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Abstract. We assign to each positive variety V and a fixed natural
number k the class of all (positive) boolean combinations of the restricted
polynomials, i.e. the languages of the form L0a1L1a2 . . . a`L`, where ` ≤
k, a1, . . . , a` are letters and L0, . . . , L` are from the variety V. For this
polynomial operator we give a certain algebraic counterpart which works
with identities satisfied by syntactic (ordered) monoids of considered
languages. We also characterize the property that a variety of languages
is generated by a finite number of languages. We apply our constructions
for particular examples of varieties of languages which are crucial for a
certain famous open problem concerning concatenation hierarchies.
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1 Introduction

The polynomial operator assigns to each positive variety of languages V the class
of all (positive) boolean combinations the languages of the form

L0a1L1a2 . . . a`L` , (∗)

where A is an alphabet, a1, . . . , a` ∈ A, L0, . . . , L` ∈ V(A) (i.e. they are over A).
Such operator on classes of languages leads to several concatenation hierarchies.
Well-known cases are the Straubing-Thérien and the group ones. Concatenation
hierarchies has been intensively studied by many authors – see Section 8 of the
Pin’s Chapter [9]. The main open problem concerning concatenation hierarchies,
which is in fact one of the most interesting open problem in the theory of regular
languages, is a membership problem for the level 2 in the Straubing-Thérien
hierarchy, i.e. a decision problem whether a given regular language can be written
as a boolean combination of polynomials over languages from level 1 in that
hierarchy. It is known that a language is of this type if and only if it is a boolean
combination of polynomials with languages Li = B∗

i where each Bi ⊆ A (i =
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0, . . . , `). So this instance of polynomial operator is the most important case to
study.

The restricted case, i.e. the case when we fix a natural number k and we allow
only ` ≤ k in (∗), mainly in the case that V is the trivial variety was considered
by Simon in [10], in a series of papers by Blanchet-Sadri, see for instance [4],
and in a recent paper by the authors [6].

The basic question both for general and restricted polynomial operator is
to translate the construction on languages to the corresponding pseudovarieties
of (ordered) monoids. Other important questions for varieties resulting by the
polynomial operator concern the existence of finite basis of (pseudo)identities
for the corresponding pseudovarieties of (ordered) monoids and the possibility
to generate such pseudovariety by a single monoid (see Volkov [11]).

In the present paper we continue our research from [6]. We concentrate
here on identity problems for corresponding pseudovarieties and on the question
whether they are generated by a single (ordered) monoid. In our basic examples
the class V(A) equals to {∅, A∗} or to finite unions of B∗, B ⊆ A or to finite
unions of B, B ⊆ A where B is the set of all words over A containing exactly
the letters from B.

In the next section we recall the necessary background and we introduce
there four examples which we will follow thorough the whole paper. We show
in Section 3 that the locally finite positive varieties of languages (i.e. such that
each V(A) is finite) correspond to the so-called finite characteristic which are
certain relations on {x1, x2, . . . }∗. Section 4 contains the main result which ef-
fectively translates the polynomial operation on languages to an operator on
finite characteristics. The last section studies the varieties of languages which
are generated by a finite number of languages. In fact, this is equivalent to the
property that corresponding pseudovariety of (ordered) monoids is generated by
a single monoid. We transfer this property to finite characteristics. We conclude
here to by investigating this “finiteness condition” on our basic examples.

2 Preliminaries

For a relation ρ on a set S we define its dual relation ρd = { (v, u) ∈ S × S |
(u, v) ∈ ρ }. A quasiorder ρ on a set S is a reflexive and transitive relation. Let
ρ̂ = ρ∩ ρd be the corresponding equivalence relation. For a mapping φ : S → T ,
let imφ = {φ(s) | s ∈ S }.

An ordered monoid is a structure (M, ·,≤) where (M, ·) is a monoid and ≤
is a compatible order on (M, ·), i.e. a ≤ b implies both a · c ≤ b · c, c ·a ≤ c · b, for
all a, b, c ∈M . Morphisms of ordered monoids are isotone monoid morphisms.

Let (M, ·,≤) be an ordered monoid and let � be a compatible quasiorder on
(M, ·) satisfying ≤ ⊆ �. Then the relation ≤� defined by

a�̂ ≤� b�̂ if and only if a � b, for all a, b ∈M

is a compatible order on (M/�̂, ·) and the mapping a 7→ a�̂ is a morphism of
(M, ·,≤) onto (M/�̂, ·,≤�).
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An ideal I of an ordered set (M,≤) is a subset of M satisfying b ≤ a ∈ I
implies b ∈ I, for all b ∈ M . For a ∈ M , we write (a] = { b ∈ M | b ≤ a }. A
language L over an alphabet A is recognized by a finite ordered monoid (M, ·,≤)
if there exist a morphism φ : A∗ → M and an ideal I of (M,≤) such that
L = φ−1(I).

Let Y ∗ be the set of all words over an alphabet Y including the empty one,
denoted by λ. For a word u ∈ Y ∗, let

cont(u) = { y ∈ Y | u = u′yu′′ for some u′, u′′ ∈ Y ∗ } .

For a set Z ⊆ Y , let Z = {u ∈ Y ∗ | cont(u) = Z }. Let |u|y be the number of
occurrences of a letter y ∈ Y in u ∈ Y ∗.

Now we recall here the basics concerning the Eilenberg type theorems. The
boolean case was invented by Eilenberg [5] and the positive case was introduced
by Pin [8].

A boolean variety of languages V associates to every finite alphabet A a class
V(A) of regular languages over A in such a way that

– V(A) is closed under finite unions, finite intersections and complements (in
particular ∅, A∗ ∈ V(A) ),

– V(A) is closed under derivatives, i.e.
L ∈ V(A), u, v ∈ A∗ implies u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),

– V is closed under preimages in morphisms, i.e.
f : B∗ → A∗, L ∈ V(A) implies f−1(L) = { v ∈ B∗ | f(v) ∈ L } ∈ V(B).

To get the notion of a positive variety of languages, we use in the first item
only intersections and unions (not complements). In fact in this paper we con-
sider mainly positive varieties and the boolean ones are treated as special cases.

The meaning of V ⊆ W is that V(A) ⊆ W(A), for each finite alphabet A.
Similarly

⋃
i∈I Vi means that (

⋃
i∈I Vi)(A) =

⋃
i∈I Vi(A), for each finite A.

