ V(B).
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Pseudovarieties of Monoids

Definition

A pseudovariety of finite monoids is a class of finite monoids
closed under submonoids, morphic images and products of
finite families.

For a regular language L ⊆ A∗ we define a relation ∼L on
A∗ by the rule u ∼L v iff u and v have the same contexts in
L.
Formally: u ∼L v ⇐⇒ {(p, q) | puq ∈ L} = {(p, q) | pvq ∈ L}.

∼L is the syntactic congruence of L and A∗/∼L = ML is the
syntactic monoid of L.
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The Eilenberg Correspondence

For each pseudovariety of monoids V we denote α(V) the
variety of regular languages given by

(α(V))(A) = {L ⊆ A∗ | ML ∈ V} .

For each variety of regular languages L we denote by β(L)
the pseudovariety of monoids generated by syntactic
monoids ML, where L ∈ L(A) for some alphabet A.

Theorem (Eilenberg – 1976)

The mappings α and β are mutually inverse isomorphisms

between the lattice of all pseudovarieties of finite monoids and

the lattice of all varieties of regular languages.
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A Formal Definition of a DFA

Definition

A deterministic finite automaton over the alphabet A is a
five-tuple A = (Q,A, ·, i ,F ), where

Q is a nonempty set of states,

· : Q × A → Q is a complete transition function,
which can be extended to a mapping
· : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

i ∈ Q is the initial state,

F ⊆ Q is the set of final states.

The automaton A accepts a word u ∈ A∗ iff i · u ∈ F .

The automaton A recognizes the language
LA = {u ∈ A∗ | i · u ∈ F}.
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A Relationship between DFAs and Monoids

If we have a DFA A = (Q,A, ·, i ,F ), then:

Each word u ∈ A∗ performs the transformation τu : Q → Q

where τu(q) = q · u for each q ∈ Q.

The transition monoid of A is ({τu |u ∈ A∗}, ◦).

The transition monoid of the minimal automaton of L is
isomorphic to the syntactic monoid ML of L.

Every monoid can be transformed to a DFA.
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Motivations for a Notion of a Variety of Automata

Why monoids instead of automata?
An equational description of pseudovarieties of monoids by
pseudoidentities.
Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).
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Motivations for a Notion of a Variety of Automata

Why monoids instead of automata?
An equational description of pseudovarieties of monoids by
pseudoidentities.
Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).

Why are we still interested in automata characterizations?
Usually, a regular language is given by an automaton. And
computation of the syntactic monoid need not to be
effective (can be exponentially larger).
Sometimes a “graph condition” on automata can be easier
to test than an equational condition on monoids.
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Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.
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Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.

Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.
(Syntactic monoid is implicitly ordered.)
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Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.

Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.
(Syntactic monoid is implicitly ordered.)
Polák (1999): Conjunctive (and disjunctive) varieties.
Straubing (2002): C-varieties of languages.
Ésik, Larsen (2003): literal varieties of languages.
Gehrke, Grigorieff, Pin (2008): Lattices of regular
languages.
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Variants of Varieties of Regular Languages

varieties
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II. Varieties of Automata
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The Construction of a Minimal DFA by Brzozowski

For a language L ⊆ A∗ and u ∈ A∗, we define a left
quotient u−1L = {w ∈ A∗ | uw ∈ L }.

Definition

The canonical deterministic automaton of L is
DL = (DL,A, ·,L,F ), where

DL = {u−1L | u ∈ A∗ },

q · a = a−1q, for each q ∈ DL, a ∈ A,

q ∈ F iff λ ∈ q.

Each state q = u−1L is formed by all words transforming
the state q into a final state.
The set of all such words can be considered in an arbitrary
automaton for every state.
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An Example of a Canonical Automaton

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗
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A Future of a State in a DFA

For a DFA A = (Q,A, ·, i ,F ) and an arbitrary state q ∈ Q,
we consider Lq = {w ∈ A∗ | q · w ∈ F}.
(Sometimes Lq is called the future of the state q.)

