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Abstract
We initiate the theory and applications of biautomata. A biautomaton can read a word alter-
nately from the left and from the right. We assign to each regular language L its canonical
biautomaton. This structure plays, among all biautomata recognizing the language L, the same
role as the minimal deterministic automaton has among all deterministic automata recognizing
the language L. We expect that from the graph structure of this automaton one could decide
the membership of a given language to certain significant classes of languages. We present the
first result of this kind: a language L is piecewise testable if and only if the canonical biautoma-
ton of L is acyclic. From this result the famous Simon’s characterization of piecewise testable
languages easily follows.

1. Introduction

Regular languages are recognized, among others, by deterministic automata. A regular language
L possesses, up to isomorphism, the unique minimal complete deterministic automaton. There
is a canonical construction due to Brzozowski [1] where the states are constructed as left
derivatives of L. A useful property is that each state q is a language and it is exactly the
set of all words transforming q into a terminal state. A similar view can be also applied in the
theory of universal automata, see Lombardy, Sakarovitch [5] and Polák [7]. Namely, the states
of the universal automaton are exactly the finite intersections of left derivatives. This lead the
authors to consider the so-called meet automata [3]. In this setting the universal automaton of
L can be viewed as the canonical meet automaton for L. Other useful structures for a language
L are the syntactic monoid and the syntactic semiring of L. The syntactic monoid is isomorphic
to the transformation monoid of the minimal automaton of L. Similarly, the syntactic semiring
of L is isomorphic to the transformation semiring of the canonical meet automaton.

One of the major goals in regular language theory is to determine whether a given language is
a member of certain significant classes of languages. All the above mentioned structures turned
out to be appropriate tools for answering such a kind of questions. In this paper we introduce
a new structure, called a biautomaton, and we claim that this structure can also clarify some
aspects of these questions. Notice that the term “biautomaton” was used by other authors
having quite different meanings. Moreover, our notion is not related to two-ways automata.
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Motivated by Brzozowski’s construction, we consider two-sided derivatives of L, to get the
states of a new type of automaton. Now each letter determines two independent actions on
states, namely the derivative from the left and the derivative from the right. In such a way
we get the so-called canonical biautomaton and a natural generalization leads to an abstract
notion of biautomata. The canonical biautomaton of the language L plays, among all biau-
tomata recognizing L, the same role as the minimal deterministic automaton has among all
deterministic automata recognizing L.

As the first application of the theory of biautomata we give an effective characterization of
piecewise testable languages via their canonical biautomata. The class of piecewise testable
languages is a prominent one in the algebraic theory of regular languages. Simon [8, 9] showed
that a language is piecewise testable if and only if its syntactic monoid is J -trivial. This
characterization is based on one of Green’s relations, a basic concept of the semigroup theory.
Similar classes of monoids related to other Green’s relations are classes of R-trivial monoids
and L-trivial monoids, two classes which are right-left dual. It is well known that a finite
monoid is J -trivial if and only if it is R-trivial and L-trivial at the same time. Apart from
the combinatorial characterization of regular languages having R-trivial syntactic monoids, it
is known that these languages are those which have acyclic minimal automata (see Section 4.3
in [6] for more details). From this point of view, a language L is piecewise testable if and only if
both the minimal automaton of L and the minimal automaton of L (the left-right dual language
of L) are acyclic. Since both these automata can be found in the canonical biautomaton of L,
this leads us to the claim that the canonical biautomaton of a piecewise testable language is
acyclic as well. We show that this is true and that also the opposite implication is valid.

Theorem 1. Let L be a regular language. Then L is piecewise testable if and only if the
canonical biautomaton of L is acyclic.

It is possible to complete the previous arguments into a proof of the theorem as a consequence
of known results. Instead of such a proof we show in Section 4 an elementary, direct proof
of the theorem. On three pages we give a complete proof which is self-contained. This could
demonstrate that there is a certain potential for finding further applications of biautomata in
the algebraic theory of regular languages.

After this introductory section we collect necessary definitions and notation in Section 2. The
next section is an introduction to the theory of biautomata. The last section characterizes
piecewise testable languages in terms of their canonical biautomata. Finally, we derive the
original Simon’s theorem from our results.

