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Preface	and	Acknowledgments

Research	on	nonparametric	estimation	under	shape	constraints	started	in	the	1950s.	Papers
such	as	Ayer	et	al.,	1955,	and	Van	Eeden,	1956,	appeared	on	estimation	of	functions	under
the	restriction	of	monotonicity	or	unimodality,	more	generally	called	isotonic	estimation.
An	isotonic	estimator	is	an	estimator	that	is	computed	under	an	order	restriction,	where	the
order	can	be	a	partial	order.	The	order	restriction	can	also	be	imposed	on	the	derivative	of
the	estimator,	so	an	estimator	of	a	convex	function	(in	dimension	one	or	higher),	which	is
itself	also	convex,	is	also	called	an	isotonic	estimator.

A	summary	of	the	early	work	was	given	in	the	well-known	book	by	Barlow	et	al.,	1972,
on	isotonic	regression.	Originally,	 the	focus	was	on	defining	and	constructing	estimators
satisfying	these	order	constraints.	As	an	example,	in	Grenander,	1956,	it	is	shown	that	the
(nonparametric)	maximum	likelihood	estimator	(MLE)	of	a	monotone	decreasing	density
can	 be	 constructed	 as	 the	 left-continuous	 slope	 of	 the	 least	 concave	 majorant	 of	 the
empirical	 distribution	 function.	 Developing	 asymptotic	 distribution	 theory	 for	 these
isotonic	estimators	turned	out	to	be	rather	difficult.	Nonnormal	limit	distributions	appear
and	rates	of	convergence	are	slower	than	the	square	root	of	the	sample	size.	This	behavior
is	now	commonly	classified	as	belonging	 to	 the	area	of	nonstandard	asymptotics.	 In	 the
case	 of	 the	 mentioned	 Grenander	 MLE,	 the	 rate	 of	 convergence	 of	 this	 estimator
(evaluated	at	a	fixed	point,	under	some	local	assumptions)	is	the	cube	root	of	the	sample
size.	Moreover,	the	nonnormal	asymptotic	distribution	of	the	estimator	is	(after	rescaling)
the	 so-called	 Chernoff	 distribution,	 which	 is	 (up	 to	 a	 factor	 2)	 the	 distribution	 of	 the
derivative	of	the	greatest	convex	minorant	of	two-sided	Brownian	motion	with	parabolic
drift,	evaluated	at	zero.

Research	 on	 isotonic	 regression	 received	 new	 impetus	 in	 the	 1990s	when	 it	 became
clear	 that	 it	was	 the	 right	 setting	 for	 studying	 (nonparametric)	MLEs	of	 the	distribution
function	 in	 inverse	 problems.	 Examples	 of	 such	 problems	 include	 interval	 censoring
models	 such	 as	 the	 current	 status	 model,	 deconvolution	 problems	 and	 the	 classical
Wicksell	 corpuscle	 problem.	 Current	 status	 data	 or	 interval	 censored	 data	 are	 quite
common	 in	medical	 research,	 but	 are	 also	 relevant	 for	 econometric	models	 such	 as	 the
binary	choice	model.	In	the	context	of	the	current	status	model,	the	same	(Chernoff)	limit
distribution	appears	for	the	MLE	of	the	(by	definition)	monotone	distribution	function	as
for	 the	 Grenander	 estimator	 of	 a	monotone	 density.	Whether	 this	 Chernoff	 distribution
also	 gives	 the	 (pointwise)	 limit	 behavior	 of	 the	MLE	of	 the	 distribution	 function	 in	 the
more	general	interval	censoring	problem	or	a	large	class	of	deconvolution	problems	is	still
an	open	question.	Very	specific	conjectures	for	 the	convergence	to	 this	 limit	distribution
have	been	formulated,	though.

As	mentioned,	the	Chernoff	distribution	is	the	distribution	of	a	functional	of	Brownian
motion.	 Also,	 other	 functionals	 of	 Brownian	 motion	 appear	 in	 the	 limit	 theory	 for
nonparametric	 estimators,	 for	 example,	 in	 the	 situation	 of	 estimating	 a	 convex	 function
and	 its	 derivative	 at	 a	 fixed	 point.	 The	 local	 limit	 of	 a	 nonparametric	 least	 squares
estimator	 of	 a	 smooth	 convex	 regression	 function	 can	 be	 characterized	 as	 the	 second
derivative	of	an	“invelope”	of	integrated	Brownian	motion	plus	the	4th	power	of	the	time



variable,	 instead	 of	 Brownian	 motion	 with	 parabolic	 drift,	 which	 figured	 in	 the	 limit
distribution	of	monotone	estimators.	The	estimators	have	pointwise	rates	of	convergence	

	for	the	convex	function	and	 	for	its	derivative,	rather	than	the	 	occurring
in	the	situation	of	estimating	a	monotone	function.

It	 is	 the	 purpose	 of	 this	 book	 to	 introduce	 the	 subject	 of	 shape-restricted	 statistical
inference,	 to	 present	 the	 current	 state	 of	 the	 theory	 and	 also	 to	 describe	 still	 open
problems.	 The	 subjects	 covered	 include	 those	 discussed	 in	 part	 2	 of	 the	 book	 by
Groeneboom	and	Wellner,	1992.	That	book	is	still	available	in	a	Kindle	edition,	but	a	lot
of	 theory	 has	 been	 developed	 since	 1992.	 As	 an	 example,	 in	 applying	 the	 maximum
likelihood	theory	in	inverse	(often	medical)	problems,	the	maximum	likelihood	estimator
will	usually	be	a	piecewise	constant	 jump	function,	so	estimation	of	a	hazard	or	density
function	 is	 only	 possible	 after	 some	 kind	 of	 smoothing.	 Theory	 about	 this,	 and	 theory
about	the	smoothed	maximum	likelihood	estimator	(SMLE)	and	the	maximum	smoothed
likelihood	 estimator	 (MSLE),	 has	 only	 recently	 been	 developed	 and	 is	 discussed	 in	 the
present	book.

Another	direction	of	 considerable	progress	has	been	 the	 analysis	 of	 so-called	 smooth
functionals	in	inverse	problems.	Although	the	local	rate	of	convergence	of	the	MLE	in	the
inverse	 problems	 is	 usually	 slower	 than	 ,	 there	 are	 often	 smooth	 functionals	 of
moment	 type	 that	 can	 be	 estimated	 at	 rate	 	 with	 normal	 limit	 distributions.	 This
theory,	which	 is	 far	 from	 complete,	 is	 treated	 in	 this	 book.	 It	 depends	 on	 properties	 of
solutions	 of	 certain	 integral	 equations,	 which	 in	 many	 situations	 do	 not	 have	 explicit
solutions.

Also,	theory	has	been	developed	for	testing	problems	in	models	with	shape	constraints.
Examples	 are	 the	 two-	 and	 -sample	 tests	 based	 on	 interval	 censored	 data.	 In	 contrast
with	testing	theory	in	the	presence	of	right	censored	data,	the	theory	of	these	problems	has
had	 a	 very	 slow	 start.	 The	 main	 challenge	 is	 to	 construct	 test	 statistics	 that	 have
distributions	that	do	not	depend	on	the	observation	time	distributions	in	the	samples.	Such
tests	 are	 presented	 in	 this	 book	 and	 compared	with	 tests	 not	 having	 this	 property.	 The
techniques	used	here	are	different	 from	both	 the	 theory	used	for	 the	 local	 limits	and	 the
smooth	functional	theory.	Moreover,	various	forms	of	the	bootstrap	play	a	very	important
role	in	determining	the	critical	values	for	these	tests.

We	also	discuss	confidence	 intervals	 for	distribution	 functions,	densities	and	hazards,
constructed	by	bootstrap	procedures.	These	are	compared	with	intervals,	based	on	plug-in
estimators	for	the	variance	of	the	asymptotic	distribution	and	intervals	based	on	likelihood
ratio	tests,	using	the	MLE	(which	only	exist	for	distribution	functions	and	not	for	densities
or	hazards).	The	confidence	intervals	also	are	computed	for	some	real-life	data	sets,	such
as	 the	Bangkok	cohort	data,	which	were	kindly	provided	 to	us	by	 the	 researchers	 in	 the
Bangkok	 Metropolitan	 Administration	 Injecting	 Drug	 Users	 cohort	 study	 and	 Michael
Hudgens	 (see	 the	 acknowledgments).	 We	 also	 constructed	 confidence	 intervals	 for	 the
hepatitis	A	data,	provided	to	us	by	Niels	Keiding.

Throughout	the	years,	we	have	written	computer	programs	related	to	the	subject	of	this
book.	We	will	make	relevant	programs	(some	of	these	need	some	rewriting)	public	via	the
website	http://statistics.tudelft.nl/CUPbook.



The	book	can	be	used	as	the	textbook	for	an	advanced	undergraduate	course.	Working
knowledge	of	basic	probability	theory	and	mathematical	statistics	is	assumed.	Chapters	1
through	 7	 are	 rather	 general	 and	 focus	 on	 modeling	 of	 data	 and	 the	 derivation	 of
nonparametric	estimators	for	functions	within	 these	models.	Parts	of	Chapter	3	could	be
skipped	for	an	undergraduate	course.	Chapter	7	focuses	on	algorithms	that	can	be	used	to
compute	 the	 shape-constrained	 estimators	 in	 particular	 models.	 The	 later	 chapters	 are
more	 technical	 and	can	be	used	as	 ingredients	of	 a	graduate	course.	These	chapters	 can
certainly	be	used	to	define	concrete	research	projects	in	the	area.	Every	chapter	concludes
with	a	number	of	exercises	of	varying	levels.	Some	of	these	are	meant	to	fill	in	details	of
arguments	given	in	the	text.	Others	extend	results	obtained	in	the	text	or	present	additional
results.

Apart	from	being	used	as	a	textbook,	we	hope	the	book	will	also	be	used	by	colleagues
and	inspire	them	to	work	in	the	field	of	shape-restricted	statistical	inference.	We	also	hope
that	people	involved	in	medical	statistics,	econometrics	and	other	fields	of	application	will
use	the	book	to	learn	about	shape-restricted	statistics	and	benefit	from	the	progress	made
in	this	field.
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1
Introduction

To	give	a	feeling	of	what	this	book	is	about,	it	is	perhaps	best	to	take	a	look	at	some	real-
life	 examples.	 Real-life	 examples	 have	 the	 disadvantage	 of	 giving	 rise	 to	 a	 lot	 of
discussion	 on	 the	 interpretation	 of	 the	 data,	 as	 the	 authors	 have	 experienced	when	 they
started	a	lecture	with	a	real-life	example.	This	often	distracted	the	audience	from	the	main
message	 of	 the	 lecture.	 But	 they	 have	 the	 advantage	 of	 “sticking	 in	 the	 mind,”	 which
might	be	more	important	than	the	temporary	distraction	they	might	cause.	Therefore,	the
first	 four	 sections	 of	 this	 chapter	 are	 about	 real	 data.	 Section	 1.1	 is	 concerned	with	 the
estimation	 of	 the	 expected	 duration	 of	 ice	 (in	 days)	 at	 Lake	 Mendota	 in	 Wisconsin,
assuming	these	expected	durations	decrease	in	time.	In	Section	1.2,	a	data	set	on	time-till-
onset	of	 a	nonlethal	 lung	 tumor	 for	mice	 is	 studied.	There	 are	 two	groups	of	mice,	one
living	in	a	conventional	environment	and	the	other	in	a	germ-free	environment.	The	main
question	then	is	whether	the	distribution	of	the	time-till-onset	of	the	tumor	is	affected	by
the	choice	of	environment.	The	complication	 is	 that	 the	 times	of	onset	are	not	precisely
observed,	 but	 subject	 to	 censoring.	 The	 third	 example,	 in	 Section	 1.3,	 concerns	 the
estimation	 of	 a	 relatively	 complicated	 quantity,	 the	 transmission	 potential	 of	 a	 disease,
also	 based	 on	 censored	 data	 on	 hepatitis	 A	 in	 Bulgaria.	 Section	 1.4	 introduces	 the
Bangkok	Metropolitan	Administration	injecting	drug	users	cohort	study,	which	is	further
analyzed	in	Chapter	12,	using	methods	that	were	developed	for	competing	risk	models.

In	Section	1.5,	 a	 particular	 shape	 constrained	 estimation	 problem	 is	 considered.	 It	 is
argued	that	this	problem	(and	many	of	the	other	problems	to	be	considered	in	this	book)
can	 also	be	viewed	 from	another	 perspective;	 for	 example,	 as	 inverse	problem,	mixture
model,	 or	 censoring	 problem.	 As	 will	 be	 seen	 later	 in	 this	 book,	 these	 points	 of	 view
immediately	 suggest	methods	 one	 could	 use	 for	 estimating	 shape	 constrained	 functions
and	methods	one	could	use	to	compute	these.	Finally,	Section	1.6	gives	an	outline	of	the
content	of	this	book.

1.1	 Is	There	a	Warming-up	of	Lake	Mendota?
Lake	Mendota	 has	 been	 called	 the	 most	 studied	 lake	 in	 the	 United	 States.	 One	 of	 the
reasons	we	 start	with	 this	 example	 is	 that	 it	 appealed	 very	much	 to	 one	 of	 the	 authors
when	he	first	read	the	book	Barlow	et	al.,	1972.	In	that	book	it	 is	also	the	first	example.
The	 authors	 study	 the	 number	 of	 days	 until	 freezing	 in	 the	 years	 1854	

,	 and	 state:	 “According	 to	 a	 simple,	 useful	 (if	 not	 completely
realistic)	model,	the	days	till	freezing	 	are	observations	on	a	normal	distribution	with
unknown	means	 ,	 and	 a	 common	 variance	 .”	 The	 maximum
likelihood	 estimates	 of	 	 under	 the	 restriction	 	 minimize	 (as	 a
function	of	the	 ):



subject	 to	 .	 This	 is	 a	 so-called	 isotonic	 estimator:	 the	 maximum
likelihood	 estimates	 of	 	 under	 the	 restriction	 that	 the	 	 are
nondecreasing	in	 	(time).

We	choose	to	use	the	data	on	duration	of	ice	in	days	and	estimate	by	isotonic	regression
(not	assuming	normality)	the	nonparametric	regression	function	on	these	for	 	seasons,
that	is,	we	minimize

subject	 to	 ,	 where	 	 is	 the	 number	 of	 days	 the	 lake	 was	 frozen	 in
season	 .	Note	 that	we	have	 	seasons	 instead	of	 ,	 since	we	have	more	data	on
seasons	 than	 in	 1972.	 The	 data	 are	 obtained	 from	 http://www.aos.wisc.edu/
sco/lakes/Mendota-ice.html	and	given	in	Table	1.1,	and	start	in	the	year	 .

Table	1.1	 Number	 of	Days	 that	Lake	Mendota	Was	Frozen	 during	Winter	 Seasons,
Starting	with	the	Year	1855

Note:	The	order	is	in	increasing	years	from	left	to	right	and	(next)	row-wise.

How	 can	 this	 isotonic	 regression	 estimate	 be	 computed?	 We	 consider	 the	 so-called
cumulative	sum	(or	cusum)	diagram,	consisting	of	the	points

For	 this	 set	 of	 points	 we	 compute	 the	 least	 concave	 majorant.	 The	 solution	 is	 the	 left
continuous	slope	of	the	least	concave	majorant	of	the	 -values	in	the	diagram.	To	show	a
more	clearly	visible	difference	between	the	cusum	diagram	and	its	least	concave	majorant,
we	subtract	the	trend	(line	between	endpoints)	in	Figure	1.1b.



	

Figure	1.1	 Cusum	diagram	for	Lake	Mendota	data,	without	least	concave	majorant	(a)
and	with	least	concave	majorant	(and	minus	the	line	connecting	the	two	end	points)	(b).

The	 resulting	 estimate	 is	 shown	 in	Figure	1.2a	 and	 its	 smoothed	version	 is	 shown	 in
Figure	 1.2b.	 The	 hypothesis	 that	 there	 is	 indeed	 a	 warming-up	 is	 not	 tested	 in	 Barlow
et	 al.,	 1972,	 but	 can	 be	 tested	 with	 the	 methods	 of	 the	 present	 book,	 either	 using	 the
isotonic	least	squares	(LS)	estimate	or	the	smoothed	isotonic	LS	estimate.	The	smoothed
isotonic	LS	estimate	avoids	 the	bad	behavior	of	 the	ordinary	 isotonic	LS	estimate	at	 the
boundary,	and	will	generally	be	consistent	 in	situations	where	the	LS	estimate	itself	will
be	inconsistent,	as	will	be	discussed	in	this	book.

	

Figure	1.2	 Isotonic	estimators	for	the	warming	trend	of	Lake	Mendota,	without
smoothing	(a)	and	with	smoothing	(b).

1.2	 Onset	of	Nonlethal	Lung	Tumor
For	two	groups	of	mice,	the	ages	at	death	(in	days)	were	measured.	One	group	was	kept	in
a	germ-free	environment	and	the	other	in	a	conventional	environment.	The	distribution	of
interest	 is	 that	of	 the	age	of	onset	of	 a	 lung	 tumor	of	 type	RFM.	For	mice,	 this	 type	of
tumor	 is	 nonlethal	 (according	 to	 Hoel	 and	Walburg,	 1972,	 from	which	 this	 example	 is
taken).	At	the	time	of	death,	it	was	checked	whether	the	mouse	did	develop	the	lung	tumor
or	not.	The	ages	at	death	can	therefore	be	viewed	as	“inspection	times,”	whereas	the	event



time	 of	 interest	 in	 this	 context	 is	 the	 time	 at	which	 the	 tumor	 starts	 to	 grow.	The	 data,
taken	from	Hoel	and	Walburg,	1972,	are	given	in	Table	1.2.

Table	 1.2	 Inspection	 Times	 (Ages	 at	 Death)	 of	 the	 Mice,	 with	 Indicator	 Whether
Tumor	was	Found	at	Time	of	Inspection	( )	or	Not	( )	

	
Note:	 The	 first	 group	 concerns	 mice	 living	 in	 a	 conventional	 environment	 (CE),	 the
second	mice	living	in	a	germ-free	environment	(GE).

Hoel	and	Walburg,	1972,	 first	 treat	 the	 lung	 tumors	as	a	 lethal	disease,	although	 they
mention	that	this	is	incorrect,	viewing	the	data	as	right	censored.	Then	they	calculate	the
Kaplan-Meier	estimates	for	the	distribution	functions	of	the	mortality	due	to	lung	cancer
in	the	two	groups	under	this	assumption.	The	Kaplan-Meier	estimates	are	shown	in	Figure
1.3.	 The	 figure	 suggests	 that	 the	 conventional	 group	 had	 a	 higher	 incidence	 or	 earlier
occurrence	of	 lung	 tumors	 than	 the	germ-free	group.	They	also	applied	 the	Breslow	test
for	statistical	significance,	which	was	found	to	be	significant	an	the	 	level.	But	they
also	note	that	in	their	opinion	this	is	actually	due	to	the	incorrect	assumption	that	the	lung
cancer	is	lethal	for	these	mice	and	that	the	right	estimator	for	the	onset	of	the	lung	cancer
is	 given	 by	 the	 maximum	 likelihood	 estimator	 (MLE)	 for	 current	 status	 data.	 The
terminology	 “current	 status	 data”	 is	 still	 not	 used,	 but	 they	propose	 an	 estimator	 that	 is
actually	just	the	MLE	for	current	status	data	and	refer	for	this	to	Ayer	et	al.,	1955.



	

Figure	1.3	 The	Kaplan-Meier	estimates	of	the	distribution	functions	of	the	mortality	due
to	lung	cancer	in	the	two	groups	for	the	data	of	Hoel	and	Walburg,	under	the	assumption
that	the	lung	cancer	is	lethal.	The	solid	curve	is	the	estimate	for	the	conventional	group
and	the	dashed	curve	the	estimate	for	the	mice	in	the	germ-free	environment.

An	 exposition	 on	 the	 current	 status	model	 is	 given	 in	 Section	 2.3.	 The	 setting	 is	 as
follows.	We	have	a	(unobservable)	sample	 ,	drawn	from	a	distribution
with	 distribution	 function	 ,	 in	 this	 case	 representing	 the	 times	 of	 onset	 of	 the	 lung
cancer.	 Instead	 of	 observing	 the	 s,	 one	 only	 observes	 for	 each	 	 whether	 or	 not	

	for	some	random	 	(independent	of	the	other	 s	and	all	 s),	where	in	this
case	the	 	are	the	ages	at	death.	More	formally,	instead	of	observing	 s,	one	observes

One	could	say	that	the	 th	observation	represents	the	current	status	of	item	 	(onset	of
lung	cancer)	at	time	 .

The	problem	is	to	estimate	the	unknown	distribution	function	 	of	the	 ,	using	the
indirect	information	in	the	data.	Denote	the	realized	 	by	 	and	the	associated	realized
values	of	the	 	by	 .	For	this	problem	the	log	likelihood	function	in	 	(conditional
on	the	 s)	can	be	shown	to	be



(1.1)

The	(nonparametric)	MLE	maximizes	 	over	the	class	of	all	distribution	functions.	Since
distribution	functions	are	by	definition	nondecreasing,	computing	the	maximum	likelihood
estimator	poses	a	shape	restricted	optimization	problem	in	a	natural	way.	As	can	be	seen
from	(1.1),	the	value	of	 	only	depends	on	the	values	that	 	takes	at	the	observed	time
points	 ;	about	the	values	between	these	points	we	have	no	information.	Hence	one	can
choose	 to	 consider	 only	 distribution	 functions	 that	 are	 constant	 between	 successive
observed	time	points	 .	The	MLEs	can	then	actually	be	computed	by	a	procedure	similar
to	 the	 procedure	 in	 Section	 1.1,	 since	 they	 can	 be	 characterized	 as	 the	 left-continuous
slopes	of	the	appropriate	cusum	diagrams.

The	MLEs	 	together	with	the	smoothed	maximum	likelihood	estimators	(SMLEs)	
	 for	 the	 two	 groups	 are	 shown	 in	 Figure	 1.4.	 If	 	 is	 the	 MLE	 for	 group	 ,	

,	 where,	 for	 example,	 	 corresponds	 to	 the	 conventional	 group	 and	 	 to	 the
germ-free	group,	then	the	corresponding	SMLEs	are	given	by

(1.2)

where	 	 is	a	bandwidth,	which	 is	chosen	 to	be	 	 in	 this
case	and	 	is	the	integrated	kernel

(1.3)

where	 	is	a	symmetric	kernel	with	support	 ,	for	example	the	triweight	kernel

For	values	close	to	the	boundary,	we	use	in	fact	a	boundary	correction,	explained	later	in
the	book.	The	MLEs	and	SMLEs	for	the	two	groups	are	shown	in	Figure	1.4.



	

Figure	1.4	 The	MLEs	and	SMLEs	for	the	data	of	Hoel	and	Walburg.	The	solid	curves
are	the	estimates	of	the	distribution	function	of	the	time	of	start	of	the	lung	tumor	of	type
RFM	for	the	conventional	group	and	the	dashed	curves	the	estimates	for	the	mice	in	the
germ-free	environment.	The	dotted	curve	is	the	SMLE,	based	on	the	combined	samples,
with	bandwidth	 .

We	can	now	 test	 the	hypothesis	of	equality	of	 the	 two	distributions	with	a	 likelihood
ratio	test,	based	on	the	test	statistic,	 ,	defined	by

where	 	is	the	MLE,	based	on	the	combined	samples.

In	the	present	case	we	have:	 ,	 	and	 .	The	test
statistic	has	 the	value	 .	For	 the	purpose	of	bootstrapping,	 the	distribution
function	 of	 the	 onset	 of	 the	 tumor,	 under	 the	 null	 hypothesis	 of	 no	 difference	 in	 the
distribution	in	the	two	samples,	was	estimated	by	the	SMLE	 ,	based	on	the	combined
samples	 (the	 dotted	 curve	 in	 Figure	 1.4).	Next	 the	 values	 of	 the	 s	were	 resampled,
keeping	 the	 observation	 times	 	 fixed,	 by	 letting	 the	 	 be	 independent	 Bernoulli	



	random	variables,	where	 	was	the	SMLE,	based	on	the	combined	samples,
with	the	bandwidth	 .

This	 gave,	 for	 10,000	 bootstrap	 samples,	 a	 -value	 of	 .	 A	 picture	 of	 an
estimate	of	the	density	of	 	for	these	10,000	bootstrap	samples,	made	in	R,	is	shown	in
Figure	1.5.	Directly	resampling	from	the	MLE	for	the	combined	samples	gave	a	 -value
of	 ,	 so	 a	value	very	close	 to	 the	values	obtained	by	 resampling	 from	 the	 smooth
estimate,	based	on	the	SMLE.	Further	work	on	tests	of	this	type	can	be	found	in	Chapter
9.	There	we	also	discuss	the	possible	validity	or	invalidity	of	bootstrap	resampling	from	

	or	 	 in	 this	 context.	 In	 any	 case,	 the	 analysis	 based	 on	 the	 current	 status	model
instead	of	the	right-censoring	model	gives	no	indication	of	a	difference	in	susceptibility	to
a	lung	tumor	of	type	RFM	in	the	two	groups.

	

Figure	1.5	 The	kernel	estimate	of	the	density	of	the	10,000	bootstrap	values	of	
from	 	for	the	data	of	Hoel	and	Walburg,	using	a	bandwidth	 .	The	dashed
curve	is	the	corresponding	normal	density,	scaled	with	the	mean	and	variance	of	the
bootstrap	values.

1.3	 The	Transmission	Potential	of	a	Disease
Keiding,	1991,	analyzed	demographical	data	on	hepatitis	A	in	Bulgaria.	He	notes	that	for
the	planning	of	vaccination	programs	it	is	important	to	estimate	the	transmission	potential	

,	which	measures	 the	number	of	secondary	cases	one	case	could	produce	during	 the



infectious	period.	Informally	stated:	the	transmission	potential	is	the	expected	number	of
other	people	one	 infects	 if	one	 is	 infected.	 If	 this	number	 is	bigger	 than	 ,	 there	 is	 the
danger	of	an	epidemic	spread.

It	 was	 shown	 by	 Dietz	 and	 Schenzle,	 1985,	 that	 for	 virus	 infections	 with	 a	 short
infectious	period	this	number	is	given	by:

where	 	is	the	infection	intensity,	 	the	probability	that	an	individual	of	age	
has	not	yet	been	vaccinated	and	the	mortality	 	can	usually	be	taken	to	be	known	from
official	 vital	 statistics.	 Table	 2	 in	 Keiding,	 1991,	 which	 is	 reproduced	 in	 Table	 1.3,
contains	the	prevalence	data	from	Bulgaria	on	the	presence	of	antibodies	for	hepatitis	A,
which	can	be	used	 in	estimating	 the	 infection	 intensity	 ;	 	 is	 a	quantity	one	can
manipulate.	The	ages	 ,	 	and	 ,	for	which	there	were	no	observations	in	Table	2	in
Keiding,	1991,	are	omitted	from	our	Table	1.3.

Table	1.3	 Current	Status	Data	on	Hepatitis	A	in	Bulgaria

Age Virus	Positive Total 					Age Virus	Positive Total

1 3 16 					 43 7 10
2 3 15 					 44 5 5
3 3 16 					 45 7 7
4 4 13 					 46 9 9
5 7 12 					 47 9 9
6 4 15 					 48 22 22
7 3 12 					 49 6 7
8 4 11 					 50 10 10
9 7 10 					 51 6 6
10 8 15 					 52 13 14
11 2 7 					 53 8 8
12 3 7 					 54 7 7
13 2 11 					 55 13 13
14 0 1 					 56 11 11
15 5 16 					 57 8 8
16 13 41 					 58 8 8
17 1 2 					 59 9 10
18 3 6 					 60 13 16
19 15 32 					 61 5 5
20 22 37 					 62 5 6
21 15 24 					 63 5 5
22 7 10 					 64 5 5



23 8 10 					 65 10 10
24 7 11 					 66 8 8
25 12 15 					 67 4 4
26 5 10 					 68 5 5
27 10 13 					 69 4 5
28 15 19 					 70 8 8
29 9 12 					 72 9 9
30 9 9 					 73 1 1
31 9 14 					 74 4 4
32 8 10 					 75 7 7
33 9 11 					 76 6 6
34 8 9 					 77 2 2
35 9 14 					 78 3 3
36 13 14 					 79 2 2
37 6 7 					 80 4 4
38 15 16 					 81 1 1
39 11 13 					 82 1 1
40 6 8 					 83 2 2
41 8 8 					 86 1 1
42 13 14 					

Just	as	in	Section	1.2,	the	data	available	for	estimating	 	are	current	status	data:	 if	a
person	 in	 the	 survey	 has	 antibodies,	 it	 is	 clear	 the	 he/she	 has	 been	 infected	 at	 a	 time
preceding	 the	 check	 on	 antibodies,	 otherwise	 this	 person	 can	 still	 obtain	 antibodies	 in
future	or	may	never	get	the	disease.	In	this	case,	the	survey	contained	850	people,	and	the
MLE	 	of	 the	distribution	 function	of	 age	at	which	people	were	 infected	 is	 shown	 in
Figure	1.6a,	together	with	the	corresponding	SMLE	 ,	given	by

(1.5)

where	 	is	an	integrated	kernel,	just	as	in	(1.2)	(see	(1.3)).



	

Figure	1.6	 MLE	(step	function)	and	SMLE	(dashed)	of	the	distribution	function	(a)	and
estimate	of	the	hazard	rate	of	the	age	of	infection	(b)	based	on	the	hepatitis	A	data.

The	corresponding	density	estimate	is	defined	by

(1.6)

where	 the	 bandwidth	 is	 usually	 larger	 than	 in	 estimating	 the	 distribution	 function	 (the
typical	orders	are	 	and	 ,	respectively).	An	estimate	of	the	hazard	is	given	in
Figure	1.6b,	where	the	bandwidths	in	estimating	 	and	 	were	 	and	 ,	respectively.
Note	that	by	choosing	the	bandwidths	in	this	way,	 	is	no	longer	the	derivative	of	 .	If
one	wants	to	keep	this	relation,	one	has	to	take	equal	bandwidths	for	 	and	 ,	as	was
done	in	Groeneboom’s	discussion	in	Keiding,	1991;	 the	estimator	of	 the	hazard	obtained
in	this	way	was	not	very	different	from	our	estimator	in	1.6b,	though.	Bootstrap	methods
for	determining	the	bandwidths	for	this	example	can	also	be	found	on	p.	400–401	of	the
discussion	in	Keiding,	1991,	and	in	Groeneboom	et	al.,	2010.

By	methods	of	the	present	book	one	can	derive	distribution	theory	for	estimates	of	the
transmission	potential	(1.4).	Smoothing	methods	are	unavoidable;	note,	for	example,	that
one	cannot	(sensibly)	differentiate	the	MLE	itself,	since	it	is	a	step	function,	so	one	cannot
estimate	the	infection	intensity	(hazard)	 	without	applying	some	kind	of	smoothing.	On
the	 other	 hand,	 the	 transmission	potential	 is	 a	 global	 functional,	 so	 one	 has	 to	 combine
local	 and	global	methods	 for	 obtaining	 its	 distribution.	The	 interplay	between	 local	 and
global	methods	is	one	of	the	themes	of	our	book.

1.4	 The	Bangkok	Cohort	Study
The	Bangkok	Metropolitan	Administration	injecting	drug	users	cohort	study	(Kitayaporn
et	 al.,	 1998,	 and	 Vanichseni	 et	 al.,	 2001)	 was	 started	 in	 1995	 to	 assess	 (among	 other
things)	 the	 feasibility	 of	 conducting	 a	 phase	 III	HIV	 vaccine	 efficacy	 trial	 for	 injecting
drug	users	in	Bangkok.	The	data	on	a	subset	of	1,365	injecting	drug	users	who	were	below



35	years	of	age	in	this	study	were	analyzed	by	Maathuis	and	Hudgens,	2011,	and	Li	and
Fine,	2013.	In	this	group,	392	were	HIV	positive,	with	114	infected	with	subtype	B,	237
infected	 with	 subtype	 E,	 5	 infected	 by	 another	 mixed	 subtype,	 and	 36	 infected	 with
missing	subtype.	The	subjects	with	other,	mixed,	or	missing	subtypes	were	grouped	in	a
single	category.

In	 Maathuis	 and	 Hudgens,	 2011,	 the	 maximum	 likelihood	 estimator	 (MLE)	 for	 the
subtype-specific	 cumulative	 incidence	of	HIV	 is	 computed,	 as	well	 as	 a	 so-called	naive
estimator,	based	on	analyzing	one	category	such	as	the	type	B	subjects,	ignoring	the	data
on	 the	 other	 types.	 There	 also	 confidence	 intervals	 are	 given,	 based	 on	 the	 naive
estimators,	 using	 the	 likelihood	 ratio	 test	 method	 developed	 in	 Banerjee	 and
Wellner,	2001,	and	Banerjee	and	Wellner,	2005.

Li	and	Fine,	2013,	compute	both	the	regular	MLE	and	a	smoothed	version	of	the	MLE
(called	the	SMLE)	and	use	theory	developed	in	Groeneboom	et	al.,	2010,	for	constructing
confidence	intervals.	They	also	estimate	the	hazard	and	construct	confidence	intervals	for
the	 hazard,	 again	 using	Groeneboom	 et	 al.,	 2010.	 The	 regular	MLE	 cannot	 directly	 be
used	for	this	purpose	because	it	corresponds	to	a	discrete	distribution,	so	that	some	kind	of
smoothing	is	needed	to	estimate	the	hazard	and	to	construct	the	confidence	intervals.

We	also	analyze	these	data	in	Section	12.1,	using	methods	that	are	somewhat	different
from	the	methods	in	Maathuis	and	Hudgens,	2011,	and	Li	and	Fine,	2013.	Our	treatment	is
closest	to	the	treatment	in	Li	and	Fine,	2013,	though.	The	MLE	and	corresponding	SMLE
for	the	subtype-specific	incidence	of	HIV	in	the	three	categories	are	shown	in	Figure	1.7.
Bootstrap	 confidence	 intervals	 will	 be	 constructed	 in	 Section	 12.1,	 both	 for	 the
subdistribution	functions	and	the	corresponding	hazards	for	the	categories	type	B	and	type
E.



	

Figure	1.7	 The	MLE	for	the	three	categories	in	the	Bangkok	cohort	study.	The
piecewise	constant	curves	give	the	subdistribution	functions,	based	on	the	MLE,	for	the
cumulative	incidence	of	HIV	in	the	different	categories;	dotted,	type	E;	solid,	type	B;
dashed,	other	types.	The	smooth	solid	curves	give	the	corresponding	estimates,	based	on
the	SMLE.

1.5	 Inverse	Problems,	Censoring,	Mixture	Models	and	Shape
Constraints
Having	 seen	 four	 real-life	 examples	 illustrating	 the	 need	 and	 relevance	 of	 shape
constrained	 statistical	 inference,	 we	 now	 consider	 some	 types	 of	 statistical	 problems
where	these	naturally	occur.	We	start	with	a	description	of	the	familiar	classical	parametric
density	 estimation	 problem.	 Given	 a	 sample	 of	 independent	 and	 identically	 distributed
random	variables

from	an	unknown	distribution	function	 ,	estimate	this	 	 (or	certain	aspects	of	 it)	as
well	 as	possible.	 In	order	 to	do	 that,	 a	 statistical	model	 	 is	 assumed.	This	 is	 a	 set	 of
distribution	functions	to	which	the	underlying	 	is	assumed	to	belong.	Write	this	set	as

The	set	 	is	referred	to	as	parameter	space,	usually	a	subset	of	 	for	some	small	 .	An



example	is	the	class	of	exponential	densities	on	 ,	where

(1.7)

General	methods	such	as	maximum	likelihood	can	be	used	to	obtain	an	estimator	for	the
parameter	 	corresponding	to	the	underlying	distribution	function	 .	Looking	at	some
of	 the	 distribution	 functions	 (and	 densities	 corresponding	 to)	 the	 family	 	 (see	Figure
1.8),	it	is	clear	that	this	family	is	rather	rigid	in	the	sense	that	all	distribution	functions	it
contains	have	the	same	shape.

	

Figure	1.8	 Exponential	distribution	functions	 	and	corresponding	densities	
	for	 	(dashed);	 	(solid);	and	 	(dotted).

Figure	1.9	shows	two	histograms	of	data	sets	that	would	result	in	the	same	estimate	of
the	underlying	distribution	function	if	it	is	assumed	to	belong	to	 .	The	histograms	show
that	exponentiality	is	doubtful	for	both	underlying	distributions.

	

Figure	1.9	 Histograms	of	two	datasets	with	mean	value	one	with	the	maximum
likelihood	fit	under	the	assumption	of	exponentiality	(dashed).

Nonparametric	 statistical	 methods	 aim	 to	 “let	 the	 data	 speak	 for	 themselves.”	 A
histogram	 is	 in	 fact	 a	nonparametric	density	 estimator.	 It	 has	 a	high	value	when	 locally
there	are	relatively	many	observations	and	a	low	value	if	observations	are	locally	sparse.
Also	other	nonparametric	procedures,	such	as	kernel	density	estimators,	spline	smoothers
and	 wavelet	 methods,	 have	 been	 developed	 to	 estimate	 the	 distribution	 function	 (and
density)	in	the	context	sketched	here.



Where	these	nonparametric	methods	often	use	minimal	(or	no	additional)	assumptions,
there	 are	 classes	 of	 models	 where	 a	 priori	 information	 is	 known	 on	 the	 shape	 of	 the
distribution	function	of	interest.	For	example,	in	survival	analysis,	where	one	can	cannot
directly	observe	the	event	time	of	interest.	One	only	approximately	knows	when	a	certain
event	happened,	 leading	 to	 censored	data.	The	 current	 status	problem	as	 encountered	 in
Section	 1.2	 and	 1.3	 is	 an	 example	 of	 such	 a	 model.	 The	 distribution	 of	 the	 actually
observable	 (two-dimensional)	 data	 is	 related	 to	 the	 (one-dimensional)	 event	 time
distribution	 of	 interest,	 but	 clearly	 not	 the	 same.	 In	 stereology,	 one	 is	 interested	 in	 the
distribution	of	some	aspects	of	three-dimensional	objects,	being	able	to	observe	only	two-
dimensional	 projections	 of	 these.	 The	 sampling	 strategy	 and	 nature	 of	 the	 visible
projection	 then	 lead	 to	observable	data	 that	are	related	 to,	but	not	equal	 to,	 the	data	one
actually	is	interested	in.	These	types	of	problems	can	be	viewed	as	inverse	problems	(see
Figure	1.10).	An	example	relation	(to	be	encountered	in	Section	2.2)	is	given	by

(1.8)

where	 	 is	 a	 distribution	 function	 on	 	with	 .	Whatever
assumptions	are	imposed	on	the	underlying	distribution	function	 ,	the	sampling	density	
	 will	 be	 bounded	 and	 monotonically	 decreasing	 on	 	 because	 all	 distribution

functions	 	are	increasing.	This	shows	that	not	all	distributions	are	possible	as	sampling
distribution.	 All	 possible	 sampling	 densities	 share	 the	 same	 shape	 constraint	 of	 being
monotonically	decreasing	and	bounded.



	

Figure	1.10	 The	random	quantities	of	interest	 	have	distribution	function	
contained	in	the	set	 	of	distribution	functions.	The	observable	random	quantity,	 ,	has
a	probability	density	 	that	can	be	expressed	in	terms	of	distribution	function	 :	

.	The	inverse	problem	is:	estimate	 	based	on	a	sample	from	density	
.	The	class	of	possible	densities	 	equals	 .

Shape	 constraints	 can	 also	 be	 less	 obvious	 to	 identify	 visually.	 Mixture	 models	 are
models	where	 the	 sampling	 distribution	 is	 an	 unknown	 (scale	 or	 location)	mixture	 of	 a
basic	distribution.	In	the	deconvolution	model,	to	be	discussed	in	Section	2.4	and	4.6,	the
sampling	density	is	given	by

(1.9)

where	 	is	a	known	kernel	function	(density	of	the	“noise”	in	the	deconvolution	setting)
and	 	is	a	mixing	distribution.	Identifying	whether	a	given	density	 	is	of	this	type	is	not
straightforward	 (certainly	 not	 as	 straightforward	 as	 determining	 whether	 the	 density	 is
bounded	 and	 decreasing).	 Nonetheless,	 the	 class	 of	 densities	 that	 can	 be	 expressed	 as
location	 mixture	 of	 the	 kernel	 function	 	 is	 drastically	 smaller	 than	 the	 class	 of	 all
densities	on	 ,	and	it	usually	pays	off	to	take	advantage	of	this	prior	knowledge	on	the
class	of	sampling	densities.	Figure	1.11	shows	two	densities,	one	of	which	is	a	(location)
mixture	of	standard	normal	densities	and	the	other	of	which	is	not.	Which	is	which?



	

Figure	1.11	 Two	densities;	one	is	a	location	mixture	of	standard	normal	densities,	the
other	is	not.

Another	 view	 of	 representations	 (1.8)	 and	 (1.9)	 is	 that	 one	 samples	 from	 density	
	 that	 is	parameterized	by	an	underlying	“infinite	dimensional”	parameter,	being

the	 distribution	 function	 .	 Shape	 constrained	 models	 can	 really	 be	 viewed	 as
intermediate	 between	 fully	 nonparametric	 models	 (such	 as	 the	 class	 of	 all	 distribution
functions)	and	finite	dimensional	parametric	models.

1.6	 Outline	of	the	Book
In	Chapter	2	we	 introduce	basic	examples	 related	 to	estimating	a	monotone	function.	 In
those	 examples,	 it	 is	 argued	 that	monotonicity	 assumptions	 are	 natural	 and	 defendable.
From	the	computational	point	of	view,	the	resulting	monotone	estimators	can	be	elegantly
determined	by	constructing	a	diagram	of	points	along	with	a	convex	hull	of	these	points,
as	already	seen	in	Sections	1.1,	1.2	and	1.3.

Chapter	3	deals	with	typical	pointwise	asymptotic	properties	of	estimators	introduced	in
the	basic	examples.	The	“convex	minorant”	(or	“concave	majorant”)	representation	of	the
estimators	 readily	 leads	 to	 consistency	 proofs.	 This	 representation	 can	 actually	 also	 be
pushed	to	the	limit	by	proper	rescaling	and	localizing,	leading	to	asymptotic	distributions
that	 can	 be	 expressed	 as	 functionals	 of	 convex	 minorants	 (or	 concave	 majorants)	 of
processes	such	as	Brownian	bridge	on	 	or	Brownian	motion	with	a	parabola	added
to	 it	 on	 the	whole	of	 .	Heuristic	 as	well	 as	 rigorous	 arguments	 are	given	 for	various
examples	from	Chapter	2.	Moreover,	the	most	commonly	encountered	nonnormal	limiting
distributions	 (one	 of	which	 is	 known	 as	 the	Chernoff	 distribution)	 are	 discussed	 in	 two
separate	sections.

