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In a recent paper we assigned to each positive variety V and each nonnegative integer k
the class of all finite unions of finite intersections or Boolean combinations of the lan-

guages of the form L0a1L1a2 . . . a`L`, where ` ≤ k, a1, . . . , a` are letters and L0, . . . , L`

are in the variety V. For these polynomial operators on a wide class of varieties we gave
a certain algebraic counterpart in terms of identities satisfied by syntactic (ordered)
monoids of languages considered. Here we apply our constructions to particular exam-

ples of varieties of languages obtaining four hierarchies of (positive) varieties. Two of
them have the 3/2 level of the Straubing-Thérien hierarchy as their limits, and two oth-
ers tend to the level two of this hierarchy. We concentrate here on the existence of finite
bases of identities for corresponding pseudovarieties of (ordered) monoids and we are

looking for inclusions among those varieties.

Keywords: Positive varieties of languages; polynomial operators.

1. Introduction

The positive polynomial operator PPol assigns to each positive variety of languages

V the class of all finite unions of finite intersections of the languages of the form

L0a1L1 . . . a`L` , (∗)

where A is an alphabet, a1, . . . , a` ∈ A, L0, . . . , L` ∈ V(A) (i.e. they are over A).

Using Boolean combinations, we get polynomial operator BPol. Such operators on
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classes of languages lead to several concatenation hierarchies. Well-known cases are

the Straubing-Thérien hierarchy and the group hierarchy. Concatenation hierarchies

have been intensively studied by many authors – see Section 8 of Pin’s Chapter [8].

The main open problem concerning such hierarchies, which is in fact one of the

most interesting open problem in the theory of regular languages, is the member-

ship problem for level 2 in the Straubing-Thérien hierarchy, i.e. the decision problem

whether a given regular language can be written as a Boolean combination of lan-

guages of the form (∗) where Li’s are from level 1 of that hierarchy. It is known that

a language is of level 2 if and only if it is a Boolean combination of languages (∗)
where Li = B∗

i and Bi ⊆ A (i = 0, . . . , `). Therefore this instance of polynomial

operator is the most important case to study.

In the restricted case we fix a nonnegative integer k and we allow only ` ≤ k in

(∗). This operator was considered mainly in the case that V is the trivial variety by

Simon in [10], in a series of papers by Blanchet-Sadri, see for instance [3], and in a

recent paper by the authors [5].

In [6] we considered the restricted case in a general setting and we concentrated

on identity problems for corresponding pseudovarieties of ordered monoids and on

the question whether those pseudovarieties are generated by a single object.

Here we study four hierarchies of languages which result by considering finite

unions of finite intersections or Boolean combinations of languages (∗) over the

(positive) variety V, such that the set V(A) is equal either to finite unions of B∗,

where B ⊆ A, or to finite unions of B, where B ⊆ A and B is the set of all words over

A containing exactly the letters from B. Members of all our hierarchies are under

level 2 in the Straubing-Thérien hierarchy. Therefore we speak about subhierarchies.

Our basic questions are to explore inclusions among our varieties and we start to

discuss the existence of finite bases for corresponding pseudovarieties of (ordered)

monoids. Hopefully our results bring a bit more light into the complexity of the

structure of (positive) subvarieties of the second level of the Straubing-Thérien

hierarchy.

Section 2 summarizes the background concerning positive varieties of languages

and corresponding classes of (finite) ordered monoids. In Section 3 we overview

the necessary material from [6] dealing with locally finite varieties and polynomial

operators. The next section is devoted to the existence of finite bases of identities

for pseudovarieties corresponding to our hierarchies in the case k = 1. The last

section investigates the inclusions among members of our hierarchies.

2. Preliminaries

For a relation ρ on a set S we define its dual relation ρd = { (v, u) ∈ S × S |
(u, v) ∈ ρ }. A quasiorder ρ on a set S is a reflexive and transitive relation. For

such a relation, let ρ̂ = ρ ∩ ρd (sometimes we write also (ρ)̂ ) be the corresponding

equivalence relation. A relation γ on a monoid (M, ·) is compatible, if for every
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u, v, w ∈M , we have

u γ v implies uw γ vw, wu γ wv .

Compatible equivalence relations are called congruences.

An ordered monoid is a structure (M, ·, 1,≤) where (M, ·, 1) is a monoid and

≤ is a compatible order on (M, ·). Homomorphisms of ordered monoids are isotone

monoid homomorphisms.

Let Y ∗ be the set of all words over an alphabet Y including the empty word,

denoted by λ, endowed by the concatenation product. For a word u ∈ Y ∗, let

c(u) = { y ∈ Y | u = u′yu′′ for some u′, u′′ ∈ Y ∗ } .

For a set Z ⊆ Y , let Z = {u ∈ Y ∗ | c(u) = Z }.
Let us recall now here some basic facts about Eilenberg-type theorems. The

Boolean case was invented by Eilenberg [4] and the positive case was introduced by

Pin [7].

A class of languages V associates to every finite alphabet A a set V(A) of regular
languages over A. It is called a positive variety of languages if

• for each A, V(A) is closed under finite unions and finite intersections (in

particular ∅, A∗ ∈ V(A) ),

• for each A, V(A) is closed under derivatives, i.e.

L ∈ V(A), u, v ∈ A∗ implies u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),
• V is closed under preimages in homomorphisms, i.e. for each A and B:

f : B∗ → A∗ and L ∈ V(A) implies f−1(L) = { v ∈ B∗ | f(v) ∈ L } ∈ V(B).

To get the notion of a Boolean variety of languages, we use in the first item

complements, too. (In literature the authors use usually the name “a variety of

languages”.)

The meaning of V ⊆ W is that V(A) ⊆ W(A), for each finite alphabet A.

Similarly,
⋃

i∈I Vi is the class of languages defined by (
⋃

i∈I Vi)(A) =
⋃

i∈I Vi(A),
for each finite A.

A pseudovariety of finite monoids is a class of finite monoids closed under sub-

monoids, homomorphic images and direct products of finite families. Similarly for

ordered monoids (see [8]). A variety of (ordered) monoids is a class of (ordered)

monoids closed under submonoids, homomorphic images and arbitrary direct prod-

ucts. For a variety V of (ordered) monoids, the class FinV of all finite members of

V is a pseudovariety. We call such pseudovarieties equational. In fact, in our paper,

almost all pseudovarieties are equational.

We fix the set X = {x1, x2, . . . } of variables. An identity is a pair (u, v), written

as u = v, of words from X∗. An identity u = v is satisfied in a monoid M if for

each homomorphism φ : X∗ → M we have φ(u) = φ(v). In such a case we write

M |= u = v, and for a set of identities Π, we define

Mod=(Π) = {M | ( ∀ π ∈ Π) M |= π } .
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Let Id=(V) be the set of all identities which are satisfied in a class of monoids V.

When considering ordered monoids, an identity is a pair (u, v), written as u ≤ v,

of words over X. An identity u ≤ v is satisfied in an ordered monoid (M,≤) if for
each homomorphism φ : X∗ → M we have φ(u) ≤ φ(v). In such a case we write

(M,≤) |= u ≤ v, and for a set of identities Π, we define

Mod≤(Π) = { (M,≤) | ( ∀ π ∈ Π) (M,≤) |= π } .