A pseudovariety of finite monoids is a class of finite monoids closed under
submonoids, morphic images and products of finite families. Similarly for ordered
monoids (see [9]). When defining a variety of (ordered) monoids we use arbitrary
products.

For a regular language L ⊆ A∗, we define the relations ∼L and �L on A∗ as
follows: for u, v ∈ A∗ we have

u ∼L v if and only if ( ∀ p, q ∈ A∗ ) ( puq ∈ L ⇐⇒ pvq ∈ L ) ,

u �L v if and only if ( ∀ p, q ∈ A∗ ) ( pvq ∈ L =⇒ puq ∈ L ) .

The relation ∼L is the syntactic congruence of L on A∗. It is of finite index
(i.e. there are only finitely many classes) and the quotient structure M(L) =
A∗/∼L is called the syntactic monoid of L.

The relation �L is the syntactic quasiorder of L and we have �̂L = ∼L.
Hence �L induces an order on M(L) = A∗/∼L, namely: u∼L ≤ v ∼L if and
only if u �L v. Then we speak about the syntactic ordered monoid of L and we
denote the structure by O(L).
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Result 1 (Eilenberg [5], Pin [8]) Boolean varieties (positive varieties) of lan-
guages correspond to pseudovarieties of finite monoids (ordered monoids). The
correspondence, written V←→ V (P←→ P), is given by the following relation-
ship: for L ⊆ A∗ we have

L ∈ V(A) if and only if M(L) ∈ V ( L ∈P(A) if and only if O(L) ∈ P ) .

The pseudovarieties of ordered monoids can be characterized by pseudoiden-
tities (see e.g. [1] or [7]). The pseudovarieties we consider here are equational
– they are given by identities. For the set X = {x1, x2, . . . }, an identity is
a pair u = v (u ≤ v) of words over X, i.e. u, v ∈ X∗. An identity u = v
(u ≤ v, respectively) is satisfied in a finite monoid M (ordered monoid (M,≤))
if for each morphism φ : X∗ → M we have φ(u) = φ(v) (φ(u) ≤ φ(v)). In
such a case we write M |= u = v, and for a set of identities Π, we define
Mod(Π) = {M | ( ∀ π ∈ Π ) M |= π }. For a classM of monoids, the meaning
of M |= Π is that, for each M ∈ M, we have M |= Π. Let Id(V) be the set of
all identities which are satisfied in a variety of ordered monoids V.

For a fixed A and L ⊆ A∗, let Lc = A∗ \ L be the complement of L. For a
class V of languages, we define Vc by Vc(A) = {Lc | L ∈ V(A) }. The following
is obvious.

Result 2 For a positive variety V the following holds.
(i) Vc is a positive variety.
(ii) Let V ∨ Vc be the smallest positive variety containing both V and Vc.

Then (V ∨ Vc)(A) consists of all positive boolean combinations of the languages
from V(A) ∪ Vc(A).

(iii) The class V ∨ Vc is a boolean variety.

Next we define the positive varieties of languages T , S+, S, Am. We will
return to them several times in our paper again.

Examples.
1. Let T (A) = {∅, A∗} for each finite set A.
2. Let S+(A) be the set of all finite unions of the languages of the form B∗,

where B ⊆ A, for each finite set A.
3. Let S(A) be the set of all finite unions of the languages of the form B,

where B ⊆ A, for each finite set A.
4. Let m be a fixed natural number. Let Am(A) be the set of all boolean com-

binations of the languages of the form L(a, r) = {u ∈ A∗ | |u|a ≡ r (mod m) },
for each finite set A.

Notice that the classes T , S, Am are boolean varieties. Moreover, for the
corresponding pseudovarieties of (ordered) monoids, we have

T = Mod(x = y ), S+ = Mod(x2 = x, xy = yx, 1 ≤ x ),

S = Mod(x2 = x, xy = yx ), Am = Mod(xy = yx, xm = 1 ) .

The names for the (ordered) monoids of the pseudovarieties T, S+, S, Am

are trivial monoids (semilattices with the smallest element 1, semilattices and
abelian groups of index m, respectively) – see Pin [9].
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3 Locally Finite Varieties of Languages

In this paper we concentrate on positive varieties of languages which corre-
sponds to locally finite pseudovarieties of ordered monoids. Each such pseudova-
riety is formed by finite members of locally finite (i.e. finitely generated ordered
monoids are finite) variety of ordered monoids and consequently such a variety
of languages can be described by a fully invariant compatible quasiorder on the
monoid X∗ which has locally finite index and which is formally defined in the
following definition.

Definition 1. A relation γ on X∗ is a finite characteristic if it satisfies the
following conditions:

(i) γ is a quasiorder on X∗;
(ii) γ is compatible with the multiplication, i.e. for every u, v, w ∈ X∗ we

have
u γ v implies uw γ vw, wu γ wv ;

(iii) γ is fully invariant, i.e. for every morphism ϕ : X∗ → X∗ and u, v ∈ X∗

we have
u γ v implies ϕ(u) γ ϕ(v) ;

(iv) for each finite subset Y of the set X, the set Y ∗ intersects only finitely
many classes of X∗/ γ̂.

We can define a natural adaptation γA of a finite characteristic γ on every
finite alphabet A in the following way. For u, v ∈ A∗, we have

u γA v if and only if for all ϕ : A∗ → X∗, we have ϕ(u) γ ϕ(v) .

It follows from the property (iii) in Definition 1 that in the previous definition of
γA we can use just one morphism given by a fixed injective mapping φ : A→ X.
In particular, if A is a finite subset of X then γA is a restriction of γ on A∗. The
condition (iv) from Definition 1 means that γA (more precisely γ̂A) has a finite
index (i.e. A∗/ γ̂A is finite).

A relation γ on X∗ satisfying the conditions (i) – (iii), called a fully invariant
compatible quasiorder, determines a variety Vγ of ordered monoids; namely γ
can be considered as a set of identities and Vγ = Mod(γ). Basics of universal
algebra, see [3] and [2], give that Id and Mod are mutually inverse bijections
between varieties of ordered monoids and fully invariant compatible quasiorders
on X∗. Moreover, for each Y ⊆ X, the ordered monoid Y ∗/γY is a free ordered
monoid in Vγ over Y . The condition (iv) says that the finitely generated free
ordered monoids in Vγ are finite. In this case the variety Vγ is locally finite,
which means that all finitely generated ordered monoids are finite.