2. Preliminaries

We fix a finite non-empty alphabet A consisting of letters. Let A∗ be the free monoid over A
with the neutral element λ, i.e. the set of all words over A equipped with the operation of
concatenation. For u = a1a2 . . . an ∈ A∗ where n is a positive integer and a1, a2, . . . , an ∈ A, we
write u = an . . . a2a1, |u| = n and c(u) = {a1, . . . , an} (i.e. the set of all letters occurring in u).



On biautomata 3

Moreover, we put λ = λ, |λ| = 0 and c(λ) = ∅. Also, for L ⊆ A∗, we write L = {u | u ∈ L }
and Lc = A∗ \ L.

A complete deterministic finite automaton over A is a fivetuple A = (Q,A, ·, i, F ) where

• Q is a nonempty set of states,

• · : Q × A → Q, extended to · : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a, where
q ∈ Q, u ∈ A∗, a ∈ A,

• i ∈ Q is the initial state,

• T ⊆ Q is the set of final states.

The automaton A accepts the word u ∈ A∗ if i · u ∈ F . The right language L (A, q) of a state q
with respect to the automaton A is the set {w ∈ A∗ | q · w ∈ F }. The language recognized by
A is the set L (A) = L (A, i).

For a language L ⊆ A∗ and u ∈ A∗, we define u−1L = {w ∈ A∗ | uw ∈ L }. Moreover,
we put DL = {u−1L | u ∈ A∗ }. This set is finite for each regular language L. Further, let
DL = (DL, A, ·, L, F ), where q · a = a−1q, for each q ∈ DL, a ∈ A, and q ∈ F iff λ ∈ q. This
automaton is called the canonical automaton for L and it is well-known that it is a minimal
complete deterministic automaton for L – see [1].

For a language L ⊆ A∗, we define the relation ∼L on A∗ as follows: for u, v ∈ A∗ we have

u ∼L v if and only if ( ∀ p, r ∈ A∗ ) ( pur ∈ L ⇐⇒ pvr ∈ L ) .

The relation ∼L is a congruence on A∗, it is called the syntactic congruence of L and the
quotient structure M(L) = A∗/∼L = { [u]∼L

| u ∈ A∗ } is called the syntactic monoid of L.
Moreover, the monoid M(L) is finite whenever L is a regular language.

Recall, that a monoid M is J -trivial if and only if for all elements a, b, c, d, e, f ∈ M , the
equalities cad = b, ebf = a implies a = b.

3. Biautomata

3.1. General definition, congruences, quotient biautomaton, isomorphism

A biautomaton over a finite alphabet A is a sixtuple B = (Q,A, ·, ◦, i, T ) where

• Q is a nonempty set of states,

• · : Q × A → Q, extended to · : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a, where
q ∈ Q, u ∈ A∗, a ∈ A,

• ◦ : Q × A → Q, extended to ◦ : Q × A∗ → Q by q ◦ λ = q, q ◦ (av) = (q ◦ v) ◦ a, where
q ∈ Q, v ∈ A∗, a ∈ A,

• i ∈ Q is the initial state,
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• T ⊆ Q is the set of final states,

• for each q ∈ Q, u ∈ A∗, we have q · u ∈ T if and only if q ◦ u ∈ T ,

• for each q ∈ Q, a, b ∈ A, we have (q · a) ◦ b = (q ◦ b) · a.

Notice that from the last condition it follows:

for each q ∈ Q, u, v ∈ A∗, we have (q · u) ◦ v = (q ◦ v) · u . (∗)

In contrast to deterministic automata, we could not take a finite set of vertices and define
actions of letters arbitrarily.

The biautomaton B accepts a given word u ∈ A∗ if i · u ∈ T . This is equivalent to i ◦ u ∈ T . In
the definition of acceptance we read u from the left-hand side and transform states according to
·, in the equivalent condition we read u from the right-hand side and transform states according
to ◦. Moreover, it allows us an impatient reading: we can divide u = u1 . . . ukvk . . . v1 arbitrarily,
where u1, . . . , uk, vk, . . . , v1 ∈ A∗, and we read u1 first, then v1, then u2, and so on, i.e. we move
from i to the state

q = ((. . . ((((i · u1) ◦ v1) · u2) ◦ v2) . . . ) · uk) ◦ vk .
Indeed, we show that q ∈ T if and only if i · u ∈ T . Using (∗) repeatedly, we get

q = (. . . ((((. . . ((i · u1) · u2) . . . ) · uk) ◦ v1) ◦ v2) . . . ) ◦ vk = (i · u1u2 . . . uk) ◦ vk . . . v2v1 .