Let Id≤(P) be the set of all identities which are satisfied in a class of ordered

monoids P.

A relation γ on X∗ is fully invariant if, for every homomorphism ϕ : X∗ → X∗

and u, v ∈ X∗, we have that u γ v implies ϕ(u) γ ϕ(v).

Result 1 (see [2], [1]). (i) The operators Id= and Mod= are pairwise inverse

bijections between varieties of monoids and fully invariant congruences on X∗.

(ii) The operators Id≤ and Mod≤ are pairwise inverse bijections between varieties

of ordered monoids and fully invariant compatible quasiorders on X∗.

For a language L ⊆ A∗, we define the relations ∼L and �L on A∗ as follows: for

u, v ∈ A∗ we have

u ∼L v if and only if ( ∀ p, q ∈ A∗ ) ( puq ∈ L ⇐⇒ pvq ∈ L ) ,

u �L v if and only if ( ∀ p, q ∈ A∗ ) ( pvq ∈ L =⇒ puq ∈ L ) .

The relation ∼L is the syntactic congruence of L on A∗. It is of finite index

(i.e. there are only finitely many classes) if and only if L is regular. The quotient

structure M(L) = A∗/∼L is called the syntactic monoid of L.

The relation �L is the syntactic quasiorder of L and we have �̂L = ∼L. Hence

�L induces an order on M(L) = A∗/ ∼L, namely: [u]∼L
≤ [v]∼L

if and only if

u �L v. Then we speak about the syntactic ordered monoid of L and we denote this

structure by O(L).

Result 2 (Eilenberg [4], Pin [7]). (i) Boolean varieties of languages correspond

to pseudovarieties of finite monoids. The correspondence, written V ←→ V, is

given by the following relationships: for a pseudovariety V of monoids, we have, for

L ⊆ A∗,

L ∈ V(A) if and only if M(L) ∈ V ,

and, for a Boolean variety V of languages, V is the pseudovariety of monoids gen-

erated by

{M(L) | A finite, L ∈ V(A) } .

(ii) Positive varieties of languages correspond to pseudovarieties of finite ordered

monoids. The correspondence, written P ←→ P, is given by the relationships: for

a pseudovariety P of ordered monoids, we have, for L ⊆ A∗,

L ∈ P(A) if and only if O(L) ∈ P ,
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and, for a positive variety P of languages, P is the pseudovariety of ordered monoids

generated by

{O(L) | A finite, L ∈ P(A) } .

A crucial role in our paper is played by two following classes of languages (see [8]).

For each finite alphabet A, let J−
1 (A) be the set of all finite unions of the

languages of the form B∗, where B ⊆ A. Then J−
1 is a positive variety of languages

and the corresponding (equational) pseudovariety of ordered monoids is

J−
1 = FinMod≤(x

2 = x, xy = yx, 1 ≤ x ) .

We speak about semilattices with the smallest element 1.

Let J1(A) be the set of all finite unions of the languages of the form B, where

B ⊆ A, for each finite set A. Then J1 is a Boolean variety of languages and the

corresponding (equational) pseudovariety of monoids is

J1 = FinMod=(x
2 = x, xy = yx ) .

We speak about semilattices.

3. Locally Finite Varieties of Languages and Polynomial Operators

of Bounded Length

Here we overview the necessary material from [6]. In that paper and in this con-

tribution we deal with concrete positive varieties of languages which correspond to

locally finite pseudovarieties of ordered monoids. Each pseudovariety we consider is

formed by finite members of locally finite (i.e. finitely generated ordered monoids

are finite) variety of ordered monoids and consequently such a variety of languages

can be described by a fully invariant compatible quasiorder on the monoidX∗ which

has locally finite index – see below.

A relation γ on X∗ is a finite characteristic if it is a fully invariant compatible

quasiorder on the monoid X∗ satisfying the condition: for each finite subset Y of

the set X, the set Y ∗ intersects only finitely many classes of X∗/ γ̂.

Given a finite characteristic γ, for each finite or countable infinite alphabet A

we define a relation γA (or sometimes γ(A) ) called the natural adaptation of γ, by

an identification of A with a subset of X as follows:

γA = { (u, v) ∈ A∗ ×A∗ | ϕ(u) γ ϕ(v) } ,

where ϕ is an injective homomorphism from A∗ to X∗ such that ϕ(A) ⊆ X. Since γ

is fully invariant, the definition does not depend on the homomorphism we choose.

We say that γ is a finite characteristic of a class of languages V if γ is a finite

characteristic and for every finite alphabet A and for every regular language L

over A, we have

L ∈ V(A) if and only if γA ⊆ �L .
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We fix notation for finite characteristics of J−
1 and J1:

σ = Id≤ J−
1 = { (u, v) ∈ X∗ ×X∗ | c(u) ⊆ c(v) } ,

σ̂ = Id= J1 = { (u, v) ∈ X∗ ×X∗ | c(u) = c(v) } .

The following result is quite obvious. One can find its proof together with other

results from this section in the authors’ paper [6].

Result 3. Let V be a class of languages and γ be a finite characteristic of V.
Then V is a positive variety of languages, corresponding to the pseudovariety V =

FinMod≤(γ). Moreover, if γ is an equivalence relation, then V is a Boolean variety

of languages, corresponding to the pseudovariety V = FinMod=(γ).

Result 4. Let V be a positive variety of languages. Then the following conditions

are equivalent.

(i) For each finite alphabet A, the set V(A) is finite.

(ii) There exists a finite characteristic of V.

A positive variety of languages V is called locally finite if it satisfies conditions

from Result 4.

Let V be a positive variety of languages and let k be a nonnegative integer. We

define the class PPolk(V) as follows: for a finite alphabet A, PPolk(V)(A) consists

of finite unions of finite intersections of the languages of the form

L0a1L1 . . . a`L`, where 0 ≤ ` ≤ k, a1, . . . , a` ∈ A, L0, . . . , L` ∈ V(A) . (∗)

Similarly, using Boolean combinations, we define the classes BPolk(V). Clearly
PPolk(V) ⊆ PPolk′(V) for k ≤ k′. We denote the union of all PPolk(V)’s by PPol(V).
Similarly for BPolk(V)’s.

Result 5. If V is a positive variety of languages then PPolk(V) is a positive variety

of languages and BPolk(V) is a Boolean variety of languages.

Let k be a fixed nonnegative integer, let α be a finite characteristic, and let A

be a finite or countable infinite alphabet (in particular the set X).

For a word u ∈ A∗, we say that

f = (u0, a1, u1, a2, u2, . . . , a`, u`)

is a factorization of u of length ` ≥ 0 if u0, u1, . . . , u` ∈ A∗, a1, a2, . . . , a` ∈ A and

u0a1u1 . . . a`u` = u. The set of all factorizations of the length at most k of the word

u is denoted by Factk(u). For a factorization f = (u0, a1, u1, . . . , a`, u`) of a word

u ∈ A∗ and a factorization g = (v0, b1, v1, . . . , bm, vm) of a word v ∈ A∗, we write

f ≤α g

if ` = m, ai = bi for every i ∈ {1, . . . , `} and ui αA vi for every i ∈ {0, 1, . . . , `}.
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We define the relation (pk(α))A on the set A∗ as follows: for u, v ∈ A∗, we have

u (pk(α))A v if and only if (∀ g ∈ Factk(v) ) (∃ f ∈ Factk(u) ) f ≤α g .