If q is a reachable state, i.e. there is u ∈ A∗ such that
q = i · u, then

w ∈ Lq ⇐⇒ (i · u) · w ∈ F ⇐⇒ uw ∈ L ⇐⇒ w ∈ u−1L .

Hence Lq = u−1L.

Thus we can consider a mapping ϕ from the subautomaton
A′ = (Q′,A, ·, i ,F ∩ Q′) of A consisting of the reachable
states Q′ = {i · u | u ∈ A∗} onto DL.

In particular, this proves that the canonical DFA DL is a
minimal automaton for L.
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Right Quotients

Another consequence: for every u ∈ A∗, the language
u−1L is recognized by the same DFA as L with a different
initial state.

What about right quotients Lu−1?
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Right Quotients

Another consequence: for every u ∈ A∗, the language
u−1L is recognized by the same DFA as L with a different
initial state.

What about right quotients Lu−1? We take another set of
final states F ′ = {q ∈ Q | q · u ∈ F}.

Is the converse direction also true? Yes.
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Right Quotients

Another consequence: for every u ∈ A∗, the language
u−1L is recognized by the same DFA as L with a different
initial state.

What about right quotients Lu−1? We take another set of
final states F ′ = {q ∈ Q | q · u ∈ F}.

Is the converse direction also true? Yes.

Lemma

Let DL = (DL,A, ·,L,F ) be the canonical automaton of a

language L and F ′ ⊆ DL. Then (DL,A, ·,L,F
′) recognizes a

language which can be expressed as a Boolean combination of

languages of the form Lu−1.
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Automata without Initial and Final States

Varieties of languages are closed under Boolean
operations and quotients, therefore the choice of an initial
state and final states in automata can be left free.

When we talk about varieties of automata, by an
automaton we mean the underlying labeled graph, i.e. a
triple (Q,A, ·).

We say that (Q,A, ·) recognizes a language L if there are
i ∈ Q and F ⊆ Q such that L = LA where
A = (Q,A, ·, i ,F ).
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A Product of Automata

Since varieties of languages are closed under taking
unions and intersections, it is convenient to include direct
products of automata in our varieties of automata.

Formally: let (Qj ,A, ·j)j∈I be automata, I be a finite set.
We define (

∏
j∈I Qj ,A, ·), where (qj)j∈I · a = (qj ·j a)j∈I.

If for each j ∈ I a language Lj is recognized by
Aj = (Qj ,A, ·j , ij ,Fj), then (

∏
j∈I Qj ,A, ·, (ij )j∈I ,F )

recognizes
⋂

Lj if F = {(qj)j∈I | ∀j : qj ∈ Fj} or
recognizes

⋃
Lj if F = {(qj)j∈I | ∃j : qj ∈ Fj}.
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A Disjoint Union of Automata

Our motivation is an Eilenberg type correspondence.

Therefore, we need to have classes of automata which are
closed under all possible constructions which do not
recognize more languages. The basic algebraic
constructions follow.

A disjoint union of automata: let (Qj ,A, ·j )j∈I be automata,
I be a finite set and Qj be pairwise disjoint sets.
We define (Q,A, ·), where Q =

⋃
j∈I Qj , q · a = q ·j a with

j ∈ I such that q ∈ Qj .

If L is recognized by a disjoint union of automata then it is
recognized by some of them.
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Morphisms of DFAs

Let (Q,A, ·) and (P,A, ◦) be automata and ϕ : Q → P be a
mapping. Then ϕ is called a morphism of automata if

ϕ(q · a) = ϕ(q) ◦ a for all a ∈ A,q ∈ Q .

If there exists a surjective morphism of automata from
(Q,A, ·) to (P,A, ◦), then we say that (P,A, ◦) is a morphic
image of (Q,A, ·).