Now q ∈ T if and only if (i · u1u2 . . . uk) · vk . . . v2v1 = i · u ∈ T .

The right language L (B, q) of a state q with respect to the biautomaton B is the set {w ∈ A∗ |
q · w ∈ T }. The language recognized by B is the set L (B) = L (B, i). The state q ∈ Q of the
biautomaton B is reachable if there exist u, v ∈ A∗ such that q = (i · u) ◦ v.

A relation ∼ is a congruence relation of the biautomaton B = (Q,A, ·, ◦, i, T ) if
• ∼ is an equivalence relation on the set Q,

• for each p, q ∈ Q, a ∈ A, the fact p ∼ q implies that both p · a ∼ q · a and p ◦ a ∼ q ◦ a,
• for each p ∈ T, q ∈ Q, the fact p ∼ q yields q ∈ T .

We define the quotient automaton B/∼ = (Q/∼, A, ·∼, ◦∼, i ∼, T/∼) where (q ∼)·∼a = (q ·a)∼
and (q ∼) ◦∼ a = (q ◦ a)∼. This structure is again a biautomaton. Moreover, it recognizes the
same language as B does.

Two biautomata B = (Q,A, ·, ◦, i, T ) and B′ = (Q′, A, ·′, ◦′, i′, T ′) are isomorphic if there exists
a bijection ϕ : Q → Q′, called an isomorphism, such that

• for each q ∈ Q, a ∈ A, we have that ϕ(q · a) = ϕ(q) ·′ a and ϕ(q ◦ a) = ϕ(q) ◦′ a,
• ϕ(i) = i′,

• for each q ∈ Q, we have that q ∈ T if and only if ϕ(q) ∈ T ′.

Clearly, isomorphic biautomata recognize the same languages.
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3.2. Reverse biautomaton

The next construction shows how one can naturally convert a deterministic automaton into a
biautomaton recognizing the same language.

Given a complete deterministic automaton A = (Q,A, ·, i, F ), we define the structure AB =
(QB, A, ·B, ◦B, iB, FB), where

• QB = { (q, P ) | q ∈ Q, P ⊆ Q },

• for each q ∈ Q, P ⊆ Q, we have (q, P )·Ba = (q·a, P ), (q, P )◦Ba = ( q, {p ∈ Q | p·a ∈ P} ),

• iB = (i, F ),

• for each q ∈ Q, P ⊆ Q, we have (q, P ) ∈ FB iff q ∈ P .

Lemma 1. For each complete deterministic automaton A, the structure AB is a biautomaton
recognizing the same language as A does.

Proof. Let q ∈ Q, P ⊆ Q, u, v ∈ A∗. Then

(q, P ) ·B u = (q · u, P ) and (q, P ) ◦B u = ( q, { p ∈ Q | p · u ∈ P } ) .

Each of the above states is terminal iff q · u ∈ P .

Moreover, ((q, P ) ·B u) ◦B v = ( q · u, { p ∈ Q | p · v ∈ P } ) = ((q, P ) ◦B v) ·B u.

Finally, we have L (AB) = {w ∈ A∗ | (i, F ) ·B w ∈ FB } = {w ∈ A∗ | (i · w,F ) ∈ FB } =
= {w ∈ A∗ | i · w ∈ F } = L (A) .

The biautomaton AB is called the reverse biautomaton of the automaton A.

3.3. Product biautomaton

The following construction yields another model for a biautomaton accepting given language
L ⊆ A∗. For v ∈ A∗, we define

Lv−1 = {w ∈ A∗ | wv ∈ L }, EL = {Lv−1 | v ∈ A∗ }, PL = DL × EL .

Now we define PL = (PL, A, ·, ◦, (L,L), T ), where

(s, t) · a = (a−1s, t), (s, t) ◦ a = (s, ta−1) and (u−1L,Lv−1) ∈ T iff uv ∈ L .