In	 Chapter	 4	 more	 examples	 of	 problems	 where	 shape	 constraints	 are	 present	 are
discussed.	These	models	are	more	complex	than	those	considered	in	Chapter	2	in	several
ways.	 Most	 important	 is	 that	 natural	 nonparametric	 estimators	 cannot	 be	 constructed
explicitly	 as	 for	 the	 examples	 in	 Chapter	 2.	 Sometimes	 the	 shape	 constraints	 are	 also
somewhat	 indirect,	 in	 the	 sense	 that	 it	 is	 hard	 to	 judge	 whether	 a	 particular	 sampling
density	satisfies	 the	shape	constraint	or	not	 (as	 the	deconvolution	problem	mentioned	 in
Section	 1.5).	 Also,	 higher	 dimensional	 censoring	 problems	 lead	 to	 shape	 constrained
models.	In	Chapter	5	some	of	these	models	are	introduced	and	discussed.



In	general	 statistical	 estimation	problems,	one	aims	at	using	 the	data	as	efficiently	as
possible.	The	 concept	 of	minimax	 risk	 can	 be	 used	 to	 quantify	 how	hard	 an	 estimation
problem	 intrinsically	 is.	 In	 Chapter	 6	 some	methods	 are	 discussed	 that	 can	 be	 used	 to
derive	 (in	 quite	 some	 examples	 sharp)	 lower	 bounds	 to	 a	 (local)	 minimax	 risk.	 It	 is
desirable	 to	have	an	estimator	 that	attains	 the	 lower	bound	 (at	 least	as	 far	as	 the	 rate	of
convergence	is	concerned).	For	some	of	the	examples	already	seen,	it	will	be	shown	that
the	derived	estimators	are	rate	optimal	in	a	minimax	sense.

As	 mentioned	 before,	 for	 some	 examples	 it	 is	 straightforward	 to	 compute	 shape
constrained	 estimators.	 In	 other	 examples	 there	 is	 not	 an	 explicit	 method	 to	 construct
these.	Chapter	7	introduces	various	algorithms	that	can	be	used	to	compute	nonparametric
estimators	 under	 shape	 constraints.	 The	methods	 are	 also	 illustrated	 using	 some	 of	 the
previously	 introduced	problems.	The	various	perspectives	 from	which	shape	constrained
models	 can	 be	 viewed,	 as	 discussed	 in	 Section	 1.5,	 can	 be	 used	 to	 determine	 a	 natural
algorithm	to	use	when	computing	a	shape	constrained	estimator	in	such	models.

In	 Chapter	 8,	 estimation	 methods	 are	 introduced	 where	 shape	 constraints	 are	 joined
with	smoothness	assumptions.	The	resulting	estimators	have	better	asymptotic	properties
than	the	nonsmoothed	counterparts.	Moreover,	these	smooth	shape-constrained	estimators
turn	out	to	be	well	suited	for	bootstrap	analyses.	Apart	from	estimation,	testing	hypotheses
is	 also	 an	 important	 subject	 in	 shape	 constrained	 inference.	 Testing	 whether	 a	 shape
constraint	 is	 valid	 is	 one	 example.	 Testing	 for	 equality	 of	 two	 functions	 within	 shape-
constrained	models	is	another.	Examples	of	both	types	will	be	discussed	in	Chapter	9.

The	 final	 chapters	 are	 concerned	 with	 asymptotic	 theory	 for	 shape	 constrained
estimators	 and	 test	 statistics.	 Some	 recent	 developments	 are	 described	 and	 problems
posed.	Chapter	10	deals	with	the	asymptotic	distribution	of	functionals	of	the	underlying
distribution	 that	 depend	 on	 the	 underlying	 distribution	 in	 a	 smooth	 sense;	 for	 example,
moments	of	these	distributions.	Smooth	functional	theory	is	the	way	to	derive	asymptotic
results	in	this	setting.	In	Chapter	11,	asymptotic	results	are	derived	for	shape	constrained
functions	 evaluated	 at	 a	 fixed	 point.	 The	 optimality	 conditions	 for	 the	 estimators	 are
important	 in	 these	 situations.	 In	 contrast	 to	 the	 approach	 described	 in	 Chapter	 3,	 these
optimality	 conditions	 are	 only	 implicit.	 Where	 Chapter	 11	 is	 only	 concerned	 with
univariate	problems,	in	Chapter	12	pointwise	asymptotic	results	are	derived	in	the	context
of	some	of	the	bivariate	problems	introduced	in	Chapter	5.	Chapter	13	is	concerned	with
the	 asymptotic	 distribution	 theory	 for	 test	 statistics	 that	 are	 based	 on	 global	 deviation
measures.

Each	 chapter	 is	 concluded	 with	 problem	 section	 and	 a	 section	 with	 bibliographic
remarks.	Most	 of	 the	 exercises	 are	 of	 a	 level	 that	 should	 be	 within	 reach	 for	 graduate
students	 in	 statistics.	 To	 produce	 the	 pictures,	 we	 used	 the	 R	 software	 environment	 (R
Development	Core	Team,	2011).

Exercises
1.1	Consider	 the	situation	where	 	are	independent	and	identically	distributed

exponential	random	variables	with	parameter	 ;	so	each	 	has	distribution	function
(1.7).



a)	The	maximum	likelihood	estimator	(MLE)	of	 	is	defined	as	the	maximizer	of	the
log	likelihood	function

where	 .	Show	that	this	estimator	is	given	by	 	in	this	situation.	Here
.

The	method	of	maximum	likelihood	can	be	used	also	 in	models	where	 the	class	of
possible	distributions	of	the	data	is	much	larger,	say	nonparametric.	In	the	following
also	another	method,	which	is	not	so	common	in	the	parametric	context,	will	be	used
in	nonparametric	situations.

b)	 Denote	 the	 empirical	 distribution	 function	 of	 the	 s	 by	 	 and	 define	 an
estimator	(least	squares)	as	minimizer	of

Show	that

and	think	of	a	method	to	minimize	this	function.

c)	Also	use	the	estimation	methods	of	(a)	and	(b)	to	find	estimators	for	the	parameter
	in	the	class	of	uniform	distributions:

1.2	Consider	the	setting	of	Figure	1.10	with	the	transformation	given	in	(1.8).

a)	Determine	the	class	of	densities	 	when

b)	The	same	as	under	(a),	but	now	with	 	as	defined	in	(1.7).

c)	 Again	 as	 (a),	 but	 now	 with	 	 the	 class	 of	 concave	 distribution	 functions	 on	
.

1.3	Let	 	be	a	fixed	probability	density	on	 	and	 	with

the	 scale	 family	 of	 densities	 generated	 by	 .	Let	 	 be	 a	 distribution	 function	 on	
.	The	scale	mixture	of	 	with	mixing	distribution	 	is	then	given	by



a)	 Identify	 the	 class	 scale	mixtures	 of	 the	 standard	 uniform	 density,	when	 	 runs
through	 the	 class	 of	 all	 distribution	 functions	 on	 	 with	

.

b)	 The	 same	 as	 in	 (a),	 but	 now	with	 	 running	 through	 the	 class	 of	 (degenerate)
point	measures	on	 ,	for	 .

c)	The	same	as	in	(a),	but	now	with	 	running	through	the	class	of	distributions	with
densities

for	 .

1.4	For	the	deconvolution	model,	suppose	the	convolution	kernel	is	the	standard	uniform
kernel	 and	 the	 class	 of	 distribution	 functions	 	 consists	 of	 the	 exponential
distributions	as	given	in	(1.7).	Construct	the	class	of	possible	sampling	densities	 .

Bibliographic	Remarks
There	 are	 books	 dedicated	 to	 censoring	problems.	These	 include	Andersen	 et	 al.,	 1993,
Klein	 and	Moeschberger,	 2003,	 Sun,	 2006,	 and	 Fleming	 and	 Harrington,	 2011.	 Within
other	areas	of	mathematics,	there	is	also	a	lot	interest	in	(ill	posed)	inverse	problems.	Also
within	 the	 statistics	 literature,	 there	 is	 interest	 in	a	 functional	analytic	approach	 to	 these
problems.	 See,	 e.g.,	 Kaipio	 and	 Somersalo,	 2005.	 There	 are	 two	 classical	 books	 on
estimation	 of	 parameters	 (and	 also	 functions)	 under	 order	 restrictions	 (a	 special	 type	 of
shape	restriction),	dealing	with	isotonic	regression.	The	first	is	Barlow	et	al.,	1972,	and	the
second	is	Robertson	et	al.,	1988.	A	more	recent	reference	is	Silvapulle	and	Sen,	2005.	 In
Groeneboom	 and	 Wellner,	 1992,	 nonparametric	 maximum	 likelihood	 estimators	 in
interval	censoring	and	deconvolution	models	are	 thoroughly	studied.	A	book	on	mixture
models	is	Lindsay,	1995.



2
Basic	Estimation	Problems	with	Monotonicity

Constraints

The	most	basic	shape	constraint	for	a	real	valued	function	on	 	is	monotonicity.	In	many
situations	the	nature	of	the	data	imposes	this	constraint	in	a	straightforward	way.	In	other
situations	 the	mere	 fact	 that	 one	wants	 to	 estimate	 a	 distribution	 function,	which	 is	 by
definition	monotone,	dictates	 the	constraint.	In	 this	chapter	we	introduce	various	models
where	 a	 monotonicity	 constraint	 is	 part	 of	 the	 model,	 and	 consider	 nonparametric
estimation	procedures	 that	can	be	used	 to	estimate	 the	monotone	 function	of	 interest.	 In
Section	2.1	the	monotone	regression	problem	is	introduced.	Monotonicity	of	a	regression
function	is	a	natural	assumption	in	many	applications.	Section	2.2	is	concerned	with	the
problem	of	estimating	a	decreasing	density	on	 .	The	method	of	sampling	from	a
certain	population	can	 lead	 in	a	natural	way	 to	a	monotonicity	property	of	 the	sampling
density.	 The	 interval	 censoring,	 case	 I,	 or	 current	 status	 model	 is	 widely	 applied	 in
biostatistics.	In	this	model	it	is	a	distribution	function	one	wants	to	estimate.	This	model	is
studied	 in	 Section	 2.3.	 In	 Section	 2.4	 deconvolution	 problems	 are	 introduced.	 In	 those
models,	one	wants	to	estimate	an	unknown	distribution	function	based	on	a	sample	from
another	 distribution,	which	 is	 the	 convolution	of	 the	distribution	of	 interest	 and	 another
(known)	 distribution.	 An	 interesting	 family	 of	 problems	 are	 generalized	 isotonic
regression	problems.	These	are	discussed	in	Section	2.5.	In	fact,	these	problems	can	look
quite	unrelated,	but	turn	out	to	be	equivalent	to	isotonic	regression	problems	as	considered
in	Section	2.1.	The	last	example,	in	Section	2.6,	comes	from	reliability	theory,	where	one
is	interested	in	estimating	an	increasing	hazard	rate	based	on	a	sample	of	survival	data.

2.1	 Monotone	Regression
Consider	 the	 standard	 simple	 regression	 context,	 where	 one	 observes	 data	

.	 Here	 the	 s	 are	 considered	 fixed	 and	 increasing	 in	 order
whereas	 	is	a	realization	of	the	random	variable

(2.1)

The	 random	variables	 	 are	 i.i.d.	with	 .	 The	 problem	 then	 is	 to
estimate	 the	 function	 	 from	 the	 data.	 In	 the	 simple	 linear	 regression	 context,	 	 is
assumed	 to	 belong	 to	 a	 class	 of	 regression	 functions	 that	 can	 be	 parameterized	 linearly
using	 two	 real	 parameters.	 In	 this	 section,	 we	 first	 give	 an	 example	 data	 set.	 Then	we
characterize	the	least	squares	estimator	of	the	monotone	regression	function	 .

Example	 2.1	Consider	 the	 (generated	 small)	 data	 set	 given	 in	 Table	 2.1,	 consisting	 of
measurements	of	the	heights	of	 	school	girls	where	the	age	ranges	from	 	to	 .	For
each	age	the	heights	of	six	girls	were	measured.	It	is	natural	to	assume	that	the	expected



height	of	school	girls	is	increasing	as	a	function	of	age.	On	the	other	hand,	it	 is	obvious
that	 the	 natural	 estimates	 for	 these	 expected	 heights	 given	 by	 the	 mean	 values	 of	 the
samples	do	not	have	to	share	this	monotonicity	property.	The	second	last	column	in	Table
2.1	shows	that	in	this	example	the	means	are	indeed	not	increasing	with	age.

Table	 2.1	 Height	 Measurements	 of	 42	 School	 Girls	 of	 Different	 Age,	 the
Corresponding	Mean	Heights	with	Standard	Deviations	

The	 least	 squares	 estimator	 in	model	 (2.1),	minimizing	 the	weighted	 sum	of	 squared
residuals	over	all	nondecreasing	functions	 ,	is	defined	as

(2.2)

Here	the	weight	vector	 	has	length	 	and	positive	components.	The	function	class	
is	defined	by

This	 least	 squares	 estimator	 is	 often	 called	 the	 isotonic	 regression	 of	 the	 vector	 ,
indicating	that	the	ordering	of	the	components	of	 	goes	in	the	same	direction	as	that	of
the	components	of	 .	If	the	ordering	is	reverse,	the	corresponding	least	squares	estimator
is	often	called	the	antitonic	regression	of	the	vector	 .	Note,	however,	that	the	antitonic
regression	is	often	again	called	isotonic	regression.

Let	us	now	solve	minimization	problem	(2.2).	The	first	observation	is	that	the	objective
function	only	depends	on	the	values	of	the	function	 	at	the	observed	 s.	Hence,	as	long
as	 the	monotonicity	constraint	 is	 satisfied,	changing	 	between	 two	observed	 s	 does
not	change	the	value	of	the	objective	function.	With	that	in	mind,	we	solve	(2.2)	over	all
functions	in	 	that	are	constant	between	successive	 s.	Abusing	notation	slightly,	we
write	 .

Lemma	2.1	Let	 	 and	 	 fixed.	 Then	 the	 vector	
	minimizes	the	function

over	the	closed	convex	cone	 	if	and	only	if



(2.3)

Remark	Note	that	the	(unique)	 	satisfying	these	(in)equalities	can	easily	be	constructed.
Define	 the	 cumulative	 sum	 diagram	 consisting	 of	 the	 points	

,	for	 ,	and	 .	Then	construct	the
(greatest)	convex	minorantof	these	points,	i.e.,	the	maximal	convex	function	lying	entirely
below	 the	 diagram	 of	 points.	 Then	 	 is	 given	 by	 the	 left	 derivative	 of	 this	 convex
minorant	evaluated	at	the	point	 .

Proof	Observe	that	 	is	a	strictly	convex	function	on	 ,	having	a	unique	minimizer	
over	 .	We	now	prove	 that	conditions	(2.3)	are	necessary.	Define	for	
the	 vectors	 	 by	 .	 Then	 for	 each	 ,	 	 for	 all	

.	Hence	by	convexity	of	 	we	have	for	all	

Note	 that	 if	 	 or	 ,	 it	 also	 holds	 that	 	 for	 all	
sufficiently	small,	implying	that	for	all	such	

Together	with	 the	 inequality	 in	 the	opposite	direction,	 the	equality	part	of	 (2.3)	 follows.
This	furnishes	necessity	of	(2.3).

Since	 (in)equalities	 (2.3)	 uniquely	 define	 the	 vector	 	 (this	 follows	 from	 the
construction	as	derivative	of	the	convex	minorant),	existence	and	uniqueness	of	the	least
squares	estimator	yields	sufficiency	of	(2.3).	See	Exercise	2.2	for	a	more	direct	argument
to	show	sufficiency.	☐
For	the	data	given	in	Table	2.1,	Figure	2.1	shows	the	cumulative	sum	diagram	based	on

the	values	 ,	where	 	denotes	the	mean	of	the	 s.	This	centering	is	purely
for	illustrative	purposes;	the	solution	of	the	minimization	problem	is	obtained	from	Figure
2.1	by	simply	adding	 	to	the	derivative	of	the	convex	minorant	obtained.



	

Figure	2.1	 The	cusum	diagram	based	on	the	values	 	and	its	convex	minorant.
This	gives	 	=	(1.590,	1.605,	1.605,	1.640,	1.650,	1.680,	1.700)	as	solution	to	the	isotonic
regression	problem.

Example	 2.2	At	 Lake	 Monona	 in	 Wisconsin,	 the	 duration	 (in	 days)	 of	 ice	 has	 been
measured	 in	 the	years	1855–2012.	Figure	2.2a	 shows	 the	 scatter	 plot	 of	 these	 durations
against	 the	 year.	 In	 view	 of	 possible	 consequences	 of	 the	 greenhouse	 effect,	 one	 could
propose	 a	 model	 that	 the	 expected	 duration	 (in	 days)	 of	 ice	 in	 Lake	 Monona	 is	 a
decreasing	function	of	time,	i.e.

The	mean	vector	 	can	then	be	estimated	by	the	(constant	weight)	antitonic	(decreasing)
regression	 of	 the	 observed	 durations	 ,	 .	 Figure	 2.2b	 shows	 the
cumulative	 sum	 diagram	 based	 on	 the	 points	 ,	 .	 A	 useful
corollary	of	Lemma	2.1	that	will	be	used	later	in	the	book	is	the	following.



	

Figure	2.2	 (a)	Scatter	plot	of	the	duration	of	freezing	(in	days)	of	Lake	Monona	against
the	year.	(b)	The	cusum	diagram	based	on	the	centered	(by	mean	subtraction)	temperatures
together	with	its	least	concave	majorant.	The	resulting	antitonic	regression	is	added	to	the
scatter	plot.

Corollary	2.1	Let	 	be	the	isotonic	regression	of	 	with	weights	 	as	characterized	in
Lemma	2.1.	Then,	for	every	 ,

Proof	Define	for	 	 the	vectors	 	such	 that	 it	contains	 	zeros
followed	by	 	ones.	Then,	write	for	arbitrary	 	and	the	isotonic	regression	
at	hand

Here	 	for	 	and	 .	Then

Indeed,	the	first	term	is	zero	by	the	equality	part	of	(2.3)	with	 .	For	the	sum	at	the
right	hand	side	we	know	for	each	term	that	 	and,	also	taking	the	inequality	part	of
(2.3)	into	account,

☐



2.2	 Monotone	Density	Estimation
Estimating	 a	 probability	 density	 based	 on	 an	 independent	 and	 identically	 distributed
sample	 generated	 by	 it	 is	 a	 common	 problem	 in	mathematical	 statistics	 and	 application
fields.	In	the	parametric	context,	the	problem	is	reduced	to	estimating	a	finite	dimensional
parameter	 from	 the	 data.	 If	 only	 smoothness	 assumptions	 are	 imposed	 on	 the	 sampling
density,	often	kernel	or	spline	estimators	are	applied	to	estimate	the	density	based	on	the
given	data.	 In	 this	 section	we	 introduce	 the	problem	of	estimating	a	density	on	
based	on	a	sample	from	its	corresponding	distribution,	only	using	the	assumption	that	the
density	is	decreasing.

There	 are	 various	 contexts	where	 this	 problem	 arises.	One	 example	 is	 related	 to	 the
inspection	 paradox	 described	 in	 Ross,	 2010,	 Section	 7.7.	 The	 aim	 is	 to	 estimate	 the
interarrival	 distribution	 of	 a	 stationary	 renewal	 process,	 based	 on	 data	 from	
independent	 realizations	of	 the	process.	For	each	process	 the	 residual	waiting	 time	until
the	 next	 event	 is	 observed,	 from	 time	 point	 zero.	 This	 observation	 can	 be	 viewed	 as
uniform	random	fraction	of	a	draw	from	the	length-biased	distribution	associated	with	the
interarrival	distribution.	 In	 the	 following	we	derive	 the	 equation	 relating	 the	 interarrival
distribution	 function	 	 of	 interest	 with	 the	 sampling	 density.	 It	 will	 be	 seen	 that	 the
sampling	scheme	imposes	the	sampling	density	to	be	decreasing.

Suppose	we	have	a	sample	 	from	the	length-biased	distribution	associated
with	 an	 unknown	 distribution	 function	 	 of	 interest.	 This	 means	 that	 the	 distribution
function	of	 	is	given	by

(2.4)

where	 	 is	 assumed	 to	 be	 nonzero	 and	 finite.	 However,	 instead	 of
observing	the	values	of	 	directly,	we	only	observe	the	data	 	where	 	is
a	uniform	random	fraction	of	 .	More	specifically,	we	observe

where	 	 is	 a	 random	 sample	 from	 the	 uniform	 distribution	 on	 ,
independent	of	the	 s.	Now	the	density	of	 	can	be	seen	to	be

(2.5)

See	also	Exercise	2.4.	Hence,	by	monotonicity	of	the	initial	distribution	function	 	and
the	 fact	 that	 ,	 it	 follows	 that	 	 is	 bounded	 and	decreasing	on	 .
Moreover,	if	no	additional	assumptions	are	imposed	on	 ,	any	density	of	this	type	can	be
represented	by	(2.5).

We	now	introduce	the	(nonparametric)	maximum	likelihood	estimator	for	the	density	



	based	on	a	realized	sample	 	from	that	density.	This	estimator	is	also	known
as	the	Grenander	estimator.	Denoting	the	empirical	distribution	function	of	these	data	by	

,	the	log	likelihood	of	a	specific	density	 	is	given	by

Maximizing	 this	 function	 over	 all	 decreasing	 densities	 on	 	 boils	 down	 to
maximizing	 	over	the	set

Lemma	 2.2	The	 function	 	 maximizing	 	 over	 the	 function	 class	 	 is	 constant	 on
intervals	 of	 the	 type	 ,	 where	 	 by	 convention	 and	

	 are	 the	 ordered	 observations	 .	 The	 value	
	 is	 the	 left	 derivative	 of	 the	 least	 concave	majorant	 	 of	 (i.e.,	 least	 concave

function	dominating)	the	empirical	distribution	function	 	of	the	data	evaluated	at	the
point	 .

Proof	We	first	prove	that	the	maximizer	of	 	over	 	has	to	belong	to	the	subclass	 	of	
	consisting	of	functions	that	are	constant	on	intervals	of	the	type	 .	Let	

be	 an	 arbitrary	 bounded	 decreasing	 density	 on	 	 with	 	 (i.e.	
)	and	define	the	function	 	by

See	Figure	2.3a.	Because	 	is	decreasing,	 	for	all	 ,	implying	that	 	is	a
subdensity	 with	 .	 Moreover,	 	 since	

	for	all	 .	Hence,	defining	the	density	 	(see
Figure	2.3b),	we	see	that	 ,	implying	that	in	maximizing	
over	 ,	attention	may	be	restricted	to	 .



	
Figure	2.3	 (a)	An	“arbitrary”	decreasing	density	 	on	 	together	with	the
piecewise	constant	version	 	coinciding	with	 	at	the	data	points	(in	this	example	
and	 ).	(b)	Rescaling	the	resulting	subdensity	to	a	density	 	yields	piecewise	constant
density.	Clearly,	 	at	the	data	points.

Define	the	function	 	by

We	now	prove	that	 	as	defined	here	indeed	maximizes	 	over	 	by	showing	that	for
each	 ,

(2.6)

Without	loss	of	generality,	we	take	 	with	 .

For	the	first	inequality	in	(2.6),	note	that	the	(piecewise	constant)	logarithm	of	 	can	be
represented	as

with	 	for	 	and	 .	This	implies	that

where	we	use	that	 	for	all	 	and	 .

The	second	inequality	in	(2.6)	follows	from	Jensen’s	inequality:

Observing	 that	 	 is	constant	on	 intervals	 ,	where	 	 and	 	are
successive	vertices	of	 	and	the	functions	 	and	 	have	equal	increments	on	these



intervals,	the	equality	in	(2.6)	easily	follows.	☐
Figure	 2.4	 shows	 the	 empirical	 distribution	 function	 of	 a	 sample	 of	 size	 	 generated
from	 the	 standard	exponential	distribution	 together	with	 its	 concave	majorant.	The	 right
picture	shows	the	resulting	Grenander	estimate	as	derivative	of	this	concave	majorant.

	

Figure	2.4	 (a)	Empirical	distribution	function	of	a	sample	of	size	 	and	its
concave	majorant.	(b)	The	resulting	Grenander	estimate.

Example	 2.3	 In	 Slama	 et	 al.,	 2012,	 an	 interesting	 data	 set	 of	 current	 durations	 of
pregnancy	in	France	is	studied.	The	aim	is	to	estimate	the	distribution	of	the	time	it	takes
for	a	woman	to	become	pregnant	after	having	started	unprotected	sexual	intercourse.	For	

	women	the	current	duration	of	unprotected	intercourse	was	recorded	and	this	is	the
basis	of	part	of	the	research	reported	in	Slama	et	al.,	2012.

Given	that	the	women	in	the	study	are	currently	trying	to	become	pregnant,	the	actual
recorded	 data	 (current	 duration)	 can	 be	 viewed	 as	 uniform	 random	 fraction	 of	 the	 true,
total	duration.	In	that	sense,	the	model	as	given	in	(2.5)	 is	not	unreasonable.	Figure	2.5a
shows	 a	 part	 of	 the	 empirical	 distribution	 function	 of	 	 recorded	 current	 durations,
kindly	provided	to	us	by	Niels	Keiding,	where	the	data	are	truncated	at	 	months	and	are
of	a	nature	similar	to	the	data	in	Slama	et	al.,	2012.	Based	on	the	least	concave	majorant,
Figure	 2.5b	 is	 computed,	 showing	 the	 resulting	MLE	 of	 the	 decreasing	 density	 of	 the
observations	 together	 with	 its	 smoothed	 version,	 the	 smoothed	 maximum	 likelihood
estimator	(SMLE),	defined	by

(2.7)

where	 	is	the	Grenander	estimator	(the	MLE)	and	 	is	a	symmetric	kernel,	for	which
we	took	the	triweight	kernel



	
Figure	2.5	 (a)	The	empirical	distribution	function	and	its	least	concave	majorant	for	the
values	between	 	and	 	months	of	the	618	current	durations	 	36	months.	(b)	The
resulting	Grenander	estimate	(the	MLE)	of	the	observation	density	on	the	interval	 ,
together	with	its	smoothed	version	(dashed,	the	SMLE)

The	bandwidth	 	was	defined	by

where	 .	Near	the	boundary	points	 	and	 	the	boundary	correction,	defined	in
Section	9.2,	was	applied.	The	SMLE	is	asymptotically	equivalent	to	the	ordinary	density
estimator

(2.8)

(with	 the	 boundary	 correction	 corresponding	 to	 the	 boundary	 correction	 in	 9.2),	which,
however,	will	in	general	not	be	monotone,	so	will	not	belong	to	the	allowed	class.

The	survival	function	for	the	time	until	pregnancy	or	end	of	the	period	of	unprotected
intercourse	 is	 given	 by	 ,	 where	 	 is	 the	 density	 of	 the	 observations,	 see
Exercise	2.4.	The	 	confidence	for	the	survival	function	at	the	 	equidistant	points	

,	 ,	 are	 constructed	 from	 1,000	 bootstrap	 samples	 ,
also	of	size	 ,	drawn	from	the	original	sample,	and	in	these	samples	we	computed

(2.9)

where	 	 and	 	 are	 the	 SMLEs	 in	 the	 original	 sample	 and	 the	 bootstrap	 sample,
respectively.	 The	 chosen	 bandwidth	 was	 ,	 so	 (according	 to	 the
method	 of	 undersmoothing,	 see	 Section	 9.5)	 smaller	 than	 the	 bandwidth	 in	 Figure	 2.5,
which	 uses	 a	 rate	 for	 which	 the	 squared	 bias	 and	 variance	 are	 approximately	 in
equilibrium.	The	 	asymptotic	confidence	intervals	are	given	by



where	 	and	 	are	the	 	and	 	percentiles	of	 the	bootstrap	values
(2.9).	 The	 result	 is	 shown	 in	 part	 (a)	 of	 Figure	 2.6	 and	 should	 be	 compared	 with	 the
confidence	 intervals	 in	 part	 A	 of	 Figure	 2,	 p.	 1495	 of	 Slama	 et	 al.,	 2012,	 based	 on	 a
parametric	(generalized	gamma)	model.

	

Figure	2.6	 	confidence	intervals,	based	on	the	SMLE	(part	(a))	and	MLE	(part	(b)),
respectively,	for	the	survival	functions	in	Slama	et	al.	(2012)	at	the	points	0.36,	

.	The	chosen	bandwidth	for	the	SMLE	was	 	and
the	MLE	was	restricted	to	have	the	same	value	as	the	(consistent)	SMLE	at	zero.

We	have	here	 the	 easiest,	 but	 also	 somewhat	 unusual,	 situation	 in	which	 the	 isotonic
estimator	 is	 asymptotically	 equivalent	 to	 an	 ordinary	 nonisotonic	 estimator.	 The	 more
usual	situation	is	that	we	only	can	find	a	so-called	toy	estimator,	which	is	asymptotically
equivalent	to	the	MLE	or	SMLE,	but	still	contains	parameters	that	have	to	be	estimated.
We	will	 see	examples	of	 the	 latter	 in	 the	current	status	and,	more	generally,	 the	 interval
censoring	model.

In	Slama	et	al.,	2012,	and	Keiding	et	al.,	2012,	parametric	models	are	also	considered
for	 analyzing	 these	 data.	 We	 compute	 the	 MLE	 as	 the	 slope	 of	 the	 smallest	 concave
majorant	 of	 the	 data	 	 months,	 where	 the	 	 values	 are	 only	 the	 strictly	 different
values,	 and	 where	 we	 use	 the	 number	 of	 values	 at	 a	 tie	 as	 the	 increase	 of	 the	 second
coordinate	of	 the	cusum	diagram.	 In	 this	way	we	get	 	values	 ,	 but	 only	
strictly	different	ones.	It	is	clear	that	the	SMLE	has	a	somewhat	intermediate	position	with
respect	to	the	parametric	models	and	the	fully	nonparametric	MLE,	considered	in	Slama
et	al.,	2012,	and	Keiding	et	al.,	2012.	The	fully	nonparametric	MLE	is	inconsistent	at	zero
and	can	therefore	not	be	used	as	an	estimate	of	 	and	therefore	also	not	as	an	estimate
of	 the	 survival	 function	 .	 This	 is	 in	 contrast	 with	 the	 SMLE,	 which	 is
consistent	at	 zero;	 see	Section	9.2.	This	difficulty	with	 the	 inconsistency	of	 the	MLE	at
zero	for	the	present	model	is	discussed	in	Keiding	et	al.,	2012.

Remark	The	mentioned	difficulties	have	very	recently	been	resolved	in	Groeneboom	and
Jongbloed,	2014,	see	the	discussion	at	the	end	of	Section	9.5.	We	can	perform	likelihood
ratio	tests	with	MLEs	that	are	restricted	to	have	the	value	of	a	consistent	estimator	at	zero.
The	95%	confidence	intervals	based	on	the	MLEs	are	shown	in	part	(b)	of	Figure	2.6.	For
a	further	discussion	of	these	matters,	see	Groeneboom	and	Jongbloed,	2014.



As	alternative	nonparametric	estimator,	one	could	use	a	least	squares	density	estimate.
This	estimate	minimizes	an	 	distance	 to	an	 initial	nonmonotone	density	estimate	
over	the	class	of	decreasing	densities:

(2.10)

where,	defining	 ,	the	initial	density	estimate	 	is	given	by

(2.11)

and	where	 	 is	 the	 number	 of	 observations	 in	 the	 interval	 .	 This	 least
squares	estimate	is	exactly	the	maximum	likelihood	estimate.	(See	Exercise	2.5.)

The	model	considered	in	this	section	is	a	so-called	mixture	model,	in	the	sense	that	it	is
a	scale	mixture	of	uniform	distributions:

2.3	 Estimating	a	Distribution	Function	from	Current	Status
Data
A	problem	that	is	often	encountered	in	reliability	theory	is	that	of	estimating	a	distribution
function	 of	 the	 lifetime	of	 a	 certain	 product.	 In	medical	 science,	 conceptually	 the	 same
question	is	relevant	when	the	distribution	of	 the	survival	 time	of	a	person	with	a	certain
disease	is	to	be	estimated.	In	business,	a	similar	question	arises	when	one	is	interested	in
the	 duration	 of	 a	 subscription	 to	 a	 certain	 newspaper.	 The	 whole	 of	 the	 methods	 and
techniques	within	the	field	of	statistics	that	is	related	to	these	questions	is	called	survival
analysis.

One	problem	that	is	typical	in	survival	analysis	is	that	of	censoring.	One	would	like	to
have	a	sample	from	the	distribution	of	interest,	but	because	of	some	mechanism,	it	is	not
possible	 to	observe	such	a	sample.	To	 illustrate	 the	current	status	model,	we	will	use	an
interesting	data	set	studied	in	Keiding	et	al.,	1996.

In	 order	 to	 investigate	 the	 age-specific	 immunization	 intensity	 of	 rubella
seroprevalence,	a	cross-sectional	sample	of	230	Austrian	males	older	than	3	months	was
taken	 during	 the	 period	 1–25	March	 1988.	Of	 interest	 is	 the	 distribution	 of	 the	 time	 to
infection	by	rubella	in	the	male	population,	whereas	it	is	assumed	that	immunization,	once
achieved,	 is	 lifelong.	 For	 each	 person,	 the	 exact	 birthday	 was	 known	 and	 the	 current
immunization	status	was	tested	at	the	Institute	of	Virology,	Vienna.	In	particular,	the	exact



time	of	 immunization	 is	not	known.	The	data	 are	 represented	graphically	 in	Figure	2.7.
Each	 individual	 in	 the	 study	 corresponds	 to	 a	 horizontal	 line	 in	 the	 picture.	 This	 line
denotes	the	set	of	possible	values	of	 	for	this	individual.	An	individual	with	 	is
denoted	by	a	line	starting	at	zero,	ending	at	the	censoring	time	 .	An	observation	with	

	 starts	 at	 the	 observed	 censoring	 time	 	 and	 continues	 to	 the	 right	 till	 the
maximum	age,	which	we	(somewhat	arbitrarily)	put	equal	to	 	here.

	

Figure	2.7	 Rubella	data	studied	in	Keiding	et	al.,	1996.

Imposing	 some	 assumptions,	 we	 use	 the	 following	 model	 for	 the	 data.	 Consider	 a
sample	 	 is	 drawn	 from	 a	 distribution	 with	 distribution	 function	 .
However,	 instead	of	observing	 the	 s,	one	only	observes	 for	 each	 	whether	 or	 not	

	 for	 some	 random	 	 (independent	 of	 the	 other	 s	 and	 all	 s).	 More
formally,	instead	of	observing	 s,	one	observes

(2.12)

One	could	say	that	the	 th	observation	represents	the	current	status	of	item	 	at	time	 .

Now	the	problem	is	to	estimate	the	unknown	distribution	function	 	based	on	the	data
given	 in	 (2.12).	 Denote	 the	 ordered	 realized	 s	 by	 	 and	 the
associated	realized	values	of	the	 s	by	 .	For	this	problem	the	log	likelihood
function	in	 	(conditional	on	the	 s)	is	given	by

(2.13)



(see	also	Exercise	2.9).	The	(nonparametric)	maximum	likelihood	estimator	maximizes	
over	 the	class	of	all	distribution	 functions.	Since	distribution	 functions	are	by	definition
nondecreasing,	 computing	 the	 maximum	 likelihood	 estimator	 poses	 a	 shape	 restricted
optimization	problem	 in	a	natural	way.	As	can	be	 seen	 from	 the	 structure	of	 (2.13),	 the
value	of	 	only	depends	on	the	values	that	 	 takes	at	 the	observed	time	points	 ;	 the
values	of	 	in	between	are	not	relevant	as	long	as	 	is	nondecreasing.	Hence	one	can
choose	 to	 consider	 only	 distribution	 functions	 that	 are	 constant	 between	 successive
observed	time	points	 .	Lemma	2.3	shows	that	this	estimator	can	also	be	characterized	in
terms	of	a	convex	minorant	of	a	certain	diagram	of	points.

Lemma	2.3	Consider	the	cumulative	sum	diagram	consisting	of	the	points	
and

recalling	that	the	 s	correspond	to	the	 s,	which	are	sorted.	Then	 	is	given	by	the
left	derivative	of	the	convex	minorant	of	this	diagram	of	points,	evaluated	at	the	point	 .
This	maximizer	is	unique.

Remark	The	left	derivative	of	the	convex	minorant	at	 	determines	the	value	of	 	at	
	and	hence	(by	right	continuity	of	the	step	function)	on	 ,	a	region	to	the	right

of	 .

Proof	First	note	that	for	maximizing	the	likelihood	in	terms	of	 ,	we	may	without	loss	of
generality	 assume	 that	 .	 If	 this	 were	 not	 the	 case,	 the	 s
corresponding	to	the	first	sequence	of	 s	equal	to	zero	can	be	fixed	at	value	zero	and	the	

s	 corresponding	 to	 the	 last	 string	 of	 s	 equal	 to	 one	 can	 be	 fixed	 at	 value	 one.
Consequently,	the	terms	 	and	 	force	the	range	constraints	for
distribution	functions	to	be	automatically	satisfied	by	the	MLE.

Next,	 note	 that	 the	 function	 	 in	 (2.13)	 is	 strictly	 concave	 in	 the	 vector	
,	 giving	uniqueness	 of	 the	maximizer	 if	 it	 exists.	Hence,	 showing

for	 the	 constructed	 vector	 	 that	 for	 every	 vector	
	satisfying	 ,

(2.14)

the	 result	 follows.	 In	other	words:	 starting	at	 ,	 no	 feasible	 direction	 of	 ascent	 can	 be
found	for	 .

Now,	using	that	 	for	 ,	observe	that



Writing	 	for	the	locations	of	the	bend	points	of	the	convex
minorant	 of	 the	 cumulative	 sum	 diagram	 and	 using	 that	 	 for	

,	the	second	term	can	be	written	as

The	 last	 equality	 follows	 since	 the	 inner	 summation	 is	 zero,	 essentially	 because	 the
increase	of	 the	cumulative	sum	diagram	and	 the	 increase	of	 its	convex	minorant	are	 the
same	 between	 consecutive	 points	 where	 these	 coincide.	 For	 ,	 again	 using	 that	

	for	 ,

Now,	 consider	 the	 inner	 sum,	 and	 for	 	 represent	

	with	 .	Then

This	 last	 inequality	 follows	 from	 the	 interpretation	 of	 the	 convex	 minorant.	 (See	 also
Exercise	2.11.)	This	proves	that	 	and	hence	(2.14).	☐
Figure	2.8	shows	the	MLE	based	on	the	rubella	data,	obtained	via	the	characterization

in	Lemma	2.3.

	

Figure	2.8	 (a)	The	cumulative	sum	diagram	based	on	the	Rubella	data	and	its	convex
minorant.	(b)	The	associated	MLE	of	the	distribution	function	 .

2.4	 Deconvolution	Problem	with	Jump	Kernel
Consider	 a	 sample	 	 generated	 by	 an	 unknown	 distribution	 function	 .
Instead	 of	 observing	 this	 sample	 directly,	 a	 sample	 	 is	 observed	 where	



	for	each	 .	Here	the	 s	are	independent	and	identically	distributed	with
(known)	probability	density	 .	Moreover,	all	 s	and	 s	are	independent.	This	means
that	the	distribution	of	 	is	given	by	the	convolution	of	the	 	and	 .	In	this	case	it	has
a	density	 ,	given	by

(2.15)

Since	 	 is	 known,	 one	 can	 state	 the	 estimation	 problem	 as	 that	 of	 “deconvolving”	
with	 .	In	Section	4.6	this	problem	will	be	studied	in	more	generality.	Here	we	consider	a
specific	class	of	deconvolution	models,	where	 	and	 	are	nonnegative	and	the	kernel	
	can	be	represented	as

(2.16)

where	 	 is	 a	 bounded	measurable	 function	 on	 .	 Then,	 it	 can	 be	 shown	 that	 the
(type	one)	resolvent	 	of	 	as	solution	of	the	integral	equation

(2.17)

is	well	defined.	Using	properties	of	convolutions,	we	get

Hence,

(2.18)

Example	 2.4	 (Exponential	 deconvolution)	 Suppose	 	 on	 	 and	
.	Then

(2.19)

and	the	explicit	inverse	relation	boils	down	to



(2.20)

This	relation	can	be	used	to	estimate	 	based	on	a	sample	from	 .	Indeed,	denote	by	
the	distribution	function	corresponding	to	 	and	define	the	convex	function

This	function	can	be	estimated	by	its	empirical	counterpart

where	 	is	the	empirical	distribution	function	of	the	observed	data.	Note	that	 	is	an
increasing	 function	 that	 is	 linear	between	 successive	observation	points.	At	 these	points
the	 function	 has	 jumps	 of	 size	 	 and	 after	 each	 jump	 the	 slope	 of	 the	 function	 is
increased	 by	 .	 Obviously,	 	 is	 not	 differentiable.	 See	 Figure	 2.9,	 where	 the
empirical	distribution	function	 	based	on	a	sample	of	size	 	is	shown	and	the
function	 	corresponding	to	it.

	
Figure	2.9	 Empirical	distribution	function	of	 	observations	(a)	and	the	function	
based	on	this	(b).

One	 could	 define	 an	 estimator	 for	 	 directly	 based	 on	 	 by,	 e.g.,	 taking	 the
derivative	 of	 the	 piecewise	 linear	 function	 connecting	 the	 points	 .
However,	this	derivative	will	in	general	not	be	monotone	because	the	linearly	interpolated
function	 	is	not	convex.	Moreover,	it	will	generally	not	satisfy	the	range	constraints	for
distribution	 functions,	 that	 it	 takes	 values	 in	 .	 See	 Figure	 2.10a.	 In	 the	 spirit	 of
estimators	 previously	met	 in	 this	 chapter,	 one	 can	 define	 an	 estimator	 	 as	 the	 right
derivative	of	the	(greatest)	convex	minorant	of	the	function	 .	Obviously,	 ,	

,	 	 is	 monotone	 and	 right	 continuous.	 Hence,	 it	 is	 a	 proper
estimator	of	 .	See	Figure	2.10b.



	

Figure	2.10	 Naive	estimator	of	 	based	on	linear	interpolation	of	(the	left	continuous
version	of)	 	in	Figure	2.9	(a)	and	the	estimator	based	on	the	convex	minorant	of	
(b).