If (P,A, ◦) is a morphic image of (Q,A, ·) and L is
recognized by (P,A, ◦), then L is recognized by (Q,A, ·).
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Trivial Automata and Subautomata

Denote by Tn(A) an n-state trivial automaton, i.e
Tn(A)= (In,A, ·), where In = {1, . . . ,n} and j · a = j for all
j ∈ In, a ∈ A.

The disjoint union of automata (Qj ,A, ·j)j∈In is a morphic
image of the product (

∏
j∈In∪{0} Qj ,A, ·) where

(Q0,A, ·0) = Tn(A).
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Trivial Automata and Subautomata

Denote by Tn(A) an n-state trivial automaton, i.e
Tn(A)= (In,A, ·), where In = {1, . . . ,n} and j · a = j for all
j ∈ In, a ∈ A.

The disjoint union of automata (Qj ,A, ·j)j∈In is a morphic
image of the product (

∏
j∈In∪{0} Qj ,A, ·) where

(Q0,A, ·0) = Tn(A).

Let (Q,A, ·) be an automaton and P ⊆ Q be a non-empty
subset. If p · a ∈ P for every p ∈ P, a ∈ A, then (P,A, ·) is
called s subautomaton of (Q,A, ·).
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Preimages in Morphisms

Varieties of languages are closed under taking preimages.

Let f : B∗ → A∗ be a morphism, L ∈ V(A) be recognized by
an automaton A = (Q,A, ·, i ,F ).

Then we construct B = (Q,B, ◦, i ,F ), where
q ◦ b = q · f (b) for every q ∈ Q, b ∈ B.

The automaton (Q,B, ◦, i ,F ) recognizes the language
f−1(L).

We say that (P,B, ◦) is an f -subautomaton of (Q,A, ·) if
P ⊆ Q and q ◦ b = q · f (b) for every q ∈ P, b ∈ B.

Taking f = id : A∗ → A∗, we obtain the original notion of
subautomaton.
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Varieties of Automata

Definition

A variety of automata V associates to every finite alphabet A a
class V(A) of automata (without initial and final states) over
alphabet A in such a way that

V(A) 6= ∅ is closed under disjoint unions, finite direct
products and morphic images,

V is closed under f -subautomata.

If we define T(A) = {Tn(A) | n ∈ N} then the first condition
can be written equivalently in the following way:
T(A) ⊆ V(A) and V(A) is closed under finite direct
products and morphic images.
In particular, the class of trivial automata T forms the
smallest variety of automata.
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An Eilenberg Type Correspondence

For each variety of automata V we denote by α(V) the
variety of regular languages given by

(α(V))(A) = {L ⊆ A∗ | ∃A = (Q,A, ·, i ,F ) :

L = LA ∧ (Q,A, ·) ∈ V(A)} .

For each variety of regular languages L we denote by β(L)
the variety of automata generated by all DFAs DL, where
L ∈ L(A) for some alphabet A.

varieties
of automata

varieties
of languages

α

β

Ondřej Klíma Automata Enriched with an Algebraic Structure 26/60



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

A Minimal DFA
Basic Algebraic Constructions on Automata
The Eilenberg Correspondence for Varieties of Automata

An Eilenberg Type Correspondence II

varieties
of automata

varieties
of languages

α

β

Theorem (Ésik and Ito, Chaubard, Pin and Straubing)

The mappings α and β are mutually inverse isomorphisms

between the lattice of all varieties of automata and the lattice of

all varieties of regular languages.

A version for C-varieties is obvious: we consider
f -subautomata (etc.) just for f ∈ C.
Ésik and Ito were working with literal varieties (morphisms
map letters to letters, i.e f (B) ⊆ A) and used disjoint union.
Chaubard, Pin and Straubing called the automata
C-actions and used trivial automata.
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An Examples – Acyclic Automata

One of the conditions in Simon’s characterization of
piecewise testable languages is that a minimal DFA is
acyclic.
A content c(u) of a word u ∈ A∗ is the
set of all letters occurring in u.
We say that (Q,A, ·) is a acyclic if for each u ∈ A∗ and
q ∈ Q we have

q · u = q =⇒ (∀a ∈ c(u) : q · a = q) .