Lemma 2. The above structure PL is a biautomaton isomorphic to the biautomaton of all
reachable states of (DL)

B.
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Proof. In PL we have ((L,L) · u) ◦ v = (u−1L,Lv−1) and in (DL)
B we have ((L, F ) · u) ◦ v =

(u−1L, {w−1L | w−1L · v ∈ F } ) = (u−1L, {w−1L | (wv)−1L ∈ F } ) = (u−1L, {w−1L | wv ∈
L } ) = (u−1L, {w−1L | w ∈ Lv−1 } ).

Therefore the mapping (u−1L,Lv−1) 7→ (u−1L, {w−1L | w ∈ Lv−1 } ), u, v ∈ A∗, is correctly
defined and it is the desired isomorphism.

The biautomaton PL is called the product biautomaton of the language L.

3.4. Canonical biautomaton

For a language L ⊆ A∗ and u, v ∈ A∗, we define

u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }, CL = {u−1Lv−1 | u, v ∈ A∗ } .

We define CL = (CL, A, ·, ◦, L, T ), where

q · a = a−1q, q ◦ a = qa−1 and u−1Lv−1 ∈ T iff λ ∈ u−1Lv−1 .

Lemma 3. For each regular language L over A, the structure CL is a biautomaton. Moreover,
for each state q, the right language L (CL, q) is equal to q. In particular, the biautomaton CL
recognizes the language L.

Proof. Let u, v ∈ L. Realize that each of the states u−1L · v and u−1L ◦ v is final iff uv ∈ L.
Then L (CL, u−1Lv−1) = {w ∈ A∗ | u−1Lv−1 · w ∈ T } = {w ∈ A∗ | λ ∈ (uw)−1Lv−1 } = {w ∈
A∗ | uwv ∈ L } = u−1Lv−1.

The biautomaton CL is called the canonical biautomaton of the language L.

Example. Let L = {a, b}∗ca{b, c}∗ be a language over the alphabet A = {a, b, c}. In Figure 1,
the “reverse” actions by letters are drawn by dashed arrows. We omit here the empty set
state and arrows leading there. The initial state i is the language L and the final states are
{b, c}∗, {a, b}∗ and 1 = {λ}. The reader could try to read the word acab from the state i in
various ways: i · acab, i ◦ acab or ((i · a) ◦ ab) · c.

3.5. Minimalization of biautomata

The minimalization procedure for biautomata is similar to that for deterministic automata:

Lemma 4. Let B = (Q,A, ·, ◦, i, T ) be an arbitrary biautomaton where all states are reachable.
Then the relation ∼ defined on Q by

p ∼ q if and only if L (B, p) = L (B, q)

is a congruence relation on B. Moreover, the mapping

ϕ : ((i · u) ◦ v)∼ 7→ u−1Lv−1
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Figure 1: The canonical biautomaton of the language L = {a, b}∗ca{b, c}∗

is an isomorphism of the quotient biautomaton B/∼ onto the canonical biautomaton for the
language L = L (B).

Proof. Let L = L (B). An arbitrary state p ∈ Q is of the form p = (i · u) ◦ v, u, v ∈ A∗. Then

L (B, (i · u) ◦ v) = {w ∈ A∗ | ((i · u) ◦ v) · w ∈ T } = {w ∈ A∗ | ((i · u) · w) ◦ v ∈ T }

= {w ∈ A∗ | (i · uw) ◦ v ∈ T } = {w ∈ A∗ | (i · uw) · v ∈ T } = {w ∈ A∗ | i · uwv ∈ T }
= {w ∈ A∗ | uwv ∈ L } = u−1Lv−1 .

Thus for u, v, u′, v′ ∈ A∗, we have

p = (i · u) ◦ v ∼ q = (i · u′) ◦ v′ if and only if u−1Lv−1 = (u′)−1L(v′)−1 .

Now, for each a ∈ A, we have p · a = ((i · u) · a) ◦ v = (i · ua) ◦ v and p ◦ a = (i · u) ◦ (av) and
similarly for q. Thus p ∼ q yields both p · a ∼ q · a and p ◦ a ∼ q ◦ a.