The pseudovariety FinVγ of all finite members from Vγ corresponds to the
positive variety Vγ of languages by

L ∈ Vγ(A) if and only if O(L) ∈ FinVγ , for all finite A .
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We say that γ is a finite characteristic of a class of languages V if γ is a finite
characteristic and for every finite alphabet A we have

L ∈ V(A) if and only if γA ⊆ �L .

We present the finite charasteristics for our four basic examples.

Examples (a Continuation 1).
1. IdT = X∗ ×X∗.
2. IdS+ = { (u, v) ∈ X∗ ×X∗ | cont(u) ⊆ cont(v) }.
3. IdS = { (u, v) ∈ X∗ ×X∗ | cont(u) = cont(v) }.
4. IdAm = { (u, v) ∈ X∗ ×X∗ | (∀ x ∈ X ) |u|x ≡ |v|x (mod m) }.

Lemma 1. Let V be a class of languages and γ be a finite characteristic of V.
Then

(i) V equals to the positive variety of languages Vγ ;
(ii) γd is a finite characteristic of the positive variety Vc;
(iii) γ̂ is a finite characteristic of the positive variety V ∨ Vc;

Proof. “(i)” Let A be a finite alphabet. We have to show that L ∈ V(A) is
equivalent to L ∈ Vγ(A). The statement on the left hand side is equivalent to
γA ⊆ �L which is equivalent to the fact that O(L) is a morphic image of A∗/γA.
The last is equivalent to O(L) ∈ FinVγ , which means L ∈ Vγ(A).

“(ii)” It is clear that γd is a finite characteristic and the statement follows
from the fact that �Lc = (�L)d.

“(iii)” It is clear that γ̂ is a finite characteristic and the statement follows
from Result 2. ut

Proposition 1. Let V be a positive variety of languages and V be a corre-
sponding pseudovariety of ordered monoids. Then the following conditions are
equivalent.

(i) For each finite alphabet A, the set V(A) is finite.
(ii) The pseudovariety of ordered monoids V is locally finite, i.e. each finitely

generated submonoid of an arbitrary product of ordered monoids from V is finite.
(iii) There exists a finite characteristic of V.

Proof. “(i) =⇒ (ii)” Let (Mi)i∈I be an arbitrary family of ordered monoids
from the class V. Let A be a finite set, let φ : A∗ → M ′ =

∏
i∈I Mi be a

morphism, and let πi : M ′ → Mi be the i-th projection (i ∈ I). We want to
show that M = imφ is finite.

For eachm ∈M , we have φ−1((m]) =
⋂

i∈I Li where Li = (πi◦φ)−1((πi(m)]).
We have Li ∈ V(A) since Li is recognized by Mi. Since we have only finitely
many languages in (A) we intersect only finitely many languages. Consequently
φ−1((m]) ∈ V(A). For different m,n ∈M , the languages φ−1((m]) and φ−1((n])
are different. Now the finiteness of V(A) gives that M is finite.

“(ii) =⇒ (iii)” Let W = HSPV be the variety of ordered monoids generated
by the pseudovariety V. We show that the variety W is locally finite. Indeed,
let M be an ordered submonoid of

∏
i∈I Mi where each Mi ∈ V. Let φ be a
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surjective morphism of M onto an ordered monoid N with a finite generating
set G. Then φ−1(G) generates in M a finite ordered monoid and N is its image.

It follows that γ = IdW is a finite characteristic for V.
“(iii) =⇒ (i)” Let γ be a finite characteristic for V. Then L ∈ V(A) implies

that L is a union of classes of A∗/γA. Since the set A∗/γA is finite there are only
finitely many possibilities for L. ut

A positive variety V is called locally finite if it satisfies the condition (i) from
Proposition 1.

4 Polynomial operators of bounded length

Let V be a positive variety of languages and let k be a natural number. We define
the class PPolkV of positive polynomials of length at most k of languages from
the class V. Namely, for a finite alphabet A, PPolkV(A) consists of finite unions
of finite intersections of the languages of the form

L0a1L1a2 . . . a`L`, where ` ≤ k, a1, . . . , a` ∈ A, L0, . . . , L` ∈ V(A) . (∗)

Similarly we define the classes BPolkV of boolean polynomials using all finite
boolean combinations of languages of the form (∗). Clearly PPolkV ⊆ PPolk′V for
k ≤ k′. We denote the union of all PPolkV’s by PPol(V). Similarly for BPolkV’s.

Lemma 2. If V is a positive variety of languages then PPolkV is a positive
variety of languages and BPolkV is a boolean variety of languages.

Proof. One can prove the statements directly. For locally finite varieties it also
immediately follows from Theorem 1. ut

Let k be a fixed natural number and α be a finite characteristic. Let A be a
fixed set; in particular, A can be a finite alphabet or the set X.

For a word u ∈ A∗, we say that

f = (u0, a1, . . . , a`, u`)

is a factorization of u of length ` if u0, u1, . . . , u` ∈ A∗, a1, a2, . . . , a` ∈ A and
u0a1u1 . . . a`u` = u. The set of all factorizations of the length at most k of the
word u is denoted by Factk(u). For a factorization f = (u0, a1, . . . , a`, u`) of a
word u ∈ A∗ and a factorization g = (v0, b1, v1, . . . bm, vm) of a word v ∈ A∗, we
write

f ≤α g

if ` = m, ai = bi for every i ∈ {1, . . . , `} and ui αA vi for every i ∈ {0, 1, . . . , `}.
We define the relation (pk(α))A on the set A∗ as follows: for u, v ∈ A∗, we have

u (pk(α))A v if and only if ( ∀ g ∈ Factk(v) ) (∃ f ∈ Factk(u) ) f ≤α g .

We will show in Theorem 1 that the relation (pk(α))X is a finite characteristic
and therefore the relation (pk(α))A is equal to ((pk(α))X)A as defined after
Definition 1. We write pk(α) instead of (pk(α))X . Further we denote bk(α) =
p̂k(α).
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Theorem 1. Let V be a locally finite positive variety of languages and α be a
finite characteristic of V. Then PPolkV is a locally finite positive variety of lan-
guages with the finite characteristic pk(α) and BPolkV is a locally finite boolean
variety of languages with the finite characteristic bk(α).