2.5	 Generalized	Isotonic	Regression	Problems
In	Section	2.1	the	constructive	solution	to	the	isotonic	regression	problem	was	derived.	In
particular,	the	least	squares	estimator	for	the	monotone	function	can	be	obtained	by	taking
the	derivative	of	a	convex	minorant	of	a	diagram	of	points.	Interestingly,	estimators	other
than	 least	 squares	estimators	 for	monotone	 functions	can	be	computed	 in	 the	same	way.
An	 example	 was	 already	 encountered	 in	 Section	 2.3,	 where	 the	 maximum	 likelihood
estimator	in	the	current	status	model	was	seen	to	equal	a	particular	least	squares	estimator.
A	 whole	 class	 of	 estimation	 problems	 where	 this	 phenomenon	 occurs	 is	 the	 class	 of
generalized	isotonic	regression	problems.	We	first	give	an	example.

Example	 2.5	 (Poisson	 extremum	 problem)	 Let	 	 be	 	 independent
random	 variables	 such	 that	 	 has	 the	 Poisson	 distribution	 with	 parameter	 	 and,
moreover,	the	parameters	are	increasing:	for	

Denote	 the	observed	data	by	 	 (an	example	data	set	 is	given	 in	Figure	2.11).
Estimating	 the	 parameter	 vector	 	 via	 maximum	 likelihood	 entails
maximizing	the	function

(2.21)

over	 the	ordered	set	of	 s.	One	could	 think	of	an	 iterative	procedure	 to	maximize	 this
function	(see	Exercise	2.16).



	

Figure	2.11	 (a)	Scatter	plot	of	a	data	set	of	size	 	with	underlying	parameters	
	(dashed	curve)	in	the	Poisson	extremum	problem.	(b)	A	measured	luminescence

signal,	together	with	the	maximum	likelihood	estimates	of	the	(decreasing)	Poisson
parameters.

A	situation	where	this	type	of	data	is	encountered	is	in	luminescence	dating	(see,	e.g.,
Preusser	 et	 al.,	2008).	This	 is	 a	 technique	 that	 can	 be	 used	 to	 estimate	 the	 time	 since	 a
sediment	of	soil	was	last	exposed	to	sunlight.	When	a	soil	sample	is	exposed	to	light	in	a
laboratory,	 the	 sample	 emits	 photons	 according	 to	 a	 process	 that	 can	 be	 modeled	 as
Poisson	process.	For	time	intervals	 ,	independent	Poisson
counts	are	recorded	for	which	the	intensities	can	be	assumed	to	be	decreasing.	The	right
panel	 of	 Figure	 2.11	 shows	 a	 scatter	 plot	 of	 measured	 counts,	 for	 a	 situation	 with	

	and	 	(both	in	seconds).

Example	2.6	 (Geometric	 extremum	problem)	Let	 	 be	 	 independent
random	 variables,	 geometrically	 distributed	 with	 parameter	 	 such	 that	 the	 s	 are
increasing.	This	means	that	for	 ,

Denote	the	observed	data	by	 .	See	Figure	2.12	for	a	scatter	plot	of	a	generated
sample.	 The	 maximum	 likelihood	 estimator	 of	 parameter	 vector	 	 can	 be
obtained	by	maximizing	the	function

(2.22)

over	the	set	of	all	 -tuples	 .

Log	 likelihoods	 (2.21)	 and	 (2.22)	 do	 not	 immediately	 show	 that	 the	maximizer	 can	 be
constructed	by	computing	the	least	convex	minorant	of	a	single	cumulative	sum	diagram.
To	 see	 that	 it	 is	 the	 case	 for	 these	 (and	 also	 other)	 examples,	 we	 identify	 a	 common
structure	in	the	optimization	problems.



	

Figure	2.12	 (a)	A	dataset	of	size	 	from	the	Geometric	extremum	problem,
with	dashed	true	underlying	values	of	 .	The	thick	line	indicates	the
maximum	likelihood	estimates	of	 	as	defined	in	Exercise	2.20.	(b)	The	nonrestricted
maximum	likelihood	estimates	of	 ,	 ,	as	dots	and	the	restricted	maximum
likelihood	estimates	of	 	as	thick	line.

First,	let	 	be	a	convex	function	on	an	interval	 ,	taking	finite	values	on	an	interval	
.	Let	 	be	a	function	on	 	such	that

for	all	 	and	 	in	 .	If	 	is	differentiable	at	 ,	 ;	otherwise	it	can	take
any	value	between	 the	 left-	 and	 right	 derivative	of	 	at	 .	Next,	 define	 the	 following
function	on	

(2.23)

Note	that	 	for	all	 	(see	Exercise	2.17).	Now	we	can	prove	the
following	theorem.

Theorem	 2.1	 Consider	 the	 vector	 	 and	 let	
	be	a	positive	(weight)	vector.	Suppose	that	for	all	 ,	 ,

the	interval	where	 	is	finite.	Let	 	be	an	isotonic	vector,	so	with
,	with	 	for	all	 .	Denote	by	 	the	isotonic	regression	of	 	with

weights	given	by	 .	Then

(2.24)

Before	giving	a	proof	of	this	theorem,	note	that	it	has	some	nice	consequences.	In	view
of	 Exercise	 2.17,	 the	 second	 term	 at	 the	 right	 hand	 side	 of	 (2.24)	 is	 nonnegative.	 This
yields	the	following	inequality:	for	all	isotonic	vectors	 	such	that	 	for	all	



,

In	 other	words:	 the	 isotonic	 regression	 	 of	 	with	weight	 function	 	 does	 not	 only
minimize	the	quadratic	function

over	all	isotonic	vectors	 ,	but	at	the	same	time	it	minimizes

over	the	set	of	isotonic	vectors	 	with	 	for	all	 .

A	second,	directly	related	and	useful	consequence	is	that	 	maximizes	the	function

(2.25)

over	all	isotonic	 	with	 	for	all	 	(see	Exercise	2.18).	Applying	this	result
in	the	Poisson	extremum	problem	in	Example	2.5	with	 	on	
shows	that	the	maximum	likelihood	estimator	of	 	in	the	Poisson	extremum
problem	 is	 given	 by	 the	 isotonic	 regression	 of	 	 with	 weights	 identically
equal	 to	 one.	 (See	Exercise	 2.19).	 This	 observation	was	 used	 to	 compute	 the	 estimates
given	in	Figure	2.11.	Similarly,	Exercise	2.20	shows	that	maximizing	(2.22)	can	be	done
by	first	computing	the	antitonic	regression	 	of	the	vector	 	with
weights	equal	to	one,	and	then	setting	 .	The	thick	lines	in	Figure	2.11
indicate	the	ML	estimators	of	the	 s	in	the	Poisson	extremum	problems.	The	left	panel
of	 Figure	 2.12	 shows	 the	 restricted	 (decreasing)	 ML	 estimates	 of	 the	 parameters	

	 in	 the	 geometric	 extremum	 problem.	 The	 right	 panel	 shows	 the
corresponding	ML	 estimates	 of	 the	 s	 as	well	 as	 the	ML	 estimates	without	 using	 the
monotonicity	constraint	as	points.

Proof	of	Theorem	2.1	Subtracting	 the	right-hand	side	of	 (2.24)	 from	the	 left-hand	side,
we	obtain

Note	 that	 the	 vector	 	 is	 isotonic	 because	 	 is	 isotonic	 and	 	 is
monotone.	From	Corollary	2.1	it	then	follows	that



On	the	other	hand,	denote	by	 	the	indexes	for	which	
and	take	 	and	 .	Then

The	equality	part	of	(2.3)	shows	that	for	 ,

☐

2.6	 Estimating	a	Monotone	Hazard	Rate
In	survival	analysis	and	reliability	theory,	the	hazard	rate	(also	known	as	failure	rate)	is	a
natural	 function	 to	 model	 the	 distribution	 of	 data.	 It	 describes	 the	 probability	 of
instantaneous	 failure	at	 time	 ,	 given	 the	 subject	 has	 functioned	until	 .	Let	 	 be	 a
random	 variable	 with	 distribution	 function	 	 having	 density	 	 with	 respect	 to
Lebesgue	measure.	Then	at	each	point	 	where	 	is	continuous,	the	hazard	rate	 	of	

	is	defined	by

Note	that	this	hazard	rate	indeed	characterizes	the	distribution	of	 ,	since

(2.26)

The	exponential	distributions	are	the	only	distributions	with	constant	hazard	rate,	which	is
related	 to	 the	memoryless	 property	 of	 this	 distribution.	Other	 shapes	 of	 the	 hazard	 rate
indicate	 whether	 the	 object	 suffers	 aging	 (increasing	 hazard	 rate)	 or	 is	 getting	 more
reliable	having	survived	longer	(decreasing	hazard	rate).

Suppose	we	have	a	sample	 	from	a	distribution	function	 	on	 ,
with	density	 	 and	 hazard	 rate	 .	 If	 one	wants	 to	 estimate	 the	 hazard	 	 under	 the
restriction	that	it	is	nondecreasing	on	the	interval	 ,	one	of	the	simplest	estimates	is
the	least	squares	estimate	 ,	which	minimizes	the	quadratic	criterion

(2.27)



under	 the	 restriction	 that	 	 is	monotone.	Here	 	 is	 the	empirical	cumulative	hazard
function

and	 	 is	 the	empirical	distribution	function	of	 the	sample	 .	The	rationale
behind	this	criterion	function	is	that	 	will	be	close	to	 	(defined	as	 )
asymptotically	 and	 	 is	 minimized	 by	 taking	

	(which	can	be	seen	by	completing	the	square).

Let	 	be	 the	order	 statistics	of	 the	 sample	and	 let	 	 be	 the	 largest
order	 statistic	 .	 To	 solve	 the	 minimization	 problem,	 we	 can	 first	 argue	 that,	 if	

,	we	 can	 (Exercise	 2.22)	 restrict	 the	minimization	 problem	 to	 the	 problem	of
minimizing

where	 ,	 and	 	 is	 a	 nondecreasing	 and	 right-
continuous	function,	constant	on	the	intervals	between	successive	jumps	of	the	empirical
distribution	function.	This	is	the	isotonic	regression	problem	of	minimizing

over	 nondecreasing	 functions	 .	 So	 the	 solution	 at	 the	 points	 ,	 	 is
given	by	the	left	derivative	of	the	cusum	diagram,	consisting	of	the	points

We	 can	 make	 the	 solution	 right	 continuous	 by	 letting	 it	 have	 a	 jump	 at	 the	 point
immediately	to	the	right	of	the	location	of	a	point	of	touch	of	the	cusum	diagram	and	its
greatest	convex	minorant	(see	Exercise	2.22).

It	is	interesting	that	a	maximum	likelihood	(ML)	estimator	of	the	increasing	hazard	rate
can	be	defined	and	constructed.	The	ML	estimator	of	 ,	assuming	it	has	nondecreasing
hazard	rate	on	 ,	is	formally	defined	as	the	maximizer	of

over	all	density	functions	 	such	that	its	corresponding	hazard	rate	 	is	nondecreasing.
Here	we	write	(as	usual)	lower	case	 	for	the	observed	data.	In	view	of	(2.26),

so	that	maximizing	the	log	likelihood	boils	down	to	maximizing	the	function



(2.30)

over	all	nondecreasing	hazard	rates.	Taking	 	such	that	its	value	tends	to	infinity	in	a	left
neighborhood	of	the	largest	observation,	 ,	shows	that	this	function	is	unbounded	over
the	 class	 of	 nondecreasing	 hazard	 rates	 on	 	 (see	 also	 Exercise	 2.24).	 Hence,
maximizing	 	over	the	class	of	all	nondecreasing	hazard	rates	is	not	sensible.	However,
for	fixed	 ,	it	makes	sense	to	maximize	 	over	all	increasing	hazard	rates	bounded
above	by	 .	From	Exercise	2.25	it	follows	that	whenever	such	a	maximizer	exists,	it	can
be	 taken	constant	between	successive	observed	 s	and	 right	continuous.	Moreover,	on
the	interval	 ,	it	can	be	taken	equal	to	zero.	Now	parameterize

and	note	that	(2.30),	neglecting	the	term	 ,	can	be	rewritten	as

This	 function	 has	 the	 same	 structure	 as	 the	 log	 likelihood	 function	 in	 the	 Poisson
extremum	 problem	 discussed	 in	 Example	 2.5.	 Using	 Theorem	 2.1,	 it	 follows	 that	 the
maximizer	 	 of	 (2.31)	 is	 the	 isotonic	 regression	 of	 the	 vector	 	 with
weights	 	given	by

This	 means	 that	 	 can	 be	 computed	 as	 the	 left-hand	 slope	 of	 the	 greatest	 convex
minorant	of	the	diagram	consisting	of	the	points

evaluated	 at	 .	 Figure	 2.13	 shows	 the	 maximum	 likelihood	 estimate	 	 and	 the
minimizer	of

where	 the	 criterion	 function	 is	 the	 left	 limit	 at	 	 of	 (2.28),	 as	 ,	 based	 on	 a
sample	 of	 size	 	 and	 ,	 respectively,	 from	 the	 Weibull	 density	 with
hazard	rate



(2.33)

	

Figure	2.13	 Two	estimates	of	the	hazard	rate	based	on	a	sample	of	size	 	(a)	and	
	(b)	from	the	Weibull	density	with	hazard	rate	(2.33).	The	solid	step	function	is

the	maximum	likelihood	estimate	 ,	the	dashed	step	function	is	the	least	squares	estimate
	minimizing	(2.32).	The	dotted	curve	is	the	underlying	hazard	rate.

We	can	extend	this	to	the	situation	where	the	data	are	right	censored.	In	this	case	our
observations	are	of	the	form

where	 ,	 and	 	 is	 an	 indicator	which	 is	 equal	 to	 one	 if	 	 and
zero	 if	 ;	 here	 	 is	 the	 variable	 of	 interest	 and	 	 is	 a	 censoring	 variable,
which	may	censor	the	observation	of	 	(if	 ).	The	 	and	 	are	assumed	to
be	 independent	 and	 drawn	 from	 distributions	 	 and	 ,	 with	 densities	 	 and	 ,
respectively.

The	likelihood	can	be	written

Let	 	 be	 the	 empirical	 measure	 of	 the	 observations	 .	 The	 part	 of	 the	 log
likelihood	involving	 	and	 ,	divided	by	 ,	can	then	be	written	in	the	form

Rewriting	 this	 as	 a	 likelihood	 for	 the	 hazard	 	 and
cumulative	hazard	 ,	this	turns	into:



We	want	to	maximize	this	over	hazard	functions	 ,	which	are	nondecreasing.	Hence	the
maximization	 problem	 has	 the	 same	 structure	 as	 the	 maximization	 problem	 for	 (2.30),
with	 	 instead	of	 	 and	 also	with	 extra	 indicators	 ,	which	were	 all	 equal	 to	 	 in
(2.30).

Let	 	be	the	observed	order	statistics	and	let	 	be	the
corresponding	indicators.	We	can	write

Moreover,	 since	 ,	 just	 as	 in	 the	 treatment	 of	 (2.30),	 can	 be	 assumed	 to	 be	 right
continuous	and	piecewise	constant	on	the	intervals	between	the	order	statistics,	we	get:

So	the	expression	to	maximize	is:

This	is	an	isotonic	regression	problem,	with	weights:

and	the	solution	is	the	left-continuous	slope	of	the	greatest	convex	minorant	of	the	cusum
diagram	with	points	 	and

(2.35)

Figure	2.14	shows	the	picture	the	MLE	of	the	hazard,	obtained	in	this	way,	for	a	sample	of
size	 	in	a	situation	where	both	the	distribution	of	the	 	and	the	distribution
of	the	censoring	variables	 	are	uniform	on	the	interval	 .



	

Figure	2.14	 The	MLE	of	the	hazard	(solid)	and	the	real	hazard	(dashed)	for	the	right-
censoring	model	when	both	the	distribution	of	the	 	and	the	distribution	of	the
censoring	variables	 	in	uniform	on	the	interval	 .	The	sample	size	is	 .

Exercises
2.1	Suppose	the	noise	terms	in	(2.1)	are	independent	and	identically	normally	distributed

with	 	and	 	not	known.	Show	that	the	maximum	likelihood	estimate	of	
is	then	equal	to	the	least	squares	estimate	characterized	in	Lemma	2.1.

2.2	Denote	the	least	squares	objective	function	of	Lemma	2.1	by

Denote	by	 	the	vector	in	 	starting	with	 	zeros	followed	by	 	ones.	Here
.	 Write,	 for	 arbitrary	 ,	 	 with	 	 for	 all	

	 and	 .	 For	 	 satisfying	 (2.3),	 write	 	 also	 with
	 for	 	 and	 .	Note	 that	 for	 ,	 	 if	 and	only	 if

.	Show	that	 .	Hint:	Define	the	convex	function	
by	 	 and	 use	 the	 inequality	

.



2.2	 We	 can	 sample	 s	 from	 a	 distribution	 function	 ,	 with	 .
Independently	 of	 that	we	 can	 sample	 s	 from	 the	 uniform	 distribution	 on	 .
Define	the	random	variables

and	 then	 only	 consider	 those	 s	 that	 are	 nonzero.	 Derive	 the	 distribution	 of	 the
resulting	random	variables.

2.4	Suppose	 Unif 	and	independently	 	has	distribution	function	 ,	where	
is	given	by

a)	Show	that	the	random	variable	 	has	survival	function

b)	Prove	that	 	has	Lebesgue	density	 ,	given	in	(2.5).

c)	Deduce	from	(b)	that	the	survival	function	 	 is	given	by	
(see	Keiding	et	al.,	2012).

2.5	Observe	that	the	minimizer	of	the	function	 	given	by	(2.10)	with	 	given	in	(2.11)
is	 constant	 between	 successive	 s.	 Show	 that	 it	 is	 the	 Grenander	 estimator	 that
minimizes	 over	 all	 vectors	 	 satisfying	 	 such	 that	

	 (implying	 that	 the	 solution	 is	 in	 fact	a	probability	density
function).	Hint:	note	that

and	use	Lemmas	2.1	and	2.2.

2.6	Verify	that	the	minimizer	of	(2.10)	over	any	function	class	also	minimizes	the	function

where	 	 denotes	 the	 distribution	 function	with	 density	 .	 This	 expression	 also
motivates	this	criterion	function	in	situations	where	the	initial	estimator	 	does	not
have	 a	 density	 with	 respect	 to	 Lebesgue	 measure.	 If	 	 is	 taken	 to	 be	 ,	 the
empirical	distribution	function	of	the	data,	which	estimator	emerges?

2.7	(Inconsistency	of	Grenander	estimator	at	zero.)	Denote	the	order	statistics	of	a	sample
of	size	 	from	a	decreasing	density	 	by	 .	Observe
that	 by	 definition	 of	 the	 concave	 majorant	 of	 the	 empirical	 distribution	 function,

.	 Deduce	 from	 this	 that	 	 is
inconsistent	for	 ,	e.g.	by	showing	that



2.8	 Let	 	 be	 a	 vanishing	 sequence	 of	 positive	 numbers	 and	 consider	 the	 following
estimator	for	 	in	the	context	of	Exercise	2.7:

where	 	 is	 the	empirical	distribution	of	 .	Assume	 	and
that	 	has	a	strictly	negative	(finite)	right	derivative	at	zero.

a)	Show	that	for	 	the	variance	of	 	behaves	like	 .

b)	Show	that	 	behaves	like	 	for	 .

c)	 Combine	 the	 results	 in	 (a)	 and	 (b)	 to	 determine	 the	 asymptotic	 MSE	 optimal
choice	for	 ,	i.e.,	determine	 	(depending	on	 )	and	 	so	that	
minimizes	the	asymptotic	mean	squared	error.

2.9	 (Observation	 density	 in	 Current	 Status	 model.)	 Let	 	 be	 a	 random	 variable	 with
distribution	function	 	on	 .

a)	Let	 	be	fixed	and	verify	that	for	 	and	

b)	Let	 	 be	 a	 random	 variable	 in	 	with	 density	 	 and	 independent	 of	 .
Show	that

Conclude	that	 	has	density

where	 	is	Lebesgue	measure	on	 	and	 	counting	measure	on	 .

c)	Verify	log	likelihood	function	(2.13).

2.10	In	this	book	we	adopt	a	nonparametric	approach	to	estimating	functions	under	shape
constraints.	 In	 the	 spirit	 of	 Exercise	 1.1,	 one	 can	 also	 estimate	 these	 functions
parametrically.	Consider	 the	 current	 status	model	 of	Section	 2.3.	 Suppose	 the	 s
are	exponentially	distributed	with	(unknown)	parameter	 .	Based	on	data	as	given	in
(2.12),	 find	 the	 (parametric)	 maximum	 likelihood	 estimator	 for	 ,	 i.e.,	 the
maximizer	 	 of	 (2.13)	 over	 the	 class	 of	 functions	 	 with	

.	 If	 you	 don’t	 get	 an	 explicit	 solution,	 can	 you
show	that	there	is	a	unique	solution	and	can	you	describe	a	method	to	approximate	it?

2.11	In	the	context	of	the	proof	of	Lemma	2.3,	show	that	for	 ,



Hint:	 Interpret	 the	 sum	 of	 the	 s	 as	 the	 increase	 of	 the	 cumulative	 sum	 diagram
between	 location	 	 and	 	 and	 the	 sum	 of	 s	 as	 increase	 of	 the	 convex
minorant	between	location	 	and	 	in	the	diagram.

2.12	If	all	random	variables	are	positive,	(2.15)	reduces	to

For	 a	 positive	 random	 variable,	 the	 Laplace	 transform	 of	 its	 distribution	 is	 well
defined	as	 .

a)	Show	from	the	definition	of	 	that

b)	Show,	using	the	fact	that	the	Laplace	transform	of	a	convolution	is	the	product	of
the	Laplace	transform	of	the	convolution	factors,	that

if	 	satisfies	(2.17).

c)	Combine	(a)	and	(b)	to	conclude	that

and	obtain	(2.18).

2.13	Show	that	 the	 type	1	resolvent	 	associated	with	 the	uniform	density	 	 is
given	 by	 	 on	 ,	 by	 showing	 that	 it	 solves	 (2.17).	 Here	
denotes	the	integer	part	of	 ,	i.e.,	the	largest	integer	smaller	than	or	equal	to	 .

2.14	Consider	 the	setting	of	Section	2.4,	with	 .	Show	that	 if	 the	 function	 	 is
bounded,	decreasing	and	smooth	on	 	in	the	sense	that	it	can	be	represented	as
(2.16)	 with	 	 a	 nonnegative	 function	 on	 ,	 the	 convolution	 density	 can	 be
written	as

2.15	 The	 estimator	 defined	 in	 Example	 2.4	 is	 sometimes	 called	 a	 projected	 inverse
estimator,	 as	 an	 	 projection	 of	 a	 certain	 nonmonotone	 function	 on	 the	 class	 of
monotone	functions.	Formulate,	in	the	spirit	of	Exercise	2.5,	the	projection	problem
solved	 by	 the	 projected	 inverse	 estimator	 of	Example	 2.4,	 i.e.,	 the	 function	 that	 is
projected	as	well	as	the	weights.

2.16	 Suppose	 you	 would	 not	 recognize	 the	 problem	 of	 maximizing	 the	 log	 likelihood
function	(2.21)	in	the	Poisson	extremum	problem	as	a	generalized	isotonic	regression
problem.	One	could	then	think	of	an	iterative	scheme	to	maximize	 	given	in	(2.21).



a)	Let	 	be	fixed.	Show	that	for	each	 ,

(2.36)

b)	Use	the	quadratic	approximation	 	to	get	that	the	problem	of
maximizing	 the	 sum	 (over	 )	 of	 terms	 (2.36)	 over	 the	 s	 (keeping	 the	 s
fixed)	can	be	approximated	by	minimizing	the	following	quadratic	function	in	the

s:

Hint:	 terms	 that	 do	 not	 depend	 on	 s	 can	 be	 discarded	 when	 it	 comes	 to
minimization	over	the	 s.

c)	Construct	 an	 iterative	 algorithm	 based	 on	 the	 approximation	 based	 on	 (b).	 This
algorithm	is	a	 special	 instance	of	 the	 iterative	convex	minorant	algorithm	 to	be
discussed	in	Section	7.3.

2.17	Show	that	the	function	 	as	defined	in	(2.23)	is	nonnegative	on	 .

2.18	Show	that	the	function	(2.25)	is	maximized	by	the	isotonic	regression	 	of	 	with
weights	 ,	using	Theorem	2.1.

2.19	Let	 	be	defined	by	 .

a)	Show	that	 	is	convex	on	 .

b)	 Show	 that	 choosing	 this	 function	 in	 Theorem	 2.1	 gives	 that	 the	 solution	 of
maximization	 problem	 (2.21)	 is	 given	 by	 the	 isotonic	 regression	 of	 the	 vector

	with	weights	 .

2.20	Consider	 the	 geometric	 extremum	 problem	 of	 Example	 2.6.	Define	
and	 .

a)	 Show	 that	 the	 log	 likelihood	 (2.22)	 can	 be	 rewritten	 in	 terms	 of	 the	 parameter
vector	 	as	follows:

(2.37)

b)	 Consider	 the	 function	 .	 Show	 that	 this
function	is	convex	on	 	and	that	the	resulting	function	(2.25)	coincides	with
log	likelihood	(2.37).

c)	 Use	 Theorem	 2.1	 to	 show	 that	 the	 maximizer	 of	 (2.37)	 over	 all	 vectors	
	 satisfying	 	 is	 the	 antitonic	 regression	 of	

	with	weights	 .



d)	Conclude	 that	 the	ML	estimate	 in	 the	 geometric	 extremum	problem	 is	 given	by
,	where	 	is	the	antitonic	regression	described	under	(c).

2.21	The	log	likelihood	in	the	current	status	model	(2.13)	is	of	the	form

with	 	 for	 all	 .	 This	 function	 is	 to	 be	maximized	 over	 	with
.

a)	Argue	that	from	a	computational	point	of	view,	one	may	assume	that	 	and
	in	the	sense	that	whenever	the	sequence	of	 s	starts	with	a	number	of

zeros	 or	 ends	 with	 a	 number	 of	 ones,	 the	 corresponding	 optimal	 s	 can	 be
determined	independently	of	the	values	of	the	intermediate	 s.

b)	Use	Theorem	2.1	 to	 give	 an	 alternative	proof	 of	Lemma	2.3.	Hint:	 the	 function
	defined	by	 ,	defining	 it	 to	be

zero	at	 	and	 ,	is	convex	on	 .

2.22	Show	 that	 the	minimizer	 	 of	 (2.27)	 is	 given	 at	 the	points	 	 by	 the
left-continuous	slope	of	the	greatest	convex	minorant	of	the	cusum	diagram	given	in
(2.29).	Show	 that	we	 can	 extend	 this	 solution	 to	 a	 right-continuous,	 on	 the	whole,
interval,	constant	on	the	intervals	 ,	 ,	and	 .

2.23	Show	 that	 the	 estimator	 	 of	 	 in	Exercise	 2.22	 is	 inconsistent	 at	 the	 boundary
points	of	the	interval	of	monotonicity,	 	and	 .

2.24	Verify	that	log	likelihood	function	(2.30)	can	be	made	arbitrarily	high	by	choosing	an
appropriate	nondecreasing	hazard	on	 .

2.25	 Show	 that	 a	 maximizer	 of	 	 defined	 in	 (2.30),	 if	 it	 exists,	 should	 be	 piecewise
constant	 with	 jumps	 only	 possible	 at	 the	 observed	 data	 points	 	 and	 right
continuous.
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3
Asymptotic	Theory	for	the	Basic	Monotone

Problems

In	Chapter	 2	 a	 number	 of	 estimation	 problems	were	 introduced	where	monotonicity	 of
functions	can	be	taken	into	account	 in	 the	estimation	process.	In	 this	chapter	asymptotic
properties	 of	 monotone	 estimators	 will	 be	 derived.	 In	 Section	 3.1	 various	methods	 for
proving	 consistency	 of	 monotone	 estimators	 will	 be	 described.	 In	 Section	 3.2,	 the
pointwise	 limit	 behavior	 of	 the	 Grenander	 estimator	 will	 be	 derived	 heuristically.	 In
particular,	 the	 typical	 rate	 of	 convergence	 of	 the	 estimator,	 ,	 will	 emerge	 from
heuristic	 calculations.	 In	 order	 to	 make	 the	 heuristics	 rigorous	 in	 concrete	 problems,
properties	 of	 (the	 derivative	 of)	 convex	 minorants	 of	 functions	 are	 needed.	 Important
properties,	especially	 the	switch	relation,	will	be	 reviewed	 in	Section	3.3.	The	empirical
process	theory	needed	to	make	the	convergence	of	certain	processes	precise	is	introduced
in	Section	3.4.	In	Section	3.5,	empirical	process	theory	is	applied	to	derive	the	asymptotic
distribution	 of	 the	 isotonic	 inverse	 estimator	 in	 a	 deconvolution	 problem	 defined	 in
Section	2.4.	Using	 the	 switch	 relation	of	Section	3.3	and	empirical	process	 results	 from
Section	3.4,	the	pointwise	asymptotic	distribution	of	the	Grenander	estimator	is	rigorously
derived	in	Section	3.6.	An	alternative	approach	to	settle	the	asymptotic	distribution	theory
proceeds	via	the	theory	of	martingales.	Section	3.7	states	some	important	results	from	that
theory.	Using	 these	 results,	 in	 Section	 3.8	 local	 asymptotic	 properties	 of	 the	maximum
likelihood	estimator	in	the	current	status	model	are	derived.	Various	limit	distributions	are
encountered	in	this	chapter,	related	to	convex	minorants	of	processes	related	to	Brownian
motion.	One	 of	 these,	 the	Chernoff	 distribution,	 is	 discussed	 in	 Section	 3.9.	 In	 Section
3.10	results	on	the	concave	majorant	of	Brownian	motion	and	Brownian	bridge	are	stated
and	discussed.

3.1	 Consistency
In	this	section,	some	general	methods	are	discussed	that	can	be	used	to	prove	consistency
of	nonparametric	estimators	in	monotone	estimation	problems.	The	first	is	rather	direct.	It
is	based	on	the	explicit	construction	of	estimators	as	derivative	of	a	convex	minorant	of	a
random	set	of	points.	This	method	will	be	illustrated	using	the	Grenander	estimator	of	a
decreasing	 density.	 In	 models	 where	 an	 explicit	 construction	 of	 the	 estimator	 is	 not
available,	other	methods	are	needed.	The	second	method	we	describe	 is	based	on	useful
inequalities	that	can	be	inferred	from	the	fact	that	a	certain	estimator	minimizes	a	criterion
function	together	with	some	empirical	process	theory.	We	will	illustrate	this	method	using
a	general	class	of	deconvolution	problems.

Recall	that	the	maximum	likelihood	estimator	of	a	decreasing	density	in	the	context	of
Section	 2.2	 is	 given	 by	 the	 left	 continuous	 derivative	 of	 the	 concave	 majorant	 of	 the
empirical	distribution	function	of	the	data.	Denote	by	 	the	observed	sample
from	the	distribution	with	(decreasing)	density	 	on	 	 and	by	 	 the	empirical



distribution	 of	 the	 sample.	 Then	 the	 classical	 Glivenko-Cantelli	 theorem	 states	 that	
	 almost	 surely	 as	 .	 Here,	 	 denotes	 the	 (concave)

distribution	function	corresponding	to	 .

Now,	 for	 the	 dataset	 at	 hand,	 define	 .	 Then	 from	 Exercise	 3.1	 it
follows	that	for	all	

implying	Marshall’s	inequality:

Combining	this	inequality	with	the	Glivenko	Cantelli	theorem	yields	consistency	for	
as	estimator	for	 :

(3.1)

See	 Figure	 3.1	 for	 an	 illustration	 of	 this	 result	 using	 samples	 of	 size	 	 and	
,	respectively.

	

Figure	3.1	 The	empirical	distribution	function	and	its	(least)	concave	majorant	(dotted)
based	on	a	sample	of	size	 	(a)	and	 	(b)	from	the	standard
exponential	distribution.	The	dashed	lines	are	related	to	Figure	3.3.

In	 order	 to	 strengthen	 this	 consistency	 of	 the	 distribution	 function	 	 to	 that	 of	 its
derivative,	the	following	elementary	lemma	is	quite	useful.

Lemma	 3.1	Let	 the	 functions	 	 and	 ,	 	 be	 concave	 functions	 on	 an
interval	 	 such	 that	 	 as	 .	Denote	 for	 	 in	 the
interior	of	 	by	 	and	 	the	left	and	right	derivative	of	 	evaluated	at	 .
Then



In	particular,	 if	 	is	differentiable	at	 ,	 ,	where	 	 is	 interpreted	as
either	the	left	or	the	right	derivative	of	 	at	 .

Proof	 Fix	 ,	 the	 interior	 of	 ,	 arbitrarily.	 Then	 for	 all	 	 such	 that	
,

by	concavity	of	 .	Letting	 	to	infinity,	we	see	that	for	all	these	

The	result	follows	upon	letting	 .	☐
Corollary	3.1	Let	 	be	the	Grenander	estimator	based	on	a	sample	of	size	 	from	the
decreasing	density	 	on	 .	Then	for	each	 ,	 	almost	surely,
as	 .	 Moreover,	 if	 	 is	 continuous	 on	 ,	 then	 for	 each	 ,	

	almost	surely	for	 .

Proof	The	pointwise	result	follows	immediately	from	Lemma	3.1	and	(3.1).	The	uni-	form
consistency	 on	 intervals	 away	 from	 zero	 follows	 from	 the	 pointwise	 result	 and
Exercise	3.2.	☐
Figure	3.2	illustrates	consistency	of	the	Grenander	estimator	for	arguments	bounded	away
from	zero.	It	also	illustrates	the	inconsistency	problem	identified	in	Exercise	2.7.

	

Figure	3.2	 The	Grenander	density	estimator	based	on	a	sample	of	size	 	(a)
and	 	(b)	from	the	standard	exponential	distribution.

Another	method	to	prove	consistency	for	(nonparametric)	 	estimators	in	general	 is
based	 on	 empirical	 process	 theory.	 In	 contrast	 to	 the	 method	 based	 on	 Marshall’s
inequality,	which	first	yields	a	local	result	that	can	be	used	to	derive	more	global	results,
this	method	 starts	with	 a	 global	 result	 that	 can	 later	 be	used	 to	 obtain	 local	 results.	We
illustrate	this	method	for	ML	estimators	of	a	density	over	a	specific	class	of	densities.

Consider	 an	 i.i.d.	 sequence	 of	 random	 variables	 	 having	 density	
belonging	to	a	class	of	densities	 .	The	maximum	likelihood	estimator	for	 	(based	on



the	first	 	 s	in	the	sequence)	is	the	maximizer	of

over	all	densities	 	that	belong	to	 .	Without	the	need	for	an	explicit	representation	of
the	solution	of	the	optimization	problem,	a	necessary	condition	for	any	maximizer	 	of
the	log	likelihood	is	that	its	log	likelihood	exceeds	that	of	the	underlying	density	 :

This	can	be	rewritten	as

(3.2)

The	 first	 term	 in	 this	 expression	 can	 be	 bounded	 by	 using	 the	 inequality	
.	 Also	 using	 that	 ,

this	yields

(3.3)

The	 latter	 quantity	 is	minus	 the	 squared	 	 distance	 between	 the	 square	 roots	 of	 both
densities.	Defining	the	squared	Hellinger	distance	between	 	and	 	by

we	therefore	obtain	from	(3.2)	and	(3.3)	that

(3.4)

For	a	fixed	density	 	rather	than	 ,	the	latter	quantity	will	converge	to	zero	by	the	law
of	 large	 numbers	 if	 the	 expectation	 of	 	 is	 finite.	One	 of	 the	 central
issues	in	empirical	process	theory	is	to	study	quantities	such	as

(3.5)

for	 sets	 of	 functions	 .	 If	 for	 	 this
supremum	would	converge	to	zero,	this	would	imply	convergence	to	zero	of	the	Hellinger
distance	between	 	and	 	and	thus	 to	Hellinger	consistency.	Essentially,	 the	class	



should	not	be	too	large	in	some	well	defined	sense	(see	also	Section	3.4).	An	adaptation	of
this	 general	 method	will	 be	 used	 in	 Section	 4.6	 for	 deconvolution	 problems.	 A	 simple
example	where	this	method	can	be	applied	is	to	the	class	of	exponential	densities:

Denoting	the	true	parameter	by	 ,	it	follows	that

giving

Hence,	for	all	 ,

Since	the	right	hand	side	does	not	depend	on	 ,	this	bound	is	uniform	in	 	and	the
strong	 law	 of	 large	 numbers	 determines	 that	 the	 right	 hand	 side	 tends	 to	 zero	 with
probability	one.	Hence,	 the	Hellinger	distance	of	 the	ML	estimator	within	 the	model	 of
exponential	 densities	 (with	 expectation	 bounded	 away	 from	 zero)	 to	 the	 underlying
exponential	 density	 converges	 to	 zero	 with	 probability	 one.	 Formulated	 differently,	 the
ML	 estimator	 is	 strongly	 consistent	 in	 the	 Hellinger	 metric.	 Of	 course,	 there	 are	 more
straightforward	 ways	 to	 prove	 this	 result,	 but	 this	 example	 illustrates	 the	 value	 of	 the
general	argument	described	without	using	empirical	process	theory	to	show	convergence
to	zero	of	a	random	quantity	of	the	type	(3.5).

Yet	 another	method	 to	 prove	 consistency	 of	 a	maximum	 likelihood	 estimator	 over	 a
convex	class	of	densities	is	based	on	the	following	necessary	condition	for	optimality	of	

:

(3.6)

Here	convexity	of	 	and	concavity	of	 	are	used.	Writing	out	the	limit	in	(3.6)	yields

(3.7)

To	infer	consistency	of	the	estimator	from	these	inequalities,	it	makes	sense	to	choose	for	
	 the	 underlying,	 true	 density	 .	 It	 is	 a	way	 of	 quantifying	 that	 the	MLE	has	 higher

likelihood	 than	 .	 In	 specific	 models	 inequality	 (3.6)	 can	 then	 be	 used	 to	 obtain	 a
limiting	inequality	along	subsequences.	One	can	then,	on	a	set	of	probability	one,	derive
that	 any	 subsequence	 contains	 a	 further	 subsequence	 converging	 to	 a	 subdensity	 ,



satisfying

Since	 there	 can	only	be	one	 such	 subdensity	 	 (namely	 the	density	 )	 satisfying	 this
inequality,	one	can	argue	that	with	probability	one,	 	should	converge	to	 	pointwise.
See	Exercise	3.6.

3.2	 Heuristic	Asymptotics	for	the	Grenander	Estimator
Before	starting	a	more	rigorous	asymptotic	analysis	of	monotone	estimators,	we	will	give
some	heuristics	in	this	section,	leading	to	the	typical	 -rate	of	convergence	and	the
asymptotic	Chernoff	distribution	for	the	Grenander	estimator	at	a	fixed	point	 	whenever
this	underlying	density	has	a	strictly	negative	derivative	at	 .	We	will	also	consider	the
situation	where	 the	 underlying	 density	 is	 constant	 in	 a	 neighborhood	 of	 ,	 leading	 to
totally	different	asymptotic	distribution.	As	seen	in	Corollary	3.1,	the	Grenander	estimator
is	consistent	in	either	situation.

For	 the	 first	 situation,	 let	 	 be	 a	 point	 where	 the	 underlying	 density	 	 is
continuously	 differentiable.	 Now	 consider	 the	 empirical	 distribution	 function	 and	 its
concave	majorant	 near	 this	 point	 ,	 and	 note	 that	 adding	 a	 linear	 drift	 in	 the	 picture
shows	 that	 	 is	 the	 concave	 majorant	 of	

	and	the	derivative	of	the	concave	majorant
of	 the	 latter	 function	at	 	equals	 .	We	use	 the	 term	“slocom”	for	 the
slope	of	the	least	concave	majorant	and	write

(3.8)

The	process

(3.9)

is	 shown	 in	 Figure	 3.3	 for	 the	 data	 sets	 of	 Figure	 3.1.	 The	 dashed	 lines	 added	 to	 the
empirical	distribution	functions	in	Figure	3.1	are	 .



	

Figure	3.3	 The	process	(3.9)	and	its	(least)	concave	majorant	(dotted)	based	on	a	sample
of	size	 	(a)	and	 	(b)	from	the	standard	exponential	distribution.	The
samples	coincide	with	those	used	in	Figure	3.1.

Let	us	now	localize	and	zoom	in	near	 	on	the	process	at	the	right	hand	side	of	(3.8).
More	 specifically,	 let	 	 be	 a	 vanishing	 sequence	 of	 positive	 numbers	 and	 consider
points	 .	Then,	by	the	chain	rule,

Moreover,	multiplying	the	function	on	the	right	by	 	results	in	the	same	multiplication
for	the	derivative	of	the	concave	majorant,	so

Observe	that	for	 	and	

(3.10)

For	 	a	similar	expression	holds.

By	the	central	limit	theorem,	the	first	(random)	term	in	(3.10)	behaves	(for	 	fixed)	as	
.	In	fact,	we	will	see	that	as	a	process,

where	 	is	standard	two-sided	Brownian	motion.	Hence,

The	second	(deterministic)	term	in	(3.10)	behaves	like	 ,	so

Now	suppose	that	we	choose	 	such	that	 .	Then	the	random	term	in	the



function	converges	to	zero.	The	slope	of	the	concave	majorant	of	the	(concave)	function	
	at	zero	is	zero,	suggesting	that

In	other	words:	 	is	rate- 	consistent	at	any	rate	converging	to	zero	slower	than	
.

Now	 suppose	we	 take	 	 converging	 to	 zero	 at	 a	 faster	 rate	 than	 ,	 i.e.,	 with	
.	 Then	 the	 random	 part	 of	 (3.10)	 is	 dominant.	 The	 concave	 majorant	 of

Brownian	motion	on	 	is	not	well	defined,	and	will	be	infinite	almost	surely.

If	we	take	 ,	then	both	terms	in	(3.10)	are	of	the	same	order	and	we	see	that

This	 suggests	 that	 the	 concave	 majorant	 of	 these	 processes	 converge	 to	 the	 concave
majorant	 of	 the	 limiting	 process.	 Finally,	 we	 reduce	 this	 asymptotic	 distribution	 to	 a
canonical	distribution	that	does	not	include	constants	depending	on	the	density	 .	Using
the	scaling	property	of	Brownian	Motion	(see	Exercise	3.18),	we	obtain

(3.11)

Therefore,	again	using	the	chain	rule	and	the	fact	that	multiplying	a	function	by	a	constant
will	 also	 multiply	 the	 slope	 of	 its	 concave	 majorant	 at	 zero	 by	 the	 same	 constant,	 we
obtain

implying

(3.12)

an	 approximation	 that	 turns	out	 to	be	 right	 asymptotically.	The	distribution	of	 the	 latter
random	variable	is	related	to	Chernoff’s	distribution	to	be	studied	in	Section	3.9	(see	also
Exercise	3.12).