Note that the relation (pk(α))X is a finite characteristic (see the next result) and

therefore the relation (pk(α))A is equal to ((pk(α))X)A. We write pk(α) instead of

(pk(α))X .

Result 6. Let V be a locally finite positive variety of languages and α be a finite

characteristic of V. Then PPolk(V) is a locally finite positive variety of languages

with the finite characteristic pk(α) and BPolk(V) is a locally finite Boolean variety

of languages with the finite characteristic (pk(α))̂ .

In this paper we study the hierarchies PPolk(J−
1 ), PPolk(J1), BPolk(J−

1 ) and

BPolk(J1). We denote

π−
k = pk(σ) and πk = pk(σ̂) .

Next we present finite characteristics for our first two hierarchies explicitly. Let

u, v ∈ X∗. Then

• u π−
k v iff ∀ (g0, a1, . . . , g`) ∈ Factk(v) ∃ (f0, a1, . . . , f`) ∈ Factk(u)

such that c(f0) ⊆ c(g0), . . . , c(f`) ⊆ c(g`),

• u πk v iff ∀ (g0, a1, . . . , g`) ∈ Factk(v) ∃ (f0, a1, . . . , f`) ∈ Factk(u)

such that c(f0) = c(g0), . . . , c(f`) = c(g`).

For the remaining two hierarchies we can use the intersections with the duals or

we can write

• u (π−
k )̂ v iff the sets of minimal elements (with respect to the quasiorder

≤σ) of Factk(u) and Factk(v) are equal,

• u π̂k v iff { (c(f0), a1, c(f1), . . . , c(f`)) | (f0, a1, f1, . . . , f`) ∈ Factk(u) } =
{ (c(g0), a1, c(g1), . . . , c(g`)) | (g0, a1, g1, . . . , g`) ∈ Factk(v) }.

In the case k = 1, we can even write:

• u π−
1 v iff c(u) ⊆ c(v) and ( ∀ v0, v1 ∈ A∗, a ∈ A such that v = v0av1 )

( ∃ u0, u1 ∈ A∗ such that u = u0au1 and c(u0) ⊆ c(v0), c(u1) ⊆ c(v1) )

and similarly for the three remaining relations.

4. Bases of identities for pseudovarieties corresponding to the first

members of our subhierarchies

Our goal now is to try to find finite bases of identities for pseudovarieties from

our hierarchies of pseudovarieties of (ordered) monoids. As the results from [3,5]

indicate we can not expect that such a finite bases exists for every k. In fact one

can use methods by Volkov and Goldberg [11] to show that many pseudovarieties
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under consideration do not have any finite bases of identities. We will find finite

bases in the case k = 1.

Note that in this case we consider factorizations of length ` with ` ≤ 1. But for

` = 0 the condition f ≤ g for factorizations of a pair of words is exactly saying that

the contents of the considered words are equal or they are in the inclusion. In the

case the words are nonempty, this information is contained in the condition f ≤ g

for factorizations of length ` = 1. So we need not pay attention to the factors of

length ` = 0 when considering nonempty words.

4.1. Identities for pseudovarieties corresponding to BPol1(J−
1 )

and PPol1(J−
1 )

Let x, y be two different letters from X and let u ∈ X∗ be a word which contains

both x and y, i.e. x, y ∈ c(u). Then (uxyx, uyx) ∈ (π−
1 )̂. Note that the set of

identities

uxyx = uyx , where x, y ∈ c(u) (1)

is equivalent to a pair of identities. Indeed, we distinguish two cases, namely u =

z1xz2yz3 and u = z1yz2xz3 (z1, z2, z3 ∈ X∗). Those identities are

z1 x z2 y z3 · x y x = z1 x z2 y z3 · y x , (1a)

z1 y z2 x z3 · x y x = z1 y z2 x z3 · y x , (1b)

where z1, z2, z3 ∈ X.

We have also the dual version of the set of identities (1), namely

xyxu = xyu , where x, y ∈ c(u) .

Similarly as above, this set is equivalent to two identities, which we denote by (1c)

and (1d).

When we put z1 = z2 = y = λ and z3 = z in (1a) then we obtain the identity

xzx2 = xzx , (1e)

and similar using (1c) we get

x2zx = xzx . (1f)

Another set of identities which is satisfied in the pseudovariety corresponding

to BPol1(J−
1 ) is

uxyv = uyxv , where x, y ∈ c(u) ∩ c(v) (2)

Note that this set is equivalent to the following identities:

z1xz2yz3 · xy · t1xt2yt3 = z1xz2yz3 · yx · t1xt2yt3 , (2a)

z1xz2yz3 · xy · t1yt2xt3 = z1xz2yz3 · yx · t1yt2xt3 . (2b)
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When we work with π−
1 we observe that the identities

yzyx ≤ yzxyx and xyzy ≤ xyxzy (3)

are satisfied in the pseudovariety corresponding to PPol1(J−
1 ). Note that the iden-

tity

x ≤ x2

follows from the identities (3). Other identity which is satisfied in the pseudovariety

corresponding to PPol1(J−
1 ) is

xzxtx ≤ xztx . (4)

Note that the set of identities (1) is a consequence of the identities (3) and (4).

Proposition 1. (i) The six identities (1a-d) and (2a,b) form a finite basis of iden-

tities for the variety of monoids corresponding to BPol1(J−
1 ).

(ii) The four identities (2a,b), (3) and (4) form a finite basis of identities for

the variety of ordered monoids corresponding to PPol1(J−
1 ).

Proof. The results follow from the series of lemmas below.

We need a bit more notation. For u ∈ X∗, we denote by:

• first(u) the sequence of the first occurrences of letters of u (from the left),

• last(u) the sequence of the last occurrences of letters of u,

• Subk(u) the set of all (scattered) subwords of u of length less or equal to k.

Note that first(λ) = last(λ) = λ.

Let u ∈ X∗ be a word and x, y ∈ c(u), x 6= y be letters such that xy 6∈ Sub2(u)

(i.e. the last occurrence of y is before the first occurrence of x in the word u). Then

u can be written in the form u = u0yu1xu2 where y 6∈ c(u1xu2) and x 6∈ c(u0yu1).

We put inty,x(u) = c(u1). Notice that x, y 6∈ inty,x(u).

Lemma 2. Let u, v ∈ X∗ be arbitrary words. Then (u, v) ∈ π−
1 if and only if the

following conditions are satisfied

• first(u) = first(v) and last(u) = last(v);

• Sub2(u) ⊆ Sub2(v);

• for every x, y ∈ c(u) such that x 6= y and xy 6∈ Sub2(v) we have inty,x(v) ⊆
inty,x(u).

Proof. Assume (u, v) ∈ π−
1 . It is easy to see that c(u) = c(v).

Let x and y be two different letters from c(v). Assume that the first occurrence

of the letter x is before the first occurrence of the letter y in v. Let g = (g0, x, g1)

be a factorization of v such that the central x is the first occurrence of the letter x

in v, i.e. x 6∈ c(g0). Under our assumption also y 6∈ c(g0). There is a factorization

f = (f0, x, f1) of u such that c(f0) ⊆ c(g0) and c(f1) ⊆ c(g1). We obtain x 6∈ c(f0)
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and y 6∈ c(f0). Hence the central x in f is the first occurrence of x in u and the first

occurrence of y in u can not be before it. Hence first(u) = first(v).