Examples. (a Continuation 2)
1. The case V = T was studied in [6]. Notice only that PPol T is the 1/2-level

of the Straubing-Thérien hierarchy and BPol T is the first level, i.e. the class of
all piecewise testable languages.

2. and 3. One can show that PPolS+ = PPolS is the 3/2-level and BPolS+ =
BPolS is the second level.

Proof. (of Theorem 1) We prove that pk(α) is a finite characteristic of PPolkV.
The rest follows from Result 2 and Lemma 1.

We have to check the properties (i) – (iv) from Definition 1 and also the
property

(v) L ∈ PPolkV(A) if and only if (pk(α))A ⊆ �L.

“(i)” The reflexivity of the relation pk(α) is trivial. The transitivity follows
from the transitivity of the relation ≤α.

“(ii)” Let u, v, w ∈ X∗ be such that (u, v) ∈ pk(α). We want to show that
(uw, vw) ∈ pk(α). Let g ∈ Factk(vw) be an arbitrary factorization of the length
at most k of the word vw, i.e. g = (v0, a1, v1, . . . , a`, v`), where ` ≤ k, a1, . . . , a` ∈
X, v0, . . . , v` ∈ X∗ and there exist 0 ≤ i ≤ ` and v′i, v

′′
i ∈ X∗ such that v′iv

′′
i = vi

and
v = v0a1v1 . . . aiv

′
i , w = v′′i ai+1 . . . a`v` .

From the assumption (u, v) ∈ pk(α) we know that there is a factorization f of
the word u such that f ≤α (v0, a1, v1, . . . , ai, v

′
i), i.e. f = (u0, a1, u1, . . . , ai, u

′
i)

such that u0 α v0, . . . , u′i α v′i. Since α is a compatible quasiorder we have
u′iv

′′
i α v′iv

′′
i . Hence

h = (u0, a1, u1, . . . , ai, u
′
iv
′′
i , ai+1, . . . , a`, v`)

is a factorization of uw such that h ≤α g. This implies (uw, vw) ∈ pk(α).
The proof of the implication (u, v) ∈ pk(α) =⇒ (wu,wv) ∈ pk(α) is similar.
“(iii)” Let u, v ∈ X∗ be such that (u, v) ∈ pk(α) and ϕ : X∗ → X∗ be an

arbitrary morphism. We want to show that (ϕ(u), ϕ(v)) ∈ pk(α). So, let

g′ = (v0, a1, v1 . . . , a`, v`) ∈ Factk(ϕ(v))

where ` ≤ k, vi ∈ X∗, ai ∈ X and v0a1v1 . . . a`v` = ϕ(v). We consider a fac-
torization g = (w0, b1, w1, . . . , bm, wm) of v where the occurrences of the let-
ters b1, . . . , bm are such that the corresponding occurrences of ϕ(b1), . . . , ϕ(bm)
in ϕ(v) contain all ai’s from the factorization g′. Note that m ≤ ` as ϕ(bj)
can contain more than one ai. Now (u, v) ∈ pk(α) and there exists factoriza-
tion f of u such that f ≤α g, i.e. f = (t0, b1, t1 . . . , bm, tm) where ti α wi for
i ∈ {0, . . . ,m}. Since α is a finite characteristic we have ϕ(ti) α ϕ(wi). Hence
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ϕ(u) = ϕ(t0)ϕ(b1)ϕ(t1) . . . ϕ(bm)ϕ(tm) has a factorization f ′ such that f ′ ≤α g
′.

We can conclude that (ϕ(u), ϕ(v)) ∈ pk(α).
“(iv)” Let Y be a finite subset of X. Since α̂Y has a finite index, there are

only finitely many factorizations of the length at most k over Y up to ≤̂α. Hence
there are only finitely many sets of the form Factk(u) up to ≤̂α, where u ∈ Y ∗.
So, ̂pk(α)|Y has a finite index too.

“(v)” Denote for simplicity pk(α)A = β a compatible quasiorder on A∗ with
a finite index.

” =⇒ ” We prove that for every language

L = L0a1L1 . . . a`L`, where ` ≤ k, a1, . . . , a` ∈ A, L0, . . . , L` ∈ V(A)

we have β ⊆�L. This is enough because β ⊆ �L and β ⊆ �K imply β ⊆ �L∩K

and β ⊆ �L∪K , for each L,K ⊆ A∗.
Let L be such a language and let u, v ∈ A∗ satisfy u β v. We want to show

that u �L v. So, let p, q ∈ A∗ be such that pvq ∈ L. Hence pvq = v0a1v1 . . . a`v`,
where vi ∈ Li for every i ∈ {0, . . . , `}. Then there exist 0 ≤ i < j ≤ ` and
v′i, v

′′
i , v

′
j , v

′′
j ∈ A∗, such that v′iv

′′
i = vi, v′jv

′′
j = vj and

p = v0a1 . . . v
′
i, v = v′′i ai+1 . . . ajv

′
j and q = v′′j aj+1 . . . a`v`

or there exist 0 ≤ i ≤ ` and v′i, v
′′
i , v

′′′
i ∈ A∗ such that v′iv

′′
i v

′′′
i = vi and

p = v0a1 . . . v
′
i, v = v′′i and q = v′′′i ai+1 . . . a`v` .

In the first case we have g = (v′′i , ai+1, . . . , aj , v
′
j) a factorization of v. We as-

sumed that u β v, so there is a factorization f = (u′′i , ai+1, . . . , u
′
j) of u such

that (u′′i , v
′′
i ) ∈ αA, (ui+1, vi+1) ∈ αA, . . . , (u′j , v

′
j) ∈ αA. Since αA is a compat-

ible quasiorder we have (v′iu
′′
i , v

′
iv
′′
i ) ∈ αA and hence v′iu

′′
i �Li v

′
iv
′′
i = vi, so

we have v′iu
′′
i ∈ Li. Similarly ui+1 ∈ Li+1, . . . , uj−1 ∈ Lj−1 and u′jv

′′
j ∈ Lj .

Consequently puq ∈ L. The second case is similar and we see that u β v really
implies u �L v.

“⇐=”: Let β ⊆ �L. This means that L is a finite union of languages of the
form

βv = {u ∈ A∗ | u β v }.