The class of all acyclic automata is a variety.
The corresponding variety of languages (well-known):
(disjoint) unions of the languages of the form

A∗
0a1A∗

1a2A∗
2 . . .A

∗
n−1anA∗

n, where ai 6∈ Ai−1 ⊆ A .
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An Example – Piecewise Testable Languages

In DLT’13 we gave an alternative condition for automata
recognizing piecewise testable languages.
We call an acyclic automaton (Q,A, ·) locally confluent, if
for each state q ∈ Q and every pair of letters a,b ∈ A,
there is a word w ∈ {a,b}∗ such that (q · a) ·w = (q · b) ·w .
A stronger condition: an acyclic automaton (Q,A, ·) is
confluent, if for each state q ∈ Q and every pair of words
u, v ,∈ {a,b}∗, there is a word w ∈ {a,b}∗ such that
(q · u) · w = (q · v) · w .
Each acyclic automaton is confluent iff it is locally
confluent.
The class of all acyclic confluent automata is a variety
which corresponds to the variety of piecewise testable
languages.
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An Example of a Piecewise Testable Language

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗
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The Eilenberg Correspondence – Remark

One of the crucial step is to prove the following: an
arbitrary automaton (Q,A, ·) can be reconstruct from
minimal automata of languages which are recognized by
the automaton (Q,A, ·).
This is given in two steps.
In the first step we fix an initial state i ∈ Q and we
reconstruct subautomaton {i · u | u ∈ A∗} from minimal
automata of languages which are recognized when an
initial state is i . Here a notion of a product of automata is
used. (Also subautomata and morphic images.)
In the second step, different initial states are considered
and a notion of a disjoint union of automata is used.
(A disjoint union of automata is a sum (co-product) from
the categorical point of view.)
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Ondřej Klíma Automata Enriched with an Algebraic Structure 32/60



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Ordered Automata
Meet Automata
DL-automata

A Natural Ordering of the Canonical Automaton

For a language L ⊆ A∗, we have defined a the canonical
deterministic automaton: DL = (DL,A, ·,L,F ), where

DL = { u−1L | u ∈ A∗ },
q · a = a−1q, for each q ∈ DL, a ∈ A,
q ∈ F iff λ ∈ q.

Therefore states are ordered by inclusion, which means
that each minimal automaton is implicitly equipped with a
partial order.

The action by each letter a is an isotone mapping: for all
states p,q such that p ⊆ q we have
p · a = a−1p ⊆ a−1q = q · a.

The final states form an upward closed subset w.r.t. ⊆.
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An Example of an Ordered Automaton

L
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L = a+b+

K = a−1L = a∗b+

L ⊆ K
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An Ordered Automaton

Definition
An ordered automaton over the alphabet A is a six-tuple
A = (Q,A, ·,≤, i ,F ), where

A = (Q,A, ·, i ,F ) is a usual DFA;

≤ is a partial order;

an action by every letter is an isotone mapping from the
partial ordered set (Q,≤) to itself;

F is an upward closed set, i.e. p ≤ q,p ∈ F =⇒ q ∈ F .
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An Ordered Automaton

Definition
An ordered automaton over the alphabet A is a six-tuple
A = (Q,A, ·,≤, i ,F ), where

A = (Q,A, ·, i ,F ) is a usual DFA;

≤ is a partial order;

an action by every letter is an isotone mapping from the
partial ordered set (Q,≤) to itself;

F is an upward closed set, i.e. p ≤ q,p ∈ F =⇒ q ∈ F .