There	are	 some	 important	aspects	we	conveniently	 skipped	 in	 this	derivation,	aspects
that	 need	 to	 be	 taken	 into	 account	 when	 deriving	 the	 asymptotics	 of	 the	 Grenander
estimator	rigorously.	The	first	is	the	localization	we	use.	In	fact,	the	concave	majorant	of	a
process	 on	 	 near	 a	 point	 	 need	 not	 be	 determined	 locally	 near	 this	 point.
Exercise	3.17	shows	that	there	is	something	to	be	proved	here	in	general.	We	also	were	a
bit	sloppy	in	applying	continuous	mapping	ideas	(“the	concave	majorants	of	the	processes
defined	 in	 (3.10)	 converge	 to	 the	 concave	 majorant	 of	 the	 limiting	 process”).	 In	 later
sections	these	matters	will	be	addressed	more	rigorously.



Now	 consider	 the	 situation	 where	 	 such	 that	 	 for	
.	In	words,	 	belongs	to	a	flat	part	of	 .	As	an	extreme	case	of	this	situation,

assume	the	density	 	to	be	the	uniform	density	on	 	and	let	 .	Then	we
have

where	 	 is	 the	 Brownian	 Bridge	 process	 on	 .	 The	 limiting	 distribution	 will	 be
further	discussed	in	Section	3.10.	As	mentioned,	taking	 	the	uniform	density	on	
is	 a	 canonical	 choice	when	 considering	 estimating	 a	 decreasing	density	 at	 a	 point	 in	 an
interval	where	the	density	is	flat.	Let	us	now	look	at	the	more	general	situation	where	 	is
constant	on	a	nondegenerate	interval	 	and	 .	Then,

where	 the	 concave	majorant	 is	 taken	 over	 .	 Actually,	 it	 turns	 out	 (Carolan	 and
Dykstra,	1999,	 Theorem	 6.3)	 that	 the	 error	made	 by	 taking	 the	 concave	majorant	 over	

	is	of	lower	order,	so	that

Here	we	 use	 the	 fact	 that	 the	 process	 	 on	 	 behaves	 like	
	 and,	 for	 ,	 .	 For	 the	 latter

quantity	(apart	from	the	factor	 ),	note	that

The	two	terms	are	independent	random	variables	(see	Exercise	3.7)	and	for	the	first	term
we	have

See	Exercise	3.8.

For	 the	 second	 term	 in	 (3.13),	 the	 linearly	 compensated	 Brownian	 bridge	 on	
,	it	can	be	shown	that	this	is	itself	a	rescaled	Brownian	Bridge	(see	Exercise

3.10).	Therefore,	(apart	from	the	factor	 )	it	has	the	same	distribution	as



which	in	turn	has	the	same	distribution	as

This	leads	to	the	following	result	(where	we	include	the	factor	 	in	the	denominator
at	the	left	hand	side):

(3.14)

where	 	is	standard	normally	distributed,

independent	of	 	and

Although	we	will	not	return	to	more	rigorous	derivation	for	the	flat	density	case,	the	slope
process	 of	 the	 least	 concave	majorant	 of	Brownian	 bridge	will	 be	 briefly	 considered	 in
Section	3.10.

3.3	 Convex	Minorants:	Basic	Properties
As	we	saw,	convex	minorants	and	concave	majorants	play	a	special	role	in	the	setting	of
estimating	 a	monotone	 function.	Many	 estimators	 are	 characterized	 as	 derivative	 of	 the
convex	minorant	of	a	certain	random	set	of	points	in	 .	In	this	section	we	derive	some
results	that	are	particularly	useful	when	the	asymptotics	of	these	estimators	at	a	fixed	point
are	to	be	assessed.

Denote	by	 	a	lower	semicontinuous	function	on	an	interval	 	and	by	 	its	convex
minorant	on	 .	Denote	by	 	and	 	 the	 left	 and	 right	hand	derivative	of	 .	A
first	important	observation	is	that	for	each	 ,

(3.15)

and



(3.16)

See	Figure	3.4	for	an	illustration	of	(3.15).

	

Figure	3.4	 A	(nonconvex)	function	 .	(a)	For	fixed	 ,	the	segment	connecting	
	and	 	for	chosen	 .	By	first	fixing	 ,	searching	for	the	

	that	minimizes	the	slope	of	the	segment,	followed	by	varying	 	to	make	the
slope	maximal,	the	left	derivative	of	the	convex	minorant	of	 	at	 	is	found	according	to
(3.15).	(b)	The	solution	and	the	 	solving	the	max-min	problem	for	 .

Of	 course,	 the	 suprema	 and	 infima	 are	 also	 restricted	 to	 .	 Now	 define,	 for	 lower
semicontinuous	functions	 ,

and

Lemma	 3.2	 relates	 the	 derivative	 of	 the	 convex	 minorant	 to	 an	 argmin	 functional
applied	to	the	function	 	with	added	drifts.	The	relations	obtained	are	sometimes	called
the	switch	relations.

Lemma	3.2	For	all	 	and	 ,

and

Proof	From	(3.15)	it	follows	that



For	 	the	argument	is	similar.	☐
Let	 	be	defined	as	the	right	derivative	of	the	convex	minorant	of	the	function	 .

Using	 the	 fact	 that	 the	 argmax	 function	 is	 invariant	 under	 multiplication	 by	 a	 positive
number	 and	 addition	 of	 arbitrary	 constants,	 we	 see,	 using	 Lemma	 3.2,	 that	 for	 each
sequence	 	of	positive	numbers,

where

Therefore,	the	asymptotic	behaviour	of	the	rescaled	difference	between	a	convex	minorant
estimator	and	the	estimate	is	intimitely	related	to	the	asymptotic	behavior	of	the	argmin	of
a	sequence	of	stochastic	processes	 .	In	particular,	for	each	 ,

(Note	 that	 	 is	 part	 of	 the	 definition	 of	 ,	 just	 as	 ,	 but	 this	 is	 not	 stressed	 in	 the
notation.)	The	process	 	can	be	decomposed	in	an	asymptotically	deterministic	part	that
usually	 can	 be	 handled	 using	 a	 Taylor	 approximation	 based	 on	 ,	 and	 an
intrinsically	random	part.	To	derive	 the	asymptotic	distribution	of	 the	estimator	 ,	we
will	need	some	type	of	weak	convergence	of	 	to	an	asymptotic	stochastic	process	 ,
and	 after	 that	 a	 suitable	 continuous	 mapping	 theorem	 for	 the	 argmin	 functional.	 Some
background	on	these	matters	is	provided	in	Section	3.4.

3.4	 Some	Empirical	Process	Theory
Empirical	process	theory	has	a	rich	history	within	the	field	of	statistics.	It	is	impossible	to
do	 justice	 to	 this	branch	of	statistics	 in	only	one	section	of	 this	book.	We	will	 state	and
explain	 only	 briefly	 some	 results	 that	 prove	 to	 be	 very	 useful	 when	 studying	 the
asymptotic	 probabilistic	 behavior	 of	 isotonic	 inverse	 estimators	 at	 a	 fixed	 point.	 We
borrow	the	theory	from	Van	der	Vaart	and	Wellner,	1996,	and	Van	de	Geer,	2000.

To	 state	 the	 results,	we	 need	 to	 define	 some	 concepts	 and	 terminology.	 Let	 	 be	 a
class	 of	 real-valued	 functions	 on	 a	 subset	 	 of	 the	 real	 line.	Moreover,	 let	 	 be	 a



seminorm	 on	 .	 Given	 two	 functions	 	 on	 ,	 call	 the	 subset	
	of	functions	a	bracket	in	 .	A	set	of	brackets	covers	

	 if	 for	 each	 	 there	 is	 a	 bracket	 	 such	 that	 .	 If,	 additionally,	
,	call	 	an	 -bracket.	The	bracketing	number	 	is	then

defined	as	the	minimum	number	of	 -brackets	needed	to	cover	the	whole	class	 .	The	
-entropy	with	bracketing	 	is	defined	as	the	logarithm	of	
.	The	bracketing	number	(and	equivalently	the	entropy)	of	 	as	a	function	of	 	measures
the	massiveness	of	the	class.

A	first	basic	result	is	a	sufficient	condition	for	a	class	of	functions	 	to	be
Glivenko	Cantelli,	i.e.,	that

(3.17)

where	 	denotes	the	empirical	distribution	function	of	an	independent	sample	from	the
distribution	with	distribution	function	 .	This	 result	generalizes	 the	classical	Glivenko
Cantelli	 theorem	that	 	 a.s.	 and	 its	 proof	 is	 close	 to	 the
proof	of	this	classical	result.	Note	that	the	classical	result	is	indeed	a	special	case	of	(3.17),
taking

Lemma	3.3	Suppose	that	 	and

Then	 	is	Glivenko	Cantelli,	i.e.,	satisfies	(3.17).

The	 proof	 of	 this	 result	 is	 outlined	 in	Exercise	 3.14.	 For	 our	 purposes,	 an	 important
result	from	Birman	and	Solomjak,	1967,	(see	also	Van	de	Geer,	2000,	Lemma	3.8)	is	the
following.

Lemma	 3.4	 Let	 .	 Then	 there	 exists	 a	 constant	
	such	that

Using	the	result	of	Lemma	3.4	as	a	building	block,	entropy	bounds	for	many	function
classes	can	be	constructed.	For	example,	consider	the	class	of	functions	on	 	of	bounded
variation,	i.e.,	functions	that	can	be	expressed	as	the	difference	of	two	bounded	monotone
functions	on	 .	Indeed,	for	the	class

it	follows	that



for	all	 ,	with	 the	 same	 	 as	 in	Lemma	3.4	 (see	Exercise	3.15).	Combined	with
Lemma	3.3,	this	leads	to	a	preservation	theorem	for	the	Glivenko	Cantelli	property	under
the	transformation	taking	the	class	 	to	the	class	 	of	all	pairwise	differences	in	 .

Now	we	state	some	results	on	the	asymptotic	behavior	of	the	argmin	functional	applied
to	a	sequence	of	stochastic	processes.	The	main	theorem	that	we	will	use	is	the	following.
It	is	a	type	of	continuous	mapping	theorem	for	the	argmin	functional.

Theorem	3.1	(Theorem	3.2.2	in	Van	der	Vaart	and	Wellner,	1996)	Let	 	and	 	be
stochastic	 processes	 indexed	 by	 	 such	 that	 	 in	 	 for	 each	

.	Moreover,	suppose	that	almost	all	sample	paths	of	 	are	continuous	and	have	a
unique	 minimizer	 ,	 assumed	 to	 be	 bounded	 in	 probability.	 If	 the	 sequence	 	 is
uniformly	tight,	and	satisfies	 ,	then	 	in	 .

Some	 clarification	 is	 needed.	 The	 space	 	 consists	 of	 all	 functions	
	such	that	 .	Weak	convergence

in	this	space,	denoted	by	 ,	to	a	Borel	measurable	 ,	entails

for	all	bounded	continuous	functions	 .	The	 	stands	for	outer
expectation.	 This	 is	 needed	 since	 we	 do	 not	 require	 	 to	 be	 Borel	 measurable	 as
mapping	from	a	probability	space	into	 .	To	verify	the	conditions	in	this	theorem,	and
the	nature	of,	e.g.,	the	limit	process	 ,	we	will	need	some	more	concepts	and	results.

An	important	concept	is	that	of	an	envelope	 	of	the	class	 	of	functions	defined	on
the	set	 .	That	is	any	function	 	on	 	such	that	for	each	 	 	 for
all	 .	 A	 possible	 candidate	 as	 envelope	 is	 the	 minimal	 (or	 natural)	 envelope	

	for	 .

To	establish	convergence	of	 	 to	 	 in	our	 applications,	we	can	use	Theorem	3.2,
giving	sufficient	conditions	for	this	convergence.

Theorem	3.2	(Theorem	2.11.23	in	Van	der	Vaart	and	Wellner,	1996)	For	each	 ,	let	
	 be	 a	 class	 of	 measurable	 functions	 on	 	 with

measurable	natural	envelope	 	satisfying	the	following	two
conditions:

(3.18)

and



(3.19)

Moreover,	let	the	classes	 	be	such	that	for	all	

(3.20)

and

Then	the	sequence	of	stochastic	processes

converges	 in	 distribution	 to	 a	 Gaussian	 process,	 provided	 the	 sequence	 of	 covariance
functions	converges	pointwise	on	

As	part	of	the	conditions	of	Theorem	3.1,	we	need	the	sequence	of	argmins	 	to	be
uniformly	tight.	Theorem	3.3	can	be	used	to	establish	this	tightness.

Theorem	 3.3	 (Theorem	 3.2.5	 in	 Van	 der	 Vaart	 and	 Wellner,	 1996)	 Let	 	 be
stochastic	processes	on	an	interval	 	and	 	a	deterministic	function	on	 	such
that	for	all	 	in	a	neighborhood	of	

(3.21)

Moreover,	suppose	that

(3.22)

for	functions	such	that	 	is	decreasing	for	some	 	(not	depending	on
).	Let	 	be	a	sequence	of	positive	numbers	such	that

If	 the	sequence	 	satisfies	 	 and	 converges	 to	
in	probability,	then	 	.

To	verify	condition	(3.22)	in	practical	situations,	the	following	theorem	is	useful.	It	uses



the	concept	bracketing	integral	of	the	class	 	with	 ,	which	is	defined	by

Theorem	3.4	(Theorem	2.14.2	in	Van	der	Vaart	and	Wellner,	1996)

3.5	 Asymptotic	Distribution	in	Exponential	Deconvolution
Model
In	this	section	we	will	derive	the	asymptotic	distribution	of	the	nonparametric	estimator	of

	defined	in	Section	2.4	in	the	exponential	deconvolution	problem.	Remember	that	in	the
exponential	deconvolution	problem	we	have

where	 	is	the	empirical	distribution	function	based	on	the	first	 	random	variables	of
an	i.i.d.	sequence	generated	by	the	density

with	corresponding	distribution	function	 .	(The	choice	for	
instead	of	 	 does	not	 influence	 the	 convex	minorant	 and	 its	 derivative.	 It	 is	 only
chosen	like	this	 to	make	 	lower	semicontinuous,	making	the	argmin	functionals	well
defined.)	The	estimator	 	is	defined	as	the	right	derivative	of	the	convex	minorant
of	 	evaluated	at	the	point	 .	Fix	a	point	 	such	that	 	for	 	in	a
neighborhood	of	 	for	some	continuous	strictly	positive	function	 .

In	view	of	Section	3.3,	we	know	that	for	each	 ,

where

Here,	for	 ,



and	(we	assumed	 	to	have	a	continuous	strictly	positive	derivative	 	in	a	neighborhood
of	 ),

where	(the	nonrandom)	 	tends	to	zero	uniformly	on	compacta,	whenever	 .	The
exact	 rescaling	 rate	 	 is	 not	 relevant	 for	 this.	 The	 case	 	 proceeds	 completely
analogously.	One	way	of	dealing	with	the	two	cases	at	the	same	time	is	to	take	the	integral
of	the	difference	between	two	indicator	functions,	but	for	notational	convenience	we	will
not	pursue	this	here.

What	can	be	said	about	the	rate	of	 	needed	to	get	nondegenerate	stochastic	behavior
for	the	process	 ?	For	a	fixed	finite	value	of	 ,	 the	second	term	of	 	 is	of	order	

,	 which	 follows	 from	 the	 fact	 that	
.	The	first	term	of	 	is	an	increment

of	 the	empirical	process	over	an	 interval	of	 length	 ,	multiplied	by	 .	This
will	 therefore	be	 .	 In	 particular,	 this	 term	dominates	 the	 second	 term,
and	 to	 make	 it	 asymptotically	 nondegenerate,	 we	 need	 .	 This	 will	 be	 the
choice	for	this	section.

We	now	proceed	studying	the	behavior	of

where	for	each	

as	 .	Using	Theorem	3.2	(see	Exercise	3.21),	we	see	that	for	each	

(3.23)

where	 	is	standard	two-sided	Brownian	motion	on	 .	Therefore,



Since	 	 for	 all	 ,	 the	 process	 	 has	 almost	 surely	 a
unique	minimizer.	(See	Kim	and	Pollard,	1990,	Lemma	2.6.)

The	next	step	in	establishing	the	asymptotic	distribution	of	 ,	is	to	show	that	the
sequence	of	argmins	is	tight.	To	this	end	we	observe	that	we	can	apply	Theorem	3.3.	Here

and

Note	 that	 in	 the	 notation	 of	 Theorem	 3.3,	 ,	 and	 also	 that	
.	Moreover,

taking	care	of	condition	(3.21).

From	 Exercise	 3.25,	 it	 follows	 that	 	 as	 .
Now	note	that

so	that

(3.24)

where	we	write	(see	also	Figure	3.5)

(3.25)

To	determine	a	function	 	such	that	(3.22)	holds,	we	will	apply	Theorem	3.4	to	the	first
term	in	(3.24)	applied	to	the	function	class

(3.26)

To	this	end,	we	need	a	bound	on	the	bracketing	number	of	the	class	as	well	as	a	bound	on
the	second	moment	(under	 )	of	the	envelope	of	this	class.	By	Exercise	3.23,	we	get	that
for	each	 	the	set	of	brackets

covers	the	class	 .	To	determine	the	bracketing	number	as	a	function	of	 ,	we	have	to
determine	how	big	 	must	be	in	order	for	the	brackets	to	become	 -brackets.	Exercise



3.24	gives	that

Using	 the	 envelope	 of	 	 and	 its	 norm	 provided	 in	 Exercise	 3.26,	 we	 get	 for	 the
bracketing	integral	at	

	

Figure	3.5	 The	function	 	for	 	fixed	as	defined	in	(3.25).

By	Theorem	3.4,	and	using	(3.24),	we	get	that	we	may	take

in	(3.22).	Hence,	 since	 	 is	 certainly	 decreasing	 and	 ,	we	 obtain	 the
rate	 	and	 .	Since

this	means	that

establishing	the	uniform	tightness	of	 .	Together	with	the	weak	convergence	of	 	to	
,	Theorem	3.1	can	be	used	to	conclude

Using	the	scaling	property	of	the	Wiener	process,	we	see	that	for	each	 	and	

(see	also	Exercise	3.18).	This	implies	that



Hence,

showing	that

(3.27)

This	limiting	random	variable	has	the	Chernoff	distribution	that	will	be	discussed	further
in	Section	3.9.

3.6	 Limit	Distribution	of	the	Grenander	Estimator
In	 Section	 3.2,	 a	 heuristic	 derivation	 of	 the	 pointwise	 asymptotic	 distribution	 of	 the
Grenander	estimator	was	given,	leading	to	(3.12).	In	this	section	we	rigorously	prove	the
result,	originally	proved	by	Prakasa	Rao.	The	setting	is	the	same	as	in	Section	3.2,	so	
is	the	Grenander	estimator	(MLE)	of	the	decreasing	density	 	based
on	a	sample	 	from	this	density.

Theorem	3.5	(Prakasa	Rao,	1969)	Suppose	that	 	has	a	strictly	negative	derivative	
at	the	interior	point	 	and	 .	Then

where	 	 denotes	 convergence	 in	 distribution,	 and	 ,
that	is:	 	is	the	(almost	surely	unique)	location	of	the	maximum	of	two-sided	Brownian
motion	minus	the	parabola	 .

Define,	for	 ,	 ,

Then	the	switch	relation	encountered	in	Section	3.3	(here	for	 the	least	concave	majorant
rather	than	the	greatest	convex	minorant)	gives	that	with	probability	one

See	Figure	3.6	for	an	illustration	of	this	relation.



	

Figure	3.6	 The	switch	relation	for	the	Grenander	estimator.

Let	 	be	defined	by

Then	we	get:

Let	 .	Then	we	have	to	study	the	limit	behavior	of

where

From	 this	 point,	 we	 can	 take	 several	 different	 approaches,	 for	 example	 the	 Hungarian
approximation,	 as	 in	 Groeneboom,	 1985;	 the	 martingale	 approach,	 as	 will	 be	 used	 in
Section	3.8	for	the	current	status	model;	or	the	empirical	process	approach,	as	in	Section
3.4.	We	take	the	last	approach.

First	note	that

Since	 the	 location	 of	 the	 maximum	 of	 a	 process	 does	 not	 change	 if	 the	 process	 is
multiplied	by	a	positive	constant	or	a	constant	is	added,	the	location	of	the	maximum	of
the	process

is	the	same	as	the	location	of	the	maximum	of	the	process

The	 process	 (3.28)	 converges,	 for	 every	 ,	 in	 the	 space	 	 with	 the
Skorohod	topology,	to	the	process



where	 	 is	 two-sided	 Brownian	 motion,	 originating	 from	 zero.	 After	 the	 rescaling	
,	the	process	changes	(in	distribution)	to

where	we	use	Brownian	scaling	to	simplify	the	Brownian	motion	part.	The	location	of	the
maximum	of	this	process	has	the	same	distribution	as	the	location	of	the	maximum	of	the
process

So	we	obtain:

where

provided	we	can	prove	tightness	of	the	process	on	the	left-hand	side.	Note	that,	since	we
only	have	to	consider	the	probability

we	can	multiply	 	by	an	arbitrary	scaling	factor	to	obtain	the	desired
convergence.

Let	 	be	the	location	of	the	maximum	of	the	process	
,	where	 	is	two-sided	Brownian	motion	on	 .	Then	 	is	a	stationary
process,	and	hence:

Hence:

The	tightness	can	be	derived	from	Theorem	3.3,	where	we	take	 ,	 	and

Suppose	 	minimizes	 ,	then	we	want	 	to	be	bounded	in	probability.
First	of	all,	we	have	by	the	assumptions	of	Theorem	3.5:

We	now	take	 	and	 .	Then:

Furthermore,	 ,	and	we	 therefore	only	still	have	 to	check	 the
property	 .



Since	for	all	fixed	 ,	 	for	 	and	sufficiently	large	 ,	we	get
for	all	large	 :

so	 	 for	 sufficiently	 large	 	 and	all	 large	 .	 For	 ,
we	get

if	 	is	sufficiently	small,	using	 	and	the	convexity	and
nonnegativity	of	the	function

We	similarly	get,	for	 	and	small	 ,

Since	 	 and	 ,	 this	 means	 that	 	 is,	 with	 probability
tending	 to	 one,	 strictly	 positive	 outside	 the	 neighborhood	 ,	 if	 .
Since	 ,	this	means	that	 	with	probability	 tending	to	one	and
hence	 .	The	result	now	follows	from	Theorem	3.3.

3.7	 Some	Martingale	Theory
In	Section	3.8	the	asymptotic	distribution	of	the	MLE	in	the	current	status	model	will	be
derived	using	techniques	from	martingale	theory.	In	this	section	we	briefly	introduce	the
key	ideas	and	techniques	related	to	this	elegant	area	of	probability	theory	for	reference.

Definition	3.1	For	a	fixed	 ,	a	stochastic	process	 	in	 	is
a	martingale	with	 respect	 to	 an	 increasing	 family	of	 -algebras	 ,	 if	 it	 is
adapted	to	this	family,	i.e.,	 	is	 -measurable	for	each	 ,	and	if

(3.30)

The	increasing	family	of	 -algebras	 	is	called	a	filtration	of	 -algebras.	
	is	called	an	 -martingale,	if	 ,	for	all	 .

A	related	concept	is	that	of	a	submartingale.	In	fact,	it	has	all	properties	of	a	martingale
except	that	the	equality	in	(3.30)	is	replaced	by	an	inequality:

For	 nonnegative	 submartingales	 there	 is	 a	 very	 useful	 inequality,	 Doob’s	 (maximal)
inequality,	that	bounds	the	expectation	of	the	supremum	of	the	process	over	an	interval	by
the	 expectation	 of	 the	 nonnegative	 submartingale	 taken	 at	 the	 right	 end	 point	 of	 the



interval.	A	version	of	this	inequality	reads:

(3.31)

Another	result	to	be	used,	is	a	martingale	central	limit	theorem,	given	in	Rebolledo,	1980.
To	state	the	theorem,	we	need	the	quadratic	variation	process.	For	an	 -martingale	 ,
the	quadratic	variation	or	square	brackets	process	 	 is	defined	as	 the	 limit	 in
probability,	over	partitions	 	of

Theorem	 3.6	 (Rebolledo’s	 theorem)	 Let	 	 be	 a	 sequence	 of	 	 martingales	 in	
	 with	 corresponding	 quadratic	 variation	 processes	 .	 Let	 	 be	 a

continuous	increasing	function	on	 ,	such	that	 .	Furthermore,	suppose

i.	 	in	probability,
ii.	 	in	probability,	for	each	fixed	 ,
iii.	 	for	each	fixed	 .

Then	the	sequence	 	converges	in	 	to	the	process

where	 	is	standard	Brownian	motion	on	 ,

This	follows	from	Theorem	2,	p.	273,	Rebolledo,	1980.

3.8	 Asymptotic	Distribution	of	the	MLE	in	the	Current
Status	Model
We	now	turn	 to	 the	 local	 limit	distribution	of	 the	MLE	for	current	status	data,	using	the
same	set	up	as	in	Section	2.3.	That	is:	 	are	independent	nonnegative	random
variables	with	distribution	function	 	and	 	are	independent	random	variables
with	distribution	function	 .	Moreover,	 the	 s	and	 s	are	also	 independent.	For	a
sample	size	 ,	the	data	available	to	us	are	given	by

where	 .	The	following	result	will	be	proved.

Theorem	 3.7	 Let	 	 be	 such	 that	 ,	 and	 let	 	 and	 	 be
differentiable	 at	 ,	 with	 strictly	 positive	 derivatives	 	 and	 ,	 respectively.
Furthermore,	let	 	be	the	MLE	of	 .	Then	we	have,	as	 ,



(3.32)

where	 	 denotes	 convergence	 in	 distribution,	 and	 where	 	 is	 the	 last	 time	 where
standard	two-sided	Brownian	motion	plus	the	parabola	 	reaches	its	minimum.

In	 order	 to	 prove	 this	 result,	 we	 first	 give	 a	 road	 map.	 Let	 	 be	 the	 empirical
distribution	function	of	 ,	and	define	 	by

where	 	 is	 the	 empirical	 distribution	 function	of	 .	Then	we
know	 from	Lemma	2.3	 that	 the	MLE	of	 	 at	 	 can	 be	 obtained	 by	 taking	 the	 left
derivative	of	the	greatest	convex	minorant	of	the	diagram	consisting	of	the	points	
and	 ,	 .	Note	that	this	cumulative	sum	diagram	can	also	be
defined	by

(3.33)

since	(3.33)	 runs	 through	 the	values	 	and	 ,	 .	 This
observation	will	also	be	of	use	in	Section	8.5,	defining	the	maximum	smoothed	likelihood
estimator	in	the	current	status	model.

Furthermore,	let

(3.34)

Then,	in	view	of	Section	3.3,	we	have	the	following	switch	relation:

(3.35)

If	 ,	this	implies

Figure	3.7	shows	how	the	idea	applies	to	the	cumulative	sum	diagram	(3.33).



	

Figure	3.7	 The	switch	relation.

In	view	of	 (3.36),	 the	 inverse	process	 	 can	 be	 considered	 instead	 of	 the
original	process	 .	We	have	the	following	tightness	condition	for	 the	process	

.	It	 is	similar	to	Lemma	5.3	on	p.	93	in	Groeneboom	and	Wellner,	1992,	and	 indeed
proved	in	the	same	way.

Lemma	3.5	Assume	that	the	conditions	of	Theorem	3.7	are	satisfied	and	let	
.	Then	for	each	 	and	 	an	 	can	be	found	such	that

and

for	all	large	 .

Proof	We	 only	 prove	 the	 first	 inequality,	 since	 the	 second	 inequality	 can	 be	 proved
analogously.	First	note	that

since	the	process	 	is	nondecreasing.	Furthermore,

where

For	 ,	the	process	 	can	be	written	as



and	this	process	can	be	turned	into	a	martingale	 ,	by	defining

(3.37)

The	 process	 	 is	 a	 martingale	 with	 respect	 to	 the	 family	 of	 -algebras	
	defined	by

(3.38)

We	also	condition	on	 .	We	now	get:

By	the	fact	that	 	is	a	martingale	and	Doob’s	submartingale	inequality	we	now	get	for	
	and	 :

for	 ,	where	 	does	not	depend	on	 .

The	arguments	of	Lemma	4.1	in	Kim	and	Pollard,	1990,	imply	that	there	exists	a	tight
sequence	of	random	variables	 	such	that

for	all	 .	Moreover,	by	the	conditions	of	Theorem	3.7	we	have	for	each	 	and
	an	 	and	 	such	that

with	probability	larger	than	 .	The	statement	now	follows.	☐
We	also	need	the	following	result.

Lemma	3.6	Let	 	 be	 two-sided	Brownian	motion	 on	 ,	 originating	 from	 zero.	 Let	
	be	the	space	of	right	continuous	functions,	with	left	limits	(cadlag	functions)	on	

,	equipped	with	 the	metric	of	uniform	convergence	on	compact	sets,	and	 let	 .
Let	 	be	defined	by	(3.37),	that	is:



Then	 	converges	in	 	in	distribution	to	the	process	 ,	defined	by

(3.39)

Proof	It	was	noted	in	the	proof	of	Lemma	3.5	that	 ,	 is	a	martingale.
The	quadratic	variation	process	is	given	by

(3.40)

We	 check	 the	 conditions	 of	 Theorem	 3.6	 for	 the	 sequence	 ,	 restricting	 these
processes	to	the	positive	halfline.	Condition	(i)	is	clearly	satisfied.	To	check	(ii),	we	note
that,	by	(3.40),	 	can	be	written

where

The	 	satisfy

and

Hence,	by	Chebyshev’s	inequality,



Since	the	jumps	of	 	are	bounded	above	by	 ,	condition	(iii)	is	clearly	satisfied.

Thus	the	conditions	of	Theorem	3.6	are	satisfied	with

The	scaling	property	of	Brownian	motion	gives	that

(3.41)

This	yields	that

has	the	same	distribution	as

The	statement	for	the	process	on	the	negative	halfline	follows	in	a	similar	way.	☐
We	can	now	easily	prove	Theorem	3.7.	By	the	switch	relation	(3.36),	we	have:

Furthermore,

By	Lemma	3.5,	the	sequence	 	is	tight,	and	by	Theorem
3.1,	applied	to	the	process

it	converges	in	distribution	in	the	Skorohod	topology	to	the	process

where	 	 is	 defined	 as	 in	 Lemma	 3.6.	 The	 result	 can	 now	 be	 deduced	 from	Brownian
scaling	property	(3.41).	See	Exercise	3.27,	using	the	fact	that	the	time	scale	of	the	cusum
diagram	converges	locally	to	 .

3.9	 Chernoff’s	Distribution
Let	 	 be	 standard	 two-sided	 Brownian	motion,	 originating	 from	 zero.
The	 determination	 of	 the	 distribution	 of	 the	 (almost	 surely	 unique)	 location	 of	 the
maximum	of	 ,	which	occurs	as	limit	distribution	in	Theorem	3.5,



Theorem	3.7,	and	other	places	in	this	book,	has	a	long	history,	which	probably	started	with
the	 paper	 by	Chernoff,	1964,	 in	 a	 study	 of	 the	 limit	 distribution	 of	 an	 estimator	 of	 the
mode	 of	 a	 distribution.	 In	 that	 paper,	 the	 density	 of	 the	 location	 of	 the	 maximum	 of	

,	which	we	will	denote	by

(3.42)

is	 characterized	 in	 a	 way	 we	 will	 now	 describe.	 Define	 for	 	 the	 quantity	
	by

See	Figure	3.8.	Then	we	have	the	convolution	equation:

if	 .	Hence,	 the	function	 	satisfies	 the	following	partial	differential	equation	on
the	region	

and

Define

and

(3.43)

Then:

Similarly:

The	conclusion	is	that:



where	 	 is	 standard	 Brownian	 bridge	 as	 described	 in	 Exercise	 3.9.	 This	 gives	 the
following	lemma.

	

Figure	3.8	 The	process	 	conditioned	to	have	value	 	at	 	on	 	and	the
function	 	on	 .

Lemma	3.7	Let	 	be	the	density	of	the	(almost	surely	unique)	location	of	the	maximum
for	standard	Brownian	motion	minus	 .	Let	 	be	the	solution	of	the	heat
equation

for	 ,	under	the	boundary	conditions

Then

(3.44)

where	the	function	 	is	defined	by	(3.43).



The	original	attempts	 to	compute	 the	density	 	were	based	on	numerically	 solving
the	 heat	 equation,	 but	 it	 soon	 became	 clear	 that	 this	 method	 did	 not	 produce	 a	 very
accurate	solution,	mainly	because	of	 the	rather	awkward	boundary	conditions.	However,
around	1984	the	connection	with	Airy	functions	was	discovered	and	this	connection	was
exploited	 to	 give	 analytic	 solutions	 in	 the	 papers	 Daniels	 and	 Skyrme,	 1985,
Temme,	1985,	and	Groeneboom,	1989,	which	were	all	written	 in	1984,	although	the	 last
paper	appeared	much	later.

There	seems	to	be	a	recent	revival	of	interest	in	this	area	of	research;	see,	e.g.,	Janson
et	 al.,	 2010,	 Groeneboom,	 2010,	 Groeneboom,	 2011,	 Groeneboom	 and	 Temme,	 2011,
Pimentel,	 2014,	 and	 Janson,	 2013.	 These	 recent	 papers	 (except	 Pimentel,	 2014)	 rely
heavily	 on	 the	 results	 in	 Daniels	 and	 Skyrme,	 1985,	 and	 Groeneboom,	 1989,	 but	 the
derivation	of	the	results	in	these	papers	is	not	a	simple	matter.	The	most	natural	approach
still	seems	to	use	 the	Cameron-Martin	formula	for	making	the	 transition	from	Brownian
motion	with	 drift	 to	 Brownian	motion	without	 drift,	 and	 next	 to	 use	 the	 Feynman-Kac
formula	 for	 determining	 the	 distribution	 of	 the	 Radon-Nikodym	 derivative	 of	 the
Brownian	motion	with	parabolic	drift	with	 respect	 to	 the	Brownian	motion	without	drift
from	the	corresponding	second	order	differential	equation.	This	is	the	approach	followed
in	Groeneboom,	1989,	 and	 taken	 up	 again	 in	Groeneboom	et	 al.,	2013.	We	 now	give	 a
description	of	the	latter	approach.

This	method	starts	with	the	following	theorem.

Theorem	3.8	(Theorem	2.1	in	Groeneboom,	1989)	Let,	for	 	and	 ,	
be	the	probability	measure	on	the	Borel	 -field	of	 ,	corresponding	to	the
process	 ,	where	 ,	starting	at	position	 	at	time	 ,
and	where	 	is	Brownian	motion,	starting	at	 	at	time	 .	Let	 the
first	passage	time	 	of	zero	of	the	process	 	be	defined	by

where,	as	usual,	we	define	 ,	if	 .	Then

i.	

where	 	 is	 a	 Bessel(3)	 process,	 starting	 at	 zero	 at	 time	 ,	 with	 corresponding
expectation	 ,	 and	 where	
is	the	value	at	 	of	 the	density	of	 the	first	passage	time	through	zero	of	Brownian
motion,	starting	at	 	at	time	 .

ii.	

where	the	function	 	has	Laplace	transform

and	 	denotes	the	Airy	function	 .



Remark	Note	that	the	function	 	in	the	definition	of	the	density	of	the	stopping	time	
has	by	part	(ii)	of	Theorem	3.8	the	representation

(3.47)

This	representation	is	obtained	by	inverting	the	Laplace	transform.

The	big	jump	forward	with	respect	to	Lemma	3.7	is	that	we	have	the	distribution	of	the
hitting	 time	 	of	Brownian	motion	minus	a	parabolic	drift,	expressed	by	(3.45),	where
the	 only	 part	 that	 is	 giving	 real	 trouble	 is	 expressed	 by	 (3.46)	 or	 (3.47).	 Theorem	 3.8
should	in	principle	be	sufficient	to	derive	the	density	 	of	(3.44),	since,	defining

we	find:

following	a	line	of	reasoning	similar	to	the	derivation	of	(3.44)	in	Chernoff,	1964.

Theorem	3.8	is	proved	in	Groeneboom	et	al.,	2013,	by	the	Feynman-Kac	formula	with	a
stopping	time,	which,	in	turn,	is	essentially	Ito’s	formula	plus	a	martingale	argument.	We
have:

It	follows	from	Theorem	3.1	in	Groeneboom	et	al.,	2013,	that

and	hence:

This	leads	to	the	following	recapitulation	of	Lemma	3.7.

Theorem	 3.9	 Let	 	 be	 the	 density	 of	 the	 (almost	 surely	 unique)	 location	 of	 the
maximum	for	standard	Brownian	motion	minus	 .	Then:

(3.48)

where



(3.49)

Figure	3.9	 shows	pictures	of	 the	density	 function	and	distribution	 function	associated
with	 the	 Chernoff	 distribution.	 Also	 the	 	 quantile	 ( )	 is	 indicated	 in	 the
pictures.	 The	 most	 frequently	 used	 quantiles	 of	 the	 Chernoff	 distribution	 are	 given	 in
Table	3.1.

Table	3.1	 Most	Frequently	Used	Quantiles	of	the	Chernoff	Distribution	

	

Figure	3.9	 The	density	(a)	and	distribution	(b)	function	of	the	Chernoff	distribution.	In
both	pictures	the	 	quantile	is	indicated.

3.10	 The	Concave	Majorant	of	Brownian	Motion	and
Brownian	Bridge
In	this	section	we	consider	two	processes.	The	first	is	the	concave	majorant	of	Brownian
motion	on	 	and	the	second	is	the	concave	majorant	of	Brownian	bridge	on	 .
See	Figure	3.10.



	

Figure	3.10	 Realizations	of	Brownian	motion	(a)	and	Brownian	bridge	(b)	with	their
(least)	concave	majorants.	For	the	Brownian	motion,	the	concave	majorant	is	computed	on

	and	plotted	on	 .

First	 consider	 the	 concave	 majorant	 of	 one-sided	 Brownian	 motion	 without	 drift,
starting	at	zero,	and	define

In	order	to	let	time	increase	if	we	go	to	the	right,	we	make	the	shift	 .	Let	
	be	the	left	continuous	slope	of	the	least	concave	majorant	of	Brownian	motion	at	 .

We	have	again	the	switch	relation:

See	also	Figure	3.11.

	

Figure	3.11	

The	 	 process	 	 for	 Brownian	 motion	 is	 a	 jump	 process	 with
independent	increments.	It	can	be	considered	to	be	the	inverse	of	the	process	of	slopes	of
the	 least	 concave	 majorant	 of	 Brownian	 motion,	 as	 the	 first	 item	 of	 the	 next	 theorem
shows.



Theorem	 3.10	 (Groeneboom,	 1983)	 (i)	 The	 	 process	 	 is	 a	 time
inhomogeneous	process	with	independent	increments,	and,	for	 ,

(ii)	Let	 	be	the	number	of	jumps	of	 	in	 .	Then

and	hence:

As	 a	 consequence	 of	 this	 we	 can	 generate	 Brownian	 motion	 by	 first	 generating	 the
greatest	concave	majorant,	and	next	generating	Brownian	excursions	between	successive
points	of	change	of	slope	of	the	concave	majorant.

Corollary	3.2	(Groeneboom,	1983)	(i)	Brownian	motion	on	 	can	be	decomposed
into	the	 	process	 	and	Brownian	excursions.

(ii)	If	 	is	the	slope	of	the	concave	majorant	of	the	uniform	empirical	process

then

Part	2	uses	Doob’s	 transformation	(to	go	from	Brownian	motion	 to	Brownian	bridge)
and	Hungarian	embedding.

Similar	methods	 yield	 for	 the	 number	 of	 jumps	 	 of	 the	 concave	majorant	 of	 the
uniform	empirical	process	 :

Theorem	3.11	(Sparre	Andersen,	1954)

A	 very	 short	 proof	 of	 this	 result,	 using	 a	 conditional	 (Poisson)	 representation	 of	 the
concave	 majorant	 of	 a	 uniform	 distribution	 function,	 given	 in	 Groeneboom	 and
Pyke,	 1983,	 can	 be	 found	 in	 Groeneboom	 and	 Lopuhaä,	 1993.	 In	 Pitman,	 1983,	 an
interpretation	of	the	results	of	Groeneboom,	1983,	in	terms	of	Bessel	processes	is	given.	It
describes	 the	embedded	Markov	chain	of	 the	greatest	convex	minorant	of	 the	Brownian
motion	and	 therefore	 the	slopes	start	at	 	 instead	of	 .	This	 is	another	method	 for
letting	the	time	variable	increase	as	we	go	to	the	right.	Another	way	to	do	this	was	used
earlier	 for	 the	 least	 concave	 majorant,	 where	 we	 made	 the	 change	 of	 variables	

	to	make	this	happen.

Theorem	 3.12	 (Pitman,	 1983)	Fix	 	 and	 let	 ;	 see



Figure	3.12.	Then:

i.	 The	next	 slope	 	 of	 the	 convex	minorant	 is	 uniformly	distributed	on	 ,	and
conditionally	on	 ,	the	next	slope	 	is	uniform	on	 .

ii.	 The	 preceding	 slope	 	 has	 density	 	 on	 the	 interval	 ,	 and,
conditional	on	 ,	 	has	density	 	on	 .

iii.	 The	sequences	 	and	 	are	independent.
iv.	 Conditional	on	all	the	slopes	 ,	the	lengths	of	the	segments	 	between	successive

touches	of	 	and	 	are	independent,	and	 	has	a	Gamma 	distribution:

	

Figure	3.12	 A	realization	of	one-sided	Brownian	motion	 	with	its	convex	minorant	
	on	 	as	considered	in	Theorem	3.12.

In	Exercise	3.36	to	3.38	it	is	deduced	from	an	alternative	form	of	Theorem	3.12	that

where	 	is	the	standard	Poisson	process	on	 ,	 	is	uniformly	distributed
on	 ,	and	 	is	the	Grenander	estimator	at	zero	for	a	sample	of	 	uniformly
distributed	random	variables	on	 .



Exercises
3.1	 Let	 	 be	 a	 sequence	 of	 functions	 on	 an	 interval	 	 and	 	 the	 least	 concave

majorant	 of	 	 taken	 over	 .	Moreover,	 let	 	 be	 a	 concave	 function	 on	 	 and
define	 .

a)	 Argue	 that	 for	 all	 ,	 .	 Hint:	 use	 that	
	is	concave	on	 .

b)	Infer	that	 	for	all	 .

c)	Conclude	 that	 .	This	 inequality
is	known	as	Marshall’s	inequality.