The dual arguments lead to last(u) = last(v).

If xx 6∈ Sub2(v) and x ∈ c(v) then v = g0xg1, where x 6∈ c(g0) ∪ c(g1). For

the factorization (g0, x, g1) of v there is a factorization (f0, x, f1) of u such that

c(f0) ⊆ c(g0) and c(f1) ⊆ c(g1). Hence xx 6∈ Sub2(u). In other words xx ∈ Sub2(u)

implies xx ∈ Sub2(v).

Observe that for each word w and letters x, y ∈ c(w) such that x 6= y we have

xy ∈ Sub2(w) if and only if the first occurrence of x in w is before the last occurrence

of y in w. Assume, for a moment, that xy ∈ Sub2(u) but xy 6∈ Sub2(v), i.e. the last

occurrence of y in v is before the first occurrence of x. Let g = (g0, y, g1) be a

factorization of v where the central y is the last occurrence of y in v, i.e. y 6∈ c(g1).

Under our assumptions also x 6∈ c(g0). There is a factorization f = (f0, y, f1) of

u such that c(f0) ⊆ c(g0) and c(f1) ⊆ c(g1). Hence x 6∈ c(f0) and y 6∈ c(f1).

The second condition is saying that the central y in the factorization f is the last

occurrence of y in u and hence x does not occur before this y. Consequently, the last

occurrence of y in u is before the first occurrence of x in u, which is a contradiction.

Hence we proved the second condition.

Now let x, y ∈ c(u) be such that x 6= y and xy 6∈ Sub2(v). Then xy 6∈ Sub2(u)

is also true. We can write v = v0yv1xv2 where y 6∈ c(v1xv2) and x 6∈ c(v0yv1) and

also u = u0yu1xu2 where y 6∈ c(u1xu2) and x 6∈ c(u0yu1). Let z ∈ c(v1) = inty,x(v).

Then we can write v1 = v′1zv
′′
1 and we have a factorization g = (v0yv

′
1, z, v

′′
1xv2) of

the word v. Then there is a factorization f = (f0, z, f1) of the word u such that

c(f0) ⊆ c(v0yv
′
1) ⊆ c(v0yv1) and c(f1) ⊆ c(v′′1xv2) ⊆ c(v1xv2). Hence x 6∈ c(f0)

and y 6∈ c(f1). This means that the central z in f is before the first occurrence of

the letter x in u and after the last occurrence of the letter y in u. Thus z ∈ c(u1)

and we proved that inty,x(v) = c(v1) ⊆ c(u1) = inty,x(u). The proof of the direct

implication is complete.

Conversely, assume that u and v satisfy all three conditions. Note that from the

first one we have c(u) = c(v). Let g = (g0, z, g1) be an arbitrary factorization of v.

We distinguish several cases.

Assume that the central z in g is the first occurrence and the last occurrence of

this letter in v at the same time. Then it is the unique occurrence of z in v and we

have zz 6∈ Sub2(v). Hence zz 6∈ Sub2(u) and there is a unique occurrence of z in u,

so we can write u = u0zu1 and z 6∈ c(u0) ∪ c(u1). From the first condition we have

c(u0) = c(g0) and c(u1) = c(g1).

Assume that the central z in g is the first occurrence of z in v but it is not

the last occurrence of z in v. Then z 6∈ c(g0) and z ∈ c(g1). Consider u = u0zu1

where the central z is the first occurrence of z in u, i.e. z 6∈ c(u0). From the first

condition we have c(u0) = c(g0) and we would like to show that c(u1) ⊆ c(g1). So,

let y ∈ c(u1). Then zy ∈ Sub2(u) ⊆ Sub2(v) and y ∈ c(g1) follows. If the central z

in g is the last occurrence of z in v we can use the dual arguments.
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Finally, assume that the central z in g is not the first occurrence nor the last

occurrence of z in v. If there is no letter with the last occurrence in v before our

occurrence of z, then c(g1) = c(v) = c(u) and we can easily find an appropriate

factorization f of u (namely, by the first condition we choose the first occurrence

of z in u as a central letter in f) for which the inequality f ≤σ g is true. Dually,

in the case when no first occurrence of a letter is after our occurrence of z. Look

now at the last occurrence of a letter y before z in v such that there is no last

occurrence of some letter between these occurrences of y and z. In the same way

we look at the first occurrence of a letter x in v which is after z and there is no first

occurrence of some letter between them. Thus z ∈ inty,x(v) ⊆ inty,x(u) by the third

condition and we can find the occurrence of z in u between the last occurrence of

y and the first occurrence of x, i.e u = u1yu2zu3xu4 where x 6∈ c(u1yu2zu3) and

y 6∈ c(u2zu3xu4). We claim that f = (u1yu2, z, u3xu4) ≤σ g = (g0, z, g1). Indeed,

if some letter a occurs in u1yu2 then the first occurrence of this letter a is before

the first occurrence of x in u and by the first condition the first occurrence of a in

v is before the first occurrence of x. By the choice of x, the first occurrence of a in

v is before our z in v, i.e. a ∈ c(g0). We proved that c(u1yu2) ⊆ c(g0) and one can

prove c(u3xu4) ⊆ c(g1) in the same manner, i.e. f ≤σ g.

In all cases we found such a factorization f of the word u, hence (u, v) ∈ π−
1 .

From the previous lemma we immediately obtain an analogous characterization

for the relation (π−
1 )̂ .

Lemma 3. Let u, v ∈ X∗ be arbitrary words. Then (u, v) ∈ (π−
1 )̂ if and only if the

following conditions are satisfied

• first(u) = first(v) and last(u) = last(v);

• Sub2(u) = Sub2(v);

• for every x, y ∈ c(u) such that x 6= y and xy 6∈ Sub2(v), we have inty,x(u) =

inty,x(v).

For w ∈ X∗ we define the skeleton skel(w) ∈ X∗ as follows. We remove from w

every occurrence of a given letter which is not the first or the last occurrence of this

letter in the word w. After deleting of all “interior” occurrences of all letters from

w, the resulting word is the skeleton skel(w) of w. In other words, there is a unique

factorization (λ, b1, w1, b2, w2, . . . , b`−1, w`−1, b`, λ) of the word w, such that

• for every i = 1, . . . , `− 1 we have c(wi) ⊆ {b1, . . . , bi} ∩ {bi+1, . . . , b`};
• for every i = 2, . . . , `− 1 we have bi 6∈ {b1, . . . , bi−1} or bi 6∈ {bi+1, . . . , b`}.

We call b1w1b2w2 . . . b`−1w`−1b` = w a skeleton decomposition of w and we put

skel(w) = b1b2 . . . b`−1b`.

Lemma 4. (i) Let w ∈ X∗. Then first(w) = first(skel(w)), last(w) = last(skel(w))

and Sub2(w) = Sub2(skel(w)).
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(ii) Let u, v ∈ X∗ satisfy the first two conditions from Lemma 3. Then skel(u) =

skel(v). In particular, this is true for (u, v) ∈ (π−
1 )̂ .