For the subautomaton A′ = (Q′,A, ·,≤, i ,F ∩ Q′), with
Q′ = {i · u | u ∈ A∗}, for states p ≤ q we have Lp ⊆ Lq.
(u ∈ Lp =⇒ p · u ∈ F (upward closed) =⇒ q · u ∈ F =⇒ u ∈ Lq .)

Thus ϕ given by ϕ(q) = Lq is, in fact, a morphism from A′

onto the canonical ordered automaton of L.
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A Transition Monoid of an Ordered Automaton

If we have an ordered automaton (Q,A, ·,≤), then:

we have defined τu : Q → Q transformation by a word
u ∈ A∗.

These transformations can be ordered:

τu ≤ τv ⇐⇒ ∀p ∈ Q : p · τu ≤ p · τv .

An ordered transition monoid.

In particular, the ordered transition monoid of the canonical
ordered automaton of L is isomorphic to the syntactic
ordered monoid ML of L.
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Algebraic Constructions on Ordered Automata

The definitions of a disjoint union of ordered automata and
f -subautomata are obvious.
In a product of ordered automata (Qj ,A, ·j ,≤j)j∈I the order
≤ is define in usual way: (qj)j∈I ≤ (pj)j∈I iff ∀j : qj ≤ pj .
In the definition of morphism of automata we add
assumption that considered mapping is isotone.

Definition

A variety of ordered automata V associates to every finite
alphabet A a class V(A) of ordered automata (without initial
and final states) over alphabet A in such a way that

V(A) 6= ∅ is closed under disjoint union, finite direct
products and morphic images,

V is closed under f -subautomata.
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An Eilenberg Type Correspondence

If L is recognized by an ordered automaton (Q,A, ·,≤, i ,F )
then we can not take new finite states Q \ F – this set is
not an upward closed subset.
Therefore (Q,A, ·,≤) does not recognize Lc.

In a product of ordered automata (
∏

j∈I Qj ,A, ·,≤, (ij )j∈I,F ),
both subsets {(qj)j∈I | ∀j : qj ∈ Fj} and
{(qj)j∈I | ∃j : qj ∈ Fj} are upward closed, therefore the
product recognizes intersection and union.
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An Eilenberg Type Correspondence

If L is recognized by an ordered automaton (Q,A, ·,≤, i ,F )
then we can not take new finite states Q \ F – this set is
not an upward closed subset.
Therefore (Q,A, ·,≤) does not recognize Lc.

In a product of ordered automata (
∏

j∈I Qj ,A, ·,≤, (ij )j∈I,F ),
both subsets {(qj)j∈I | ∀j : qj ∈ Fj} and
{(qj)j∈I | ∃j : qj ∈ Fj} are upward closed, therefore the
product recognizes intersection and union.

Theorem (Pin)

There are mutually inverse isomorphisms between the lattice of

all varieties of ordered automata and the lattice of all positive

varieties of regular languages.
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The Level 1/2

Piecewise testable languages are Boolean combinations of
languages of the form

A∗a1A∗a2A∗ . . .A∗aℓA
∗, where a1, . . . ,aℓ ∈ A, ℓ ≥ 0 .

Piecewise testable languages form level 1 in
Straubing-Thérien hierarchy.

Level 1/2 is formed just by finite unions of intersections of
languages above.

The corresponding variety of ordered automata is the class
of all ordered automata where actions by letters are
increasing mappings. I.e. ordered automata satisfying:

∀q ∈ Q,a ∈ A : q · a ≥ q .
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An Example of an Ordered Automaton outside 1/2

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

L 6⊆ L · b = ∅

Ondřej Klíma Automata Enriched with an Algebraic Structure 40/60



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Ordered Automata
Meet Automata
DL-automata

III.2 Meet Automata
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Intersections of Left Quotients

For a language L ⊆ A∗ we extend the canonical automaton
(DL,A, ·), where states are subsets of A∗.