3.2	Let	 	be	a	sequence	of	bounded,	decreasing	functions	on	an	interval	 	and	
be	 bounded,	 decreasing	 and	 continuous	 on	 .	 Suppose	 that	 for	 all	 ,	

	 a.s.	 as	 .	 Moreover,	 if	 	 is	 unbounded,	 suppose	 that	
	a.s.	Show	that	then	 	a.s.

3.3	Consider	an	exponential	class	of	densities	on	 :

Follow	 the	argument	used	 to	prove	consistency	of	 the	ML	estimator	 in	 the	class	of
exponential	 densities	 (Section	 3.1)	 to	 derive	 sufficient	 conditions	 for	 the	 ML
estimator	to	be	consistent	in	this	model.	The	essence	is	that	within	this	more	general
class	of	densities	the	behavior	of	(3.5)	can	also	be	studied	easily	because	the	integral
reduces	 to	 a	 deterministic	 factor	 involving	 the	 unknown	 parameter	 and	 a	 random
factor	that	does	not	depend	on	this	parameter.

3.4	 Let	 	 and	 	 be	 two	 probability	 densities	 on	 .	 Use	 that	
	 for	 non-negative	 	 and	 	 to	 show	 the	 following

inequality	for	the	(squared)	Hellinger	distance	between	 	and	 :

3.5	The	second	method	of	proof	discussed	in	Section	3.1	can	be	applied	to	rather	general
classes	of	 densities.	 If	 the	 class	 of	 densities	 has	 the	 property	 of	 being	 convex	 (the
class	of	exponential	densities	is	not	convex),	the	method	can	be	adapted	in	a	useful
way;	useful	in	the	sense	that	it	leads	to	a	more	tractable	function	class	 	in	view	of
studying	(3.5).

a)	Use	the	fact	that	 	in	case	 	is	convex	and	that	
to	show	that

b)	For	the	last	term	at	the	right	hand	side	of	(a),	show	that



Conclude	with	Exercise	3.4	that

3.6	Consider	a	function	 	on	 	such	that	 	and	 	( 	is	a	subdensity).
Let	furthermore	 	be	a	continuous	probability	density	on	 	and	suppose	that

Show	 that	 then,	 necessarily,	 	 almost	 everywhere	 with	 respect	 to	 Lebesgue
measure.

3.7	Show	that	the	two	random	variables	at	the	right	hand	side	of	(3.13)	are	independent.

3.8	Show	that	 the	 first	 term	at	 the	 right	hand	side	of	 (3.13)	 is	normally	distributed	with
expectation	zero	and	variance

3.9	The	standard	Wiener	process	(or	Brownian	motion)	on	 	 is	a	Gaussian	process	
	with

for	all	 .	Brownian	bridge	(also	called	tied-down	Brownian	motion)	can
be	defined	in	terms	of	the	process	 	by

Show	that	 	is	a	Gaussian	process	with

for	 .

3.10	Let	 	and	 	be	Brownian	bridge	as	defined	in	Exercise	3.9.	Let	 	be
fixed	and	define	the	process	 	on	 	by

a)	Show	that

b)	Show	that,	for	 ,



c)	Define	the	process	 	on	 	by

Show	that	 the	processes	 	and	 	have	 the	 same	distribution	by	 showing	 they
are	both	Gaussian	with	the	same	expectation	and	covariance	function.

3.11	In	(3.14)	the	asymptotic	distribution	of	the	Grenander	estimator	at	 	is	given,	where
	 and	 	 is	 constant	 on	 	 (and	 not	 on	 an	 interval	 strictly	 containing

).

a)	Express	the	asymptotic	bias	and	variance	of	 	in	terms	of	 ,	
,	 	and	a	universal	constant.

Suppose	it	is	known	that	 	and	 	were	known.	A	natural	estimator	for	 	would
be

b)	Compute	the	asymptotic	bias	and	variance	of	 ,	depending	on	 ,	
	and	 .

3.12	Let	 	be	 two-sided	standard	Brownian	Motion.	Consider	 the	 random	variable	 ,
defined	 as	 the	 derivative	 of	 the	 convex	 minorant	 of	 the	 process	 ,
evaluated	 at	 zero	 (see	 (3.12)).	 Define	 	 as	 in	 Section	 3.9,	 so	

	(see	(3.42)).	In	this	exercise	we	derive	that	 .

a)	Show	that	 	has	the	same	distribution	as	 	and	that	its
distribution	is	symmetric	(i.e.,	 	for	all	 ).

b)	Use	Lemma	3.2	to	show	that	 	if	and	only	if	 .

c)	Show	that	 .

d)	 Combine	 (a),	 (b)	 and	 (c)	 to	 show	 that	 for	 each	 ,
.

3.13	Let	 	be	the	nonparametric	estimator	of	the	distribution	function	in	the	exponential
deconvolution	 setting,	 introduced	 in	 Section	 2.4.	 Prove	 that	 for	 each	 ,	

	 almost	 surely.	 Moreover,	 assuming	 that	 	 is	 strictly
positive	 in	 a	 neighborhood	 of	 ,	 show	 that	 for	 some	 ,	

	almost	surely.

3.14	This	exercise	outlines	the	proof	of	Lemma	3.3.

a)	Choose	 	and	a	minimal	set	of	 -brackets	 .	Then	show



that	for	any	 ,	there	exists	a	 	such	that

and

b)	 Use	 the	 fact	 that	 	 and	 that	 	 are	 brackets	 in	 the	 seminorm
	to	show	that	for	each	

for	 	and	conclude	that	therefore	almost	surely

for	 	sufficiently	large.

c)	Conclude	(3.17).

3.15	 Consider	 two	 function	 classes	 	 and	 	 containing	 (measurable)	 real	 valued
functions	on	 .	Suppose	that	for	some	

Define	 .	Show	that

Hint:	Choose	a	minimal	set	of	 -brackets	of	 	and	 .	Denote	these	by	 	(
)	 and	 	 ( )

respectively.	 Then	 define	 the	 brackets	 	 and	 	 for	 the
appropriate	values	of	 	and	 .	Show	that	these	functions	are	 -brackets	for	 	and
that	for	all	 	there	is	one	of	these	brackets	with	 .

3.16	 In	 Exercise	 2.14	 an	 expression	 was	 derived	 for	 the	 convolution	 densities	 for
deconvolution	problems	with	bounded	smooth	decreasing	kernels	on	 .	Show
that	the	class	of	densities	 	that	can	allow	this	expression	for	a	distribution	function	
	on	 	is	a	Glivenko	Cantelli	class.	Hint:	note	that	the	expression	in	Exercise

2.14	is	the	difference	of	two	monotone	bounded	functions	and	use	Exercise	3.15.

3.17	Give	 an	 example	 of	 a	 sequence	 of	 functions	 	 on	 	 such	 that	 for	 all	 ,
	 for	 some	 convex	 function	 	 on	 	 and	 such	 that	 the	 sequence	 of

greatest	convex	minorants	of	 	converges	to	a	function	different	from	 .

3.18	Use	(3.41)	to	show	that	for	any	 ,



Choose	 	and	 	appropriately	to	obtain	(3.11).

3.19	 Show	 that	 ,	 where	 	 is	 a	 standard	 Poisson
process	on	 .	See	also	Exercise	2.7	and	Figure	3.2.	Hint:	observe	that

3.20	Show	that	for	a	standard	Poisson	process	on	 ,	 	where
	is	uniformly	distributed	on	 .	Conclude	from	this,	and	Exercise	3.19,	that

and	relate	this	to	Exercise	2.7.

3.21	Verify	the	conditions	of	Theorem	3.2	needed	to	conclude	(3.23),	noting	that

and	that	 .

3.22	Show	 that	 	 as	 .	Use	 the	 consistency	 result	 of
Exercise	3.13	and	note	that	in	view	of	Lemma	3.2

3.23	Draw	a	picture	of	a	 few	of	some	of	 the	functions	 in	 	as	defined	 in	 (3.26)	 (see
also	Figure	3.5)	to	verify	that	for	 	the	following	holds:

3.24	Consider	the	functions	defined	in	(3.25).	Show	that

as	 	and	 .

3.25	 Show	 in	 the	 context	 of	 Section	 3.5	 that	 	 as	 .
Use	the	consistency	result	that	for	some	 ,	
a.s.	as	derived	in	Section	3.1,	and	note	that	in	view	of	Lemma	3.2

3.26	 Consider	 the	 functions	 defined	 in	 (3.25).	 Assume	 that	 	 is	 continuous	 in	 a
neighborhood	of	 .	Show	that	for	each	 ,

so	that	 .

3.27	Let	 	be	(standard)	two-sided	Brownian	motion.	For	any	positive	constants	 	and	



,	the	location	of	the	minimum	of	the	process

is	almost	surely	unique.	Denote	this	location	of	the	minimum	by

Use	(3.41)	to	show	that	 	has	the	same	distribution	as

Use	this	property	to	deduce	the	statement	of	Theorem	3.7.

3.28	Show	that	if	the	process	 	in	 	is	an	 	martingale,	the	process
	in	 	is	a	submartingale.

3.29	 Suppose	 that	 	 is	 strictly	 increasing	 in	 the	 point	 	 and	 that	 .
Show,	using	the	consistency	result	of	the	preceding	section,	that

(3.50)

3.30	Show	 that	 the	 process	 	 as	 defined	 in	 (3.37)	 is	 a	martingale	with	 respect	 to	 the
filtration	 ,	where	 .

3.31	Show	that	the	quadratic	variation	process	of	the	process	 	in	the	proof	of	Lemma
3.6	is	given	by

3.32	 Let	 	 be	 the	 empirical	 distribution	 function	 of	 sample	 	 from	 a
distribution	 on	 	 with	 continuous	 distribution	 function	 ,	 and	 let	

.	Show	that

is	a	martingale	with	respect	to	the	filtration	 .

Exercises	3.33	 to	3.35	give	an	alternative	 route	 to	Lemma	3.6.	We	assume	 that	 the
conditions	of	Theorem	3.7	are	satisfied.

3.33	Let,	for	 	as	in	Theorem	3.7,	the	function	 	be	defined	by

(3.51)

Show	that	the	process



is	a	martingale	with	respect	 to	 the	filtration	 ,	defined	by	(3.38),	also
conditioning	on	 .

3.34	 The	 process	 	 of	 Exercise	 3.33	 is	 called	 the	 conditional	 variance	 process	 or
predictable	variation	process.	Show	that,	in	probability,	for	each	(fixed)	 ,

3.35	Use	 theorem	13,	 in	 chapter	8,	p.	179	of	Pollard,	1984,	or	 the	 	 instead	of	 the	
condition	 of	 theorem	 2,	 p.	 273,	 Rebolledo,	 1980,	 to	 derive	 Lemma	 3.6,	 using	 the
result	of	Exercise	3.34	instead	of	part	(ii)	of	Theorem	3.6.

3.36	Prove	the	following	variant	of	the	theorem	of	Pitman,	1983,	for	the	concave	majorant
of	Brownian	motion.	Fix	 	and	let	 .	Then:

a)	The	next	slope	 	of	the	convex	minorant	is	uniformly	distributed	on	 ,	and
conditionally	on	 ,	 ,	 ,	the	next	slope	 	is	uniform	on	 .

b)	 The	 preceding	 slope	 	 has	 density	 	 on	 the	 interval	 ,	 and,
conditional	on	 ,	 ,	 ,	 	has	density	 	on	 .

c)	The	sequences	 	and	 	are	independent.

d)	Conditional	on	all	the	slopes	 ,	the	lengths	of	the	segments	 	are	independent,
and	 	has	a	gamma 	distribution:

3.37	Deduce	from	part	(b)	of	Exercise	3.36	that	the	slope	of	the	concave	majorant	
at	 zero	 of	 the	 empirical	 distribution	 function	 for	 the	 uniform	 empirical	 process
satisfies

where	 	is	uniform	on	 .

3.38	Deduce	from	Exercises	3.36	and	3.37	that

where	 	is	the	standard	Poisson	process	on	 .
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4
Other	Univariate	Problems	Involving	Monotonicity

Constraints

In	Chapter	2,	various	models	were	introduced	where	monotonicity	constraints	are	clearly
involved.	In	this	chapter,	more	problems	will	be	described	where	monotonicity	constraints
play	 an	 important	 role.	 These	 constraints	 can	 be	 related	 to	 the	 interpretation	 of	 these
problems	as	inverse	problems,	as	also	seen	in	Section	1.5.	Some	distribution	function	
(by	 definition	 monotone)	 in	 the	 background	 is	 to	 be	 estimated	 based	 on	 data	 from	 an
induced	distribution	function	 .	Monotonicity	of	 	induces	more	or	less	explicit	shape
constraints	on	the	sampling	distribution	function	 .

First	 a	 classical	 problem	 from	 stereology	 is	 considered:	Wicksell’s	 problem.	 This	 is
concerned	with	 estimating	 the	 distribution	 of	 radii	 of	 spheres	 randomly	 scattered	 in	 an
opaque	medium	based	on	 radii	 of	 circular	 profiles	 obtained	by	 intersecting	 the	medium
with	 a	 plane.	 The	 second	 problem	 is	 that	 of	 estimating	 a	 concave	 regression	 function
based	 on	 noisy	 data.	Related	 to	 this,	 a	 simple	model	 from	 ornithology	 is	 introduced.	 It
concerns	 estimating	 the	 distribution	 of	 sojourn	 times	 of	 birds	 at	 an	 oasis	 based	 on
observed	 times	when	 specific	 birds	were	 caught	 at	 the	oasis.	As	 in	Wicksell’s	 problem,
imposing	certain	assumptions,	the	sampling	distribution	can	be	expressed	in	terms	of	the
underlying	 distribution	 of	 interest.	 Also	 the	 estimation	 of	 log	 concave	 densities,	 star
shaped	 distribution	 functions	 and	 distribution	 functions	 in	 deconvolution	 models	 more
general	than	that	of	Section	2.4	and	in	the	interval	censoring	case	2	will	be	considered.

For	 the	problems	discussed	 in	 this	 chapter,	 estimation	procedures	will	 be	 introduced,
characterizations	 of	 these	 estimators	 will	 be	 given	 and	 some	 estimators	 will	 also	 be
studied	asymptotically.	Estimation	paradigms	as	plug-in	 inverse	estimators,	 least	squares
estimators	and	maximum	likelihood	estimators	will	be	illustrated	and	studied.

4.1	 Wicksell’s	Corpuscle	Problem
In	the	early	1920s,	the	Swedish	mathematician	Sven	D.	Wicksell	at	the	University	of	Lund
was	 confronted	 with	 an	 interesting	 problem	 from	 the	 medical	 sciences.	 Anatomist
T.	Helman	tried	to	get	hold	of	the	distribution	of	the	size	of	so-called	follicles	in	human
spleens.	 Postmortem	 examinations	 were	 executed,	 during	 which	 spleens	 were	 sliced	 at
several	places.	Profiles	of	follicles	present	on	the	slices	were	observed.

Of	 course,	 estimating	 the	 size	 of	 these	 follicles	 based	 on	 this	 type	 of	 data	 is	 an	 ill-
specified	problem.	A	model	is	needed	to	describe	the	situation.	It	was	Wicksell	who	built	a
model	and	already	proposed	a	first	nonparametric	estimator	for	the	distribution	function.

Consider	 the	 following	 model.	 In	 ,	 points	 are	 distributed	 according	 to	 a
homogeneous	Poisson	process.	Centered	at	those	points,	there	are	spheres	of	varying	sizes.
All	squared	radii	are	assumed	to	be	independent	and	distributed	according	to	a	distribution
function	 .	This	is	the	object	we	want	to	estimate.	However,	the	sphere	radii	cannot	be



observed.	What	 can	 be	 observed	 are	 radii	 of	 circular	 profiles	 on	 a	 cross-section	 of	 the
medium,	say	the	 -plane	in	 ;	see	Figure	4.1	for	an	illustration	of	this	model.

	

Figure	4.1	 The	three-dimensional	medium	with	spheres	and	an	illustration	of	the	visible
circular	profiles	in	a	cross-section.

It	is	not	immediately	obvious	whether	this	model	describes	the	practical	situation	well.
However,	when	the	follicles	are	approximately	spherical,	the	distance	between	the	places
where	the	spleen	is	cut	is	big	compared	with	the	radii	of	the	large	follicles	and	the	number
of	overlapping	spheres	is	negligible	(Poisson	process	has	low	intensity).	The	model	seems
to	fit	the	real	situation	fairly	well.

In	the	model,	two	phenomena	are	working	in	opposite	directions.	First,	the	radius	of	an
observable	 circle	 clearly	 cannot	 exceed	 the	 radius	 of	 its	 associated	 sphere,	 and	 second,
spheres	that	have	a	large	radius	are	more	likely	to	be	cut	than	the	small	ones.	This	second
point	 can	 be	 formalized	 by	 saying	 that	 the	 spheres	 are	 sampled	 proportionally	 to	 their
radii.	 This	means	 that	 the	 distribution	 of	 the	 spheres	 actually	 cut	 is	 not	 ,	 but	 a	 size
biased	version	of	 .	In	this	case,	the	biased	distribution	is	given	by

where	 ,	 the	 expected	 sphere	 radius	 under	 .	 Note	 the
resemblance	with	(2.4).	Now,	given	the	fact	that	a	sphere	with	squared	radius	 	is	cut	by
the	plane,	what	can	be	said	about	the	distribution	of	the	observable	squared	circle	radius?
This	behavior	can	be	deduced	 from	 the	 fact	 that	 the	distance	of	 the	cutting	plane	 to	 the
center	 of	 the	 sphere	 is	 uniformly	 distributed	 on	 .	 Pythagoras	 then	 shows	 (see
Figure	4.2)	that	the	observable	squared	circle	radius	can	be	seen	as	a	random	fraction	of	

:

where	 	 is	 uniformly	 distributed	 on	 	 and,	 consequently,	 	 has	 Beta
density



	

Figure	4.2	 View	on	the	sphere	in	the	direction	of	the	vertical	cutting	plane.	The	sphere
radius	is	 ,	the	position	of	the	cut	is	uniformly	distributed	on	the	right	half	of	the
sphere.

Therefore,	using	Exercise	4.1,	the	density	 	of	 	can,	for	 ,	be	written	as

Having	 derived	 the	 density	 of	 the	 observables	 in	 terms	 of	 the	 distribution	 function	 of
interest,	the	question	of	whether	we	can	also	explicitly	express	 	in	terms	of	 	emerges.
In	the	current	situation,	there	is	an	explicit	inverse	relation,	expressing	 	in	terms	of	 .
Indeed	(see	Exercise	4.2),

(4.1)

Let	us	pause	and	take	a	look	at	what	we	have	done.	We	used	the	mechanics	behind	the
process	of	collecting	the	data	in	our	model	to	derive	the	distribution	of	the	observables	in
terms	of	the	distribution	of	interest.	This	process	of	determining	the	sampling	distribution
in	 terms	 of	 the	 object	 	 is	 what	 we	 called	 the	 direct	 problem.	 After	 that	 we	 used
mathematical	manipulations	to	get	(or	check)	some	inverse	relation	to	express	the	quantity
of	interest	in	terms	of	the	sampling	distribution.	This	is	often	called	the	inverse	problem.
The	next	step,	to	estimate	 	based	on	data	generated	by	 ,	could	be	called	the	statistical
inverse	problem	(see	also	Section	1.5).

As	can	be	seen	from	Exercise	4.3,	not	all	densities	 	will	give	a	distribution	function
when	plugged	into	(4.1).	This	shows	that	the	transformation	taking	 	to	 	 is	 injective,
but	not	surjective	with	respect	to	the	class	of	densities	on	 .

A	natural	estimator	for	 	is	obtained	using	(4.1).	Having	a	sample	 	from
density	 ,	 one	 can	 use	 the	 empirical	 distribution	 function	 based	 on	 this,	 ,	 and
substitute	 	for	 	in	(4.1).	Formally,

For	 fixed	 values	 of	 	 this	 so-called	 plug-in	 estimator	 is	 consistent	 and	 asymptotically
normally	distributed	(see	Exercise	4.5).	Despite	the	acceptable	pointwise	behavior	of	this



estimator,	as	a	function	of	 	it	really	exhibits	some	undesirable	features.	See	Figure	4.3
for	 	based	on	a	sample	of	size	 	from	the	density

corresponding	to	the	standard	uniform	distribution	for	 .	It	is	clear	that	the	estimator	is
piecewise	decreasing	and	has	infinite	discontinuities	at	the	observed	data	points.

	

Figure	4.3	 Plug-in	estimator	of	 	based	on	a	sample	of	size	 .	The	underlying
uniform	distribution	function	is	the	solid	straight	line.

There	 are	 various	 possibilities	 to	 construct	 a	monotone	 estimator	 in	 this	 setting.	One
option	 is	 to	define	a	 likelihood	of	 the	observations,	and	maximize	 this	over	densities	
corresponding	proper	distribution	functions	 .	See	Exercise	4.8	and	4.9.	Another	option
is	 to	 turn	 the	 estimate	 of	 Figure	 4.3	 into	 a	monotone	 function	 using	 the	 techniques	 of
Chapter	2.	In	view	of	(4.1),	this	can	be	done	by	writing

where	 	is	decreasing	and	defining	its	(nonmonotone)	estimator



Then	 	can	be	isotonized	by	taking	the	(right)	derivative	of	the	least	concave	majorant
of	its	primitive

(4.2)

(See	 Exercise	 4.6.)	 Denoting	 this	 derivative	 by	 ,	 the	 following	 estimator	 for	 	 is
obtained

(4.3)

For	the	same	data	set	as	used	in	Figure	4.3,	this	function	 	and	its	concave	majorant	are
given	in	the	Figure	4.4a.	The	resulting	estimate	for	 	is	shown	in	Figure	4.4b.	Using	the
approach	described	in	Section	3.1,	 	can	be	shown	to	be	consistent	(see	Exercise	4.7).

	

Figure	4.4	 (a)	The	function	 	defined	in	(4.2)	with	its	least	concave	majorant	based
on	the	same	data	set	of	size	 	as	Figure	4.3.	The	bend	points	of	the	concave
majorant	are	the	solid	points.	(b)	The	estimate	 	based	on	the	right	derivative	of	this
concave	majorant	via	(4.3)	with	the	dotted	underlying	(uniform)	distribution.

What	did	Wicksell	do	in	his	original	paper?	He	constructed	a	system	of	linear	equations
matching	 observed	 cell	 frequencies	 with	 their	 expectations	 and	 solved	 this	 system.	 In
Section	8.2	another	estimator	based	on	Wicksell’s	original	(binned)	data	will	be	computed.

4.2	 Convex	Regression
The	 Canadian	 income	 data	 have	 been	 analyzed	 by	 several	 authors,	 see,	 e.g.,	 Ruppert
et	al.,	2003,	 and	Meyer,	 2008.	 They	 represent	 a	 sample	 of	 205	Canadian	workers.	 The
relationship	 between	 log(income)	 and	 age	 can	 be	 expected	 to	 be	 concave,	 and	 we	 can
estimate	this	relationship	nonparametrically,	only	using	the	concavity	restriction.



A	picture	 of	 the	 data,	 together	with	 the	 nonparametric	 regression	 estimate,	 under	 the
concavity	restriction,	is	shown	in	Figure	4.5,	and	compared	there	with	a	concave	estimate,
as	 discussed	 in	Meyer,	2008,	 using	 cubic	 splines.	 For	 computing	 this	 estimate	we	 used
Meyer’s	R	 function	cspl,	 using	 	 knots	 at	 equal	 quantile	 distances.	 The	 nonparametric
regression	 estimate,	 under	 the	 concavity	 restriction,	 was	 computed	 using	 the	 support
reduction	algorithm	to	be	discussed	in	Section	7.4.	This	algorithm	is	very	fast.	It	was	used
on	the	present	data	by	fitting	the	minus	log(income)	data	to	a	convex	curve.

	

Figure	4.5	 The	nonparametric	concave	regression	function	for	the	Canadian	income	data
(solid	curve),	together	with	a	concave	cubic	spline	estimate	with	 	knots,	as	defined	in
Meyer,	2008	(dashed	curve).	The	data	represent	log(income)	( -coordinates)	plotted
against	age	( -coordinates),	for	 	persons.

It	is	seen	that	the	two	estimates	are	very	close,	except	at	the	very	right	end.	One	of	the
differences	between	the	estimates	is	that	for	the	estimate	of	Meyer,	2008,	 the	number	of
knots	 of	 the	 cubic	 spline	 has	 to	 be	 specified,	whereas	 no	 such	 choice	 is	 needed	 for	 the
nonparametric	concave	regression	estimate;	the	latter	estimate	chooses	the	locations	of	the
bend	 points	 of	 the	 piecewise	 linear	 convex	 estimate	 automatically.	 Both	 estimates	 will
probably	have	a	local	 	rate	of	convergence	at	interior	points.	This	is	in	fact	proved
for	 the	 nonparametric	 concave	 regression	 estimate	 in	 Groeneboom	 et	 al.,	 2001a,	 and	 a
characterization	of	the	limit	distribution	is	given	in	Groeneboom	et	al.,	2001b.	The	latter
characterization	 is	 in	 terms	 of	 the	 second	 derivative	 of	 the	 invelope	 of	 integrated
Brownian	motion	 ,	which	is	a	cubic	spline	touching	the	integrated	Brownian	motion	

	and	lying	above	this	process	between	points	of	touch,	whereas	its	second	derivative



is	convex.	For	further	details,	see	Section	11.1.

The	formal	setting	for	this	problem	runs	as	follows.	Consider	given	the	following	data
set	of	size	 :	 	where	 	and	where	
is	a	realization	of	the	random	variable

(4.4)

for	a	convex	function	 	on	 .	Here	 	are	 i.i.d.	 random	variables.
Writing	 	 for	 the	 set	 of	 all	 convex	 functions	 on	 ,	 the	 first	 suggestion	 for	 a	 least
squares	estimate	of	 	is

(4.5)

It	 is	clear	 that	 this	definition	needs	more	specification.	For	 instance,	any	solution	 to	 the
minimization	 problem	 can	 be	 extended	 quite	 arbitrarily	 (although	 convex)	 outside	 the
range	of	the	 s.	Also,	between	the	 s	there	is	some	arbitrariness	in	the	way	a	function
can	be	chosen.	We	therefore	confine	ourselves	to	minimizing	 	over	the	subclass	 	of	

	consisting	of	the	functions	that	are	linear	between	successive	 s,	as	well	as	to	the	left
and	the	right	of	the	range	of	the	 s.	Hence,	we	define

where	 	 is	 given	 in	 (4.5).	 Note	 that	 	 can	 be	 parameterized	 naturally	 by	
	where

Using	 the	 identification	 ,	we	have	 the	following	 lemma,	ensuring	uniqueness
of	the	estimator.

Lemma	4.1	There	is	a	unique	function	 	that	minimizes	 	over	 .

Proof	Follows	immediately	from	the	strict	convexity	of	 	and	the	fact	 that	
	as	 .	☐

Next	step	is	to	characterize	the	least	squares	estimator.

Lemma	 4.2	 Define	 	 and	 .	 Then	
	if	and	only	if	 	and

(4.6)



The	lemma	is	proved	in	Section	2.3	of	Groeneboom	et	al.,	2001a.	This	characterization
was	used	in	the	routine	used	in	computing	the	convex	regression	function	for	the	Canadian
income	data.	It	is	also	the	basis	of	the	R	package	conreg,	written	by	Martin	Mächler.	See
Figure	4.6	for	a	visualization	of	the	necessary	and	sufficient	optimality	conditions	for	the
Canadian	income	data.

	

Figure	4.6	 Visualization	of	the	conditions	given	in	(4.6)	for	the	Canadian	income	data.
The	differences	between	the	left	and	right	hand	side	of	(4.6)	are	plotted	against	the	 s.

4.3	 Convex	Density	Estimation
An	example	of	a	nonparametric	density	estimator	under	a	convexity	constraint	is	given	in
Hampel’s	 bird	migration	 problem.	Consider	 a	 population	 of	 birds	 of	 a	 certain	 type	 that
cross	the	desert	individually	and	stop	over	at	an	oasis.	Ornithologists	are	interested	in	the
time	spent	by	a	generic	bird	at	this	oasis.	The	following	model	can	be	used	to	investigate
these	sojourn	times.

To	each	bird,	a	positive	random	variable	 	with	distribution	function	 	is	attached,
denoting	the	time	spent	at	the	oasis.	This	quantity	cannot	be	observed.	Also,	independent
of	 ,	the	bird	has	a	homogeneous	Poisson	process	 	attached	to	it,	with
intensity	 ,	assumed	to	be	small.	The	times	the	bird	is	caught	at	the	oasis	are	then	those
jump	points	of	the	Poisson	process	that	occur	before	 .	Note	that	 	is	the	number
of	times	the	bird	is	caught	while	staying	over	at	the	oasis	(see	also	Figure	4.7).



	

Figure	4.7	 Actual	sojourn	time	of	the	bird	 	and	the	(Poisson)	process	of	catches.	In
this	example,	the	bird	is	caught	twice	during	its	stay	at	the	oasis.

The	 data	 for	 one	 bird	 consist	 of	 those	 catching	 times	 that	 occurred	 before	 .	 Of
course,	 it	 is	 conditional	 on	 the	 fact	 that	 .	 In	 Hampel’s	 model	 only	 those
observations	 are	 used	 that	 correspond	 to	 birds	 that	 have	 been	 caught	 exactly	 twice.	We
will	derive	the	distribution	of	the	difference	in	time	between	the	two	catches	in	terms	of
the	unknown	distribution	function	 	of	the	sojourn	time.

The	first	question	 is:	what	 is	 the	distribution	of	 the	 sojourn	 time	of	a	bird	given	 it	 is
caught	exactly	twice?

for	 small	 	 (and,	 for	 example,	 if	 	 has	 bounded	 support).	 In	 other	 words,	 the
conditional	distribution	is	(for	small	 )	a	size	biased	(in	this	case	squared	length	biased)
distribution	associated	with	 .

The	second	question	is:	what	is	the	distribution	of	 	(time	between	the	two	catches)
given	 that	 	 and	 there	 are	 exactly	 two	 catches?	Given	 	 and	 ,	 the
jumps	of	 	in	 	are	uniformly	distributed	on	this	interval.	Therefore,	writing	
and	 	for	the	order	statistics	of	two	uniformly	distributed	random	variables	in	 ,

Consequently,

(4.7)

We	see	that	we	explicitly	have	to	require	the	second	moment	of	 	to	exist.	Of	course,	if
we	take	 	to	have	bounded	support,	this	assumption	certainly	holds.

Differentiating	(4.7)	with	respect	to	 ,	we	get	for	the	density	 	of	 	that



and	differentiating	once	again	gives

Monotonicity	 and	 positivity	 of	 	 force	 the	 density	 	 to	 be	 convex	 and
decreasing	 on	 .	Moreover,	 the	 inverse	 relation	 expressing	 	 in	 terms	 of	 	 is
given	by

We	 now	 turn	 to	 the	 problem	 of	 estimating	 a	 convex	 decreasing	 density	 on	
based	on	an	 i.i.d.	sample	of	size	 .	One	way	of	doing	 this	 is	maximum	likelihood	(see
Exercise	4.12).	Here	we	consider	 a	 least	 squares	approach.	Given	 a	 dataset	
from	 the	 density	 ,	 with	 empirical	 distribution	 function	 ,	 define	 the	 quadratic
objective	function	 	by

The	intuition	behind	this	function	is	that	the	true	underlying	 	minimizes	the	function

where	 the	 last	 term	does	not	 depend	on	 	 and	 	 represents	 the	 distribution	 function
corresponding	to	 .	Replacing	the	unknown	 	in	the	latter	expression	by	the	estimate	

	yields	 .	This	 reasoning	also	explains	 that	 the	resulting	estimator	 that	minimizes	
	 over	 all	 convex	 decreasing	 estimators	 is	 named	 the	 least	 squares	 estimator;	 see

Exercise	1.1	 for	 an	 estimator	 of	 this	 type	 in	 a	 parametric	 setting	 and	 Section	 2.6	 for	 a
similar	reasoning	behind	a	least	squares	estimator	of	a	monotone	hazard.	Note	that	we	do
not	restrict	the	minimization	to	the	class	of	convex	decreasing	densities,	but	instead	take
the	larger	class	consisting	of	positive	multiples	of	these	densities,

This	estimator	will	be	shown	to	be	piecewise	linear	with	at	most	 	changes	of	slope
occurring	 between	 observation	 points.	Moreover,	 the	minimizer	 of	 	 over	 	will	 be
shown	to	be	a	density	automatically.

Lemma	4.3	There	exists	a	unique	 	that	minimizes	 	over	 .	This	solution	is
piecewise	 linear,	 and	 has	 at	most	 one	 change	 of	 slope	 between	 two	 successive	 ordered
observations	 	 and	 	 and	 no	 changes	 of	 slope	 at	 observation	 points.	 The	 first
change	of	slope	is	to	the	right	of	the	first	order	statistic	and	the	last	change	of	slope	is	to
the	right	of	the	largest	order	statistic.

Proof	For	existence,	we	first	show	that	there	is	a	bounded	convex	decreasing	function	
with	bounded	support	such	that	the	minimization	can	be	restricted	to	the	subset



(4.8)

of	 .

First	 note	 that	 there	 is	 a	 	 such	 that	 any	 candidate	 to	 be	 the	minimizer	 of	
should	have	a	left	derivative	at	 	bounded	above	in	absolute	value	by	 .	Indeed,	if	
is	a	function	in	 ,	then

and

showing	 that	 	 tends	 to	 infinity	 as	 the	 left	 derivative	of	 	 at	 	 tends	 to	minus
infinity.	 In	 the	 last	 inequality	 we	 use	 that	 	 attains	 its	 minimum	 at	

.	This	same	argument	can	be	used	to	show	that	the	right	derivative	at	 	of
any	solution	candidate	 	is	bounded	below	in	absolute	value	by	some	 ,	whenever	

.

Additionally,	 it	 is	 clear	 that	 	 is	 bounded	 by	 some	 constant	 .	 This	 follows
from	the	fact	that

which	tends	to	infinity	as	 	tends	to	infinity.

To	conclude	the	existence	argument,	observe	that	we	may	restrict	attention	to	functions
in	 	 that	 are	 linear	 on	 the	 interval	 .	 Indeed,	 any	 element	 	 of	 	 can	 be
modified	to	a	 ,	which	is	linear	on	 	as	follows:

and	if	 ,	 	(only	first	term	is	influenced	by	going	from	 	to	 ).	For
the	same	reason,	attention	can	be	restricted	to	functions	that	behave	linearly	between	the
point	 	and	the	point	where	it	hits	zero,	by	extending	a	function	using	its	left	derivative
at	 the	 point	 .	 In	 fact,	 this	 argument	 can	 be	 adapted	 to	 show	 that	 a	 solution	 of	 the



minimization	problem	has	at	most	one	change	of	slope	between	successive	observations.
Indeed,	let	 	be	a	given	convex	decreasing	function,	and	fix	its	values	at	the	observation
points.	Then	one	can	construct	a	piecewise	linear	function	that	lies	entirely	below	 ,	and
has	 the	 same	 values	 at	 the	 observation	 points.	 This	 shows	 that	 	 is	 decreased	 when
going	from	 	to	this	piecewise	linear	version,	since	the	first	term	of	 	decreases	and	the
second	term	stays	the	same.	See	Figure	4.8.

	
Figure	4.8	 A	piecewise	linear	convex	function	coinciding	with	 	at	the	“observations”	

	and	 	and	lying	below	 	throughout.

Hence,	defining	the	function

we	see	that	 the	minimization	of	 	over	 	may	be	restricted	 to	 the	compact	set	 (4.8).
Uniqueness	of	the	solution	follows	from	the	strict	convexity	of	 	on	 .	☐
The	 lemma	 below	 gives	 a	 characterization	 of	 .	 In	 contrast	 to	 the	 situation	 of

estimating	 a	 decreasing	 density	 (Section	 2.2),	 this	 characterization	 cannot	 be	 used
immediately	to	compute	the	estimator.	For	that	it	is	too	implicit.	However,	it	can	be	used
to	 check	 whether	 a	 candidate	 function	 minimizes	 	 over	 	 and	 to	 derive	 further
qualitative	properties	of	 .

Lemma	4.4	Let	 	be	defined	by



Then	 the	 piecewise	 linear	 function	 	minimizes	 	 over	 	 if	 and	 only	 if	 the
following	 conditions	 are	 satisfied	 for	 	 and	 its	 second	 integral	

:

(4.9)

Proof	Let	 	satisfy	(4.9),	and	note	that	this	implies

(4.10)

Choose	 	arbitrarily.	Then	we	get,	using	integration	by	parts,

But	using	(4.10)	and	(4.9),	we	get

Hence	 	minimizes	 	over	 .

Conversely,	suppose	that	 	minimizes	 	over	 .	Consider,	for	 ,	the	function	
,	defined	by

(4.11)

Then	necessarily

This	yields	the	inequality	part	of	(4.9).	Furthermore,

which	is	(4.10).	This	can,	however,	only	hold	if	the	equality	part	of	(4.9)	also	holds.	☐
See	Figure	4.9	for	a	picture	of	the	LS	estimator	based	on	the	data	set

and	in	the	right	panel	the	corresponding	function	 	of	Lemma	4.4.	The	solution
is	obtained	using	the	support	reduction	algorithm	to	be	discussed	in	Section	7.4.



	

Figure	4.9	 (a)	The	LS	estimator	of	a	convex	decreasing	density	 	based	on	a	sample	of
size	 .	(b)	The	process	 	of	Lemma	4.4	based	on	this	data
set.

Recall	that	in	the	definition	of	 ,	the	constraint	of	having	integral	equal	to	one	is	not
included.	 Using	 the	 characterization	 of	 ,	 it	 can	 be	 deduced	 that	 	 actually	 is	 a
probability	density.	This	is	one	of	the	statements	in	the	next	corollary.

Corollary	4.1	Let	 	satisfy	condition	(4.9)	of	Lemma	4.4	and	let	 .	Then:

i.	 	 for	 each	 	 such	 that	 ,	 where

.
ii.	 ,	where	 	is	the	largest	order	statistic	of	the	sample.
iii.	 The	least	squares	estimator	is	a	density,	so	 .
iv.	 Let	 	be	 the	points	of	change	of	slope	of	 	and	 let	 .

Then	 	and	 	have	the	following	“midpoint	properties”:

(4.12)

and

(4.13)

for	 ,	where	 .

Proof	For	proving	(i),	note	that	at	each	point	 	such	that	 	(note	that
such	 a	 point	 cannot	 be	 an	 observation	 point	 by	 Lemma	 4.3)	 we	 have	 by	 (4.9)	 that	

.	Since	 	throughout	and	both	 	and	 	are	differentiable
at	 ,	we	have	that	 .

For	(ii),	we	will	prove	that	the	upper	support	point	of	the	piecewise	linear	density	 ,	



,	satisfies	 .	From	Lemma	4.3	we	already	know	that	 .
Now	suppose	that	 .	Then	for	all	

However,	since	 	for	all	 ,	inevitably	the	inequality	part	of
(4.9)	would	be	violated	eventually.	Hence	 	and	(ii)	follows.
For	(iii),	combine	(i)	and	(ii)	to	get

The	 first	 part	 of	 (iv)	 is	 an	 easy	 consequence	 of	 the	 fact	 that	 ,	
	 (part	 (i)),	combined	with	 the	property	 that	 	 is	 linear	on	 the	 intervals	

.	Again	by	the	fact	that	 	is	linear	on	 ,	we	get	that	 	is	a	cubic
polynomial	on	 ,	determined	by

using	that	 	is	tangent	to	 	at	 	and	 .	This	implies	(4.13).	☐
Having	a	well	defined	estimator	for	the	convex	decreasing	density	and	knowing	some

of	its	properties,	we	will	now	consider	consistency	of	 .

Theorem	4.1	 (Consistency	 of	LS	density	 estimator)	 Suppose	 that	 	 are	 i.i.d.
random	 variables	 with	 bounded	 convex	 decreasing	 density	 .	 Then	 the	 least	 squares
estimator	 	based	on	 	is	uniformly	consistent	on	closed	intervals	bounded
away	from	 :	i.e.,	for	each	 ,	we	have,	with	probability	one,

(4.14)

Proof	The	proof	is	based	on	the	characterization	of	the	estimator	given	in	Lemma	4.4.	We
let	 	denote	the	set	of	locations	of	change	of	slope	of	 ,	where	 	is	defined	as	in
Lemma	4.4.

Fix	 ,	such	that	 	is	contained	in	the	interior	of	the	support	of	 ,	and	 let	
	be	the	last	point	of	change	of	slope	in	 ,	or	zero	if	there	is	no	such	point.

Since,	with	probability	one,

and,	 by	Lemma	4.3,	 the	 last	 point	 of	 change	 of	 slope	 is	 to	 the	 right	 of	 ,	 we	may
assume	that	there	exists	a	point	of	change	of	slope	 	strictly	to	the	right	of	 .	Let	
be	the	first	point	of	change	of	slope	that	is	strictly	to	the	right	of	 .	Then	the	sequence	

	 is	 uniformly	 bounded.	 This	 is	 seen	 in	 the	 following	 way.	 Let	
.	Then	 	and	hence,	by	Exercise	4.10,



This	implies	that	we	have	an	upper	bound	for	 	that	only	depends	on	 .	Indeed,
if	 ,	 	 by	 (4.10).	 If	 ,	 we	 can	 use
linearity	of	 	on	 	to	get

giving	 .	Moreover,	 the	 right	 derivative	 of	 	 has	 a	 uniform	 absolute
upper	bound	at	 ,	also	only	depending	on	 .	This	can	be	verified	analogously.

On	the	interval	 ,	we	have:

This	 follows	 from	 writing	 ,	 implying,	 using
integration	by	parts,

This	argument	was	used	in	the	proof	of	Lemma	4.4	on	the	interval	 .

Since	 ,	for	each	subsequence	of	 	there	must	be	a	further	subsequence
converging	 to	 a	 point	 .	 Using	 a	 Helly	 argument,	 there	 will	 be	 a	 further
subsequence	 	so	that,	for	each	 ,	 ,	where	
	is	a	convex	function	on	 ,	satisfying	 .	The	function	 	satisfies:

(4.15)

where	 the	 integrals	on	 the	 right	 side	are	 finite,	also	 if	 ,	 since	 .	But
this	implies

(4.16)

and	hence	 ,	for	 .	Since	 	can	be	chosen	arbitrarily	small,	we
get	that	for	any	 ,	each	subsequence	 	has	a	subsequence	that	converges	to	 	at
each	point	 .	By	the	monotonicity	of	 ,	the	convergence	has	to	be	uniform.	☐
The	 uniform	 consistency	 cannot	 be	 extended	 to	 the	 interval	 .	 Exercise	 4.11



shows	 that	 	 is	 inconsistent	 at	 zero.	 The	 next	 challenge	 is	 to	 derive	 the	 asymptotic
(pointwise)	distribution	of	 .	This	problem	will	be	addressed	in	Section	11.1.