Further, (i ·u)◦v ∈ T iff i ·uv = (i ·u) ·v ∈ T iff uv ∈ L iff λ ∈ u−1Lv−1. Thus p ∈ T, p ∼ q
implies q ∈ T .

The second part of our statement follows also from the considerations above.

4. Biautomata for Piecewise Testable Languages

4.1. Proof of Theorem 1

A regular language L over an alphabet A is called piecewise testable if it is a finite Boolean
combination of languages of the form A∗a1A

∗a2A
∗ . . . A∗a`A

∗, where a1, . . . , a` ∈ A, ` ≥ 0. An
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effective characterization of piecewise testable languages was given by Simon [8, 9] who proved
that a language L is piecewise testable if and only if its syntactic monoid is J -trivial. Here we
give an alternative effective characterization of piecewise testable languages via biautomata.

For words u, v ∈ A∗ we write u / v if and only if u is a subword of v, i.e. there are letters
a1, . . . , a` ∈ A and words v0, v1, . . . , v` ∈ A∗ such that u = a1 . . . a` and v = v0a1v1 . . . a`v`. For
v ∈ A∗, we denote Subk(v) = {u ∈ A+ | u / v, |u| ≤ k }. We define the equivalence relation ∼k

on A∗ by the rule: u ∼k v if and only if Subk(u) = Subk(v). Note that for k = 1 the set Subk(v)
is equal to c(u). Further, for a given word u ∈ A∗ we denote by Lu the language of all words
which contain the word u as a subword, i.e. Lu = {v ∈ A∗ | u / v}. If u = a1a2 . . . a`, where
a1, a2, . . . , a` ∈ A, then we can write Lu = A∗a1A

∗a2A
∗ . . . A∗a`A

∗. An easy consequence of the
definition of piecewise testable languages is the following lemma. The proof can be found in
e.g. [8],[4]. In fact the proof is so easy that many authors skip it and even in some papers the
condition from the lemma is taken as a definition condition for piecewise testable languages.

Lemma 5. A language L is piecewise testable if and only if there exists an index k such that
L is a union of classes in the partition A∗/∼k.

Our goal is to prove Theorem 1, i.e. the characterization that the piecewise testable languages
are exactly languages with the acyclic canonical biautomata. We say that a biautomaton
B = (Q,A, ·, ◦, i, T ) contains a cycle if there exist n ≥ 2, states q0, q1, . . . , qn ∈ Q, where
qn = q0 6= q1, and letters a1, . . . , an ∈ A such that for each i = 1, . . . , n we have qi−1 · ai = qi or
qi−1 ◦ ai = qi. We call a biautomaton B acyclic if B does not contain any cycle.

Example (continuation). The biautomaton in Figure 1 is acyclic and therefore, by our
main result, the language L is piecewise testable. In fact, L = A∗cA∗aA∗ ∩ (A∗cA∗aA∗aA∗)c ∩
(A∗cA∗cA∗aA∗)c ∩ (A∗cA∗bA∗aA∗)c.

Lemma 6. Let B be a acyclic biautomaton and let ∼ be a congruence relation on B. Then the
quotient automaton B/∼ is acyclic.

Proof. Let (q0∼, q1∼, . . . , qn∼) be a cycle in B/∼ with q0∼, q1∼, . . . , qn−1∼ pairwise different.
We have n ≥ 2, qn ∼ q0 6∼ q1, and q0 ∗1 a1 = q1, q1 ∗2 a2 = q2, . . . , qn−1 ∗n an = qn where each
∗i is · or ◦. We can continue qn ∗1 a1 = qn+1, . . . , q2n−1 ∗n an = q2n, q2n ∗1 a1 = q2n+1, . . . . Let
qkn+i−1, k ≥ 0, i ∈ {1, . . . , n} be the first one which equals to a state already considered. Then
we have a cycle in B starting at qkn.

Lemma 7. Let L be a piecewise testable languages over an alphabet A. Then the canonical
biautomaton CL = (CL, A, ·, ◦, L, T ) of L is acyclic.