We can consider intersections of states:
UL = {

⋂
j∈I Kj | I finite set ,Kj ∈ DL}. If I = ∅ then we put⋂

j∈I Kj = A∗.

The finite set UL is equipped with the operation intersection
∩ and we can define (

⋂
j∈I Kj) · a =

⋂
j∈I(Kj · a).

We have the automaton (UL,A, ·) with semilattice operation
∩. Moreover, A∗ is the largest element in the semilattice
(UL,∩) and it is an absorbing state in (UL,A, ·).

Naturally F = {K | λ ∈ K} is closed w.r.t. ∩ and F is
upward closed, i.e. F is a filter.
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An Example of a Meet Automaton

L
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b∗
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b

L = a+b+

K = a−1L = a∗b+

K ∩ b∗ = b+

A∗ =
⋂

∅

Ondřej Klíma Automata Enriched with an Algebraic Structure 43/60



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Ordered Automata
Meet Automata
DL-automata

An Example of a Meet Automaton

L

K

b+

∅

A∗

b∗

L = a+b+

K = a−1L = a∗b+

K ∩ b∗ = b+

A∗ =
⋂

∅
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Meet Automata

Definition

A structure (Q,A, ·,∧,⊤) is a meet automaton if

(Q,A, ·) is a DFA,

(Q,∧) is a semilattice with the largest element ⊤,

actions by letters are endomorphisms of the semilattice
(Q,∧), i.e. ∀p,q ∈ Q,a ∈ A : (p ∧ q) · a = p · a ∧ q · a

⊤ is an absorbing state.

This meet automaton recognizes a language L if there are
i , f ∈ Q such that L = {u ∈ A∗ | i · u ∧ f = f}.
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Meet Automata

Definition

A structure (Q,A, ·,∧,⊤) is a meet automaton if

(Q,A, ·) is a DFA,

(Q,∧) is a semilattice with the largest element ⊤,

actions by letters are endomorphisms of the semilattice
(Q,∧), i.e. ∀p,q ∈ Q,a ∈ A : (p ∧ q) · a = p · a ∧ q · a

⊤ is an absorbing state.

This meet automaton recognizes a language L if there are
i , f ∈ Q such that L = {u ∈ A∗ | i · u ∧ f = f}.

Let A be a meet automaton recognizing a language L. The
automaton UL = (UL,A, ·,∧,A

∗), the canonical meet automaton
of L, is a minimal meet automaton of L: there is a subautomaton
A′ of A and surjective morphism of meet automata ϕ : A′ → UL.
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Meet Automata – Differences

We can consider transformations of a meet automata given
by words again, but now we need to “intersect” them. Thus
instead of a transition monoid we define a transition
semiring. A transition semiring of the canonical meet
automaton of L is isomorphic to the syntactic (idempotent)
semirng of L.
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Meet Automata – Differences

We can consider transformations of a meet automata given
by words again, but now we need to “intersect” them. Thus
instead of a transition monoid we define a transition
semiring. A transition semiring of the canonical meet
automaton of L is isomorphic to the syntactic (idempotent)
semirng of L.

f -subautomata, morphic images – obvious modifications.

A product is defined in the same way but, it does not
recognize unions of languages now: if for each j ∈ I we
have a state fj in (Qj ,A, ·j ,∧j ,⊤j), then the set
X = ((qj)j∈I | ∃j : qj ≥ fj} is not a filter.
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Varieties of Meet Automata

A disjoint union of meet automata is not considered now,
since it is not a meet automaton. The role of a disjoint
union was a sum (from the categorical point of view) of
automata. In the case of meet automata, this role can be
played by the product of meet automata.