4.4	 Log	Concave	Densities
A	density	 	on	 	is	said	to	be	log	concave	if	its	logarithm	 	is	concave,	i.e.,
for	all	 	and	

The	 best	 known	 log	 concave	 densities	 on	 	 are	 the	 normal	 densities.	However,	many
more	densities	are	log	concave,	 including	the	Laplace	densities	the,	Gumbel	density	and
uniform	densities	on	an	 interval.	 In	 the	 last	case,	 	 is	constant	on	 the	 interval
where	 	 is	 positive	 and	 	 outside	 this	 interval.	 Log	 normal	 densities	 are
automatically	 unimodal,	 in	 the	 sense	 that	 there	 exists	 an	 	 such	 that	 	 is
nondecreasing	on	 	and	nonincreasing	on	 	(see	Exercise	4.14).

Consider	the	problem	of	estimating	a	log	concave	density	 	based	on	an	i.i.d.	sample
of	 size	 	 from	 :	 .	 Denoting	 a	 typical	 dataset	 of	 this	 type	 by	

,	 a	natural	 approach	would	be	maximum	 likelihood,	 since	 the	 log	 likelihood
function	is	particularly	simple.	Indeed,	writing	 	with	 	concave,	we	have

This	 function	 is	 to	 be	 maximized	 over	 all	 concave	 functions	 	 such	 that	
.

Also	in	this	problem,	the	maximization	over	the	function	class	of	all	concave	functions
can	 be	 reduced	 to	 a	maximization	 problem	 over	 finitely	many	 (in	 fact	 )	 parameters.
Indeed,	 the	 solution	 to	 the	 optimization	 problem	 (if	 it	 exists)	 can	 be	 seen	 to	 be	 a	 log
concave	density	 	for	which	 	is	piecewise	linear	on	 	with	changes
of	slope	at	the	observed	data	points	 	and	 	for	 	and	 .
Here	 	denote	the	ordered	observations.

To	see	this,	first	note	that	there	exist	log	concave	densities	 	such	that	
(take	an	arbitrary	normal	density).	Then	consider	an	arbitrary	concave	function	 	with	

	that	satisfies	 .	Now	define	the	function	 	by
	 for	 all	 ,	 by	 linear	 interpolation	 between	 successive	 points	 	 and	
	 for	 	 and	 .	 Then	 concavity	 of	 	 implies	 that	 	 is

concave	and	 .	Hence,	 ,	implying	that	 .
Since	 	 for	 all	 ,	 .	 If	 ,	 so	 	 is	 really
different	 from	 ,	 one	 can	 define	 the	 log	 concave	 density	 	 with	

	for	all	 .	This	implies	 .	In	other	words:	for	each



log	concave	density	 	that	is	not	of	the	specified	type,	one	can	construct	a	log	concave
density	 	of	the	specified	type	such	that	 .	See	also	Figure	4.10.

	

Figure	4.10	 (a)	A	concave	log-density	 	and	a	piecewise	linear	function	that	coincides
with	 	at	the	three	observation	points.	(b)	The	corresponding	log	concave	density	and
piecewise	log	linear	subdensity.	Inflating	the	latter	to	obtain	a	true	probability	density	will
lead	to	a	log	concave	density	with	higher	log	likelihood	than	 .

Let	us	now	consider	the	ML	estimator	for	the	log	concave	density	 .	For	(fixed)	data
set	 ,	 write	 	 for	 	 and	 define	 the	 log
likelihood	function	with	Lagrange	relaxation	term	(see	Exercise	4.16)	by

(4.17)

For	 the	 last	 equality,	 see	Exercise	 4.15.	The	ML	estimator	 for	 	 is	 	where	
maximizes	 (4.17)	 over	 all	 concave,	 piecewise	 linear	 functions	 	 on	 	 with
changes	of	slope	restricted	 to	 the	points	 ,	 .	Existence	and	uniqueness	of
this	estimator	is	established	in	Exercise	4.17.

A	characterization	and	interesting	properties	of	the	ML	estimator	 	and	its	logarithm	
	can	be	obtained	by	a	by	now	familiar	variational	argument.	Let	 	be	a	function	on	

such	that	for	some	 	the	function	 	 is	concave	on	 .	Then	the	following
inequality	holds:

(4.18)

This	 necessary	 condition	 for	 optimality	 has	 some	 immediate	 consequences.	 Taking	
,	 it	 yields	 .	 Taking	 	 leads	 to	

,	so	that	the	expected	value	with	respect	to	the	MLE	equals	the	mean	of
the	sample.	Finally,	taking	 	we	obtain	 .	Hence,
the	variance	corresponding	to	the	MLE	is	smaller	than	or	equal	to	the	sample	variance	of



the	 s,	so	the	MLE	is	more	concentrated	than	the	empirical	distribution	function	of	the
data.	Considerations	in	this	line	also	lead	to	a	characterization	of	the	MLE.

Lemma	4.5	Let	 	be	a	concave	function	on	 	with	 	for	
and	linear	on	intervals	of	the	type	 	for	 .	Moreover,	assume	that	

.	Then	 	maximizes	 	over	all	concave	functions	of	the	same	type
if	and	only	if

(4.19)

where	 	 is	 the	 empirical	 distribution	 function	 of	 the	 ’s	 and	 	 the	 distribution
function	with	density	 .

Proof	Necessity	follows	from	(4.18).	Indeed,	suppose	 	maximizes	 	over	all	concave
functions	as	stated	and	define	for	 	the	function

Note	that	any	positive	multiple	of	this	function	can	be	added	to	 	without	destroying	its
concavity	and	that

(4.20)

and

(4.21)

Using	(4.18)	this	leads	to

Because	for	 	such	that	 	inequality	(4.18)	can	also	be	applied	to	the
function	 ,	the	equality	part	of	(4.19)	follows.

For	 sufficiency,	 use	 the	 following	 representations	 of	 	 and	 an	 arbitrary	 concave	 ,
piecewise	linear	between	successive	 s:



where	 	 and	 for	 ,	 .	 Using	 that	
,	it	follows	that

where	we	use	 the	 integral	 assumption	on	 	 in	 the	 last	 step,	 as	well	 as	 (4.20)	and
(4.21).	Furthermore,	defining	 	as	 the	set	of	 indices	
where	 ,	it	follows	that	the	summation	in	(4.22)	can	be	restricted
to	the	terms	 	in	view	of	the	equalities	in	(4.19)	for	 .	For	 ,	 	 so
that	the	lower	bound	reduces	to

by	the	inequalities	in	(4.19)	and	the	fact	that	 	for	 .	☐
Figure	 4.11	 shows	 the	 functions	 	 and	 	 respectively	 based	 on	 a	 sample	 of	 size	

	from	the	standard	normal	density.	Figure	4.12a	shows	the	estimator	 	based
on	this	data	set	along	with	the	empirical	distribution	function	 .	Figure	4.12b	visualizes
the	optimality	conditions	given	in	(4.19)	by	showing	 .
The	pictures	were	produced	using	the	logConDens	R-package	developed	by	Lutz	Dümbgen
and	Kaspar	Rufibach.



	

Figure	4.11	 (a)	The	MLE	 	of	the	log	density	 	based	on	a	sample	of	size	
from	the	standard	normal	density.	(b)	The	associated	MLE	 	of	 .	In	both	pictures	the
dashed	curve	denotes	the	underlying	function	to	be	estimated.

	

Figure	4.12	 (a)	The	MLE	 	of	the	distribution	function	 	based	on	the	sample	of
Figure	4.11.	(b)	The	optimality	conditions	of	(4.19).

4.5	 Star	Shaped	Distributions	on	
Let	 	be	a	random	variable	taking	values	in	the	interval	 	and	let	 	be	a	random
variable	 independent	 of	 	 and	 uniformly	 distributed	 on	 .	 Define	

	and	consider	the	problem	of	estimating	the	distribution	function	
of	 	 based	 on	 	 independent	 copies	 of	 the	 random	 variable	 .	 It	 is	 clear	 that	 the
distribution	function	of	 	is	given	by

This	expression	imposes	a	specific	shape	constraint	on	 :	a	star	shaped	constraint.	This
terminology	 comes	 from	 the	 fact	 that	 from	 every	 point	 in	 the	 set	

	(the	epigraph	of	 	on	 )	the	segment	connecting	
	 to	 this	point	 is	 also	contained	 in	 this	 set.	 In	 terms	of	monotonicity	 constraints	 it

entails	that	the	function	 	is	nondecreasing	on	 .



Note	that	in	view	of	the	relation	between	 	and	 ,	a	natural	estimator	for	 	based
on	the	ordered	set	of	observed	data	 	is	given	by

where	 	 denotes	 the	 empirical	 distribution	 function	 of	 the	 s.	 It	 is	 clear	 from
Figure	 4.13	 that	 this	 estimator	 does	 not	 satisfy	 the	 natural	 monotonicity	 constraint	 of
distribution	 functions.	On	 the	 other	 hand,	 the	 law	 of	 large	 numbers	 does	 show	 that	 for
each	 ,	 	as	 	with	probability	one.

	

Figure	4.13	 The	empirical	distribution	function	 	(a)	and	resulting	estimator	 	(b)
based	on	a	sample	of	size	 	from	the	(star	shaped)	distribution	function	

	on	 .

One	way	to	obtain	a	star	shaped	estimator	of	 	is	to	first	construct	an	estimator	for	the
primitive	 of	 ,	 and	 regularizing	 this	 estimator	 by	 taking	 its	 convex	 minorant.	 This
convex	estimator	can	be	differentiated	to	obtain	a	monotone	estimator	for	 ,	leading	to	a
star	shaped	estimator	for	 	via	multiplication	by	 .	Using	 	we	obtain	an	estimator
for	the	primitive	of	 :

Clearly,	 this	 is	an	unbiased	estimator	 for	 	and	by	 the	 law	of	 large
numbers	 it	 is	 pointwise	 strongly	 consistent.	 Moreover,	 since	 	 and	 	 are	 all
nondecreasing,	zero	at	zero	and	one	at	one	and	continuous,	the	pointwise	consistency	can
be	strengthened	to	uniform	consistency.	Taking	as	estimator	for	

where	 	 is	 the	 greatest	 convex	 minorant	 of	 	 on	 	 and	 the	 superscript	
denotes	 the	 right	derivative,	 consistency	can	be	derived	using	Lemma	3.1	 (see	Exercise
4.20).	 In	Figure	4.14	 ,	 	 and	 the	 resulting	 estimator	 	 are	 shown	 based	 on	 the
same	data	as	used	for	Figure	4.13.



	

Figure	4.14	 (a)	The	functions	 ,	 	and	underlying	(true)	 	based	on	the	same
data	as	used	in	Figure	4.13.	(b)	The	resulting	 .

Yet	another	interesting	estimator	in	this	model	is	the	ML	estimator.	A	first	problem	to
be	 solved	 is	 to	define	 the	 likelihood	properly.	As	 seen	 in	Exercise	4.18,	 unlike	 concave
distribution	 functions,	 star	 shaped	 distribution	 functions	 are	 not	 necessarily	 absolutely
continuous	with	respect	to	Lebesgue	measure.	A	density	of	 	with	respect	to	Lebesgue
measure	can	 therefore	not	be	used	 in	 the	definition	of	 the	 likelihood.	Analogous	 to	how
this	problem	is	dealt	with	when	the	ML	estimator	of	a	nonrestricted	distribution	function	is
defined	(see	Exercise	4.19),	the	following	definition	of	the	log	likelihood	function	seems
natural

(4.23)

Since	this	last	sum	does	not	involve	the	 	(or	equivalently	 ),	maximizing	this	function
over	all	star	shaped	distribution	functions	 	boils	down	to	maximizing	the	first	sum	over
all	 distribution	 functions	 	 on	 ,	 without	 further	 restrictions.	 The	 solution	 to	 this
problem	 is	 the	discrete	distribution	 function	with	masses	 	 on	 each	observed	value	

.	See	Exercise	4.19.	For	the	ML	estimator	of	 ,	this	means	that	it	is	defined	by

Note	 that	 this	 estimator	 does	 not	 consistently	 estimate	 :	 it	 converges	 almost	 surely
uniformly	 to	 	on	 .	 For	 the	dataset	 of	 size	 	 used	 in	 this	 section	 as
well	as	for	another	dataset	of	size	 ,	Figure	4.15	shows	 the	ML	estimates	 for	

.



	

Figure	4.15	 (a)	The	mle	 	of	 	and	the	underlying	(true)	 	based	on	the	same	data
as	used	in	Figure	4.13.	(b)	The	estimator	based	on	a	sample	of	size	 	from	the
same	distribution.

One	 could	 object	 against	 the	 definition	 of	 the	 log	 likelihood	 in	 the	 sense	 that	 a	 star
shaped	 distribution	 function	 on	 	 can	 never	 be	 purely	 discrete	 (except	 for	 the
degenerate	distribution	on	 ),	something	that	is	not	taken	into	account.	One	alternative
definition	would	be

which	 for	 star	 shaped	 distribution	 functions	 is	 really	 different	 from	 (4.23).	 It	 can	 be
shown,	 however,	 that	 the	 maximizer	 of	 this	 function	 will	 not	 result	 in	 a	 consistent
estimator	 for	 .	 In	 particular,	 for	 	 the	 uniform	 distribution	 function	 on	 ,	 the
estimator	will	converge	almost	surely	to	 	uniformly	on	 .

Consistent	likelihood-based	nonparametric	estimators	for	 	can	be	obtained	by	using
a	smoothing	idea	in	the	spirit	of	what	will	be	seen	in	Chapter	8.	Given	a	partition	of	
in	 	 intervals	 of	 length	 ,	 say	 	 for	 ,	 the	 following
smoothed	log	likelihood	can	be	defined:

If	 	tends	to	infinity	sufficiently	slowly,	the	maximizer	of	this	function	can	be	shown	to
be	consistent	for	 .

4.6	 Deconvolution	Problems
As	 in	 Section	 2.4,	 consider	 two	 independent	 samples	 	 and	
generated	by	 an	unknown	distribution	 function	 	 and	 a	 known	probability	 density	 .
Instead	 of	 observing	 these	 samples	 directly,	 a	 sample	 	 is	 observed	 where	

	 for	 each	 .	 The	 	 then	 constitute	 a	 sample	 from	 the	 convolution



density	given	by

(4.24)

Using	 the	 observable	 s,	 the	 density	 	 can	 be	 estimated	 directly,	 but	 needs	 to	 be
deconvolved	with	 	to	obtain	an	estimator	for	 .

If	the	characteristic	function	of	 	has	no	zeroes,	one	can	determine	the	characteristic
function	of	 	by	dividing	the	characteristic	function	of	 	by	that	of	 ,	so	that	 	can
be	found	by	Fourier	inversion.

Example	4.1	(Gaussian	deconvolution)	The	density	of	 	is	given	by

so	that	 	has	the	density

The	standard	normal	density	has	characteristic	function

Hence,	the	characteristic	function	of	 	is	given	by

A	 natural	 approach	 to	 estimating	 	 is	 to	 take	 the	 empirical	 characteristic	 function
based	on	the	observable	 s,	divide	it	by	the	(known,	computable)	characteristic	function
of	 	and	apply	the	inverse	Fourier	transform	to	this	function	to	obtain	an	estimator	for	
.	Quite	 some	work	 has	 been	 done	 in	 this	 direction.	A	 general	 problem	 faced	when	 this
approach	is	used	is	the	poor	quality	of	the	estimator	of	the	characteristic	function	of	 	for
large	values	of	 the	argument.	Usually	a	 truncation	is	used	in	 the	 integral	 to	compute	 the
inverse	Fourier	 transform.	As	seen	 in	Section	2.4,	 there	are	 situations	where	 the	 inverse
relation	 can	 be	 formulated	more	 explicitly,	without	 using	 characteristic	 functions,	 if	 the
type	one	resolvent	of	 	exists.	This	is	in	particular	the	case	when	 	and	 	is
smooth	 on	 	 with	 a	 finite	 discontinuity	 at	 zero.	 We	 have	 seen	 plug-in	 type
estimators	 for	 this	 situation.	 These	 estimators	 can	 be	 constructed	 explicitly.	 For	 ML
estimators	this	is,	in	general,	not	the	case.

In	 this	 section	we	consider	a	smooth	decreasing	density	 	on	 	 (although	 the
results	 hold	 also	 for	 more	 general	 noise	 densities)	 and	 introduce	 the	 nonparametric
maximum	 likelihood	 estimator	 in	 that	 case.	 Also,	 for	 this	 method,	 inverse	 Fourier
transforms	are	not	required.	The	class	of	densities	is	parameterized	by	the	class	 	of	all
distribution	functions	via	(4.24).



Based	on	a	realization	 	of	a	sample	 	from	a	density	 	of	type
(4.24),	the	log	likelihood	of	a	particular	distribution	function	 	is	given	by

(4.25)

Using	the	arguments	seen	before	(e.g.,	in	Lemma	4.4),	the	following	characterization	can
be	given	for	the	ML	estimator.

Lemma	 4.6	 Let	 	 and	 	 be	 as	 in	 (4.24).	 Then	 	 is	 the	 ML	 estimator
(maximizing	(4.25)	over	 )	if	and	only	if

This	characterizing	lemma	can	be	used	to	check	whether	a	given	 	maximizes	(4.25),
but	 it	 does	 not	 give	 a	 constructive	 way	 to	 obtain	 this	 maximizer.	 In	 Chapter	 7
computational	issues	for	this	type	of	implicitly	characterized	estimators	are	addressed.	We
generated	a	dataset	of	size	 	from	the	convolution	of	the	following	densities

(4.26)

(rescaled	Beta 	density	and	that	of	the	absolute	value	of	a	standard	normal	random
variable)	 and	 computed	 the	 ML	 estimator	 using	 the	 EM	 algorithm	 to	 be	 described	 in
Section	7.2;	see	also	Exercise	7.19.	In	Figure	4.16	the	ML	estimate	 	 is	given	with	the
underlying	distribution	function.	Moreover,	for	this	estimate,	the	function

is	shown	together	with	the	horizontal	line	at	level	one.	In	view	of	Lemma	4.6	is	clear	that	
	is	indeed	the	ML	estimator.



	

Figure	4.16	 (a)	The	ML	estimate	of	 	based	on	a	sample	of	size	 	from	the
density	 	with	 	and	 	defined	in	(4.26).	(b)	The	characterizing	(in-
)equalities	of	Lemma	4.6	are	visualized.

To	prove	Hellinger	consistency	of	the	ML	estimator	of	observation	density	 ,	we	use
Exercise	3.5.	It	suffices	to	show	that	the	class	of	functions

is	Glivenko	Cantelli,	i.e.,	that	for	

As	seen	in	Section	3.4,	a	sufficient	condition	for	this	is	that	for	each	 ,

To	see	that	this	entropy	with	bracketing	is	finite,	fix	 .	For	fixed	 ,	define
the	set

giving	 (by	 dominated	 convergence)	 that	 	 as	 .	 Choose	
sufficiently	small	such	that

Moreover,	 given	 this	 	 and	 corresponding	 ,	 construct	 the	 (in	 view	 of	 Exercise	 3.16
finitely	many)	 -brackets	 	of

Then	observe	(Exercise	4.22)	that	these	brackets	 	give	rise	to	brackets	 	in	
	where



and,	using	Exercise	4.21,	that

Hence,	 the	 constructed	 brackets	 	 are	 actually	 -brackets.	 This	 shows	 that	
.

Having	Hellinger	consistency	of	the	ML	estimator	of	the	observation	density,	i.e.

(4.27)

the	 next	 question	 of	 interest	 is	whether	 the	ML	estimator	 of	 the	 underlying	 distribution
function	 	is	also	consistent	for	 .

To	 prove	 this,	 note	 that	 in	 the	 current	 situation	 we	 have	 the	 following	 relation
expressing	the	distribution	function	 	in	terms	of	its	convolution	density	 :

where	 	 is	 the	 type	 one	 resolvent	 of	 ,	 solving	 the	 integral	 equation	
	on	 .	This	function	is	nonnegative	and	nondecreasing

on	 	(see	Section	2.4).	Using	these	properties	of	 ,	the	Cauchy	Schwarz	inequality,
the	inequality

and	the	equality	 ,	this	relation	implies	that	for	each	
,



The	right	hand	side	tends	to	zero	almost	surely	because	of	(4.27).	This	means	that	for	all	
,

Using	Exercise	4.23,	this	implies	that	for	each	 ,

Assuming	 continuity	 of	 ,	 pointwise	 consistency	 of	 	 follows.	 This	 can	 be
strengthened	to	uniform	consistency	along	the	lines	of	Exercise	3.2.

4.7	 Interval	Censoring	Case	2
We	now	discuss	an	extension	of	the	current	status	model	introduced	in	Section	2.3,	where
one	 considers	 more	 observation	 times	 per	 unobservable	 “hidden”	 variable	 .	 The
simplest	model	of	this	type	is	called	interval	censoring	case	2.	Let	 	be	an	unobservable
random	 variable	 from	 an	 unknown	 distribution	 function	 	 on	 .	Moreover,	 let	

	 be	 a	 random	 vector	with	 density	 ,	 independent	 of	 ,	 where	
with	probability	one.	Instead	of	observing	 	directly,	the	pair	 	together	with	the
indicators

are	 observed.	 These	 observations	 provide	 information	 on	 the	 position	 of	 the	 random
variables	 	with	respect	to	the	corresponding	observation	times	 	and	 .	This	setting
is	known	as	interval	censoring	case	2,	where	the	2	refers	to	the	number	of	inspection	times
for	each	 .

From	Exercise	4.24	we	get	that	the	density	(with	respect	to	an	appropriate	dominating
measure)	of	the	observable	vector	 	is	given	by

Now	 consider	 the	 situation	 that	 data	 	 ( )	 are	 observed	 as
independent	 realizations	of	 this	 random	vector.	The	 log	 likelihood	 for	 	 (apart	 from	 a
term	not	depending	on	 )	is	given	by

(4.28)

A	maximum	likelihood	(ML)	estimator	for	 	is	a	maximizer	of	this	log	likelihood.	First
note	 that	 the	 log	 likelihood	 only	 depends	 on	 the	 function	 	 through	 its	 values	 at	 the
points	 .	As	long	as	monotonicity	of	 	 is	preserved,	changing	
at	 intermediate	 values	 of	 the	 argument	 does	 not	 change	 the	 value	 of	 .	 Therefore,	 in
finding	 a	maximizer	 of	 	 over	 all	 distribution	 functions,	 attention	 can	 be	 restricted	 to



those	 that	 are	 piecewise	 constant	 with	 all	 jumps	 concentrated	 on	 the	 points	
	 and	 possibly	 one	 point	 to	 the	 right	 of	 the	maximal	 .	 Even	 a

further	reduction	of	possible	jump	points	can	be	made	(see	Exercise	4.25).	There	are	also
other	 estimators	 one	 can	 consider	 in	 this	model.	Examples	 of	 smooth	 estimators	 in	 this
situation	are	the	SMLE	(smoothed	maximum	likelihood	estimator)	and	MSLE	(maximum
smoothed	 likelihood	 estimator).	 Smooth	 estimators	 in	 this	 model	 will	 be	 discussed	 in
Section	8.6.

Figure	 4.17	 visualizes	 a	 generated	 dataset	 in	 the	 spirit	 of	 Figure	 2.7.	 The	 data	were
generated	 using	 sample	 size	 ,	 	 on	 	 and	 	 jointly
distributed	 as	 the	 minimum	 and	 maximum	 of	 two	 independent	 standard	 uniformly
distributed	random	variables.

	

Figure	4.17	 Visualization	of	a	data	set	of	size	 .	The	horizontal	line	at	level	
indicates	the	possible	values	of	 	given	the	observed	inspection	times	and	indicators	for
the	 th	subject.	If	 ,	the	line	corresponds	to	 ,	if	 	to	 	and	if

	it	represents	 .

For	 the	 ML	 estimator,	 a	 characterizing	 lemma	 can	 be	 proved	 using	 the	 variational
argument	used	before.	This	leads	to	the	following	lemma	(see	also	Exercise	4.26).

Lemma	4.7	The	(sub-)	distribution	function	 	maximizes	 	defined	by	(4.28)	over	all
piecewise	 constant	 (sub-)	 distribution	 functions	 	with	 jumps	 concentrated	 on	 the	 set	

	if	and	only	if

(4.29)



The	ML	estimator	will	 be	 considered	 from	 a	 computational	 point	 of	 view	 in	Section
7.2.	Using	 the	 iterative	 convex	minorant	 algorithm	 described	 there,	 the	 estimator	 given
Figure	 4.18a	 is	 found	 as	 maximizer	 of	 (4.28)	 over	 the	 class	 of	 piecewise	 constant
distribution	functions	described	earlier.	Figure	4.18b	shows	 the	picture	corresponding	 to
the	 characterizing	 (in-)equalities	 of	 (4.29)	 showing	 that	 indeed	 the	 distribution	 function
found	maximizes	the	log	likelihood.

	

Figure	4.18	 (a)	The	ML	estimate	of	 	based	on	the	data	given	in	Figure	4.17.	(b)	The
characterizing	(in-)equalities	of	Lemma	4.7.

Interestingly,	Lemma	4.7	also	characterizes	the	the	MLE	for	the	distribution	function	of
the	hidden	variable	in	the	case	that	one	has	more	observation	times	 	“per
hidden	variable”	 	and	not	necessarily	the	same	number	of	observation	times	for	all	 .
The	 log	 likelihood	 in	 this	 so-called	mixed	 case	 interval	 censoring	model	 has	 the	 same
structure	 as	 in	 case	 of	 two	 inspection	 times	 per	 subject	 because	 at	 most	 two	 of	 the
observation	times	of	the	set	 	are	relevant	for	the	location	of	the	hidden
variable.	 If	we	know	 that	 the	hidden	variable	 is	 located	between	 two	observation	 times,
while	 the	other	observation	 times	for	 this	hidden	variable	are	either	more	 to	 the	right	or
more	to	the	left,	then	these	other	observation	times	do	not	give	extra	information	and	do
not	play	a	role	in	characterizing	the	MLE.	Likewise,	if	we	know	that	the	hidden	variable
lies	to	the	right	of	all	these	observation	times,	all	observation	times	smaller	than	the	largest
one	do	not	give	extra	information.	A	similar	situation	occurs	if	the	hidden	event	time	lies
to	the	left	of	the	smallest	observation	time	for	this	variable.	In	the	last	two	cases	only	one
observation	 time	gives	 relevant	 information	and	 the	other	ones	can	be	discarded.	But	of
course	 the	 distribution	 theory	 will	 be	 different	 if	 we	 have	 more	 observation	 times	 per
unobservable,	and	higher	accuracy	of	the	MLE	of	 	can	be	expected	than	in	the	situation
that	we	just	have	two	observation	times.

From	an	asymptotic	point	of	view,	 there	 is	an	 interesting	distinction	between	models,
depending	on	whether	 inspection	 times	can	be	arbitrarily	close	 to	each	other	or	not.	For
practical	 purposes,	 the	 separated	 case	 (where	 there	 is	 some	 strictly	 positive	 minimal
distance	 	 between	 the	 two	 inspection	 times)	 is	 of	 more	 interest.	 In	 that	 case,	 the
asymptotic	 behavior	 of	 the	ML	 estimator	 is	 comparable	 to	 the	 behavior	 in	 the	 current
status	 (interval	 censoring	 case	 1)	model	 (see	 Section	 2.3).	 In	 case	 2	 one	 does	 get	 a	 bit
more	 information	 for	 each	 subject,	 but	 there	 are	 no	 subjects	 for	 which	 the	 variable	 of
interest	 	is	more	precisely	known	than	by	the	separation	threshold	 .	The	result



that	follows	(showing	the	 	rate	as	seen	in	Theorem	3.7	for	the	current	status	model)
is	proved	in	Groeneboom,	1996:	under	appropriate	conditions,

(4.30)

where	 	is	the	last	time	where	standard	two-sided	Brownian	motion	minus	the	parabola	
	reaches	its	maximum	(so	it	has	the	Chernoff	distribution	described	in	Section

3.9).	Here

with

See	Exercise	4.27	to	see	that	in	the	separated	case,	the	ML	estimator	is	more	accurate	than
if	data	were	obtained	within	the	current	status	model	(so	with	only	one	observation	time
per	subject).

Intuitively,	 it	 seems	 reasonable	 to	 expect	 that	 in	 the	 nonseparated	 situation	 better
estimation	is	possible	than	in	the	separated	case,	since	with	positive	probability	there	are
observation	 intervals	 	 of	 arbitrarily	 short	 length.	 The	 presence	 of	 an	 	 in	 a
small	observation	interval	 	gives	more	precise	information	on	its	location	than	in
a	 larger	observation	 interval.	On	 the	other	hand,	one	cannot	expect	 too	much	gain	 from
this,	since	the	probability	of	getting	a	small	interval	and	an	observation	 	contained	in	it
is	itself	small.	This	better	performance	could	materialize	in	a	faster	rate	of	convergence	or
merely	in	a	lower	asymptotic	variance.	In	Birgé,	1999,	an	alternative	estimator	to	the	ML
estimator	 is	proposed,	 attaining	 rate	of	 convergence	 	 in	 the	nonseparated
case.	 In	Groeneboom	and	Ketelaars,	2011,	 this	 estimator	 is	 shown	 to	 be	 asymptotically
normally	distributed	and	a	simulation	study	comparing	this	estimator	to	the	ML	estimator
indicates	 that	 the	ML	estimator	outperforms	 this	estimator.	The	 transition	 from	 the	 rate	

	 to	 	 quantifies	 the	 (small)	 gain	 in	 precision,	 in	 going	 from	 the
separated	 to	 the	nonseparated	case.	 In	Groeneboom	and	Wellner,	1992,	 it	 is	 conjectured
that	 under	 certain	 conditions	 on	 the	 densities	 	 and	 	 (including	 that	

),

(4.31)

where	 	 has	 the	 Chernoff	 distribution	 described	 in	 Section	 3.9.	 In	 Groeneboom	 and
Ketelaars,	2011,	a	simulation	study	can	be	found	showing	that	the	fit	between	the	variance
of	 the	MLE	 and	 the	 value	 predicted	 by	 the	 asymptotic	 theory	 on	 the	 basis	 of	 (4.31)	 is
rather	 good	 for	 the	 case	 in	 which	 	 is	 uniform.	 In	 the	 simulation	 study	 the	 uniform



density	on	 the	upper	 triangle	of	 the	unit	 square	 for	 the	pair	 	was	 chosen	 as	 an
example	of	the	observation	density	 	in	the	nonseparated	case.	Other	simulation	results
that	show	less	convincing	support	of	the	conjecture	can	also	be	found	in	Groeneboom	and
Ketelaars,	2011,	 but	 that	 is	 conceivably	due	 to	 slow	convergence	 to	 the	 limit	 as	 similar
behavior	is	found	for	Birgé’s	estimator	in	this	case.

Exercises
4.1	 Consider	 two	 independent,	 positive	 random	 variables	 	 and	 ,	 where	 	 has

distribution	function	 	and	 	density	 	 on	 .	Then	 the	 random	variable	
has	probability	density	 	on	 	given	by

4.2	Verify	inverse	formula	(4.1)	in	Wicksell’s	problem.

4.3	Argue	that	the	sampling	density	 	in	Wicksell’s	problem	cannot	be	standard	uniform.

4.4	 Show	 that	 if	 the	 squared	 sphere	 radii	 in	 Wicksell’s	 problem	 are	 exponentially
distributed,	 the	 same	 holds	 for	 the	 squared	 circle	 radii.	 Determine	 the	 relation
between	the	parameters	of	the	two	distributions.

4.5	Substituting	the	empirical	measure	 	based	on	an	i.i.d.	sample	
for	 	in	(4.1),	the	following	estimator	for	 	is	obtained:

a)	Show	that	for	each	 ,	 .

b)	Observe	that	 	is	not	a	monotone	function	(e.g.,	by	first	looking	at	the	estimator
for	a	sample	of	size	 ).

c)	Consider	a	point	 	where	 	is	continuous	and	such	that	 .	Argue
that	 	and	conclude	that	Var .

d)	Apply	the	central	limit	theorem	for	i.i.d.	random	variables	with	infinite	variance	to
derive	the	asymptotic	(normal)	distribution	of	the	estimator	 .

4.6	Verify	expression	(4.2)	for	the	primitive	 	of	the	function	 	in	Wicksell’s	problem.

4.7	Consider	the	isotonized	estimator	 	defined	as	right	derivative	of	the	least	concave
majorant	of	the	process	 	defined	in	(4.2).	Use	Lemma	3.1	to	show	that	for	 ,	

	almost	surely	as	 .

4.8	A	 natural	method	 to	 apply	 in	Wicksell’s	 problem	 is	 maximum	 likelihood.	 Given	 a
realization	 	 of	 the	 sample	 	 from	 ,	 define	 the	 log
likelihood	function	by



Show	that	for	certain	choices	of	 ,	this	function	can	be	made	infinite.	Hint:	think	of	
	with	a	peaked	density	at	an	observation	point.

4.9	As	seen	in	Exercise	4.8,	taken	over	the	class	of	all	distribution	functions	 	on	 ,	
	is	unbounded	(it	even	takes	infinite	values).	One	way	out	is	to	restrict	the	class	of

distribution	functions	to	be	considered.

a)	 A	 natural	 class	 of	 distribution	 functions	 seems	 to	 be	 the	 one	 consisting	 of
piecewise	constant	distribution	functions,	only	having	jumps	at	the	observed	data	

.	 Show	 that	 for	 this	 type	 of	 distribution	 function,	 ,
implying	that	 	for	all	distribution	functions	of	this	type.

b)	Show	that	allowing	for	mass	to	the	right	of	 	 (e.g.,	at	 )	or	excluding
the	term	 	from	the	log	likelihood,	one	obtains	a	log	likelihood	such
that	 	for	some	 	and	 	for	all	 .

4.10	 Show	 that	 all	 convex	 decreasing	 densities	 	 on	 	 satisfy	 the	 inequality	
	for	all	 .	Hint:	consider	triangular	densities	 	where

4.11	 Show	 that	 the	 least	 squares	 estimator	 	 of	 a	 convex	 decreasing	 density	 is
inconsistent	at	zero.

4.12	 Show	 that	 if	 the	 maximum	 likelihood	 estimator	 for	 a	 convex	 decreasing	 density
based	on	a	sample	of	size	 	exists,	it	will	be	a	piecewise	linear	density	with	at	most
one	change	of	slope	between	two	successive	observations,	one	change	of	slope	to	the
right	 of	 the	 largest	 order	 statistic	 	 and	 no	 changes	 of	 slope	 at	 observed	 data
points.	 Hint:	 starting	 from	 an	 arbitrary	 convex	 decreasing	 density	 ,	 construct	 a
convex	 decreasing	 subdensity	 	 of	 the	 required	 type	 that	 has	 the	 same	 log
likelihood;	then	define	 .

4.13	Consider	estimating	a	convex	decreasing	density	based	on	a	sample	of	size	 .
Write	 	for	the	observed	value	and	show	that	the	least	squares	estimator	considered
in	Section	4.3	and	the	ML	estimator	of	Exercise	4.12	are	given	by,	respectively,

4.14

a)	Show	that	all	log	concave	densities	are	unimodal.

b)	Show	that	a	log	concave	density	 	has	subexponential	tails,	in	the	sense	that	for
some	 ,



c)	 Show	 that	 the	 Laplace,	 logistic	 and	 Beta 	 densities	 with	 	 are	 log
concave,	i.e.,

4.15	 Let	 	 be	 the	 function	 defined	 on	 	 as	 linear	 interpolation	 of	
	and	 .	Show	that

provided	 .	 In	 the	 case	 	 it	 is	 clear	 that	 the	 integral	 is	 given	 by
.

4.16	Show	that	if	 	maximizes	the	relaxed	log	likelihood	given	in	(4.17)	over	the	class	of
log	 concave	 functions	 on	 ,	 	 is	 a	 probability	 density	 in	 the	 sense	 that	

.	Hint:	argue	that

equals	zero	and	and	evaluate	the	limit.

4.17	Show	that	the	function	 	defined	by	the	first	equality	in	(4.17)	is	strictly	concave	on
the	 class	 of	 concave	 functions.	 Conclude	 existence	 and	 uniqueness	 of	 the	 ML
estimator	 	maximizing	 .

4.18	Construct	a	star	shaped	distribution	function	on	 	that	is	not	continuous.

4.19	Consider	an	i.i.d.	sample	 	from	a	distribution	with	unknown	distribution
function	 .	Denote	the	class	of	all	distribution	functions	on	 	by	 	and	its	subclass
of	distribution	functions	with	continuous	density	functions	by	 .	On	 the	subclass	

,	the	log	likelihood	function	can	be	defined	by

a)	Show	that	 	is	unbounded	on	 ,	so	that	the	ML	estimator	of	 	over	 	is	not
well	defined.

Denote	the	subclass	of	all	discrete	distribution	functions	on	 	by	 .	Define,	 for	
,	the	log	likelihood	function	based	on	 	by

(4.32)

where	 .

b)	 Show	 that	 the	 maximizer	 of	 	 defined	 in	 (4.32)	 over	 all	 discrete	 distribution
functions	 is	 given	 by	 the	 empirical	 distribution	 function	 of	 .	 Hint:



first	argue	that	if	a	maximizer	exists,	it	should	assign	all	its	mass	to	the	observed	
s.	 Then,	 denote	 the	 number	 of	 distinct	 values	 among	 the	 s	 by	 	 and

parameterize	 the	 optimization	 problem	 in	 terms	 of	 probability	 vectors	
	satisfying	 	for	all	 	and	 .

4.20	Fill	 in	 the	details	of	 the	consistency	result	 for	 the	estimator	 	defined	 in	Section
4.5.

4.21	 Define,	 for	 ,	 the	 function	 	 on	 .	 Show	 that	 	 is
nondecreasing	and	that	its	derivative	satisfies	 .

4.22	Show	in	the	context	of	Section	4.6	that	if	 	 for	 functions	 ,
then	also

See	also	Exercise	4.21.	Conclude	that	a	bracket	 	in	 	gives	rise	to	a	bracket
	in	 .

4.23	Consider	a	sequence	of	(possibly	sub-)	distribution	functions	 	and	a	distribution
function	 	such	that	for	all	

a)	Show	 that	 the	 sequence	 	 is	 asymptotically	 tight,	 in	 the	 sense	 that	 for	 each	
	 there	 exists	 an	 	 such	 that	 for	 all	 	 sufficiently	 large	

.

b)	Show	that	for	all	

4.24	Show	that,	given	 	in	the	interval	censoring	case	2	model,	the	distribution	of	the
triple	 	is	given	by

Note	that	this	distribution	can	be	written	compactly	as	follows

for	 	with	 .

4.25	Argue	that	in	maximizing	the	log	likelihood	for	the	interval	censoring	case	2	model,
attention	can	be	restricted	to	piecewise	constant	distribution	functions	having	jumps
restricted	to	the	set

where	 .

4.26	 Prove	 Lemma	 4.7	 by	 taking	 directional	 derivatives	 of	 the	 log	 likelihood	 (4.28)	 in



appropriate	directions.

4.27	The	asymptotic	distribution	of	 the	ML	estimator	 for	 	based	on	current	 status
data	 is	 given	 in	 Theorem	 3.7.	 Based	 on	 two	 inspection	 times	 that	 are	 strictly
separated,	 (4.30)	 gives	 the	 asymptotic	 distribution	 of	 the	 ML	 estimator.	 Both
asymptotic	distributions	are	the	same	up	to	a	scale	change.	Argue	intuitively	that	the
ML	 estimator	 in	 the	 current	 status	 setting	 should	 not	 have	 smaller	 asymptotic
variance	than	the	ML	estimator	in	the	interval	censoring	case	2	setting.	Also	compare
the	asymptotic	variances.
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5
Higher	Dimensional	Problems

There	are	many	situations	in	which	one	is	interested	in	a	bivariate	or	higher	dimensional
distribution	 function	 and	 direct	 observations	 from	 that	 distribution	 function	 are	 not
available.	Just	like	Chapter	4,	this	chapter	is	concerned	with	estimating	such	distribution
functions	 based	 on	 observations	 that	 only	 carry	 partial	 information	 on	 the	 underlying
random	quantity	of	interest.	The	competing	risk	model	with	current	status	observations	is
introduced	and	studied	in	Section	5.1.	This	model	is	related	to	the	current	status	model	of
Section	2.3,	but	apart	from	information	on	whether	or	not	a	subject	already	died	at	time	of
inspection,	 information	 on	 the	 death	 cause	 (belonging	 to	 a	 finite	 set	 of	 causes)	 is	 also
available	 in	 case	 the	 subject	 has	 already	 died.	 Another	 model	 of	 interest	 concerns	 the
natural	 two-dimensional	 generalization	 of	 the	 current	 status	 model.	 The	 unobservable
random	 quantity	 of	 interest	 is	 a	 bivariate	 event	 time	 and,	 based	 on	 two-dimensional
inspection	 times,	 a	 quadrant	 in	 	 can	 be	 identified	 where	 the	 event	 took	 place.	 This
problem	and	the	more	general	bivariate	case	2	interval	censoring	model	are	considered	in
Section	5.2.	In	the	current	status	with	continuous	marks	model,	the	quantity	of	interest	is
again	a	random	vector	 	in	 .	Based	on	an	inspection	time	 	for	 ,	its	current
status	is	observed,	so	whether	or	not	 .	In	case	 ,	also	 the	corresponding
value	 	 is	 observed.	 Otherwise	 	 is	 not	 observed.	 This	 model,	 to	 be	 considered	 in
Section	5.3,	 is	 clearly	 related	 to	 the	 competing	 risks	model,	where	 the	 discrete	 variable
indicating	the	risk	factor	is	replaced	by	a	possibly	continuous	random	variable.	Finally,	the
problem	 of	 estimating	 a	 multivariate	 log	 concave	 density	 is	 considered	 in	 Section	 5.4.
Unlike	monotonicity,	 the	 concept	 of	 convexity	 is	well	 established	 in	 higher	 dimensions
and	log	concave	densities	on	 	can	be	estimated	nonparametrically.