So, it is enough to prove that each βv belongs to PPolkV(A). Consider all possible
factorizations of the word v of length at most k, i.e. elements of the set Factk(v).
So, we have

g1 = (v10, a11, . . . , a1`1 , v1`1) ,

g2 = (v20, a21, . . . , a2`2 , v2`2) ,

...

gm = (vm0, am1, . . . , am`m , vm`m) ,

where for each i ∈ {1, . . . ,m} we have `i ≤ k and aij ∈ A are letters and
vij ∈ A∗ are words and {g1, g2, . . . , gm} = Factk(v). For each i ∈ {1, . . . ,m}
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we consider the following language Li corresponding to the factorization gi =
(vi0, ai1, . . . , ai`i , vi`i):

Li = Li0 ai1 Li1 . . . ai`i
Li`i

,

where Lij = αAvij = {u ∈ A∗ | u αA vij} ∈ V(A) for each j ∈ {0, . . . , `i}.
Then the language

K =
m⋂

i=1

Li

belongs to PPolkV and we prove that K = βv.
“⊆” If u ∈ K then u ∈ Li for each i ∈ {1, . . . ,m}. This means that for each

i ∈ {1, . . . ,m} we have
u = ui0ai1 . . . ai`i

ui`i
,

where (ui0, vi0) ∈ αA. So, there is a factorization fi of u such that fi ≤α gi.
Consequently (u, v) ∈ pk(α)A, i.e. u ∈ βv.

“⊇” If u ∈ βv. Then for each i ∈ {1, . . . ,m} we have some factorization fi

of u such that fi ≤α gi. This implies that u ∈ Li for each i ∈ {1, . . . ,m}, hence
u ∈ K. ut

The following lemmas concern the preservation of aperiodicity (i.e. monoids
have only trivial subgroups). Their proofs can be found in Appendix.

Lemma 3. Let k be a natural number. If (xn, xn+1) ∈ α then (xm−1, xm) ∈
pk(α) for m = (k + 1)(n + 1). If (xn, xn+1) ∈ α̂ then (xm−1, xm) ∈ p̂k(α) for
m = (k + 1)(n+ 1).

Lemma 4. Let V be a positive variety with finite characteristic α, such that the
corresponding pseudovariety of monoids contains only aperiodic monoids. For
a natural number k, the pseudovariety of monoids corresponding to the positive
variety of languages PPolkV contains only aperiodic monoids too.

5 Generating pseudovarieties by a single monoid

It is known (see Volkov [11] or the authors [6]) that the pseudovarieties of ordered
monoids corresponding to PPolkT , k a natural number, are generated by a single
ordered monoid. We show such result also for the positive varieties PPolkS+ and
we prove that this is not true for the positive varieties PPolkS. At first we define
a “finiteness-like” condition concerning finite characteristics.

Definition 2. Let α be a finite characteristic. We say that α is finitely deter-
mined if there is a finite alphabet A such that for every finite alphabet B and
all u, v ∈ B∗ we have:

( ( ∀ ϕ : B → A ) ϕ(u) αA ϕ(v) ) implies u αB v .
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Example 1. The finite characteristic of the positive variety S+ was described
in Examples. It is finitely determined since it suffices to take A = {a, a′}, a 6= a′.
Indeed, for u, v ∈ B∗ with b ∈ cont(u) \ cont(v) take φ sending b to a and other
(possible) elements of B to a′. The same is true for S and for Am.

Proposition 2. The following properties for a positive variety V and the cor-
responding pseudovariety of ordered monoids V are equivalent.

(i) The positive variety V is generated by a finite number of languages.
(ii) The pseudovariety V is generated by a single ordered monoid.
(iii) There exists a finite characteristic of V which is finitely determined.

The proof is placed into Appendix.

Example 2. In paper [6] the authors proved that PPolkT is generated by
a language A∗a1A

∗a2 . . . akA
∗ where a1, . . . , ak are different letters and A =

{a1, . . . ak}. Hence the corresponding finite characteristic is finitely determined.
One can show that an alphabet with k + 1 letters suffices.

Proposition 3. The positive variety PPolkS+ is generated by a finite number
of languages.

Proof. Although the direct proof is possible we use Proposition 2 and show that
finite characteristic β = pk(α) of PPolkS+ is finitely determined. Let A be an
alphabet containing 22k+1 letters:

A = {ar | r = (r1, r2, . . . , r2k+1) where ri ∈ {0, 1} for each i ∈ {1, 2, . . . , 2k+1}}.

We prove the property from Definition 2 for this set A. Let B be a finite alphabet
and assume that u, v ∈ B∗ are such that

( ∀ ϕ : B → A ) ϕ(u) βA ϕ(v) .

We want to prove u βB v. So, let g = (v0, b1, v1, . . . , b`, v`) ∈ Factk(v) be an
arbitrary factorization of the length at most k of the word v. For each letter
c ∈ B we consider the letter ar ∈ A where the sequence r has 1 at j-th position
if and only if c is at the j-th position in the factorization g. More precisely,
r2i+1 = 1 iff c ∈ cont(vi) and r2i = 1 iff c = bi. So, we have defined a mapping
ϕ : B → A. Note that if a letter c does not occur in v then ϕ(c) = a(0,0,...,0)

by this definition. Now ϕ(u) βA ϕ(v) and there exists a factorization f ′ of ϕ(u)
such that f ′ ≤α g′ = (ϕ(v0), ϕ(b1), ϕ(v1), . . . , ϕ(b`), ϕ(v`)). If ϕ(bi) = ar then
r2i = 1 and for this r there is a unique letter c ∈ B, namely bi, with the property
ϕ(c) = ar. Hence we have a factorization f = (u0, b1, u1, . . . , b`, u`) of u such
that ϕ(ui) αA ϕ(vi) for each i ∈ {0, . . . , `}. We show that this implies ui αB vi.
First, recall that in general t α w iff cont(t) ⊆ cont(w). So, let d ∈ cont(ui) be
an arbitrary letter from the alphabet B. Then ϕ(d) ∈ cont(ϕ(ui)) ⊆ cont(ϕ(vi)).
Say that ϕ(d) = ar. Then ar ∈ cont(ϕ(vi)) implies that r2i+1 = 1. If d 6∈ cont(vi)
then r2i+1 = 0 by the definition of the mapping ϕ. Hence d ∈ cont(vi). So,
we have ui αB vi for each i = 0, . . . , `. For a given g ∈ Factk(v) we found
f ∈ Factk(u) such that f ≤α g. This means that we really proved u βB v. ut
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The proofs of the following two propositions are placed in the Appendix.