Proof. Since every piecewise testable language over the alphabet A is a finite Boolean combi-
nation of languages Lu, it is enough to prove:
i) CLu and CLc

u
are acyclic for every u ∈ A∗;

ii) if CK and CL are acyclic then both CK∩L and CK∪L are also acyclic.
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For every u ∈ A∗ the canonical biautomaton CLu = (CLu , A, ·, ◦, L, T ) of the language Lu has
states of the form Lv, where v ∈ A∗ is a factor of u, i.e. u = pvq for some p, q ∈ A∗, in
which case we have p−1Luq

−1 = Lv. Let v, w ∈ A∗ and a ∈ A be such that Lv 6= Lw ∈ C and
Lw = Lv · a or Lw = Lv ◦ a. Then |w| > |v| and we can deduce that the biautomaton CLu

is acyclic. If we consider a language Lc
u instead of Lu then the canonical biautomaton CLc

u
is

acyclic because it is, in fact, the canonical biautomaton CLu where just final states are changed.

Now if K,L are languages such that CK and CL are acyclic then one can consider the direct
product of biautomata CK and CL which is acyclic. In this structure we can choose, in usual
way, reachable states and also final states TK∩L and TK∪L respectively, namely (p, q) ∈ TK∩L iff
both p and q are final states in the biautomata CK and CL and (p, q) ∈ TK∪L iff at least one of
the states p, q is final. In this way we obtain a certain acyclic biautomaton which recognized the
language K ∩L (and K ∪L respectively). To finish the proof we can use Lemmas 4 and 6.

Now we prove the difficult part of Theorem 1. The basic idea, namely reading one word from
left and the other from right, is inspired by our recent combinatorial proof [2] of Simon’s result.

Lemma 8. Let L be a regular language such that the canonical biautomaton CL of L is acyclic.
Then L is a piecewise testable language.

Proof. With respect to Lemma 5 we need to find an appropriate index k such that L is a
union of some classes in the partition A∗/∼k. Such k will be 2 times the size of the canonical
biautomaton CL = (CL, A, ·, ◦, L, T ) and the proof will be given by the induction with respect
to this k.

Claim. Let B = (B,A, ·, ◦, i, T ) be an arbitrary acyclic biautomaton such that |B| = `. For
every u, v ∈ A∗ such that Sub2`(u) = Sub2`(v) and every q ∈ B, we have q · u ∈ T iff q · v ∈ T .

Proof of the claim : For ` = 1 the statement is trivial. Let ` > 1 be an arbitrary and assume
that the statement holds for all smaller numbers. Let q ∈ B be arbitrary and u, v ∈ A∗ be such
that Sub2`(u) = Sub2`(v). We will assume that q · u ∈ T and q · v 6∈ T and we show that this
assumption leads to a contradiction. Recall that q · v 6∈ T is equivalent to q ◦ v 6∈ T . In the
state q we read u from left and v from right and we are interested in the position in the words,
where we leave the state q. First assume that q · u = q ∈ T , i.e. we do not leave the state
q. Then Sub2`(u) = Sub2`(v) implies c(u) = c(v) and we have q · v = q ∈ T – a contradiction.
Thus q · u 6= q and in the same way we can show that q ◦ v 6= q. Hence we really leave the state
q and there are u′, u′′ ∈ A∗, a ∈ A such that u = u′au′′, for every c ∈ c(u′) we have q · c = q,
and q · a 6= q. In particular a 6∈ c(u′). Similarly, let v′, v′′ ∈ A∗, b ∈ A be such that v = v′bv′′,
for every c ∈ c(v′′) we have q ◦ c = q, and q ◦ b 6= q. Since ` > 1 we have c(u) = c(v) and we
can look for the first occurrence of a in the word v and the last occurrence of b in the word u.
We distinguish three cases depending on relative positions of these occurrences of a and b in
u. In general, note that for x, y ∈ A, w ∈ A∗ xy ∈ Sub2(w) if and only if the first occurrence
of x in w is before the last occurrence of y in w. This will be a useful property with respect
Sub2(u) = Sub2(v) which follows from the assumption Sub2`(u) = Sub2`(v).
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Case I : The first occurrence of a in u is before the last occurrence of b in u. Since Sub2(u) =
Sub2(v) the same is true for v and we can consider the following decompositions of u and
v: u = u0au1bu2, v = v0av1bv2 where u0 = u′, u1, u2, v0, v1, v2 = v′′ ∈ A∗ are such that
a 6∈ c(u0), a 6∈ c(v0), b 6∈ c(u2), b 6∈ c(v2). If we consider an arbitrary w ∈ Sub2`−1(u1bu2), then
aw ∈ Sub2`(u) = Sub2`(v) from which w ∈ Sub2`−1(v1bv2) follows. This means Sub2`−1(u1bu2) ⊆
Sub2`−1(v1bv2) and the opposite inclusion can be proved in the same way. Thus we have
Sub2`−1(u1bu2) = Sub2`−1(v1bv2) and similarly Sub2`−1(u0au1) = Sub2`−1(v0av1) and Sub2`−2(u1)
= Sub2`−2(v1).