Proof. “(i)” : Let w ∈ X∗. By the definition of skel(w) we have first(w) =

first(skel(w)), last(w) = last(skel(w)) and Sub2(skel(w)) ⊆ Sub2(w). On the other

hand, if x, y ∈ X are such that xy ∈ Sub2(w), then one can consider the first occur-

rence of x and the last occurrence of y in w and see that xy ∈ Sub2(skel(w)). The

equality Sub2(skel(w)) = Sub2(w) follows.

“(ii)” : For an arbitrary w ∈ X∗ each letter occurs at most twice in skel(w) and

it occurs exactly once if and only if it occurs exactly once in w. Hence the length

of the word skel(w) is equal to the size of the set c(w) plus the number of letters

x ∈ X such that xx ∈ Sub2(w).

Consider words u, v ∈ X∗ such that first(u) = first(v), last(u) = last(v),

and Sub2(u) = Sub2(v). Then skel(u) and skel(v) have the same length. Let

b1u1b2u2 . . . b`−1u`−1b` = u and c1v1c2v2 . . . c`−1v`−1c` = v be the skeleton de-

compositions of u and v. Then skel(u) = b1b2 . . . b`−1b` and skel(v) = c1c2 . . . c`−1c`.

By (i) we have that first(skel(u)) = first(skel(v)), last(skel(u)) = last(skel(v)) and

Sub2(skel(u)) = Sub2(skel(v)). Now, assume that skel(u) 6= skel(v). Let i be the

smallest index such that bi 6= ci.

If bi, ci 6∈ {b1, . . . , bi−1} then the first occurrence of bi in skel(u) is before the

first occurrence of ci in skel(u) and this is not true for skel(v). It is a contradiction

with first(skel(u)) = first(skel(v)).

If bi ∈ {b1, . . . , bi−1} and ci 6∈ {b1, . . . , bi−1} = {c1, . . . , ci−1} then cibi 6∈
Sub2(skel(u)) and bibi ∈ Sub2(skel(u)) = Sub2(skel(v)). Hence bi = cj for some

j > i and cibi ∈ Sub2(skel(v)) = Sub2(skel(u)) which is a contradiction. We can use

a similar argument in the case bi 6∈ {b1, . . . , bi−1} and ci ∈ {b1, . . . , bi−1}.
Finally, if bi, ci ∈ {b1, . . . , bi−1} then bi ∈ {ci+1, . . . , c`} \ {bi+1, . . . , b`} and

ci ∈ {bi+1, . . . , b`} \ {ci+1, . . . , c`}. Hence the last occurrence of bi is before the last

occurrence of ci in skel(u) and this is not true for skel(v). It is a contradiction with

last(skel(u)) = last(skel(v)).

We have obtained a contradiction in all cases, so skel(u) = skel(v) holds.

We say that a word w is a canonical word if its skeleton decomposition w =

b1w1b2w2 . . . b`−1w`−1b` satisfies the following condition:

(C1) for every i = 1, . . . , `− 1 and positive integers j, j′, if xjxj′ is a subword of

wi then j < j′.

If the following two conditions are also satisfied we speak about a balanced

canonical word.

(C2) If i ∈ {1, . . . , ` − 1} is such that bi ∈ {bi+1, . . . , b`}, then bi ∈ c(wi) and

c(wi−1) ⊆ c(wi) for i ≥ 2;

(C3) If i ∈ {2, . . . , `} is such that bi ∈ {b1, . . . bi−1}, then bi ∈ c(wi−1) and

c(wi) ⊆ c(wi−1) for i ≤ `− 1.
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The role of this notion will be clear from the following lemma which completes the

proof of the first statement of the proposition.

Lemma 5. (i) Let u, v be balanced canonical words and (u, v) ∈ (π−
1 )̂ . Then u = v.

(ii) Let u be an arbitrary word. Then there exists a balanced canonical word w

such that (u,w) ∈ (π−
1 )̂ and the identity u = w is a consequence of the identities

(1a-d) and (2a,b).

Proof. “(i)” : Let u, v be balanced canonical words such that (u, v) ∈ (π−
1 )̂ .

Then skel(u) = skel(v) by Lemma 4. Let u = b1u1b2u2 . . . b`−1u`−1b` and v =

b1v1b2v2 . . . b`−1v`−1b` be the skeleton decompositions of u and v.

Since u and v satisfy (C1), the fact ui = vi is equivalent to c(ui) = c(vi).

Therefore it is enough to prove that c(ui) = c(vi) for every i = 1, . . . , ` − 1. To

prove this, we consider an arbitrary such i.

If {b1, b2, . . . , bi} ⊆ {bi+1, . . . , b`} then the assumption bj ∈ {bj+1, . . . , b`} in

(C2) is valid for every j ∈ {1, . . . , i}. Hence we have b1 ∈ c(u1), b2 ∈ c(u2), . . . , bi ∈
c(ui) and c(u1) ⊆ c(u2) ⊆ · · · ⊆ c(ui). Thus we have {b1, . . . , bi} ⊆ c(ui) and the

opposite inclusion is given by the definition of the skeleton decomposition of a word.

The same is true for v, so we obtain c(ui) = {b1, . . . , bi} = c(vi).

The dual argument gives the equality c(ui) = c(vi) if {bi+1, . . . , b`} ⊆
{b1, b2, . . . , bi}. Therefore we can assume there are indices p and q such that

1 ≤ p ≤ i < q ≤ ` and bp 6∈ {bi+1, . . . , b`}, bq 6∈ {b1, b2, . . . , bi}. Moreover, we can

consider the largest p and the smallest q satisfying these conditions. In other words,

we assume also that for every p′ such that p < p′ ≤ i we have bp′ ∈ {bi+1, . . . , b`}
and for every q′ such that i < q′ < q we have bq′ ∈ {b1, b2, . . . , bi}. These ad-

ditional assumptions imply that bp′ ∈ {bp′+1, . . . , bi, bi+1, . . . , b`} = {bi+1, . . . , b`}
for every p′ = p + 1, . . . , i. By (C2) we have bp+1 ∈ c(up+1), . . . , bi ∈ c(ui) and

c(up) ⊆ c(up+1) ⊆ · · · ⊆ c(ui). Similarly from right bq−1 ∈ c(uq−2), . . . , bi+1 ∈ c(ui)

and c(uq−1) ⊆ · · · ⊆ c(ui+1) ⊆ c(ui). Altogether we observe that

intbp,bq (u) = c(upbp+1up+1 . . . ui−1biuibi+1ui+1 . . . uq−2bq−1uq−1) = c(ui) .

The same equality holds for v and we obtain c(ui) = c(vi), by Lemma 3.

“(ii)” : Let u be an arbitrary word and consider its skeleton decomposition

u = b1u1b2u2 . . . b`−1u`−1b`.

If bi ∈ {bi+1, . . . , b`}, then we can use the identities (1a-d) to add to ui every

letter x ∈ c(ui−1bi) \ c(ui), one by one (to reach our goal it does not matter the

position in the word ui, or in the word obtained from ui after some of these steps,

we add a letter of c(ui−1) \ c(ui), since by the identities (2a,b) we can commute

any letters in the word obtained). In this way we transform all ui’s to words which

satisfy condition (C2). In the same manner we can transform the final word obtained

in this way, which satisfies (C2), to a word satisfying (C3) too. Let vi be the word

that replaced ui after these steps.
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14 Ondřej Kĺıma and Libor Polák

Now we can use the identities (2a,b) to reorder the letters inside vi’s. Finally

the identity (1e) can be used on each word vi to obtain a word wi that has no more

than one occurrence of each letter. This means that we can transform in that way

the considered word to a word satisfying condition (C1).