Proposition 4. The positive variety PPol1S is generated by a finite number of
languages.

Proposition 5. For k = 2 the positive variety PPolkS is not generated by a
finite number of languages.

Remark 2. 1. If a positive variety of languages is locally finite we can generate
the corresponding pseudovariety of ordered monoids by finitely generated free
monoids. We are able to present effectively the free ordered monoids in pseudova-
rieties corresponding to PPolkV and BPolkV for V being any of T , S+, S, Am.
It would be desirable to put a closer look into their structures.

2. For each boolean variety of languages V the pseudovariety of monoids
corresponding to BPolkV is generated by the Schützenberger products of the
form 3k+1(M0, . . . ,Mk) where M0, . . . ,Mk ∈ V (see [7]). In particular cases
one can put several restriction on Mi’s.
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6 Appendix

Proof. (of Lemma 3) Let g be a factorization of xm of length ` ≤ k, i.e.

g = (xi0 , x, xi1 , x, . . . , x, xi`)

where i0 + i1 + · · ·+ i` + ` = m and i0, . . . , i` are non-negative integers. Assume
that for every j ∈ {0, . . . , `} we have ij ≤ n, then i0 + i1 + · · · + i` + ` ≤
(` + 1)n + ` ≤ (k + 1)n + k < (k + 1)(n + 1) = m a contradiction. So, there is
j ∈ {0, . . . , `} such that ij ≥ n+ 1, hence xij−1 α xij and consequently we have
a factorization f of xm−1 such that f ≤α g. This proves (xm−1, xm) ∈ pk(α).
The implication (xn+1, xn) ∈ α =⇒ (xm, xm−1) ∈ pk(α) can be proved in the
similar way. ut

Proof. (of Lemma 4) Let A = {a} be an alphabet. Then A∗/αA belongs to the
corresponding pseudovariety of monoids, i.e. A∗/αA is a finite aperiodic monoid.
This implies that (an, an+1) ∈ α̂A for some natural number n and (xn, xn+1) ∈ α̂
follows. By Lemma 3 we have (xm−1, xm) ∈ p̂k(α) for certain m. Hence for every
alphabet B the monoid B∗/αB is aperiodic and consequently the pseudovariety
of monoids corresponding to the positive variety of languages PPolkV contains
only aperiodic monoids because each of them is a morphic images of the monoid
B∗/αB for some B. ut

Proof. (of Proposition 2) “(i) =⇒ (ii) If V is generated by a finite number
of languages then we can take their syntactic ordered monoids and consider the
product of all of them. The resulting ordered monoid generates the pseudovariety
of ordered monoids V.

“(ii) =⇒ (iii)” It is well known that if V is generated by a single ordered
monoid (M, ·,≤) then for every finite set B there is a finite free ordered monoid
over the set B. If we take the free ordered monoid overX in the variety< M >var

of finite ordered monoids generated by the monoid M and denote α the kernel
of the projection from X∗ onto this free ordered monoid over X, then this α is
finite characteristic of V and the free ordered monoid over B can be viewed as
B∗/αB . Now put A = M and we prove the property from Definition 2 for this
set A.

At first, there is a natural morphism θ : A∗ → M which maps the word
a1a2 . . . am ∈ A∗ to the product of elements a1, a2, . . . , am ∈ A = M in M , i.e.
θ(a1a2 . . . am) = a1 · a2 · · · · · am.

Let B be a finite alphabet and u, v ∈ B∗ be such that for each ϕ : B → A we
have ϕ(u) αA ϕ(v). We use the symbol ϕ also for the extension of the mapping
ϕ : B → A to a morphism ϕ : B∗ → A∗. Moreover, each mapping ϕ : B → A =
M determines the morphism ϕ : B∗ →M , namely ϕ = θ ◦ ϕ.

Recall that a free monoid over B in V can be construct in the following
way. There are only finitely many mappings ϕ : B → M ; denote Σ the set
of all of them. Then we consider the finite product

∏
ϕ∈Σ M = MΣ and the

corresponding morphism ψ : B∗ → MΣ given by ψ(w) = (ψ(w)ϕ)ϕ∈Σ , where
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ψ(w)ϕ = ϕ(w). Homomorphic image of ψ is a free monoid over B in V and
αB is a kernel of ψ. Now for each ϕ : B → A = M we have ϕ(u) αA ϕ(v), so,
ϕ(u) ≤ ϕ(v) in M . Hence ψ(u) ≤ ψ(v) in the free ordered monoid B∗/αB and
consequently u αB v.

“(iii) =⇒ (i)” Let α be a finite characteristic of V which is finitely deter-
mined. Let A be the corresponding finite alphabet. Since αA has a finite index,
there are only finitely many languages of the form αAv = {u ∈ A∗ | u αA v }
where v ∈ A∗. We show that these languages generate V.

Let B be an arbitrary finite alphabet and let L ∈ V(B). Since α is a finite
characteristic of V we have αB ⊆ �L. Hence L is a finite union of languages of
the form αBw = { t ∈ B∗ | t αB w }.

There are only finitely many mappings from B to A; denote them ϕ1, . . . , ϕm,
where m = |A||B|. Now for every u, v ∈ B∗ we have

u αB v ⇐⇒ ( ∀ i ∈ {1, . . . ,m} ) ϕi(u) αA ϕi(v) .

We show that

αBw =
m⋂

i=1

ϕ−1
i (αAwi), where wi = ϕi(w) for i ∈ {1, . . . ,m} .

This equation means that we can obtain each language of the form αBw from the
languages αAv, for v ∈ A∗, when we use morphic preimages and the operation
intersection.

“⊆” Let t ∈ αBw. Then t αB w and we have ϕi(t) αA ϕi(w) = wi for
each i ∈ {1, . . . ,m}. Hence for each i we have ϕi(t) ∈ αAwi and consequently
t ∈ ϕ−1

i (αAwi).
“⊆” In fact, the previous implications are equivalences. ut

Proof. (of Prop. 3) Although the direct proof is possible we use Proposition 2
and show that finite characteristic β = pk(α) of PPolkS+ is finitely determined.
Let A be an alphabet containing 22k+1 letters:

A = {ar | r = (r1, r2, . . . , r2k+1) where ri ∈ {0, 1} for each i ∈ {1, 2, . . . , 2k+1}}.