Definition

A variety of meet automata V associates to every finite
alphabet A a class V(A) of meet automata over alphabet A in
such a way that

V(A) 6= ∅ is closed under direct finite products and morphic
images,

V is closed under f -subautomata.
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An Eilenberg Type Correspondence

Theorem (Klíma, Polák)

There are mutually inverse isomorphisms between the lattice of

all varieties of meet automata and the lattice of all conjunctive

varieties of regular languages.
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Varieties of Meet Automata – An Example

Example

For each alphabet A, a meet automata (Q,A, ·,∧,⊤) belongs to
S(A) if ∀q ∈ Q,a ∈ A : q · a = q · a ∧ q and

∀q ∈ Q,a,b ∈ A : q · ab = q · a ∧ q · b . (∗)

Then S is a variety of meet automata and the corresponding
conjunctive variety of languages S satisfies
S(A) = {B∗ | B ⊆ A} ∪ {∅}.

S is a conjunctive variety of languages.

For all B ⊆ A, the canonical meet automaton of L = B∗ is
UL = (UL,A, ·,∩,A

∗) and it has just three states: B∗,A∗, ∅.
We see B∗ · a ∈ {B∗, ∅} and UL satisfies (∗).

Ondřej Klíma Automata Enriched with an Algebraic Structure 48/60



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure

Ordered Automata
Meet Automata
DL-automata

An Example

Let (Q,A, ·,∧,⊤) be a meet automaton satisfying

∀q ∈ Q,a,b ∈ A ∪ {λ} : q · ab = q · a ∧ q · b . (∗)

And we choose i , f ∈ Q.

For a,b, c ∈ A we have

(q · a) · bc = (q · a) · b ∧ (q · a) · c = q · a ∧ q · b ∧ q · c .

In general q · a1 . . . an = q · a1 ∧ . . . ∧ q · an and (for q = i)
we have a1 . . . an ∈ L ⇐⇒ a1 ∈ L, . . . ,an ∈ L.

We can denote B = L ∩ A and we have L = B∗.

Note that an equational characterization is that syntactic
semiring satisfies the equality xy = x ∧ y .
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III.3 DL-automata
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The Canonical DL-Automaton of a Language

For a language L ⊆ A∗ we extend the canonical meet
automaton (UL,A, ·,∧,A

∗) by unions of states:
WL = {

⋃
j∈I Mj | I finite set ,Mj ∈ UL}.

If I = ∅ then we put
⋃

j∈I Mj = ∅.
The finite set WL is equipped with the operations
intersection ∩ and union ∪ (due to distributive laws).
We can define (

⋃
j∈I Mj) · a =

⋃
j∈I(Mj · a).

We have the automaton (WL,A, ·) and a distributive lattice
(WL,∩,∪). Moreover, A∗ is the largest element, ∅ is the
smallest element – both are absorbing states in (WL,A, ·).
Naturally F = {M | λ ∈ M} is closed w.r.t. ∩, upward
closed, and M1 ∪ M2 ∈ F implies M1 ∈ F or M2 ∈ F .
I.e. F is an ultrafilter. In other words the intersection of all
elements in F (the minimum in F ) is join-irreducible.
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An Example of a Canonical DL-Automaton

L
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L = a+b+

K = a−1L = a∗b+ = L ∪ b+

Kλ = K ∪ b∗ = K + λ
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Technical Obstacles

Now actions by letters, and consequently by words, are
endomorphisms of the distributive lattice (WL,∩,∪).
Unfortunately, if we take two of them, their intersection
needn’t be an endomorphism.
Initial state can not be taken an arbitrary state of
DL-automaton, since they recognize intersections and
unions which are not allowed in our varieties now.
Therefore we need to keep an information which states
comes from the canonical automaton DL.
The sum of a potential DL-automata is more complicated
(e.g. for testing whether the class of DL-automata is closed
with respect to this operation).
Therefore we prefer to work with a DL-automaton
generated from a single state.
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A DL-Automata – a Formal Definition

Definition (new)

A structure (i ,P,Q,A, ·,∧,∨,⊥,⊤) is a DL-automaton if

i ∈ P ⊆ Q,

(Q,A, ·) is a DFA,

(Q,∧,∨) is a distributive lattice with the minimum element
⊥ and the largest element ⊤,

actions by letters are endomorphisms of the lattice
(Q,∧,∨),

⊤ and ⊥ are absorbing states,

P is the set of all states reachable from i ,

the lattice Q is generated by the set P.
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Languages Recognized by a DL-Automaton

A DL-automaton (i ,P,Q,A, ·,∧,∨,⊥,⊤) recognizes a
language L if there are j ∈ P, f ∈ Q such that f is a
join-irreducible and L = {u ∈ A∗ | j · u ≥ f}.