We denote qu = q · u0a 6= q and we can consider the biautomaton consisting of all states
reachable from qu. This is an acyclic biautomaton with at most ` − 1 states, because it is a
subset of B and it does not contain the state q. By induction assumption qu · u1bu2 ∈ T iff
qu · v1bv2 ∈ T . The first condition is satisfied because qu · u1bu2 = q · u0au1bu2 = q · u. Hence
qu · v1bv2 ∈ T and also (qu ◦ bv2) · v1 = (qu · v1) ◦ bv2 ∈ T . We denote the state qu ◦ bv2 as p.

Analogically, we denote qv = q ◦ bv2 = (q ◦ v2) ◦ b 6= q and we consider the acyclic biautomaton
consisting of all states reachable from qv. We have qv ◦ v0av1 = q ◦ v 6∈ T hence qv ◦ u0au1 6∈ T
follows from the induction assumption. Since we work with the biautomaton we deduce that
qv · u0au1 = (qv · u0a) · u1 6∈ T . Now we can see that qv · u0a = (q ◦ bv2) · u0a = (q · u0a) ◦ bv2 =
qu ◦ bv2 = p. We have observed p · v1 ∈ T in the previous paragraph and p · u1 6∈ T here. It is
clear that p 6= q and we can consider the biautomaton consisting of all states reachable from p
which has at most `− 1 states. Since Sub2`−2(u1) = Sub2`−2(v1) we see that both p · v1 ∈ T and
p · u1 6∈ T cannot be true at the same moment. We obtain a contradiction.

Case II : The first occurrence of a in u is the last occurrence of b in u at the same time.
In other words, a = b and the first occurrence of a is the unique occurrence of this letter
in u. Hence a ∈ c(u) = c(v), aa 6∈ Sub2(u) = Sub2(v) and a has the unique occurrence
in v too. In the same manner as in Case I we can deduce that Sub2`−1(u

′) = Sub2`−1(v
′)

and Sub2`−1(u
′′) = Sub2`−1(v

′′). In particular c(u′) = c(v′) and c(u′′) = c(v′′) which give
q · v′ = q and q ◦ u′′ = q. Now q · u = (q · u′a) · u′′ ∈ T implies (q · u′a) ◦ u′′ ∈ T , and thus
(q · u′a) ◦ u′′ = (q ◦ u′′) · u′a = q · u′a = q · a. In the same way q ◦ v = (q ◦ av′′) ◦ v′ 6∈ T implies
(q ◦ av′′) · v′ 6∈ T , and thus (q ◦ av′′) · v′ = (q · v′) ◦ av′′ = q ◦ av′′ = (q ◦ v′′) ◦ a = q ◦ a. We get
q · a ∈ T and q ◦ a 6∈ T which is not possible in biautomata – a contradiction.