We prove the property from Definition 2 for this set A. Let B be a finite alphabet
and assume that u, v ∈ B∗ are such that

( ∀ ϕ : B → A ) ϕ(u) βA ϕ(v) .

We want to prove u βB v. So, let g = (v0, b1, v1, . . . , b`, v`) ∈ Factk(v) be an
arbitrary factorization of the length at most k of the word v. For each letter
c ∈ B we consider the letter ar ∈ A where the sequence r has 1 at j-th position
if and only if c is at the j-th position in the factorization g. More precisely,
r2i+1 = 1 iff c ∈ cont(vi) and r2i = 1 iff c = bi. So, we have defined a mapping
ϕ : B → A. Note that if a letter c does not occur in v then ϕ(c) = a(0,0,...,0)

by this definition. Now ϕ(u) βA ϕ(v) and there exists a factorization f ′ of ϕ(u)
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such that f ′ ≤α g′ = (ϕ(v0), ϕ(b1), ϕ(v1), . . . , ϕ(b`), ϕ(v`)). If ϕ(bi) = ar then
r2i = 1 and for this r there is a unique letter c ∈ B, namely bi, with the property
ϕ(c) = ar. Hence we have a factorization f = (u0, b1, u1, . . . , b`, u`) of u such
that ϕ(ui) αA ϕ(vi) for each i ∈ {0, . . . , `}. We show that this implies uiαBvi.
First, recall that in general t α w iff cont(t) ⊆ cont(w). So, let d ∈ cont(ui) be
an arbitrary letter from the alphabet B. Then ϕ(d) ∈ cont(ϕ(ui)) ⊆ cont(ϕ(vi)).
Say that ϕ(d) = ar. Then ar ∈ cont(ϕ(vi)) implies that r2i+1 = 1. If d 6∈ cont(vi)
then r2i+1 = 0 by the definition of the mapping ϕ. Hence d ∈ cont(vi). So,
we have ui αB vi for each i = 0, . . . , `. For a given g ∈ Factk(v) we found
f ∈ Factk(u) such that f ≤α g. This means that we really proved u βB v ut

Proof. (of Prop. 4) We show that finite characteristic β = pk(α) of the va-
riety PPolkS where k = 1 is finitely determined on a six-element alphabet
A = {a0, a1, a2, a3, a4, a5}.

Let B be a finite alphabet containing at least seven letters 1 and assume that
for a given pair of words u, v ∈ B∗ we have

(∀ϕ : B → A) ϕ(u) βA ϕ(v) .

Let g = (g0, b, g1) ∈ Factk(v) be a factorization of v. We need to show that there
exists a factorization f = (f0, b, f1) ∈ Factk(u) such that cont(f0) = cont(g0)
and cont(f1) = cont(g1).

First of all, we take an arbitrary pair of different letters b1, b2 ∈ B and con-
sider the mapping ϕb1,b2 : B → A given by the rule ϕb1,b2(b1) = a1, ϕb1,b2(b2) =
a2 and ϕb1,b2(c) = a0 for c ∈ B \ {b1, b2}. Since (ϕb1,b2(u), ϕb1,b2(v)) ∈ βA we
see that the first letters in ϕb1,b2(u) and ϕb1,b2(u) coincide. In other words if
the first occurrence of b1 in the word v is before the first occurrence of b2 v
then the first occurrence of b1 in u is before the first occurrence of b2 in u as
well. It is also clear that cont(ϕb1,b2(v)) = cont(ϕb1,b2(u)) from which we ob-
serve b1 ∈ cont(v) ⇐⇒ b1 ∈ cont(u) and cont(v) = cont(u) follows. We can
summerize that {cont(v′) | v′ prefix of v} = {cont(u′) | u′ prefix of u}. When
we consider the same idea from the right we obtain the same observations
concerning the last occurrences of letters and finally we obtain the equality
{cont(v′) | v′ suffix of v} = {cont(u′) | u′ suffix of u}.

So, there is a prefix u′ of the word u such that cont(u′) = cont(g0). Let u1

be the shortest prefix of u with this property and u2 be the longest prefix of u
with this property. Note that u1 can be the empty word (when cont(g0) = ∅,
i.e. in the case g0 = λ) and u2 can be equal to u (when cont(g0) = cont(v)). If
u1 is not the empty word then u1 = u′1b1 where b1 ∈ A and b1 ∈ cont(u1) =
cont(g0), b1 6∈ cont(u′1). A useful consequence is that this b1 is the first occurrence
of b1 in u. Similarly, if u2 6= u then u = u2b2u

′
2 where b2 ∈ A, u′2 ∈ A∗ and

b2 6∈ cont(u2) = cont(g0). Once again this b2 is the first occurrence of b2 in u. Note
that if b1 and b2 are defined then they are different because b2 6∈ cont(g0), but one
of them can be equal to the letter b. These definitions can be also consider dually
from the right. I.e. we can consider the shortest suffix u3 of u and the longest
1 For alphabets with at most six letters the statement is trivial.



16 Ondřej Kĺıma and Libor Polák

suffix u4 of u with the properties cont(u3) = cont(u4) = cont(g1). If u3 6= λ then
we denote its first letter b3, i.e u3 = b3u

′
3 and we have b3 ∈ cont(u3) = cont(g1),

b3 6∈ cont(u′3). If u4 6= u then we denote u = u′4b4u4 where b4 ∈ A, u′4 ∈ A∗,
b4 6∈ cont(u4) = cont(g1).

Now we have the subset B′ = {b, b1, b2, b3, b4} of the alphabet B which has
at most five elements. Note that some of the letters can be equal, some of them
can not be defined. We consider some mapping ϕ : B → A such that ϕ(c) = a5

for every c 6∈ B′, ϕ(B′) ⊆ A \ {a5}, ϕ(b) = a0 and which is injective on B′.
Then (ϕ(g0), a0, ϕ(g1)) is a factorization of ϕ(v) and there is a factorization
f = (f0, d, f1) of u such that (ϕ(f0), ϕ(d), ϕ(f1)) ≤α (ϕ(g0), ϕ(b), ϕ(g1)) where
ϕ(d) = ϕ(b), i.e. d = b, ϕ(f0) αA ϕ(g0) and ϕ(f0) αA ϕ(g0). We show that
cont(f0) = cont(g0) and cont(f1) = cont(g1).