5.1	 Competing	Risks	with	Current	Status	Observations
Consider	a	situation	where	for	a	certain	object	 there	are	several	 (say	 )	possible
causes	 of	 failure	 and	 that	 at	 a	 random	 point	 	 in	 time	 the	 object	 is	 inspected.	 It	 is
observed	whether	or	not	this	object	broke	down	before	time	 	or	not	(its	current	status).
In	case	the	object	has	broken	down,	it	is	also	observed	which	of	the	 	possible	causes
(competing	 risks)	 lead	 to	 the	 breakdown.	 Write	 	 for	 the	 time	 of	 breakdown	 and	

	for	the	corresponding	cause.	Together	with	inspection	time	 ,	the
indicator	vector

is	observed.	Note	that	if	all	indicators	are	zero,	this	means	that	 .	If	 	also
the	 breakdown	 cause	 is	 observed,	 so	 then	 exactly	 one	 of	 the	 	 indicators	 equals	 .
Assuming	 	 to	 have	 joint	 distribution	 function	 	 and	 	 to	 be	 independent	 of	

,	 this	 model	 is	 known	 as	 the	 competing	 risk	 model	 with	 current	 status
observations.	See	Figure	5.1	for	the	various	possibilities	for	 	given	an	observation



	 with	 .	 Data	 of	 this	 type	 arise	 naturally	 in	 cross-sectional	 studies	 with
several	 failure	 causes.	Moreover,	 similar	 data	 arise	 in	HIV	 vaccine	 trials;	 see	Hudgens
et	al.,	2001.	Clearly,	the	model	is	a	generalization	of	the	current	status	model	introduced	in
Section	2.3	since	that	model	corresponds	to	the	situation	 .

	

Figure	5.1	 Graphical	representation	of	the	observed	data	 	in	an	example	with	
	competing	risks.	The	horizontal	line	segments	indicate	the	values	of	

that	are	consistent	with	 ,	for	each	of	the	four	possible	values	of	 	also	indicated
in	the	pictures.

Note	that,	given	 ,	the	vector

(5.1)

has	 a	 multinomial	 distribution	 with	 parameters	 	 and	
	where

is	the	subdistribution	function	of	 	for	risk	level	 	and	 	is	the	marginal
distribution	 function	of	 	 (see	Exercise	5.1).	Denoting	by	 	 the	 th	 unit	 vector	 in	

,	 by	 	 counting	 measure	 on	 	 and	 	 the
distribution	of	 ,	we	can	define	the	measure	 	on	 .	With	respect	to
this	(dominating)	measure,	the	density	of	a	single	observation	 	is	given	by

where	 .

Now	consider	an	independent	sample	of	size	 ,	distributed	as	 ,

where,	for	 ,

Also	define



Using	(5.2)	 and	 independence	of	 the	observations,	 the	 log	 likelihood	 (divided	by	 )	 is
given	by

where	 	 is	 the	 empirical	 distribution	 of	 ,	 .	 An	 MLE	
	can	then	be	defined	by	the	property

where

Before	considering	this	MLE,	we	first	follow	an	approach	taken	in	Jewell	et	al.,	2003.
There,	part	of	the	information	in	the	data	is	discarded,	reducing	the	problem	of	estimating
the	subdistribution	functions	 	to	the	known	current	status	problem.	For	
the	 th	element	of	the	vector	 	is	defined	as	maximizer	of	the	 th
marginal	log	likelihood	for	the	reduced	current	status	data	 ,	 :

over	 the	 class	 	 of	 all	 subdistribution	 functions	 on	 .	Thus,	 	 uses	 only	 the	 th
entry	of	the	 -vector.	We	see	that	the	maximum	marginal	likelihood	estimator	splits	the
estimation	problem	into	 	well	known	univariate	current	status	problems.	Therefore,	its
computation	 and	 asymptotic	 theory	 follow	 straightforwardly	 from	 known	 results	 on
current	 status	data.	But	 this	 simplification	 comes	 at	 a	 cost.	For	 example,	 the	 constraint	

	may	be	violated	(see	Exercise	5.5).

To	 illustrate	 the	 estimator	 	 (and	 the	ML	 estimator	 ),	 we	 use	 the	 two	 data	 sets
represented	in	Figure	5.2.	These	data	sets	are	generated	as	follows.	The	number	of	risks	is	

	 and	 	 is	 independent	 of	 .	 The	 distribution	 function	 of	 	 is	
	 on	 	 and	 	 and	 	 are	 distributed	 as

follows	 ( ):	 	 and	 	 for	
.	This	yields

(5.7)



Using	the	reduced	datasets,	we	obtain	the	estimators	 	for	 	and	 	for	 	using	the
characterization	of	Lemma	2.3.	Figure	5.3	 shows	 the	 estimates	based	on	 the	datasets	of
size	 	and	1,000.	Note	that	indeed	for	both	data	sets	one	of	the	subdistribution	functions
is	 estimated	 by	 a	 genuine	 distribution	 function	 (implying	 in	 this	 case	 that	 the	 range
constraint	on	 	is	violated	by	 ).

	

Figure	5.2	 Graphical	representation	of	a	data	set	of	size	 	and	
respectively,	with	 	competing	risks.	The	lines	below	the	lowest	dashed	line
indicate	the	intervals	containing	the	 s	corresponding	to	observed	 s	with	
(so	with	risk	variable	 ).	The	lines,	then,	for	 	( ),	are	given	between
the	two	dashed	lines.	The	lines	above	the	highest	dashed	line	indicate	the	intervals
containing	those	 s	with	 .

	

Figure	5.3	 The	marginal	ML	estimators	based	on	two	marginal	data	sets	obtained	from
Figure	5.2.	The	solid	line	is	 	and	the	dashed	function	the	estimate	 	as	maximizer	of
(5.6)	over	all	subdistribution	functions.	The	dotted	functions	are	the	underlying
subdistribution	functions	 	and	 	given	in	(5.7).

We	now	return	to	the	MLE.	This	estimator	was	first	defined	in	Hudgens	et	al.,	2001.	To
understand	 its	 form,	 let	 ,	where	 	 is	as	defined	 in	 (5.5).
Since	only	values	of	the	subdistribution	functions	 	at	the	observation	times	appear	in
the	log	likelihood	 ,	it	makes	sense	to	only	estimate	the	subdistribution	functions	at	these
values.	 In	 doing	 so,	 optimization	 problem	 (5.4)	 reduces	 to	 a	 finite	 dimensional



optimization	problem.	Its	solution	exists	by	corollary	38.10	in	Zeidler,	1985.

Defining	the	sets	 	by

for	 ,	the	following	lemma	is	proved	in	Groeneboom	et	al.,	2008a.

Lemma	 5.1	 For	 each	 ,	 	 is	 unique	 at	 .	 Moreover,	
	is	unique	if	and	only	if	 	for	all	observations	with	 .

See	also	Exercise	5.6.	Comparing	 the	optimization	problem	for	 the	MLE	with	 that	of
the	marginal	estimators,	we	note	the	following	differences:

a.	 The	objective	function	 	for	the	MLE	contains	a	term	 ,	involving	the	sum	of
the	 subdistribution	 functions,	while	 the	 objective	 function	 	 for	 the
marginal	estimator	 	only	contains	the	individual	components.

b.	 The	set	 	for	the	MLE	contains	the	constraint	 ,	while	the	set	 	for	 the
components	of	 	only	involves	range	constraints	on	the	individual	components.

It	 turns	 out	 that	 the	 MLE	 also	 has	 an	 interpretation	 via	 the	 derivatives	 of	 greatest
convex	minorants.	Since	in	practice	there	often	will	be	ties,	we	denote	the	log	likelihood
by

(5.9)

where	we	assume	that	there	are	 	strictly	different	order	statistics	 	in	the	sample	that
has	a	total	of	 	observations,	and	where	we	assume	that	there	are	 	observations	with	

,	 ,	at	the	 th	order	statistic.

Then	 the	MLE	 ,	 ,	 is	 the	 greatest	 convex	minorant	 of	 the	 (self-
induced)	cusum	diagram	with	points	 	and

where

This	means	that	the	(self-induced)	cusum	diagrams	are	given	by

(5.10)



where	 	is	given	by

(5.11)

and	 	is	the	largest	of	the	strictly	different	order	statistics	(see	earlier).

This	convex	minorant	characterization	 is	derived	 from	corollary	2.10	 in	Groeneboom
et	al.,	2008a	(Exercise	5.4),	which	is	given	as	follows.

Lemma	5.2	(Corollary	2.10,	Groeneboom	et	al.,	2008a)	Let	 	be	given	by	(5.11),	then
	 is	 an	MLE	 if	 for	 all	 	 and	 each	 point	 	 such

that	

where	equality	holds	if	 	is	a	point	of	increase	of	 	and	where	 	is	the	largest	of
the	strictly	ordered	order	statistics.

Algorithms	for	computing	the	MLE	are	discussed	in	Section	7.5.	The	more	complicated
objective	function	for	the	MLE	poses	new	challenges	in	the	derivation	of	the	local	rate	of
convergence	of	 the	MLE.	Moreover,	 it	gives	 rise	 to	a	new	limiting	process	 for	 the	 local
limiting	distribution	of	the	MLE,	see	Groeneboom	et	al.,	2008b.	The	constraint	
on	the	space	over	which	we	maximize	is	important	for	smaller	sample	sizes,	but	its	effect
vanishes	asymptotically.	Figure	5.4	shows	the	ML	estimators	based	on	the	data	of	Figure
5.1.	The	estimators	are	computed	using	the	R-package	MLEcens.

	

Figure	5.4	 The	ML	estimators	based	on	the	data	represented	in	Figure	5.1.	The	solid
function	is	 ,	the	dashed	function	 .	The	dotted	functions	are	the	underlying
distribution	functions	 	and	 	given	in	(5.7).

In	 a	 simulation	 study	 in	 Groeneboom	 et	 al.,	 2008a,	 properties	 of	 the	 MLE	 and	 the
marginal	estimator	are	compared	empirically.	The	MLE	and	the	marginal	estimator	seem
to	behave	in	a	similar	way	for	small	values	of	 ,	but	tend	to	diverge	for	larger	values	of	
.	 Furthermore,	 the	 marginal	 estimator	 often	 violates	 the	 constraint	 for	 the	 marginal



distribution	of	 ,	that	 .

We	 note	 that	 for	 the	 data	 sets	 of	 Figure	 5.1	 both	 	 and	 	 provide
estimators	for	the	overall	(marginal)	failure	time	distribution	 	of	 .	A	third	estimator
for	 this	 distribution	 is	 given	 by	 the	 MLE	 for	 the	 reduced	 current	 status	 data	

,	 ignoring	 information	 on	 the	 failure	 causes.	 These	 three	 estimators	 are
typically	not	the	same;	see	Figure	5.5.

	

Figure	5.5	 Various	estimators	of	the	marginal	distribution	function	 	based	on	the
data	of	Figure	5.1:	the	ML	estimate	 	(solid),	the	Jewel	estimate	
(dashed)	and	the	ML	estimate	based	on	current	status	data	 	without	taking
into	account	the	information	on	the	risk	causing	the	various	failures	(dash-dotted).	The
dotted	function	is	the	underlying	distribution	function	 ,	where	 	and	 	are
given	in	(5.7).

5.2	 Bivariate	Interval	Censoring
In	Section	2.3	the	current	status	model	is	introduced	and	in	Section	4.7	the	more	general
case	 2	 interval	 censoring	model	 is	 introduced.	Bivariate	 extensions	 of	 these	models	 are
considered	 in	 this	 section.	We	start	with	 the	bivariate	current	 status	model.	The	 random
vector	of	interest	is	 ,	assumed	to	have	an	unknown	(joint)	distribution	function	
.	This	 random	vector	cannot	be	observed.	 Instead,	a	bivariate	 inspection	 time	 ,
independent	of	 	and	having	 joint	distribution	function	 ,	 is	observed,	 together
with	the	information	in	which	of	the	quadrants	(relative	to	 )	 	is	located.
More	precisely,	the	observation	is	the	quadruple	 ,	where

(5.12)

See	 also	 Figure	 5.6,	 indicating	 for	 given	 values	 of	 	 the	 possible	 regions	 for	
	 given	 the	 information	 in	 .	 Defining	 the	 measure	 	 on	

,	where	 	is	the	probability	measure	with	distribution	function	



and	 	counting	measure	on	 ,	the	density	of	this	random	vector	is	given	by

See	also	Exercise	5.7.

	

Figure	5.6	 Given	 ,	the	four	quadrants	that	can	possibly	contain	 	are
indicated	by	the	possible	observable	indicator	vectors	 .

Now	 consider	 having	 an	 i.i.d.	 sample	 ,	 	 of
observations	 from	 the	 bivariate	 current	 status	 model.	 The	 log	 likelihood	 of	 	 is	 then
given	by

A	 maximum	 likelihood	 estimator	 	 maximizes	 	 over	 all	 bivariate	 distribution
functions	 .	Another	formulation	is	that	 	has	to	maximize

over	 ,	where	 	and	 	are	the	first	and	second	marginal	distribution	functions	of	 ,
respectively,	 and	 	 is	 the	 empirical	 distribution	 function	 of	 the	 observations	

.	Unlike	the	univariate	current	status	model,	a	simple	construction	of	the
MLE	 via	 a	 greatest	 convex	 minorant	 is	 not	 known.	 What	 can	 be	 derived	 is	 a
characterization	of	 the	MLE	via	 (in-)	equalities.	Uniform	consistency	can	be	proved	 for
this	estimator,	 if	 the	underlying	distribution	has	compact	support,	and	the	distribution	of
the	hidden	variable	 is	absolutely	continuous	with	respect	 to	 the	observation	distribution.
The	 reason	 that	 the	 MLE	 is	 consistent	 for	 the	 bivariate	 current	 status	 model,	 and
inconsistent	 for	 the	 bivariate	 right	 censoring	 model	 (where	 one	 has,	 in	 fact,	 more
information),	is	that	in	the	latter	case	the	MLE	only	uses	the	information	on	lines,	if	 the



observation	is	uncensored	in	one	coordinate,	and	does	not	use	the	surrounding	information
for	the	uncensored	coordinate.	One	would	need	information	on	the	conditional	distribution
on	these	lines	to	distribute	mass	in	such	a	way	that	a	consistent	estimate	would	result,	but
this	conditional	distribution	is	not	available,	since	it	is	part	of	the	estimation	problem.

In	 this	 section,	 we	 look	 for	 a	 ML	 estimator	 over	 the	 class	 of	 bivariate	 distribution
functions	that	can	be	represented	as

(5.15)

where	we	denote	by	 	the	quadrant	 ,	where	 .
The	optmality	conditions	are:

for	all	 .	We	must	have	equality	in	(5.16),	if	 ,	
,	where	the	rectangles	 	are	the	generators	of	the	solution,	i.e.,	if	the	corresponding

	(see	Exercise	5.8).

For	 the	 case	 2	 type	 bivariate	 interval	 censoring	 model,	 still	 the	 random	 vector	 of
interest	 is	 given	 by	 ,	 but	 now	 a	 typical	 observation	 is	 given	 by	 the
following	vector:

Here,	 independent	 of	 ,	 	 where	 	 is	 a	 distribution
function	on	 	such	that	under	 ,	 	and	 	with	probability	one.
Moreover,

Given	 ,	 Figure	 5.7	 shows	 the	 various	 possibilities	 for	
	indicating	the	region	containing	 .	With	respect	to	the

measure	 	 on	 ,	 where	 	 is	 the	 distribution	 on	 	with
distribution	 function	 	 and	 	 counting	 measure	 on	 ,	 this	 observation	 has
density

(5.17)



where	 	denotes	the	area	defined	by	 	and	the
indicator	vector	 	using	Figure	5.7	(see	also	Exercise	5.9).

	

Figure	5.7	 The	nine	regions	that	possibly	contain	 	indexed	by	the	observable
indicator	vector	 .

Now	consider	an	independent	sample	obtained	in	this	way,

(5.18)

where

The	log	likelihood	of	 	is	then	given	by

(5.19)

where	 	 is	 given	 by	 (5.17)	 and	 	 denotes	 the	 empirical	 distribution	 of	 the
observations	given	in	(5.18).	Defining

and	the	corresponding	generic	values	 	similarly,	the	measure	 	can	be	defined
by

and	an	MLE	of	 	is	then	obtained	by	maximizing



over	bivariate	distribution	functions	 .	The	Fenchel	optimality	conditions	become

with	 equality	 if	 	 is	 a	 point	 of	 mass	 of	 .	 The	 MLE	 is	 consistent;	 see,	 e.g.,
Song,	2001.	 In	 Section	 8.7	 a	maximum	 smoothed	 likelihood	 estimator	 (MSLE)	will	 be
considered,	 obtained	 by	 maximizing	 the	 smoothed	 log	 likelihood,	 which	 arises	 if	 we
smooth	the	measures	 .

In	Section	7.4,	algorithmic	issues	for	this	model	are	discussed,	in	particular	also	for	a
sieved	version	of	 the	ML	estimator,	where	 inequalities	 (5.21)	 are	only	attained	at	 a	 fine
grid	of	 -values.	Figure	5.8	 shows	 this	 approximate	ML	estimator	 together	with	 a
picture	of	 the	 real	underlying	distribution	 function	 for	 a	 sample	of	 size	 	and
underlying	distribution	with	density	 	on	the	unit	square.



	

Figure	5.8	 Sieved	MLE	(a)	and	underlying	distribution	function	
	(b)	for	a	sample	of	size	 	with	a	uniform

observation	distribution	on	 .

A	picture	of	the	levels	of	the	MLE	and	the	underlying	distribution	function	is	shown	in
Figure	 5.9.	 The	 estimate	 of	 the	 MLE	 seems	 pretty	 good.	 There	 is	 a	 conjecture	 that	 it
converges	 at	 rate	 ,	 just	 like	 the	 univariate	MLE	 (in	 the	 separated	 case),	 but	 this
conjecture	 has	 not	 been	 proved.	 We	 will	 say	 more	 about	 this	 issue	 in	 the	 chapter	 on
asymptotics.	A	 picture	 of	 the	marginal	 distribution	 functions	 of	 the	MLE	 are	 shown	 in
Figure	5.10.	In	Section	7.4	also	a	real	bivariate	interval	censored	data	set	from	Betensky
and	 Finkelstein,	 1999,	 is	 analyzed,	 where	 	 denotes	 the	 time	 the	 opportunistic
cytomegalovirus	(CMV)	appears	in	the	blood	of	a	patient	and	 	the	time	it	appears	in	the
urine.



	

Figure	5.9	 The	level	plots	of	the	MLE	and	the	underlying	distribution	function	(dashed),
for	the	same	sample	as	in	Figure	5.8.

	

Figure	5.10	 First	(a)	and	second	(b)	marginals	of	the	MLE	(solid	curves)	for	the	same
sample	as	in	Figure	5.8.	The	real	underlying	marginal	distribution	functions	are	given	by
the	dashed	curves.

5.3	 Current	Status	with	Continuous	Marks
Consider	a	random	vector	 	in	 	with	distribution	function	 .	 Instead	of



observing	this	vector	directly,	we	observe	an	inspection	time	 ,	independent	of	 ,
together	with	the	indicator	 .	Moreover,	in	case	 ,	also	the	associated	
	is	observed.	If	 ,	 	is	not	observed.	One	can	think	of	 	as	survival	time	and	
	as	associated	continuous	mark	that	is	only	observed	if	 the	patient	has	already	died	at

time	 	 (possibly	 some	 quantity	 that	 has	 been	 measured	 postmortem).	 An	 application
where	 observations	 can	 be	 modeled	 by	 this	 model	 is	 the	 HIV	 vaccine	 trial	 studied	 by
Hudgens	et	al.,	2007.	In	these	HIV	vaccine	trials,	participants	were	injected	with	a	vaccine
and	tested	for	infection	with	HIV	during	several	follow	ups.	Efficacy	of	the	vaccine	might
depend	on	the	genetic	sequence	of	the	exposing	virus,	and	the	so-called	viral	distance	
between	the	DNA	of	the	infecting	virus	and	the	virus	in	the	vaccine	could	be	considered	as
a	continuous	mark	variable.	In	general,	the	time	 	to	HIV	infection	is	subject	to	interval
censoring	case	 ,	with	current	status	censoring	(or	interval	censoring	case	1)	as	a	special
instance.	The	 current	 status	 continuous	marks	model	 is	 clearly	 related	 to	 the	 competing
risk	 with	 current	 status	 observations	 in	 the	 sense	 that	 then	 	 has	 a	 distribution
concentrated	on	a	finite	number	of	labels	(death	causes).

Figure	 5.11	 shows	 the	 possible	 observation	 sets,	 either	 	 or	
.	 Now	 suppose	 	 has	 (joint)	 density	 	 on	 .	 Then	
	and	the	observable	data	can	be	summarized	as	 .	Indeed,	if

the	 second	component	 is	 zero,	 this	means	 	 almost	 surely	 and	 if	 it	 is	 nonzero,	 it
equals	 	 almost	 surely.	 The	 random	 vector	 	 takes	 values	 in	

,	where	the	second	component	has	a	point	mass	at	zero.	To	derive	the
density	of	 ,	consider	the	following	dominating	measure	on	
:	for	 	a	Borel	set	in	 ,

and	 	denotes	Lebesgue	measure	on	 .	Now,	denoting	by	 	 the	density	of	 ,
the	density	of	 	with	respect	to	dominating	measure	 	is	given	by

(5.22)

See	Exercise	5.10	for	an	alternative	expression.



	

Figure	5.11	 The	two	possible	sets	containing	 	depending	on	whether	
(a)	or	 	(b).

Now	suppose	we	have	a	 sample	 	 from	density	 (5.22)
and	consider	the	problem	of	estimating	 	from	these.	A	natural	estimator	to	define	would
then	be	the	ML	estimator,	maximizing	the	log	likelihood	function

over	a	large	class	of	joint	densities	 .

The	MLE	 in	 the	 current	 status	 continuous	marks	model	 is	 inconsistent	 and	Maathuis
and	Wellner,	2008,	obtain	a	consistent	estimator	by	discretizing	the	mark	variable	to	
levels.	 The	 resulting	 observations	 can	 then	 be	 viewed	 as	 observations	 from	 the	 current
status	 -competing	 risk	 model.	 Apart	 from	 consistency,	 global	 and	 local	 asymptotic
distribution	 properties	 for	 the	 MLE	 in	 the	 latter	 model	 were	 proved	 in	 Groeneboom
et	 al.,	 2008a,	 and	 Groeneboom	 et	 al.,	 2008b.	 Asymptotic	 results	 for	 	 as	

	are	not	yet	known.

In	Groeneboom,	 Jongbloed	and	Witte,	2012,	 an	 alternative	method	 is	 considered,	 the
approach	 via	 maximum	 smoothed	 likelihood.	 This	 is	 a	 natural	 approach,	 as	 in	 other
models	 where	 MLEs	 are	 inconsistent	 (Section	 4.5),	 MSLEs	 (maximum	 smoothed
likelihood	estimators)	also	provide	consistent	estimators.	The	basic	idea	is	to	replace	the
empirical	distribution	function	in	the	log-likelihood	by	a	smooth	estimator.	It	is	proved	in
Groeneboom,	 Jongbloed	 and	 Witte,	 2012,	 that,	 for	 a	 histogram-type	 smoothing	 of	 the
observation	 distribution,	 the	 resulting	 MSLE	 is	 consistent	 under	 certain	 regularity
conditions,	 so	 avoids	 the	 inconsistency	 of	 the	 raw	 MLE.	 A	 rather	 fast	 converging
algorithm	is	provided	for	computing	the	MSLEs	in	the	appendix	of	the	cited	paper.	More
on	maximum	smoothed	likelihood	estimation	can	be	found	in	Chapter	8.

5.4	 Multivariate	Log	Concave	Densities
Contrary	 to	 the	 definition	 of	 monotonicity	 in	 higher	 dimensions,	 the	 definition	 of
convexity	 and	 concavity	 is	 straightforward	 and	 unambiguous	 in	 higher	 dimensions.	 In



fact,	 the	 one-dimensional	 definition	 immediately	 generalizes	 to	 saying	 that	 a	 function	
	is	concave	if	and	only	if,	for	all	 ,

(5.23)

Replacing	 	 by	 	 yields	 the	 definition	 of	 convexity.	 In	 Section	 4.4	 the	 problem	 of
estimating	 a	 log	 concave	 density	 on	 	 is	 introduced.	 In	 this	 section	 the	 multivariate
problem	is	discussed.

Consider	a	probability	density	 	on	 	such	that	 	is	concave	on	 ,	i.e.,
it	satisfies	(5.23)	for	all	 	and

This	 density	 	 is	 then	 called	 log	 concave.	 There	 are	 many	 examples	 of	 log	 concave
densities	on	 ,	e.g.,	the	class	of	Gaussian	densities	(see	Exercise	5.11).

Now	 let	 	 be	 the	 realization	 of	 a	 sample	 of	 size	 	 from	 a	 log	 concave
probability	density	on	 .	Define	the	log	likelihood	by

(5.24)

The	 ML	 estimator	 can	 be	 defined	 as	 maximizer	 of	 this	 function	 over	 all	 log	 concave
densities	on	 .	From	Exercise	5.14	it	follows	that	whenever	this	ML	estimator	is	well
defined,	it	can	be	defined	as	maximizer	of	 	over	all	log	concave	functions	(rather	than
only	density	functions)	on	 .	Another	property	of	the	ML	estimator,	if	it	exists,	is	that
its	 support	 equals	 the	 convex	 hull	 	 of	 the	 observed	 s	 in	 	 (see	 Exercise	 5.16).
Moreover,	 it	 can	 be	 seen	 that	 with	 probability	 one	 the	 set	 	 has	 positive	 Lebesgue
measure	in	 	as	soon	as	 .	Finally,	another	structural	property	of	an	ML	estimator
(if	 it	 exists)	 can	 be	 derived:	 log	 piecewise	 linearity.	 This	 follows	 from	 Exercise	 5.17.
Having	 noted	 all	 this,	 existence	 of	 the	 ML	 estimator	 can	 be	 established.	 Indeed,	 a
candidate	log	concave	function	 	is	determined	by	its	values	taken	at	the	observed	data
points	 ,	say	 .	Moreover,	log	likelihood	function	(5.24)	depends	on
these	values	continuously	(see	Exercise	5.18).	In	view	of	Exercise	5.19,	maximization	of	
	 may	 be	 restricted	 to	 a	 bounded	 subset	 of	 .	 Since	 a	 continuous	 function	 on	 a

bounded	 subset	 of	 	 attains	 its	 maximal	 value,	 existence	 of	 the	 ML	 estimator	 is
guaranteed.

We	 illustrate	 the	 the	ML	 estimator	 of	 a	 log	 concave	 function	 on	 	 using	 a	 dataset
studied	in	Schoemaker,	1996,	derived	from	data	reported	in	Mackowiak	et	al.,	1992.	For
65	men	and	65	women	the	body	temperature	and	heart	rate	are	given.	Figure	5.12	shows	a
scatter	plot	of	the	measurements.



	

Figure	5.12	 (a)	Scatter	plot	of	the	body	temperature	( C)	and	heart	rate	(beats	per
minute)	data.	The	circles	indicate	measurements	for	men,	the	crosses	measurements	for
women.	(b)	Level	sets	for	the	ML	estimator	of	the	log	concave	density	based	on	all	data.

Modeling	the	data	to	be	a	sample	from	a	log	concave	density	on	 ,	the	same	for	both
male	and	female,	the	R-package	LogConcDEAD	by	Cule,	Gramacy	and	Samworth	(see	Cule
et	al.,	2009)	can	be	used	to	obtain	level	sets	of	 the	ML	estimator.	Figure	5.12	shows	the
level	sets	corresponding	to	the	ML	estimator.

Exercises
5.1	Show	that	the	conditional	distribution,	given	 ,	of	the	vector	given	in	(5.1)	is

5.2	Consider	the	following	small	dataset	in	the	context	of	the	competing	risk	model	with
current	status	observations:

Clearly,	 	 and	 	 in	 this	 example.	 Compute	 the	 estimators	 introduced	 in
Section	5.3	based	on	these	data.

5.3	In	marginal	log	likelihood	(5.6),	 	occurs	for	all	observed	values	of	 ,	for	all	 .
This	 is	 somewhat	 peculiar,	 since	 for	 level	 ,	 the	 s	 corresponding	 to	

	 (indicating	 that	 failure	 occurred	 before	 ,	 due	 to	 cause	 )	 enter	 the	 log
likelihood	as	if	it	were	known	that	the	corresponding	failure	due	to	cause	 	happened
after	 ,	 whereas	 it	 is	 only	 known	 that	 failure	 due	 to	 cause	 	 happened
(hypothetically	because	failure	had	already	happened	due	to	cause	 )	after	 .
Construct	a	log	likelihood	that	incorporates	this	information.

5.4	Derive,	in	the	competing	risk	model,	the	convex	minorant	characterization	of	the	MLE
via	a	set	of	convex	minorants	of	the	cusum	diagrams	in	(5.10)	from	Lemma	5.2.

5.5	 Suppose	 in	 the	 competing	 risk	 current	 status	 model	 that	 the	 highest	 	 observed
corresponds	 to	 a	 value	 	 for	 some	 .	 Argue	 that	 the	 naive
estimate	 	 is	 then	 a	 genuine	 distribution	 function,	 with	 .	 If



there	is	also	a	 	with	corresponding	 	for	some	 ,	argue	that	
for	 	 and	 conclude	 that	 	 will	 in	 general	 not	 satisfy	 the	 range
constraint	 .

5.6	Verify	Lemma	5.1	for	the	case	 ,	the	univariate	current	status	model,	e.g.,	using
the	characterization	of	the	ML	estimator	in	Lemma	2.3.

5.7	Show	that	the	density	of	the	observable	vector	in	the	bivariate	current	status	model	is
given	by	(5.13).

5.8	 Let	 	 be	 a	 bivariate	 distribution	 function	 that	 can	 be	 represented	 as	 (5.15)	 and
maximizes	 log	 likelihood	 (5.14)	 in	 the	 bivariate	 current	 status	 model	 over	 all
bivariate	distribution	 functions	of	 that	 type.	Show	 that	 	 then	necessarily	 satisfies
inequalities	(5.16).

5.9	For	 	and	 	given,	show	that

in	(5.17).

5.10	Derive	density	(5.22)	for	the	observable	vector	in	the	current	status	with	continuous
mark	model	and	observe	that	this	density	can	also	be	written	as

where	 	 is	 the	distribution	function	of	 	corresponding	with	 	 and	 	 the
marginal	distribution	of	 	under	 .

5.11	Let	 	be	the	density	of	a	Gaussian	random	variable	 	 in	 ,	with	mean	
and	nonsingular	covariance	matrix	 .	Show	that	 	is	log	concave.

5.12	 Let	 	 be	 concave	 and	 decreasing	 on	 .	 Define,	 for	 ,
.	Show	that	 	is	concave	on	 .

5.13	Let	 	 be	 univariate	 log	 concave	 densities.	 The	 product	 density	 on	 	 is
given	by

Show	that	 	is	a	log	concave	density	on	 .

5.14	Suppose	that	 	maximizes	(5.24)	over	all	log	concave	functions	on	 .	Show	that
then,	necessarily,	 .

5.15	Let	 	be	a	 log	concave	density	on	 	 such	 that	 its	 support	has	positive	Lebesgue
measure.	Show	 that	 the	convex	hull	 	of	a	 sample	of	 size	 	 from	 	has	positive
Lebesgue	measure	with	probability	one.

5.16	Let	 	be	a	log	concave	density	on	 	and	 	be	given.	Denote	by	
the	convex	hull	of	 	and	define



For	 	 as	 defined	 in	 (5.24),	 argue	 that	 .	 Moreover,	 argue	 that	 the
inequality	is	strict	in	case	 .

5.17	Let	 	be	a	log	concave	density	on	 .	Define	 	for	 	and

Show	 that	 	 is	 log	 concave	 and	 	 where	 	 is	 as	 defined	 in
(5.24).

5.18	 Show	 that	 log	 likelihood	 function	 (5.24)	 depends	 continuously	 on	 the	 values
	of	the	log	concave	density	 	evaluated	at	the	data.

5.19	Assume	that	the	convex	hull	 	of	the	points	 	has	strictly	positive	volume
(something	that	happens	with	probability	one	if	the	underlying	density	has	support	on

	with	positive	Lebesgue	measure	and	 ).

a)	Take	 	and	observe	that	 .

b)	Let	 	be	a	log	concave	function	on	 	such	that	 	 is	piecewise	linear	 in	 the
spirit	of	Exercise	5.17.	Argue	 that	 there	exists	a	 	such	 that	
implies	that	 	on	a	subset	of	 	with	Lebesgue	measure	greater	than	or
equal	to	 .

c)	 Combine	 (a)	 and	 (b)	 to	 show	 that	 in	 maximizing	 (5.24)	 over	 all	 log	 concave
functions,	 one	 can	 determine	 a	 value	 	 such	 that	 maximization	 may	 be
restricted	to	those	densities	 	for	which	 	for	all	 .
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6
Lower	Bounds	on	Estimation	Rates

Consider	 the	 problem	 of	 estimating	 the	 distribution	 function	 	 in	 the	 exponential
deconvolution	 model	 described	 in	 Example	 2.4.	 In	 that	 case,	 the	 sampling	 density	 is
known	to	belong	to	the	class

If	 one	 wants	 to	 estimate	 the	 distribution	 function	 	 at	 a	 fixed	 point	 ,	 a	 natural
functional	in	terms	of	 ,	one	is	interested	in	the	following	(rather	unnatural)	functional	of
the	sampling	density	 :

See	(2.20).	The	problem	of	estimating	 	based	on	a	sample	from	the	density	 	that	is
known	to	belong	to	a	class	 	of	densities	possesses	an	intrinsic	difficulty.	In	this	chapter
we	consider	the	problem	of	quantifying	this	complexity	in	some	detail.

Let	 	be	a	class	of	densities	on	a	measure	space	 	carrying	a	 -finite	measure	
	and	 	a	functional	defined	on	 .	We	are	interested	in	the	intrinsic	difficulty	of	the

problem	of	estimating	 	based	on	a	sample	from	a	density	 ,	which	 is	known	to	be
contained	 in	 .	 In	 the	next	 section	we	 introduce	 the	concept	minimax	 risk	as	a	way	 to
measure	how	hard	this	estimation	problem	is.	In	Section	6.2	a	 theorem	is	proved	stating
that	the	minimax	risk	can	asymptotically	be	bounded	from	below	by	a	quantity	involving	a
local	modulus	of	continuity	of	 	over	 .	The	proof	of	this	theorem	is	quite	elementary,
having	the	triangle	inequality	at	its	heart.	In	Section	6.3	another	frequently	used	tool	for
deriving	 lower	bounds	 for	 the	minimax	 risk	 is	 introduced:	 the	Van	Trees	 inequality.	We
will	 see	 that	 the	 modulus	 of	 continuity	 encountered	 in	 Section	 6.2	 also	 appears	 quite
naturally	when	 applying	 the	Van	Trees	 inequality.	 Finally,	 in	 Section	 6.4,	we	 apply	 the
theory	to	some	of	the	problems	introduced	in	Chapters	2	and	4.

6.1	 Global	and	Local	Minimax	Risk
In	this	section	we	derive	a	quantity	depending	on	the	class	of	densities	 ,	the	functional	

	and	the	sample	size	 ,	which	can	be	used	to	measure	the	difficulty	of	the	problem	of
estimating	 	based	on	a	sample	of	size	 	from	a	density	 	known	to	be	contained	in	
.	The	asymptotic	behavior	of	 this	quantity	 for	 	depends	on	 	and	 	 only.

That	behavior	gives	information	on	the	complexity	of	the	estimation	problem.

Let	 	( )	be	an	estimation	procedure,	i.e.,	a	sequence	of	measurable	functions	
	 where	 .	 For	 each	 	 the	 random	 variable	

,	 where	 	 is	 a	 sequence	 of	 independent



identically	distributed	random	variables	with	density	 ,	is	an	estimator	for	 .	For
well	 behaved	 estimators	 we	 expect	 the	 random	 variable	 	 to	 be	 concentrated
around	zero	in	some	sense.	One	way	to	formalize	this	is	to	define	the	risk	of	the	estimation
procedure	 ,	evaluated	at	 ,	as	follows:

(6.1)

where	 	 is	an	 increasing	 loss	 function	on	 	with	 	 if	 and	only	 if	
and	 	is	the	 -fold	product	density	associated	with	 .	To	say	that	“at	a	point	
”	 the	 estimator	 	 is	 better	 than	 the	 estimator	 	 means	 that	

	for	the	corresponding	estimation	procedures.	To	be	able
to	say	that	the	estimator	 	is	better	than	the	estimator	 	“over	 ,”	the	behavior	of
the	 estimators	 at	 a	 fixed	 	 is	 not	 enough:	 the	 awkward	 estimator	 	 behaves
very	 well	 at	 ,	 but	 for	 all	 	 with	 	 its	 risk	 cannot	 tend	 to	 zero	 as	

.	Therefore,	we	define	the	max	risk	of	 	over	 	as	follows:

(6.2)

meaning	that	the	quality	of	 	is	measured	by	its	worst	case	performance	over	 .	Taking
the	infimum	in	(6.2)	over	all	possible	procedures	 ,	we	get	a	quantity	called	the	(global)
minimax	risk	for	estimating	 	based	on	a	sample	of	size	 	known	to	be	generated	by	a
density	belonging	to	 .	Explicitly:

(6.3)

For	fixed	 	this	quantity	indicates	how	hard	the	estimation	problem	is.

It	 is	 clear	 that,	 if	 	 is	 finite	 for	 some	 ,	
	is	a	decreasing	sequence	of	positive	numbers.	In	fact,	usually	

	 for	 .	The	rate	 	 of	 this	 convergence	 is	 a	measure	 for
the	ill-posedness	of	the	estimation	problem.	If,	for	 ,

we	say	that	 	is	 estimable	with	loss	function	 .

It	is	trivially	true	that	for	each	sequence	 	of	subsets	of	

(6.4)

The	quantity	at	the	right	hand	side	of	(6.4)	is	called	a	local	minimax	risk.	Apart	from	the
fact	that	the	global	minimax	risk	can	be	bounded	from	below	by	any	local	minimax	risk,



the	 local	minimax	 risk	 is	 an	 interesting	 quantity	 in	 its	 own	 right.	 If	 	 is	 a	 shrinking
neighborhood	of	one	fixed	 	(in	some	sense	to	be	made	explicit	in	Section	6.2),	the
dependence	on	 	 of	 	 for	 	 indicates	 the	 role	 played	 by	 the
true	underlying	density	 	 in	 the	difficulty	of	 the	estimation	problem.	For	 instance,	 if	 it
can	be	shown	in	a	specific	example	that

	 is	 -estimable	with	 loss	 function	 ,	 and	 denoting	 by	 	 the	 true	 underlying
density,	no	estimation	procedure	that	performs	well	for	all	 ,	with	 	for	all
large	 ,	can	give	rise	to	a	normalized	risk	satisfying

Of	 course,	 if	 for	 each	 	 the	 asymptotic	 local	minimax	 risk	 is	 determined	 over	 a
sufficiently	rich	subset	of	 	containing	 ,	 the	global	minimax	risk	can	be	obtained	by
maximizing	those	local	minimax	risks	for	 .

In	the	next	section	we	will	give	a	simple	method	to	derive	a	lower	bound	on	the	rate	of
convergence	 to	 zero	 of	 ,	 using	 inequality	 (6.4)	 for	 an	 appropriate
sequence	 of	 subsets	 	 of	 .	 Besides	 the	 straightforward	 method	 to	 derive	 a	 lower
bound	 on	 a	 minimax	 risk	 by	 restricting	 the	 class	 of	 densities,	 there	 is	 also	 a
straightforward	 way	 to	 derive	 an	 upper	 bound	 for	 a	 minimax	 risk:	 for	 each	 fixed
estimation	procedure	 ,

We	focus	on	lower	bounds	on	the	minimax	risk,	but	see	Example	6.1	where	also	the	risk
of	a	particular	estimator	is	computed	in	a	parametric	setting.

6.2	 A	Minimax	Lower	Bound	Theorem
Theorem	6.1	 can	 be	 used	 to	 derive	 an	 asymptotic	 lower	 bound	 for	 the	 optimal	 rate	 for
estimating	 a	 functional	 of	 a	 density	 that	 is	 known	 to	 belong	 to	 a	 class	 of	 densities	 .
Before	stating	 this	 theorem,	we	 introduce	 the	Hellinger	distance	between	densities,	a	bit
more	 general	 than	 in	 Section	 3.1	 (and	 also	 using	 	 to	 denote	 it	 rather	 than	 	 for
obvious	reasons	here).

Definition	6.1	Let	 	and	 	be	probability	densities	on	a	measurable	space	 	with
respect	to	a	dominating	 -finite	measure	 .	The	Hellinger	distance	 	between	
	and	 	is	then	defined	as	the	square	root	of



The	integral	 	is	called	the	Hellinger	affinity.

If	 we	 use	 the	 special	 loss	 function	 ,	 as	 in	 Theorem	 6.1,	 we	 denote	 the
corresponding	minimax	risk	by	 .

Now	suppose	that	we	want	to	estimate	a	real-valued	parameter	 	that	can	be	written	
,	 where	 	 is	 a	 probability	 density	 with	 respect	 to	 a	 -finite	 measure	 	 on	 a

measurable	space	 .	Let	 ,	be	a	sequence	of	estimators	of	 ,	based	on
samples	 of	 size	 ,	 that	 is:	 ,	 where	 	 is	 a	 sample
generated	 by	 ,	 and	 	 is	 a	 measurable	 function.	 Furthermore,	 let	

	 be	 an	 increasing	 loss	 function,	 with	 .	 The	 risk	 of	 the
estimator	in	estimating	 ,	using	the	loss	function	 ,	is	then	defined	by

where	 	 denotes	 the	 expectation	 with	 respect	 to	 the	 product	 measure	 ,
corresponding	to	the	sample	 .	Then	we	have	the	following	result.

Theorem	6.1	Let	 	be	 a	 class	of	probability	densities	on	a	measurable	 space	
with	respect	to	a	 -finite	dominating	measure	 ,	and	let	 	be	a	real-valued	functional
on	 .	 Moreover,	 let	 	 be	 an	 increasing	 convex	 loss	 function,	 with	

.	Then,	for	any	 	such	that	the	Hellinger	distance	 :

In	the	proof	of	Theorem	6.1	we	need	some	facts	concerning	the	Hellinger	distance.	A
very	useful	relation	exists	between	the	Hellinger	distance	between	the	product	densities	

	 and
	 with	 respect	 to	 the	 dominating

product	measure	 	on	 ,	and	the	distance	between	the	densities	 	and	 	on	 :

See	 also	 Exercise	 6.2.	 We	 shall	 also	 need	 the	 inequality	 given	 in	 Lemma	 6.1.	 This
inequality	is	sometimes	referred	to	as	LeCam’s	inequality.