Therefore the identities (1a-d) and (2a,b) can be used to obtain a balanced

canonical word which is (π−
1 )̂ -related to the given u.

The first part of Proposition 1 is proved and its second part follows from the

following lemma.

Lemma 6. Let u, v ∈ X∗ be such that (u, v) ∈ π−
1 . Then the identity u ≤ v is a

consequence of the identities (2a,b), (3) and (4).

Proof. The proof will be divided into two parts.

Claim 1. Let u, v ∈ X∗ be such that (u, v) ∈ π−
1 . Then there exists a word w such

that the identity u ≤ w is a consequence of the identities (3) satisfying (w, v) ∈ π−
1

and Sub2(w) = Sub2(v).

Proof of Claim 1. Recall that (u, v) ∈ π−
1 implies Sub2(u) ⊆ Sub2(v) by Lemma 2.

We prove the claim by an induction with respect to the size of the set M = Sub2(v)\
Sub2(u). If M is the empty set then we can simply put w = u.

Let M be of size m and assume that the claim holds for every pair of words

(u′, v′) of ∈ π−
1 which satisfies |Sub2(v′) \ Sub2(u′)| < m.

If x2 ∈ M for some x ∈ X, then u = u0xu1 where x 6∈ c(u0) ∪ c(u1). Now we

can apply the identity x ≤ x2 (consequence of the identities (3)) to obtain u ≤
u0xxu1. Using Lemma 2 we see that (u, v) ∈ π−

1 implies (u0xxu1, v) ∈ π−
1 . We put

w = u0xxu1 and we have Sub2(w) = Sub2(u)∪{x2}. Now we can use the induction

assumption for the pair (w, v) for which we have Sub2(v) \ Sub2(w) = M \ {x2}.
Thus in the case x2 ∈M we are done, so assume that no x2 belongs to M .

Now from all pairs x 6= y satisfying xy ∈ M we choose such one that in the

corresponding factorization u = u0yu1xu2 where y 6∈ c(u1xu2) and x 6∈ c(u0yu1)

the word u1 is the shortest possible. Since xy ∈ M we have v = v0xv1yv2 where

x 6∈ c(v0) and y 6∈ c(v2). We know that first(v) = first(u), so y ∈ c(v0). In the

same manner x ∈ c(v2) follows from last(v) = last(u). Hence x2, y2 ∈ Sub2(v)

and consequently x2, y2 ∈ Sub2(u); in particular x ∈ c(u2) and y ∈ c(u0).

Now if u1 contains the first occurrence of a letter z in u then the first occur-

rence of z is before the first occurrence of x in both u and v and we see that

zy ∈ M . This is a contradiction with our choice of the pair x, y. In the same

way we can prove that u1 does not contain the last occurrence of some letter.

This means that c(u1) ⊆ c(u0) and c(u1) ⊆ c(u2). Let u1 = y1 . . . yj where

y1, . . . , yj ∈ X. We use one of the identities (3), namely yzyx ≤ yzxyx, to intro-

duce in u a new occurrence of x immediately before the last letter of u1. So we have

u = u0yy1 . . . yj−1yjxu2 ≤ u0yy1 . . . yj−1 · x · yjxu2. We use the same identity to in-

troduce in u0yy1 . . . yj−1xyjxu2 new occurrences of x before all yj−1, . . . , y1 and also
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before y, step by step. Hence u = u0yy1 . . . yj−1yjxu2 ≤ u0xyxy1x . . . xyj−1xyjxu2

is a consequence of the identities (3). Let w be the word on the right hand side. It is

not hard to see that (w, v) ∈ π−
1 because Sub2(w) = Sub2(u)∪ {xy} ⊆ Sub2(v) and

the other invariants from Lemma 2 remain the same. Now we can use the induction

assumption for the pair (w, v) and we proved the first claim.

Claim 2. Let w, v ∈ X∗ be such that (w, v) ∈ π−
1 and Sub2(w) = Sub2(v). Then

the identity w ≤ v is a consequence of the identities (2a,b), (3) and (4).

Proof of Claim 2. By Lemma 5 we can assume that w and v are balanced canonical

words. Recall that the identities (1) are consequence of the identities (3) and (4).

By Lemmas 2 and 4 we have skel(w) = skel(v). Let w = b1w1b2w2 . . . b`−1w`−1b`
and v = b1v1b2v2 . . . b`−1v`−1b` be the skeleton decompositions of words w and v

with the same skeleton b1 . . . b`. We have showed some basic properties of words wi

in the skeleton decompositions of canonical balanced canonical words in the proof

of item (i) of Lemma 5:

1. If {b1, . . . , bi} ⊆ {bi+1, . . . , b`} then c(wi) = {b1, . . . , bi} and we have c(wi) =

c(vi).

2. Dually in the case {bi+1, . . . , b`} ⊆ {b1, . . . , bi}.
3. In the remaining cases there are indices p < i < q such that bp 6∈ {bi+1, . . . , b`},

bq 6∈ {b1, . . . , bi} and for every p′ such that p < p′ ≤ i we have bp′ ∈ {bi+1, . . . , b`}
and for every q′ such that i < q′ < q we have bq′ ∈ {b1, . . . , bi}. And then c(wi) =

intbp,bq (w) and c(vi) = intbp,bq (v). Hence we can deduce c(vi) ⊆ c(wi) by Lemma 2.

By condition (C1), vi is a subword of wi, which means that either vi = wi or

vi can be obtained from wi by deleting some occurrences of some letters in wi.

Thus for any s, t ∈ X∗ such that c(wi) ⊆ c(s) ∩ c(t), the identity swit ≤ svit

is a consequence of the identity (4). Then we deduce from (4) the identities w =

b1w1b2w2b3 . . . w`−1b` ≤ b1v1b2w2b3 . . . w`−1b` ≤ b1v1b2v2b3w3b4 . . . w`−1b` ≤ · · · ≤
b1v1b2v2b3 . . . v`−1b` = v, and hence also the identity w ≤ v.

We finished the proof of Proposition 1.

4.2. Identities for pseudovarieties corresponding to BPol1(J1) and

PPol1(J1)

The proofs in this part are easier because we can use numerous observations from

the previous subsection.

We will use the identities (2a,b) again and we introduce a new one

xyxxzx = xyxzx . (5)

It is clear that these three identities are satisfied in the pseudovariety corresponding

to BPol1(J1) and consequently in that for PPol1(J1). Also it is easy to see that the

identity (4) is satisfied in the pseudovariety corresponding to PPol1(J1).

Proposition 7. (i) The identities (2a,b) and (5) form a finite basis of identities

for the variety of monoids corresponding to BPol1(J1).
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(ii) The identities (2a,b), (4), and (5) form a finite basis of identities for the

variety of ordered monoids corresponding to PPol1(J1).

Proof. We modify Lemma 5 for the relation π̂1 as follows.

Lemma 8. (i) Let u, v be canonical words such that (u, v) ∈ π̂1. Then u = v.