“cont(g0) ⊆ cont(f0)” If cont(g0) = ∅ then it is clear. If cont(g0) 6= ∅ then
b1 ∈ cont(g0) is defined. Hence ϕ(b1) ∈ cont(ϕ(g0)) = cont(ϕ(f0)) and since ϕ is
injective on B′ we have b1 ∈ cont(f0). By the definition of b1 we can conclude
that u1 is a prefix of f0, so, cont(g0) = cont(u1) ⊆ cont(f0).

“cont(f0) ⊆ cont(g0)” If cont(g0) = cont(v) = cont(u) then it is clear. If
cont(g0) 6= cont(v) then b2 is defined. We have b2 6∈ cont(g0). Hence ϕ(b2) 6∈
cont(ϕ(g0)) = cont(ϕ(f0)) and this implies b2 6∈ cont(f0). By the definition of b2
we can conclude that f0 is a prefix of u2, so, cont(f0) ⊆ cont(u2) = cont(g0).

One can prove the equality cont(f1) = cont(g1) in the same way using the
letters b3 and b4.

Proof. (of Prop. 5) Assume that for k = 2 the finite characteristic β = pk(α) of
the positive variety PPolkS is finitely determined. Let A = {c1, . . . , cm} be an
alphabet for which the property from Definition 2 is satisfied. Let B = A∪ {d}.
Assume that s1, . . . , sn are all words of length at most m+ 1 over the alphabet
A such that cont(si) 6= A for i ∈ {1, . . . , n}. Further ti0i1i2 = dci0dsi1dci2d for
all i1 ∈ {1, . . . , n}, i0, i2 ∈ {1, . . . ,m} and t be a product of all words ti0i1i2 in
one fixed order. Finally, we denote s = c1 . . . cm and we define a pair of words
over the alphabet B:

u = sstt ttss and v = sstt dsd ttss .

We show that this pair of words contradicts the assumption, namely we show
(i) (u, v) 6∈ βB and
(ii) for each ϕ : B → A we have ϕ(u) βA ϕ(v).

To prove the first claim we can consider the factorization

g = (sstt, d, s, d, ttss)

of the word v. For such g there is no factorization f of the word u such that
f ≤α g because there are no two consecutive occurrences of d in u such that the
word between them has a content equal to the set A.

The second claim is more complicated. Let ϕ : B → A be a mapping. We
consider two cases.

I) First assume that there is a letter ci ∈ A such that ϕ(ci) = ϕ(d). Then we
consider the mapping ϕ′ : B → A such that ϕ′|A is the identity mapping and
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the mapping ϕ′(d) = ci and ϕ′′ : A→ A such that ϕ′′(c) = ϕ(c) for each c ∈ A.
Then ϕ = ϕ′′ ◦ϕ′ and it is enough to show that ϕ′(u) βA ϕ′(v), since the rest is
a consequence of the fact that β is fully invariant. So, let g be a factorization of

ϕ′(v) = ss ϕ′(t)ϕ′(t) cisci ϕ′(t)ϕ′(t) ss

where g = (g0, a, g1, b, g2) with a, b ∈ A, g0, g1, g2 ∈ A∗. We want to show the
existence of a factorization f = (f0, a, f1, b, f2) of ϕ′(u) such that cont(f0) =
cont(g0), cont(f1) = cont(g1), cont(f2) = cont(g2) and f0af1bf2 = ϕ′(u). We
distinguish some cases:
1a) “cont(g0) 6= A, cont(g1) 6= A”
Then g0ag1b is a prefix of the prefix ss of the word ϕ′(v), i.e. ss = g0ag1bh
for some h ∈ A∗. Hence cont(g2) = A and we can put f0 = g0, f1 = g1,
f2 = hϕ′(t)ϕ′(t)cisciϕ′(t)ϕ′(t)ss.
1b) “cont(g0) 6= A, cont(g1) = A, cont(g2) 6= A”
Then g0 is a prefix of the first s in ϕ′(v) and g2 is a suffix in the last s in ϕ′(v).
We can put f0 = g0, f2 = g0 and f1 is an appropriate word.
1c) “cont(g0) 6= A, cont(g1) = A, cont(g2) = A”
Then g0 is a prefix of the first s in ϕ′(v), i.e. we put f0 = g0 and we can choose
b from the last but one s form ϕ′(u) and define f1 and f2 adequately.
Altogether we finish the case when cont(g0) 6= A.
2) Dually we can solve the cases where cont(g2) 6= A.
3) Assume cont(g0) = cont(g2) = A. And in addition we assume:
3a) “cont(g1) = A”
Then we can choose a from the second s in ϕ′u and b from the last but one s
and define f0, f1, f2 in expected way.
3b) “cont(g1) 6= A and cont(ag1b) 6= A”
Then there is a word f1 of the length at most m−1 such that cont(f1) = cont(g1)
and the word af1b is equal to some si. Hence we can find the word af1b as a
factor of the first occurrence ϕ′(t) in ϕ′(u) and then define f0 and f2.
3c) “cont(g1) 6= A and cont(ag1b) = A, ci ∈ cont(g1)” Then we can find some si

such that w = cisici has the property cont(w) = cont(g1). Further adsidb is a
factor of t, hence we can put f1 = w and af1b is a factor of the first occurrence
of ϕ′(t) in ϕ′(u). As usually we denote f0 and f2 as needed.
3d) “cont(g1) 6= A and cont(ag1b) = A and ci 6∈ cont(g1)” Then a = ci or b = ci.
If a = b = ci then we can find si such that cont(si) = cont(g1) and cisici is a
factor of the first occurrence of ϕ′(t) in ϕ′(u). So we consider the factorization
f of u where f1 is equal to this occurrence of si.
If a = ci, b 6= ci then we can find f1 such that f1b is one of si with cont(f1b) =
cont(g1b) because ci 6∈ cont(g1b), i.e. cont(si) 6= A. The case a 6= ci, b = ci is
dual.

II) Now assume that there is no such a letter. The proof is analogous to that
of Case I). ut