If the previous automaton is the canonical DL-automaton
(L,DL,WL,A, ·,∩,∪, ∅,A

∗) of a language L, then it
recognizes exactly the languages of the form u−1Lv−1.
Morphic images are define in the same way. Definitions of
other operators must be modified.

Instead of a direct product we must take a substructure
generated from the state which contains in all coordinates
the initial states.
In the definition of the f -subautomaton we must take new
initial state in the set P of the original DL-automaton.
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An Eilenberg Type Correspondence

Definition (new)

Let C be a “Straubing” class of morphisms. A weak C-variety of
languages V associates to every finite alphabet A a class V(A)
of regular languages over A in such a way that

V(A) is closed under quotients,

V is closed under preimages in morphisms from C.

Theorem (new)

There are mutually inverse isomorphisms between the lattice of

all C-varieties of DL-automata and the lattice of all weak

C-varieties of regular languages.
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An Eilenberg Type Correspondence – An Example

Example

Let V be a class of languages such that
V(A) = {A∗aA∗ | a ∈ A} ∪ {A∗}.

V(A) is not closed under intersections nor unions, i.e. V is
not a conjunctive (nor disjunctive) variety of languages.

Let f : B∗ → A∗, a ∈ A, L = A∗aA∗, then f−1(L) = B∗DB∗

where D = {d ∈ B | f (d) contains a}.
Therefore we should consider only f ’s such that

∀b, c ∈ B : b 6= c =⇒ c(f (b)) ∩ c(f (c)) = ∅ .

V is a weak C-variety for such morphisms.
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An Example

Since (A∗aA∗)c = B∗ for B = A \ {a} we can take the dual
condition characterizing the conjunctive variety S given by
S(A) = {B∗ | B ⊆ A} ∪ {∅}, namely

∀q ∈ Q,a,b ∈ A ∪ {λ} : q · ab = q · a ∨ q · b . (∗)

In particular q · a ≥ q.
Another property is the following

∀q ∈ Q,a,b ∈ A : a 6= b =⇒ q · a ∧ q · b = q . (∗∗)

If L = A∗a1A∗ ∪ · · · ∪ A∗anA∗ for a1, . . . ,an different letters,
n ≥ 2, then L · a1 ∩ L · a2 = A∗ 6= L, i.e. the canonical
DL-automaton of L does not satisfy the condition (∗∗) .
The equational description of the property (∗∗) is x ∧ y = 1
with substitutions from the restricted class C.
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A Future Research

We plan to clarify all details in the Eilenberg type
correspondence for DL-automata.

We are trying to characterize classes of regular languages
given by certain models of quantum automata.

We would like to improve our knowledge of an equational
logic of meet automata and of DL-automata.

A further step: BA-automata
(automata equipped with a structure of a Boolean algebra).
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Thank you.

Ondřej Klíma Automata Enriched with an Algebraic Structure 60/60


	Algebraic Theory of Regular Languages
	Introduction – Eilenberg Correspondence
	A Relationship between DFAs and Monoids
	Generalizations of the Eilenberg Correspondence

	Varieties of Automata 
	A Minimal DFA
	Basic Algebraic Constructions on Automata
	The Eilenberg Correspondence for Varieties of Automata

	Automata Enriched with an Algebraic Structure 
	Ordered Automata
	Meet Automata
	DL-automata