Case III : The first occurrence of a in u is after the last occurrence of b in u. This means
that ab 6∈ Sub2(u) = Sub2(v) and the first occurrence of a in v is after the last occurrence of
b in v. We can consider the following decompositions of u and v: u = u0bu1au2, v = v0bv1av2
where u0, u1, u2, v0, v1, v2 ∈ A∗ are such that u0bu1 = u′, v1av2 = v′′. Again we can deduce
that Sub2`−1(u0) = Sub2`−1(v0) and Sub2`−1(u2) = Sub2`−1(v2), in particular c(u0) = c(v0) and
c(u2) = c(v2). Hence for every c ∈ c(u′) = c(u0bu1) we have q · c = q, in particular q · b = q and
q · c = q for every c ∈ c(u0) = c(v0). Now we see that q ◦ v = q ◦ v0bv1av2 = (q ◦ v1av2) ◦ v0b =
q ◦ v0b 6∈ T . Hence q · v0b 6∈ T , q · v0b = q and we deduce q 6∈ T . On the other hand, for
every c ∈ c(v′′) = c(v1av2) we have q ◦ c = q, in particular q ◦ a = q and q ◦ c = q for every
c ∈ c(v2) = c(u2). Now q · u = (q · u0bu1) · au2 = q · au2 ∈ T . Hence q ◦ au2 ∈ T , q ◦ au2 = q.
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But this means q ∈ T which is a contradiction with the previous conclusion q 6∈ T .

We have proved the claim which completes the proof of the lemma.

Now Theorem 1 is a consequence of Lemmas 7 and 8.

4.2. Simon theorem as a consequence of Theorem 1

In 1972, Simon gave the following effective characterization of piecewise testable languages.

Theorem 2. Let L be a language over a finite alphabet A. Then L is piecewise testable if and
only if the syntactic monoid M(L) is J -trivial.

The statement consists of two implications where one of them is easy to prove. Namely, one
can easily show that for each word u ∈ A∗ the syntactic monoid of the language Lu is J -trivial.
This implies that every piecewise testable language has a J -trivial syntactic monoid. Here we
want to show the difficult implication in Simon theorem as a consequence of Theorem 1.

Lemma 9. Let L be a language over a finite alphabet A such that the syntactic monoid M(L) is
J -trivial. Then the canonical biautomaton CL of L is acyclic. Therefore L is piecewise testable.

Proof. Let L be a regular language such that M = M(L) is J -trivial. Recall that each element
of M is of the form [u]∼L

, which is denoted simply by [u]. We also denote the subset of M
corresponding to words from the language L by F , i.e. F = { [u] ∈ M | u ∈ L }.

For the monoid M we construct the following biautomaton B = (Q,A, ·, ◦, i, T ). We put
Q = M ×M , for every a ∈ A and p, r ∈ M we set (p, r) · a = (p[a], r) and (p, r) ◦ a = (p, [a]r).
Furthermore, i = ([λ], [λ]) and T = { (p, r) | pr ∈ F }. Now one can check that B is a
biautomaton. Moreover, we see that

u ∈ L (B) iff ([λ], [λ]) · u ∈ T iff ([u], [λ]) ∈ T iff [u] ∈ F iff u ∈ L .

Hence the constructed biautomaton B recognizes L. We claim that the biautomaton B is acyclic.
Indeed, assume that B = (Q,A, ·, ◦, i, T ) contains a cycle, i.e we consider states q0, q1, . . . , qn ∈
Q, where qn = q0 6= q1, and letters a1, . . . , an ∈ A such that for each i = 1, . . . , n we have
qi−1 · ai = qi or qi−1 ◦ ai = qi. Assume additionally that q1 = q0 · a1. (The case q1 = q0 ◦ a1
can be done dually.) Then we have q0 = (p0, r0) and q1 = (p0[a1], r0). Thus p0[a1] 6= p0. Now
qn = q0 implies that there are u, v ∈ A∗ such that (q1 · u) ◦ v = q0. Hence p0[a1][u] = p0. This
is a contradiction to the fact that p0[a1] 6= p0 and to the assumption that M is J -trivial.

Finally, CL can be obtained as a quotient biautomaton of the biautomaton B by Lemma 4.
Hence CL is acyclic by Lemma 6.
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5. Conclusion

We initiated the theory and applications of biautomata. We assigned to each regular language L
its canonical biautomaton. This structure plays, among all biautomata recognizing the language
L, the same role as the minimal deterministic automaton of L has among all deterministic
automata recognizing L. We expect that from the graph structure of this automaton one could
decide the membership of a given language to certain significant classes of languages. We
presented the first result of this kind: a language L is piecewise testable if and only if the
canonical biautomaton of L is acyclic. From this result the famous Simon’s characterization of
piecewise testable languages easily follows.
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