(ii) Let u be an arbitrary word. Then there exists a canonical word w such that

(u,w) ∈ π̂1 and the identity u = w is a consequence of the identities (2a,b) and (5).

Proof. “(i)” : Since π̂1 ⊆ (π−
1 )̂ , we have skel(u) = skel(v) by Lemma 4 (ii). So,

let u = b1u1b2u2 . . . b`−1u`−1b` and v = b1v1b2v2 . . . b`−1v`−1b` be the skeleton

decompositions which satisfy condition (C1). It is enough to prove that c(ui) = c(vi)

for every i = 1, . . . , `− 1. Let i be an arbitrary index and let x ∈ c(vi).

Consider the factorization g = (g0, x, g1) of v corresponding to the occurrence of

x in vi. Then we know that x ∈ c(g0) = {b1, . . . , bi} and x ∈ c(g1) = {bi+1, . . . , b`}.
There is a factorization f = (f0, x, f1) of u such that c(f0) = c(g0) and c(f1) =

c(g1). We claim that for the prefix f0 of u and the suffix f1 of u we have |f0| ≥
|b1u1b2u2 . . . bi−1ui−1bi| and |f1| ≥ |bi+1ui+1 . . . b`|. From this claim the statement

x ∈ c(ui) follows.

To prove the claim we first assume that bi 6∈ {b1, . . . , bi−1}. Since f0 is a prefix

of u = b1u1b2u2 . . . b`−1u`−1b` such that c(f0) = c(g0) = {b1, . . . , bi} we see that

|f0| ≥ |b1u1b2u2 . . . bi−1ui−1bi|. Now assume that bi ∈ {b1, . . . , bi−1}. Then we have

bi 6∈ {bi+1 . . . , b`} = c(f1). Hence the suffix f1 of u is a suffix of uibi+1 . . . u`−1b`, in

particular |f1| ≤ |uibi+1 . . . u`−1b`|. Furthermore bi 6∈ c(f1) and x ∈ c(g1) = c(f1)

implies x 6= bi. We can conclude that |f1| < |uibi+1 . . . u`−1b`|, and hence |f0| ≥
|b1u1b2u2 . . . bi−1ui−1bi| holds also in this second case. If we consider bi+1 we can

prove the second half of the claim and we can conclude that x ∈ c(ui).

Analogously we have c(ui) ⊆ c(vi) for any i.

“(ii)” : Let u = b1u1b2u2 . . . b`−1u`−1b` be the skeleton decomposition of u.

We use the identities (2a,b) to commute letters inside every ui and we use the

identity (5) to remove redundant occurrences of letters. Thus we can construct w

with the required properties.

Lemma 9. Let u, v ∈ X∗ be such that (u, v) ∈ π1. Then skel(u) = skel(v).

Proof. If (u, v) ∈ π1 then (u, v) ∈ π−
1 and we have first(u) = first(v) and

last(u) = last(v) by Lemma 2. We claim that Sub2(u) = Sub2(v). Indeed, the inclu-

sion Sub2(u) ⊆ Sub2(v) also follows from Lemma 2. Let xy ∈ Sub2(v). If we consider

a factorization g = (g0, x, g1) of the word v such that x 6∈ c(g0) then y ∈ c(g1).

Therefore there is a factorization f = (f0, x, f1) of u such that c(f0) = c(g0) and

c(f1) = c(g1). So the central x in f is the first occurrence of x in u and y ∈ c(f1)

and we can conclude that xy ∈ Sub2(u). We proved the claim and the statement

trivially follows.
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Lemma 10. Let u, v be words such that (u, v) ∈ π1. Then the identity u ≤ v is a

consequence of the identities (2a,b), (4) and (5).

Proof. By Lemma 8 we can assume that both u, v are canonical words. We

have skel(u) = skel(v) by Lemma 9. So, let u = b1u1b2u2 . . . b`−1u`−1b` and

v = b1v1b2v2 . . . b`−1v`−1b` be the skeleton decompositions. In the proof of the

part (i) of Lemma 8 we saw that c(vi) ⊆ c(ui) for every i = 1, . . . , ` − 1. Then v

can be obtained from u by deleting in each ui every letter of c(ui) \ c(vi), hence the
identity u ≤ v is a consequence of the identity (4).

We finished the proof of the proposition.

5. Inclusions between our subhierarchies

Our primary goal is to compare our classes of languages. We are doing that by

the usage of the corresponding finite characteristics and our methods use rather

combinatorics on words.

Recall that, for any positive variety V of languages, we have PPolk(V) ⊆ PPol`(V)
and BPolk(V) ⊆ BPol`(V) for k < `. Next we show that in the case of varieties J−

1

and J1 these inclusions are strict. The positions of our varieties for k = 0 is clear –

see Figure 1. So let k ≥ 1 in the rest of this section.

Proposition 11. The hierarchies PPolk(J−
1 ), PPolk(J1), BPolk(J−

1 ) and

BPolk(J1) are strict, that is, for k 6= `, we have PPolk(J−
1 ) 6= PPol`(J−

1 ) etc.

Proof. By Results 2, 3 and 6 it is enough to show π−
k+1 $ π−

k for every nonnegative

integer k and similarly for the other relations. The inclusion π−
k+1 ⊆ π−

k follows

directly from the definition (and similarly for the other relations). Let x ∈ X and

let k be a nonnegative integer. Then

(xk+2, xk+1) ∈ π−
k \ π

−
k+1, (x2k+1, x2k+2) ∈ πk \ πk+1,

(xk+2, xk+1) ∈ (π−
k )̂ \ (π

−
k+1)̂ , (x2k+1, x2k+2) ∈ π̂k \ π̂k+1 .

Thus we have two chains of positive varieties of languages PPolk(J−
1 ) and

PPolk(J1) and two chains of Boolean varieties of languages BPolk(J−
1 ) and

BPolk(J1). The unions PPol(J−
1 ) and PPol(J1) of the families (PPolk(J−

1 ))k and

(PPolk(J1))k, respectively, coincide and they form the 3/2 level of the Straubing-

Thérien hierarchy (consequence of Theorem 8.8 of [8]). Therefore, BPol(J−
1 ) =

BPol(J1) is the second level of this hierarchy. We show a direct argument for these

equalities here.

Proposition 12. It holds PPol(J−
1 ) = PPol(J1) and BPol(J−

1 ) = BPol(J1).
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Proof. Let A be an arbitrary finite alphabet. Since J−
1 ⊆ J1 we have

PPol(J−
1 )(A) ⊆ PPol(J1)(A). To get the opposite inclusion we have to show that

an arbitrary language

L = B0a1B1a2 . . . a`B`, a1, . . . , a` ∈ A, B0, . . . , B` ⊆ A

belongs to PPol(J−
1 )(A). First observe that for a subset C of A consisting of the

letters c1, c2, . . . , cm we can write

C =
⋃
σ∈Σ

C∗cσ(1)C
∗cσ(2)C

∗ . . . C∗cσ(m)C
∗ , (6)

where Σ is the set of all permutations of the set of indices {1, . . . ,m}. When we

replace each Bi in the expression giving L by the corresponding sum of languages

using formula (6) we obtain that L ∈ PPol(J−
1 )(A).

Hence PPol(J−
1 ) = PPol(J1) and the equality BPol(J−

1 ) = BPol(J1) follows.

If we fix a number k, then we see

PPolk(J−
1 ) ⊆ PPolk(J1), PPolk(J−

1 ) ⊆ BPolk(J−
1 ) ,

PPolk(J1) ⊆ BPolk(J1), BPolk(J−
1 ) ⊆ BPolk(J1) .

Next we show that for a fixed k ≥ 1, our varieties form (with respect to inclusion)

a four-element lattice which is not a chain.

Proposition 13. For each k, the varieties PPolk(J−
1 ), PPolk(J1), BPolk(J−

1 ) and

BPolk(J1) are pairwise different. Moreover, PPolk(J1) and BPolk(J−
1 ) are incom-

parable, i.e. PPolk(J1) * BPolk(J−
1 ) and BPolk(J−

1 ) * PPolk(J1).

Proof. Let x ∈ X. Clearly,

(xk+2, xk+1) ∈ (πk ∩ (π−
k )̂ ) \ π̂k ,

(xk, xk+1) ∈ π−
k \ (πk ∪ (π−

k )̂ ) ,

(xk+1, xk+2) ∈ (π−
k )̂ \ πk .

From the first formula we obtain both π̂k $ πk and π̂k $ (π−
k )̂ from which

PPolk(J1) $ BPolk(J1) and BPolk(J−
1 ) $ BPolk(J1) follow. The second formula

yields both πk $ π−
k and (π−

k )̂ $ π−
k from which we get PPolk(J−

1 ) $ PPolk(J1)
and PPolk(J−

1 ) $ BPolk(J−
1 ). Now the third condition says that (π−

k )̂ * πk, hence

PPolk(J1) * BPolk(J−
1 ).

To finish the proof we need to show BPolk(J−
1 ) * PPolk(J1), i.e. πk * (π−

k )̂ .

Let x, y ∈ X be a pair of different letters. Then

((xy)k+1x(xy)k+1, (xy)k+1) ∈ πk \ (π−
k )̂ .

One would expect that the members of our four hierarchies (for k ≥ 1) form

a lattice isomorphic to the product of that four-element lattice with the chain of
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positive integers. We show that the situation is a bit complicated. Such irregularities

are possible just in the case k ≤ 1. We show that all varieties in the first level are

below almost all varieties from the other levels.

Proposition 14. (i) BPol1(J1) ⊆ BPol2(J−
1 ).

(ii) BPol1(J1) ⊆ PPol2(J1).
(iii) BPol1(J1) ⊆ PPol3(J−

1 ).

(iv) PPol1(J1) 6⊆ PPol2(J−
1 ).

(v) BPol1(J1) 6⊆ PPol2(J−
1 ).

(vi) BPol1(J−
1 ) ⊆ PPol2(J−

1 ).

(vii) PPol2(J−
1 ) 6⊆ BPol1(J1).

Proof. “(i)” : We want to prove that BPol1(J1) ⊆ BPol2(J−
1 ), that is (π−

2 )̂ ⊆ π̂1.

Let u, v ∈ X∗ be such that (u, v) ∈ (π−
2 )̂ . Since (π−

2 )̂ ⊆ (π−
1 )̂ we have skel(u) =

skel(v) by Lemma 4. So, let u = b1u1b2u2 . . . u`−1b` and v = b1v1b2v2 . . . v`−1b` be

the skeleton decompositions of u and v with the skeleton skel(u) = skel(v) = b1 . . . b`,

where u1, . . . , u`−1, v1, . . . , v`−1 ∈ X∗. We will prove that c(ui) = c(vi) for each

i = 1, . . . , `− 1.

For each i we consider a factorization g = (g0, bi, g1, bi+1, g2) of v, such that

g0 = b1v1 . . . bi−1vi−1, g1 = vi and g2 = vi+1bi+2 . . . v`−1b`. Then there is a fac-

torization f = (f0, bi, f1, bi+1, f2) of u such that c(f0) ⊆ c(g0), c(f1) ⊆ c(g1) and

c(f2) ⊆ c(g2). If bi 6∈ c(g0), then bi 6∈ {b1, . . . , bi−1} = c(b1u1 . . . bi−1ui−1) and

bi 6∈ c(f0), which implies that f0 = b1u1 . . . bi−1ui−1. If bi 6∈ c(g1bi+1g2), then

bi 6∈ {bi+1, . . . , b`} = c(uibi+1 . . . u`−1b`) and bi 6∈ c(f1bi+1f2), which implies that

f1bi+1f2 = uibi+1 . . . u`−1b`. We can prove the analogue for bi+1 and hence f1 = ui.

This means c(ui) = c(f1) ⊆ c(g1) = c(vi).

If we exchange the role of v and u we obtain also c(vi) ⊆ c(ui) and the claim is

proved. Now the definition of π̂1 gives immediately (u, v) ∈ π̂1.

Item (ii) can be proved in the similar way as part (i) taking into account

Lemma 9.

“(iii)” : If (u, v) ∈ π−
3 then Sub2(v) ⊆ Sub2(u), by the definition of π−

3 . Since

π−
3 ⊆ π−

1 we get, by Lemma 2, first(u) = first(v), last(u) = last(v) and Sub2(u) ⊆
Sub2(v). Now we can apply Lemma 4 to get skel(u) = skel(v). Then one can continue

similarly as in part (i).

“(iv)” : Since (x2, x3) ∈ π−
2 but (x2, x3) 6∈ π1 we see that the inclusion π−

2 ⊆ π1

does not hold.

Item (v) follows from (iv).

“(vi)” : We want to prove that π−
2 ⊆ (π−

1 )̂. Let u, v ∈ X∗ be such that (u, v) ∈
π−
2 . From the definition of π−

2 we deduce that Sub2(v) ⊆ Sub2(u) and π−
2 ⊆ π−

1 .

Thus by Lemmas 2 and 4 we have skel(u) = skel(v). If |skel(u)| ≤ 1, then u = v.

If |skel(u)| ≥ 2, with the notation of the proof of (i) we have c(ui) ⊆ c(vi) for all

i ∈ {1, . . . , `− 1}. Then (v, u) ∈ π1 ⊆ π−
1 and hence (u, v) ∈ π−

1 ∩ (π−
1 )

d = (π−
1 )̂ .
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“(vii)” : The definitions of π̂1 and π−
2 give (xyxyxy, xyyxxy) ∈ π̂1 \ π−

2 .

Final Remark. At present the authors have a rather technical proof of the fact that

considered hierarchies for k ≥ 2 really form the lattice isomorphic to the product of

four-element lattice with the chain of positive integers. Thus the poset formed by

the members of the four hierarchies is represented by Figure 1. Note that our four

hierarchies do not form a lattice with respect to inclusion; for instance, there is no

supremum for PPol2(J−
1 ) and BPol1(J1).

BPol3(J1)

BPol3(J−
1 )

BPol2(J−
1 )

BPol1(J1)

BPol1(J−
1 )

PPol3(J−
1 )

BPol2(J1)

PPol1(J1)

PPol2(J1)

PPol2(J−
1 )

PPol3(J1)

PPol1(J−
1 )

J−
1 = PPol0(J−

1 )

J1 = BPol0(J−
1 ) = PPol0(J1) = BPol0(J1)

Fig. 1. Hierarchies ordered by inclusion
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