Lemma	6.1	Let	 	and	 	be	probability	densities	on	a	measurable	space	 	with
respect	to	a	dominating	measure	 .	Then

Proof	Writing	 out	 the	 square,	 the	 second	 inequality	 is	 trivial.	 The	 first	 inequality	 is
essentially	Cauchy-Schwarz:



Proof	of	Theorem	6.1.	By	Jensen’s	inequality,

Hence,	if	we	can	prove	the	theorem	for	 ,	we	get,	by	the	monotonicity	of	 :

So	it	suffices	to	prove	the	result	for	 .	We	get,	using	the	triangle	inequality	and
Lemma	6.1:

This	proves	the	result.	☐
We	note	that	for	each	subclass	 	of	 	containing	 	for	all	 	sufficiently	large,	the
minimax	 risk	 lower	 bound	 given	 in	 Theorem	 6.1	 holds.	 In	 particular,	 the	 lower	 bound
holds	for	all	Hellinger	 -balls	around	 .

Considering	the	lower	bound	given	in	Theorem	6.1,	and	the	fact	that	we	may	choose	
	freely	as	long	as	the	condition	on	its	Hellinger	distance	to	 	is	satisfied,	we	can	try

to	optimize	the	lower	bound.	This	means	that	we	should	make	it	as	large	as	possible.	We
should	 therefore	make	 	 as	 large	 as	 possible	 and	 at	 the	 same	 time	 make	

	 as	 small	 as	 possible.	 A	 formal	 way	 of	 stating	 this	 problem	 is	 to	 define	 the
modulus	of	continuity	of	 	over	 	locally	at	 ,	with	respect	to	the	Hellinger	metric:

(6.6)

Theorem	6.1	then	leads	to	Corollary	6.1.



Corollary	6.1	Let	 	be	a	class	of	densities	on	 	and	 	a	functional	on	 .	Fix	
,	and	let	the	function	 	be	defined	as	in	(6.6).	Then	for	each	subset	 	of	 	containing
some	Hellinger	ball	around	 ,

(6.7)

for	each	positive	 .

Proof	Fix	 .	For	all	 	sufficiently	large,	the	Hellinger	ball	of	radius	 	around
	 in	 ,	 is	 contained	 in	 .	 Now	 choose	 	 such	 that	 	 and	

.	Then

☐
It	 is	especially	the	behavior	of	the	function	 	near	zero	 that	 is	 important	for	 the	 lower
bound	of	the	minimax	risk.	In	many	problems,	of	which	we	will	see	examples	later,	this
behavior	can	be	described	by

(6.8)

for	 some	 positive	 parameters	 	 and	 ,	 possibly	 depending	 on	 .	 Then	 we	 get	 the
following	result.

Corollary	6.2	Let	 	be	a	class	of	densities	on	 	and	 	a	functional	on	 .	Fix	
,	 and	 let	 the	 function	 	 be	 defined	 as	 in	 (6.6),	 allowing	 an	 asymptotic	 expansion	 as
given	in	(6.8).	Then	for	each	subset	 	of	 	containing	some	Hellinger	ball	around	 ,

(6.9)

Proof	From	Corollary	6.1	we	have	that	for	each	

Maximizing	this	lower	bound	with	respect	to	 	gives	the	result.	☐

6.3	 Lower	Bound	Based	on	the	Van	Trees	Inequality
Besides	the	method	of	Theorem	6.1	there	are	more	methods	known	to	derive	lower	bounds
for	the	rate	of	convergence	to	zero	of	a	local	minimax	risk.	In	this	section	the	Van	Trees
inequality	is	derived	and	it	is	shown	that	the	modulus	of	continuity	as	defined	in	(6.6)	also



arises	naturally	when	this	 inequality	 is	used	 to	bound	the	asymptotic	 local	minimax	risk
from	below.

Let

be	 a	 family	 of	 probability	 densities	 with	 respect	 to	 a	 dominating	 measure	 	 on	 a
measurable	space	 .	Consider	the	problem	of	estimating	a	(differentiable)	function	

	of	 	based	on	a	random	element	 	having	density	 .	Let	 	be	an
estimator	for	 	and	consider	its	 -risk

Let	 	 be	 any	 absolutely	 continuous	 probability	 density	 (with	 respect	 to	 Lebesgue
measure)	 on	 	 satisfying	 .	 Furthermore,	 define	 the	 Fisher
information	for	 	in	 	by

(6.10)

and	the	Fisher	information	in	the	location	model	generated	by	 	by

Lemma	6.2	(Van	Trees	inequality)	Suppose	that

(6.11)

Then

(6.12)

Proof	First	note	that

(6.13)

where	we	 use	 that	 	 and,	 in	 the	 second	 equality,	 integration	 by	 parts.
Using	that	 	is	a	probability	density	with	respect	to	 ,	this	implies	that



Hence,	using	Cauchy-Schwarz	we	obtain

For	the	second	factor	on	the	left	hand	side	we	can	write

using	 (6.11)	 and	 the	 fact	 that	 	 is	 a	 probability	 density	 with	 respect	 to	 .	 Hence,
substituting	this	result	in	(6.14),	we	get	Van	Trees	inequality	(6.12).	☐
We	will	now	use	Lemma	6.2	to	bound	from	below	a	local	minimax	risk	of	the	type	(6.4),
with	quadratic	loss	function	 	(making	it	slightly	less	general	 than	the	method
of	Theorem	6.1).	To	that	end,	first	note	that	by	Lemma	6.2,

Since	the	left	hand	side	involves	 	and	the	lower	bound	does	not,	this	inequality	implies
that	for	any	estimator	 	and	absolutely	continuous	probability	density	 	on	 	with	

(6.15)

We	 will	 restrict	 ourselves	 to	 the	 case	 where	 	 is	 a	 convex	 class	 of	 densities	 with
respect	 to	 	 on	 .	 Let	 the	 parameterized	 one-dimensional	 subclasses	 	 of	 	 be
defined	by



where	 	 is	 a	 sequence	 of	 densities	 satisfying	 the	 conditions	 of	 Theorem	 6.1	 and
Lemma	6.3.

Lemma	6.3	Let	 	and	 	be	densities	on	 ,	such	that

for	all	 	sufficiently	large	and

(6.16)

Then	there	is	a	vanishing	sequence	of	positive	numbers	 	such	that

for	all	 .

Proof	Using	(6.16),	the	first	inequality	follows	from

where	 	 is	 a	 vanishing	 sequence	 of	 positive	 numbers.	 The	 second	 inequality	 can	 be
shown	as	follows,	using	that	 	for	 .

where	 	for	all	 	and	 .	☐



Now	define	for	each	 	fixed,	 ,	 	and	 .	Then	we	can
prove	the	following	theorem.

Theorem	6.2	Let	 	be	a	convex	class	of	densities	on	 	and	 	a	linear	functional	on	
.	 Fix	 .	 Let	 	 be	 a	 sequence	 of	 densities	 in	 	 satisfying	 the	 conditions	 of
Lemma	6.3	and

(6.17)

for	a	 .	Then

(6.18)

Proof	Denoting	by	 	the	 	minimax	risk,	i.e.,	the	minimax	risk	based
on	the	loss	function	 ,	we	get	for	each	

where	we	use	(6.15).

Using	linearity	of	 	and	the	fact	that	 	integrates	to	one,	we	get

(6.20)

From	Exercise	 6.6	 it	 follows	 that	 the	 Fisher	 information	 on	 	 in	 a	 random	 vector	
	( 	as	defined	in	(6.10))	is	 	times	the	information	 	on	

in	 .

Moreover,	the	conditions	imposed	on	 	imply	that

uniformly	in	 	for	 	(see	Exercise	6.7).	Therefore,	by	condition	(6.17),

for	arbitrary	 .

Including	these	observations	in	(6.19),	for	each	fixed	 ,	the	sharpest	lower	bound	on



the	 	minimax	risk	to	be	obtained	for	the	fixed	sequence	of	classes	 	is

(6.22)

Using	calculus	of	variations,	it	follows	that	the	function

(6.23)

minimizes	 	over	the	class	of	permitted	densities.	For	this	 ,	we	have	that

This	means	that	the	strongest	result	to	be	obtained	from	(6.22)	is	(6.18).	☐
Theorem	6.1	gives,	for	the	 	loss	function,	lower	bound

(6.24)

Comparing	 (6.18)	 with	 (6.24),	 we	 see	 that	 for	 each	 sequence	 	 the	 lower	 bound
obtained	by	the	Van	Trees	inequality	is	sharper	than	the	lower	bound	obtained	by	Theorem
6.1.

As	 in	 Section	 6.2,	 we	 can	 optimize	 the	 result	 of	 Theorem	 6.2	 in	 the	 choice	 of	 the
densities	 .

Corollary	6.3	Let	 be	a	convex	class	of	densities	on	 	and	 	a	linear	functional	on	
.	Fix	 ,	and	let	the	function	 	be	defined	as	in	(6.6).	Then	for	each	subset	 	of	

	containing	some	Hellinger	ball	around	 ,

(6.25)

for	each	positive	 .

The	proof	is	completely	analogous	to	that	of	Corollary	6.1.	For	the	important	situation
where	the	local	modulus	of	continuity	satisfies	(6.8),	we	get	the	following	result.

Corollary	6.4	Let	 	be	a	convex	class	of	densities	on	 	and	 	a	linear	functional	on	
.	Fix	 ,	and	let	 the	function	 	be	defined	as	 in	 (6.6),	allowing	an	asymptotic

expansion	as	given	in	(6.8).	Then	for	each	subset	 	of	 	containing	some	Hellinger	ball
around	 ,

(6.26)

Proof	From	Corollary	6.3	we	have	that	for	each	



Maximizing	this	lower	bound	with	respect	to	 	gives	the	result.	☐

6.4	 Applications
To	 illustrate	how	Theorem	6.1	and	Corollary	6.2	can	be	used	 in	practical	 situations,	we
will	apply	the	corollary	to	give	an	asymptotic	lower	bound	for	the	local	minimax	risk	in
the	 context	 of	 some	 inverse	 problems.	 To	 start,	 however,	 we	 present	 a	 very	 familiar
parametric	estimation	problem.

Example	6.1	 (Parameter	 exponential	 distribution)	Take	 for	 	 the	 class	 of	 exponential
densities	on	 	indexed	by	their	scale	parameters:

We	want	to	estimate	the	parameter	 	( ).

From	Exercise	6.10	it	follows	that

Therefore,	at	 ,

and	for	each	class	 	in	 	containing	a	Hellinger	ball	of	positive	radius	around	 ,

What	can	be	said	about	the	asymptotic	behavior	of	the	estimator

In	particular,	observe	that,

Example	 6.2	 (Decreasing	 density)	 Consider	 the	 problem	 of	 estimating	 a	 decreasing
density	at	a	fixed	point.	This	corresponds	to	the	problem	described	in	Section	2.2.

Denote	 by	 	 the	 class	 of	 decreasing	 density	 functions	 on	 .	 Fix	 a	 decreasing
density	 	 and	 a	 point	 	 such	 that	 	 is	 differentiable	 at	 	 and	 that	

.	We	will	determine	the	behavior	of	the	function	 	for	small	values	of	 ,
where



This	we	can	do	by	determining	the	function	 	for	small	values	of	 ,	where

since	 	and	 	are	inverses	of	each	other,	in	the	sense	that	 .
It	 is	 easily	 seen	 that	 for	 small	 	 the	 infimum	 in	 the	 definition	 of	 	 is	 attained	 at	 the
function	 ,	where

where	 	 and	 	 are	 positive	 constants	 depending	 on	 	 and	 	 such	 that	
integrates	 to	one	and	 is	continuous	at	 the	points	 	 and	 ;	 see	Figure
6.1.	We	may	without	loss	of	generality	assume	that	 	for	each	small	 .

	
Figure	6.1	 Perturbed	density	 	(solid)	with	decreasing	density	 .

In	Exercise	6.12	it	is	shown	that

for	 .

Therefore,	in	view	of	Lemma	6.3,	we	have	for	 ,



giving	that,	for	 ,

Corollary	6.2	now	gives	 that	 for	any	subclass	 	of	 	 containing	 some	Hellinger	 ball
around	 	of	positive	radius,

Example	 6.3	 (Current	 status	model)	We	 illustrate	 the	 use	 of	 Theorem	 6.1	 by	 deriving
minimax	 lower	 bounds	 for	 the	 estimation	 in	 the	 univariate	 and	 bivariate	 current	 status
models.	For	the	univariate	current	status	model	we	have	the	following	result.

Let	 	be	a	sequence	of	discrete	perturbations	of	 	in	a	neighborhood	of	 	and
let	 	 be	 the	 distribution	 function	 of	 the	 observation	 times.	 Assume	 that	 	 has
derivative	 	 at	 	 and	 	 has	 derivative	 	 at	 .	 Then	 a	 local
asymptotic	minimax	bound	for	an	estimate	 	of	 	in	the	univariate	current	status
model	is	given	by

To	show	this,	we	introduce	a	discrete	perturbation	 	of	 	in	a	neigborhood	of	 	by
defining

where	 	will	be	specified	in	the	following.	This	means	that

We	now	define	 	by:

and	 	by:

Then	 	has	the	representation

The	squared	Hellinger	distance	between	 	and	 	is	given	by:



We	now	have:

and	likewise

So	we	find:

Using	(6.7)	we	therefore	obtain	as	lower	bound

Minimizing	over	 	yields:

Remark	Note	that	the	lower	bound	is,	apart	from	a	universal	constant,	equal	to	the	square
root	of	the	asymptotic	variance	of	the	maximum	likelihood	estimator,	see	Theorem	3.7.

Exercises
6.1	Argue	that,	whenever	 ,	 	 is	a	decreasing

sequence	of	positive	numbers.

6.2	Verify	the	relation	of	Hellinger	affinities	used	in	(6.5),	i.e.,	that

6.3	The	 (local)	modulus	of	continuity	defined	 in	 (6.6)	 is	 a	 special	 instance	of	 a	general
definition	 of	 moduli	 of	 continuity.	 Let	 	 and	 	 be	 metric	 spaces	 and

	a	mapping.	Then	 the	modulus	of	continuity	of	 ,	 locally	 at	 ,	 is
defined	by

The	(nonlocal)	modulus	of	continuity	is	defined	by



Let	 ,	 	with	 .

a)	Let	 .	Show	that	 	as	 	if	 .	If	
then	 	as	 .	In	this	case	 	as	 .

b)	Let	 .	 Show	 that	 for	 ,	 	 as	 	 and	 observe	 that
	for	all	 .

6.4	Show	that	condition	(6.11)	is	satisfied	if	the	order	of	integration	and	differentiation	are
interchanged.

6.5	Verify	(6.13).

6.6	The	Fisher	 information	 for	 	 in	 	 in	 the	model	 	 is	 given	 by	 (6.10).
Show	 that,	 if	 	 denotes	 an	 -vector	 of	 i.i.d.	 random	 elements	 having	 density	

	on	 ,	the	Fisher	information	for	 	in	 	is	 	times	the	information	for
	one	of	its	components.

6.7	Show	that	(6.21)	holds	under	the	conditions	imposed	on	 	in	Lemma	6.3.

6.8	Show	that	the	density	 	given	in	(6.23)	minimizes	 	over	all	absolutely	continuous
probability	densities	 	on	 ,	satisfying	 .

6.9	Derive	 the	 lower	 bounds	 given	 in	 the	 proofs	Corollaries	 6.2	 and	 6.4	 by	 optimizing
over	all	values	of	 .

6.10	Verify	that	in	the	situation	of	Example	6.1

6.11	Consider	the	class	of	uniform	densities

a)	For	 ,	compute

b)	For	 ,	derive	the	asymptotic	behavior	(as	 )	of	 .

c)	 Use	 (b)	 and	 the	 results	 from	 Section	 6.2	 to	 derive	 a	 local	 asymptotic	minimax
lower	bound	for	estimating	the	parameter	 	based	a	sample	of	size	 	 from	the
density	 .	Is	the	derived	lower	bound	sharp?

6.12	This	exercise	relates	to	Example	6.2.	Approximate	 	locally	near	 	linearly	at	 ,
and	show	that,	for	 ,

6.13	Derive	the	asymptotic	behavior	of	 	as	 ,	where



and	 	 is	 the	 class	 of	 convex	 decreasing	 densities	 on	 	 as	 encountered	 in
Section	4.3.	Hint:	see	Example	6.2	for	the	general	approach.
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The	problem	of	determining	the	(local)	modulus	of	continuity	of	a	functional	over	a	class
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Fan,	 1993,	 in	 the	 context	 of	 nonparametric	 regression	 problems	 and	 Donoho	 and
Liu,	 1991,	 in	 the	 context	 of	 density	 estimation.	 The	 general	 form	 of	 the	 Van	 Trees
inequality	can	be	found	in	Van	Trees,	1968,	and	a	more	recent	reference	on	that	inequality
is	 Gill	 and	 Levit,	 1995.	 Theorem	 6.1	 can	 also	 be	 found	 as	 Lemma	 4.1	 on	 p.	 132	 of
Groeneboom,	1996.	More	information	on	lower	bounds	to	the	minimax	risk	can	be	found
in	Yu,	1997	and	Chapter	2	of	Tsybakov	and	Zaiats,	2009.



7
Algorithms	and	Computation

In	parametric	statistical	models,	parameter	estimates	can	often	(not	always)	be	computed
fairly	 simply.	 When	 the	 parameter	 space	 is	 ,	 the	 computational	 difficulty	 in
determining	 the	 maximum	 likelihood	 estimator	 is	 related	 to	 the	 structure	 of	 the	 score
equations.	When	there	is	an	explicit	solution	to	these,	there	is	no	computational	problem.

There	 are	 parametric	 problems,	 in	 which	 there	 are	 some	 problems	 in	 computing	 the
estimate.	For	example,	when	 the	maximum	 likelihood	estimate	of	 the	parameter	
has	to	be	computed	based	on	a	sample	from	the	density

(7.1)

the	 score	 equation	 does	 not	 allow	 for	 an	 explicit	 solution	 and	 one	 has	 to	 employ	 an
iterative	 procedure	 to	 approximate	 the	ML	 estimate	 .	When	 the	 number	 of	 unknown
parameters	 (dimension	 of	 )	 in	 a	 model	 increases,	 the	 amount	 of	 effort	 to	 compute
estimators	usually	increases	as	well.	Not	in	the	least	because	the	parameter	space	may	be
constrained.

Also	 in	 shape	 constrained	 estimation	 problems,	 the	 computational	 issues	 can	 be
relatively	straightforward.	For	example,	computing	the	MLE	of	a	distribution	function	in
the	current	status	model	boils	down	to	computing	the	derivative	of	the	convex	minorant	of
an	appropriate	diagram	of	points	 (see	Section	2.3).	 In	other	situations,	 iterative	schemes
have	to	be	used	to	obtain	an	approximation	of	the	estimator.	This	chapter	describes	three
approaches	to	such	computational	problems.	Before	that,	the	concept	of	an	algorithm	and
issues	 of	 convergence	 are	 considered	 in	 Section	 7.1.	 In	 Section	 7.2,	 the	 expectation
maximization	(EM)	algorithm	is	described.	This	algorithm	was	developed	in	the	statistics
community	to	compute	ML	estimators	in	missing	data	models.	It	will	be	illustrated	using	a
parametric	example	of	truncated	exponentials	and	as	nonparametric	example	the	interval
censoring	 case	 2	 model.	 Section	 7.3	 describes	 the	 iterative	 convex	 minorant	 (ICM)
algorithm	that	can	be	used	to	maximize	a	concave	function	over	the	isotonic	cone	in	 .
It	 is	based	on	 iteratively	approximating	 the	concave	function	by	quadratic	functions	 that
have	diagonal	Hessian	matrices.	As	such,	the	heart	of	this	algorithm	is	the	solution	to	the
basic	isotonic	regression	problem	discussed	in	Section	2.1	as	the	derivative	of	the	greatest
convex	minorant	of	a	diagram	of	points.	Yet	another	branch	of	algorithms	was	introduced
and	studied	in	the	area	of	mixture	models.	Section	7.4	describes	a	general	class	of	vertex
direction	algorithms	that	use	the	representation	of	the	model	as	convex	hull	of	(or	convex
cone	 generated	 by)	 a	 given	 set	 of	 densities.	 Finally,	 in	 Section	 7.5,	 the	 algorithms
considered	in	this	chapter	are	applied	to	the	problem	of	computing	the	ML	estimator	in	the
competing	risk	model	with	interval	censored	event	times.

7.1	 Algorithm:	Concept	and	Convergence



The	word	algorithm	 is	often	used	as	a	 synonym	of	“way	 to	compute	some	quantity.”	 In
this	section	we	will	make	a	more	precise	definition	of	what	we	mean	by	an	algorithm	and
prove	a	very	general	convergence	 result.	That	 result	 can	 then	be	applied	 to	 some	of	 the
algorithms	to	be	studied	in	the	subsequent	sections.

Consider	the	general	optimization	problem

(7.2)

where	 	 is	 some	 function	 defined	 on	 .	 Of	 course,	 minimizing	 	 is	 equivalent	 to
maximizing	 .	Then	we	mean	by	an	algorithm	a	triplet	consisting	of	an	initial	point	

,	an	algorithmic	map	 	and	a	 termination	criterion.	An	algorithmic	map	 is	a
point-to-set	mapping	 	assigning	to	each	element	of	 	a	subset	of	 .	The
recipe	to	be	followed	is	then

General	Algorithm
Input:
initial	point	
begin
				 ;
				
				while	termination	criterion	is	not	satisfied
				begin
						 	some	element	of	
						
				end;
end.

Consider	the	following	simple	example.

Example	7.1	The	optimization	problem	is	to	minimize	the	function	 	over	the
set	 .	Consider	the	algorithmic	point-to-point	map	(where	we	abuse	notation
slightly)

Then,	starting	from	arbitrary	 ,	we	see	that

This	 sequence	obviously	converges	 to	 .	Note	 that	 in	 this	 situation	where	 	 is	a
point-to-point	map,	all	iterates	are	uniquely	determined	by	the	starting	value.	That	changes
when	the	algorithmic	map	gives	a	set	consisting	of	more	than	one	point,	such	as



(7.3)

Based	on	this	map,	the	sequence	of	iterates	is	not	uniquely	defined	starting	from	an	initial
point	 .	However,	in	our	terminology,	the	algorithm	is	uniquely	defined.

Having	such	a	general	definition	of	an	algorithm,	we	have	to	think	of	the	properties	we
want	the	algorithm	to	have.	Essentially,	we	want	the	sequence	 	to	converge	to
the	point	where	 	 attains	 its	minimum	 as	 fast	 as	 possible.	 In	Example	 7.1	 there	 is	 no
ambiguity	in	what	the	solution	should	be	and	convergence	takes	place.	However,	without
any	 assumptions	 on	 the	 function	 	 and	 the	 set	 ,	 a	minimizer	 of	 	 over	 	 is	 not
guaranteed	to	exist.	If	a	minimizer	exists,	it	is	not	necessarily	unique	and	even	if	there	is	a
unique	minimizer,	there	might	be	lots	of	local	minima	far	away	from	the	global	minimum.

A	solution	set	of	problem	(7.2)	 is,	 roughly,	 a	 set	of	points	 in	 the	parameter	 space	we
accept	as	limit	points	of	an	algorithm.	It	can,	e.g.,	be	defined	as

(7.4)

Apart	from	this	concept,	Theorem	7.1	also	uses	the	concept	of	a	closed	mapping.

Definition	7.1	A	mapping	 	is	closed	at	some	point	 	if	for	each	sequence	
	 converging	 to	 	 the	 following	 holds.	 If	 	 for	 each	 	 and	

converges	to	some	 ,	then	necessarily	 .	A	mapping	is	closed	on	a	subset	of	
if	it	is	closed	at	each	point	in	that	subset.

Remark	 If	 	 is	 a	 point-to-point	 mapping,	 continuity	 of	 	 implies	 closedness	 (see
Exercise	7.2).	The	implication	in	the	opposite	direction	does	not	hold	(see	Exercise	7.3).

Theorem	7.1	Let	 	be	closed	and	 the	nonempty	set	 	 a	 solution	 set	of
problem	(7.2).	Suppose	that

i.	 Each	sequence	generated	by	the	algorithmic	map	starting	from	 	is	contained	in	a
compact	subset	of	 ,

ii.	 There	 exists	 a	 continuous	 function	 	such	 that	 for	 each	 ,	
	for	all	 	( 	is	called	a	descent	function	for	 ),

iii.	 The	algorithmic	map	 	is	closed	on	 .

Then	 either	 the	 algorithm	 stops	 after	 a	 finite	 number	 of	 steps	with	 a	 point	 in	 ,	 or	 it
generates	an	infinite	sequence	 	such	that	all	accumulation	points	of	 	belong
to	 	and	 	for	some	 .

Remark	We	 saw	 that	 there	 is	 some	 arbitrariness	 in	 the	 choice	 of	 solution	 set	 .	 In
Theorem	 7.1	 we	 see	 that	 a	 smaller	 solution	 set	 imposes	 stronger	 conditions	 on	 the
algorithmic	map,	in	the	sense	that	it	should	be	closed	over	a	larger	set.	For	example,	if	we
would	define	the	solution	set	as	the	set	of	global	minimizers	of	 	rather	than	(7.4),	then
condition	 (ii)	 in	 Theorem	 7.1	 requires	 the	 algorithmic	 map	 to	 “jump”	 out	 of	 a	 local
minimum.



Proof	Suppose	 that	 there	 is	 not	 an	 index	 	 such	 that	 .	 By	 ( ),	 there	 is	 a
subsequence	 	 of	 	 and	 a	 	 such	 that	 .	 By	 (ii)
this	 implies	 that	 .	 However,	 since	 ,	 we	 have
that	 .	 Now	 consider	 the	 subsequence	 	 of	 .
Again	by	( ),	the	sequence	 	has	a	convergent	subsequence,	and	the	limit	of	such
a	 subsequence	 is	 denoted	 by	 .	 Continuity	 of	 	 then	 gives	 that	

.

By	 the	 definition	of	 the	 algorithm	we	know	 that	 .	Now	 suppose
that	 .	Then,	since	 	and	 	along	a	subsequence,
by	(iii)	we	have	 that	 ,	 implying	(by	(ii))	 that	 .
This	is	a	contradiction	and	we	conclude	that	 	necessarily.	☐
Example	7.2	Consider	the	parameter	estimation	problem	associated	with	model	(7.1).	See
Figure	 7.1	 for	 some	 of	 the	 densities	 in	 the	 model.	 We	 are	 given	 a	 realization	

	of	an	i.i.d.	sample	from	 	and	want	to	compute

where

The	Newton	algorithm	 to	compute	 the	 	entails	choosing	an	 initial	estimate,	 ,	and
defining	the	next	iterate	as	minimizer	of	the	quadratic	Taylor	approximation	at	the	current
iterate.	See	the	right	panel	of	Figure	7.1.	In	this	example	this	means	(see	Exercise	7.7)	that

In	this	example,	the	algorithmic	point-to-point	map	 	is	continuous,	hence	closed.



	

Figure	7.1	 (a)	The	three	members	of	the	class	of	densities	given	in	(7.1):	
(dotted),	 	(solid)	and	 	(dashed).	(b)	(Minus)	the	log	likelihood	function	
based	on	a	sample	of	size	 	(solid),	the	current	iterate	 ,	the	quadratic
approximation	of	 	at	 	(dashed)	and	 	as	minimizer	of	this
approximation.

The	Newton	procedure	sketched	in	Example	7.2	is	fairly	general.	If	the	function	 	 is
sufficiently	smooth,	one	can	define	the	algorithmic	map	as

where	 	is	the	local	quadratic	Taylor	approximation	of	 	near	 .	If	 ,

There	are	many	situations	conceivable	where	the	Newton	method	does	not	work.	If	the
objective	function	is	not	convex,	strange	things	can	happen	(see	Exercise	7.4).	Moreover,
even	 if	 the	 objective	 function	 is	 convex,	 Newton’s	 algorithm	 does	 not	 necessarily
converge	(see	Exercise	7.5).	However,	 this	specific	problem	(related	 to	 the	absence	of	a
descent	function	in	general)	can	be	circumvented	by	damping	the	Newton	algorithm.

7.2	 The	EM	Algorithm
We	start	with	a	simple	parametric	example	 to	 illustrate	 the	EM	algorithm.	Then	we	will
introduce	 the	 algorithm	more	 generally	 and	 apply	 this	 to	 the	 interval	 censoring	 case	 2
model.	Finally,	we	will	address	some	problems	that	are	encountered	when	EM	is	defined
in	full	generality.

(A)	Description	of	the	EM	Algorithm
Example	7.3	(Truncated	Exponentials)	Consider	an	i.i.d.	sample	 	from
the	exponential	distribution	with	density



(7.6)

so	that	 	has	density

However,	the	vector	 	itself	cannot	be	observed.	Only	the	integer	part	of	its	components
can	be	observed:

The	problem	is	how	to	estimate	 	from	 	via	maximum	likelihood.

If	 we	 had	 the	 complete	 data	 ,	 we	 would	 write	 down	 the	 loglikelihood
function

and	 maximize	 it	 to	 obtain	 the	 mean	 of	 the	 s	 as	 maximum	 likelihood	 estimate;	 a
straightforward	 procedure.	 One	 step	 in	 the	 (iterative)	 EM	 algorithm	 consists	 of	 an
expectation	 and	 a	 maximization	 step.	 During	 the	 E-step,	 the	 current	 iterate	 and	 the
observed	 data	 are	 used	 to	 compute	 the	 conditional	 expectation	 of	 the	 complete
loglikelihood	given	 the	data,	under	 the	distribution	determined	by	 the	current	 iterate	 .
More	specifically,	for	the	current	iterate	 ,	the	following	function	of	 	is	determined:

The	M-step	 then	entails	maximization	of	 	with	 respect	 to	 .	 This	maximizer	 is
then	the	next	iterate.	Using	the	notation	of	Section	7.1,	the	algorithmic	map	is	the	point-to-
point	map

Starting	from	an	initial	value,	we	would	like	the	sequence	thus	generated	to	converge	to
the	maximum	likelihood	estimate.

What	 does	 this	mean	 explicitly	 in	 our	 example?	 The	 function	 	 can	 be	 computed
once	 we	 know	 the	 conditional	 density	 of	 	 given	 	 under	 the	 distribution	 with
parameter	 .	We	denote	this	function	by	 :

Therefore,



Now	 let	 	 be	 given.	 As	 can	 be	 seen	 easily	 by	 differentiating	
	with	respect	to	 ,	 	is	maximized	at

(7.7)

See	Exercise	 7.8.	 Therefore,	 the	EM	 algorithm	 in	 this	 example	 can	 be	 described	 by	 an
initial	point,	say	 ,	the	algorithmic	map

and	a	suitable	termination	criterion,	for	example,	“stop	after	50	iterations.”	This	algorithm
was	run	using	the	following	data:

The	first	 	iterates	thus	obtained	are

and	the	iterates	remain	unchanged	till	the	50th	iteration.

Of	 course,	 in	 this	 simple	 example	 the	 EM	 algorithm	 or	whatever	 other	 optimization
algorithm	is	not	actually	needed.	The	probability	mass	function	of	 	is	given	by

(7.8)

for	 .	Hence,	writing	 	for	 the	probability	mass	function	of	 the	vector	
,	we	get	as	log	likelihood	function

Maximizing	this	with	respect	to	 ,	we	get	that	the	maximum	likelihood	estimator	is	given
by

(7.9)



Let	 us	 now	 turn	 to	 the	 general	 description	 of	 the	 EM	 algorithm.	 Our	 model	 is	 a
measurable	space	 	endowed	with	a	 -finite	measure	 .	A	random	element	
takes	 its	 values	 in	 ,	 and	 the	 probability	 induced	 by	 	 is	 assumed	 to	 belong	 to	 a
parameterized	class	of	distributions:

Here	 	is	the	parameter.	Furthermore,	we	assume	 	to	have	a	density	
with	respect	to	the	measure	 :

The	space	 	represents	the	hidden	space,	where	the	only	partly	observable	element	
	takes	its	values.	The	actual	observable	random	element	 	is	a	measurable	function	

of	 ,	 and	 takes	 its	 values	 in	 what	 is	 called	 the	 observation	 space	 .	 This
measurable	space	is	also	endowed	with	a	 -finite	measure,	denoted	by	 .	The	mapping	

	together	with	 	again	induce	probability	measures	 	on	
	by	 :

We	also	assume	 	to	have	a	density	 	with	respect	to	 :

For	 the	 given	 observation	 ,	 our	 aim	 is	 then	 to	 compute	 the	 maximum	 likelihood
estimator

Remark	In	Example	7.3,	 	 is	Lebesgue	measure	on	hidden	space	 	and	 	 is
counting	measure	on	observation	space	 .	Moreover,	 	and

	with	 	and	 	defined	in	(7.6)	and	(7.8)	respectively.

Given	 ,	 the	 EM	 algorithm	 now	 proceeds	 as	 follows.	 Start	with	 an	 initial	 estimate	
	of	 .	Then	subsequently	perform	an	expectation	and	a	maximization	step	to	obtain

the	next	iterate	 .	Repeat	these	E-	and	M-steps	until	 	does	not	change	in,	say,	the	
th	 decimal	 (or	 until	 some	 other	 criterion	 is	 met).	 Then	 take	 	 as	 numerical

approximation	of	the	MLE.	We	will	explain	the	two	basic	steps	that	have	to	be	taken	in	an
iteration,	denoting	by	 	the	“current	iterate.”

The	E-step:	compute,	as	function	of	 ,	the	conditional	expectation

(7.10)

If	 	 for	 the	 observed	 vector	 ,	 this	 conditional
expectation	 can	 be	 computed	 by	 first	 computing	 the	 conditional	 density	 of	 	 given	



,	and	integrating	the	function	 	with	respect	to	this	density.	If
	has	 -probability	zero,	one	should	be	careful,	but	it	is	still	possible	to	give	meaning

to	definition	(7.10).	Further	 on	 in	 this	 section,	we	will	 show	 the	need	 for	 the	 abstractly
defined	 conditional	 expectation	 in	 this	 latter	 situation.	 For	 now,	 think	 of	 the	 event	

	as	having	strictly	positive	 	probability	as	in	Example	7.3.

The	M-step:	find

(7.11)

As	 	 is	 a	 function	 in	 	 depending	 only	 on	 the	 observed	 data,	 this	 function	 can	 be
computed	contrary	to	the	full	log	likelihood	based	on	the	data	in	the	hidden	space.

Example	 7.4	 (Interval	 censoring	 case	 2)	For	 the	 purpose	 of	 computing	 the	 maximum
likelihood	estimator	of	 the	distribution	function	in	the	interval	censoring	case	2	problem
introduced	in	Example	4.7,	we	view	the	data	as	generated	in	two	stages.	First,	the	 	pairs
of	time	points	 	are	independently	generated	according	to	the	density	 ,	giving
realized	values	 .	These	values	are	considered	fixed	in	the	following.	The	second
stage	is	that	the	 s	are	generated,	and	the	random	indicators	 	and	 	are	produced.

We	 will	 only	 consider	 candidate	 estimators	 for	 	 that	 assign	 all	 their	 mass	 to	 the
(fixed)	 points	 ,	 where	 	 and	

.	If	there	are	no	ties	in	the	observed
time	points,	 .	For	the	purpose	of	maximizing	the	log	likelihood	function,

(7.12)

This	is	no	restriction,	since	this	function	only	depends	on	 	via	the	values	 	attains	at
the	points	 .

Now,	 for	 EM,	we	 need	 a	 hidden	 space	with	 a	 collection	 of	 probability	measures,	 an
observation	 space	 and	 a	 mapping	 	 between	 these	 spaces	 that	 relates	 the	 hidden
realization	of	interest	to	the	observable	realization.	We	define

and	 endow	 this	with	 its	 usual	 euclidean	Borel	 -field	 .	On	 	we	 define,	 for
each

the	probability	density

with	respect	to	the	 -fold	product	of	counting	measure	on	 .	The	parameterization	of	



,	the	density	of	 	with	respect	to	counting	measure	on	 ,	is	natural:

As	observation	space	we	can	take	 	with	its	natural	 -field	consisting
of	all	subsets.	The	mapping	 	is	given	by

Remember	 that	 all	 s	 and	 s	 are	 fixed	 and	 known,	 so	 these	 may	 be	 “used”	 by	 the
function	 .	Now,	given	 some	 	 and	 the	actually	observed	data	 ,	we	have	 (see
(7.10))

where

Maximizing	 	with	respect	to	 	gives	(see	Exercise	7.14)

(7.14)

To	make	the	EM	algorithm	even	more	explicit,	we	need	the	conditional	probabilities	that
occur	in	(7.14).	For	this,	it	is	convinient	to	define	for	 	the	following	index	sets

In	fact,	 	gives	the	indexes	of	the	values	 	that	are	possible	candidates	for	the	hidden	
,	given	the	associated	values	 .

In	Exercise	7.14	it	is	shown	that



Combining	the	E-	and	the	M	step,	we	obtain	as	general	updating	rule	at	the	 th	iteration:

(7.15)

Figure	7.2a	visualizes	a	(generated)	data	set	of	size	 .	The	sample	was	generated
as	 follows.	 First	 a	 sample	 of	 size	 	 was	 generated	 from	 the	 distribution	 with
distribution	function	 	with	 	on	 .	For	each	of	the	resulting	 ,	two
observation	 times	 were	 sampled	 using	 the	 bivariate	 standard	 uniform	 distribution:

	 	 where	 .
Here	independent	observations	were	taken	for	each	 .	Figure	7.2b	shows	the	evolution	of
the	log	likelihood	(7.12)	in	terms	of	the	number	of	iterations	obtained	by	using	(7.15)	and
starting	 value	 	 for	 	 (note	 that	 there	 were	 no	 tied
observations,	so	 ).	Figure	7.3	shows	two	iterates	obtained	in	this	way.

	
Figure	7.2	 (a)	Visualization	of	the	case	2	interval	censored	data:	every	horizontal	line
represents	the	interval	where	the	corresponding	censored	 	was	located	according	to	the
available	information.	(b)	The	log	likelihood	values	of	the	consecutive	iterates	(starting
from	the	tenth,	for	reasons	of	scaling).



	
Figure	7.3	 (a)	Iterate	 .	(b)	(Final)	iterate	 .

(B)	Some	Heuristics	for	the	EM	Algorithm
Will	the	EM	algorithm	produce	a	sequence	of	iterates	converging	to	a	global	maximum	of
the	 log	 likelihood?	 Sometimes	 it	 will	 and	 sometimes	 it	 will	 not!	We	 now	 first	 give	 an
argument	explaining	why	the	EM	algorithm	might	work.	The	assumptions	we	impose	in
this	 informal	 argument	 also	 indicate	 issues	 that	 can	 cause	 problems	 for	 convergence	 of
EM.

Suppose	that,	for	the	observed	 ,	the	real	MLE	is	given	by	 ,	where	 	is	an	interior
point	of	 ,	and	that	the	function

is	differentiable	on	the	interior	of	 .	Then	we	must	have:

(7.16)

But	if	the	EM	algorithm	converges	to	an	interior	point	 ,	then	 	maximizes
the	function

(7.17)

This	implies,	assuming	that	(7.17)	is	differentiable	at	interior	points	 	and	that	we
may	interchange	expectation	and	differentiation,

(7.18)

at	 .

Let	the	score	function	 	in	the	complete	data	situation	be	defined	by



Assuming	 that	certain	 interchanges	of	differentiation	and	 integration	 (or	summation)	are
allowed,	we	get	from	Exercise	7.15	that

Hence	(7.18)	would	imply,	for	 ,

at	a	value	 	such	that	 .	Or,	written	differently,	we	would	have,	for	 ,

(7.19)

if	 (7.18)	 is	 satisfied	 and	 .	 So	 (7.16)	 would	 be	 satisfied	 at	 ,	 and
hence,	 if	 there	 is	only	one	 	 for	which	 this	 score	 equation	 is	 zero,	 	would	be	 the
MLE!

The	equation

(7.20)

that	is	satisfied	at	 ,	is	called	the	self-consistency	equation.

So	 the	 reason	 for	 believing	 that	 the	EM	algorithm	might	work	 is	 the	 fact	 that	 (7.20)
implies	 (7.19)	 for	 ,	 if	 .	 So,	 if	 the	 likelihood	 function	

	is	only	maximized	at	a	value	 	where	the	derivative	with	respect	to	 	is
zero,	then	a	stationary	point	 	of	the	EM	algorithm	would	give	the	MLE.

This	argument	also	points	to	potential	difficulties	with	the	EM	algorithm:	it	might	not
work	 if	 the	maximum	 is	not	 attained	at	 an	 interior	point	 (a	 common	situation	 in	 shape-
constrained	models),	or	if	the	likelihood	function	is	not	differentiable	at	the	MLE,	or	if	the
score	 equation	 (7.19)	 has	 multiple	 roots,	 some	 (or	 all)	 of	 which	 do	 not	 maximize	 the
likelihood.	 Indeed	 all	 these	 situations	 can	 occur.	 For	 example,	 if	 the	 EM	 algorithm	 is
started	 for	 the	 interval	 censoring	 case	 2	 problem	 at	 a	 distribution	 that	 has	 a	 finite
loglikelihood	and	assigns	mass	zero	to	many	points	 ,	the	mass	will	remain	zero	at	these
points	through	all	iterations;	see	(7.15).

(C)	Monotonicity	of	EM
We	 now	 address	 the	 issue	 of	 monotonicity	 of	 the	 EM	 algorithm,	 in	 the	 sense	 that	

	 serves	 as	 a	 descent	 function.	 To	 start	 with,	 we	 assume	 that,	 for	 some	



,

(7.21)

for	the	observed	 .	The	convenient	consequence	of	this	assumption	is	that	we	can	write
the	conditional	density	of	 	given	 	under	 	(with	respect	to	 	on	
)	as

(7.22)

Note	 that	 	 by	 the	 assumption	 that	 	 for	 all	 	 and	 (7.21).
Hence,	 .	 Without	 loss	 of	 generality	 we	 may	 assume	 that	

,	so	that

(7.23)

Using	 ,	we	can	write

(7.24)

In	view	of	the	remarks	made	earlier,	it	is	clear	that	a	global	convergence	result	for	the
EM	algorithm	is	too	much	to	hope	for.	What	we	can	prove	is	the	following	monotonicity
property.

Theorem	 7.2	 Let	 	 with	 .	 Denote	 by	 	 the
algorithmic	map	of	the	EM	algorithm:

where	 	is	given	by	(7.24).	Then	the	EM	algorithm	is	monotone,	in	the	sense	that

Proof	Using	(7.22)	and	(7.23),	we	have

Hence	we	can	write	for	each	 	and	 	( 	being	the	index	of	the	 th	iteration
of	the	EM	algorithm):

Now	we	 look	 separately	 at	 the	 two	 terms	 in	 the	 last	 line	 of	 (7.25),	 and	 compare	 the



expressions	we	get,	by	replacing	 	by	 	and	 ,	respectively.	Note	that	we	keep
the	distribution	 ,	determining	the	distribution	of	the	conditional	expectation,	fixed.

First	of	all,	we	get:

since	 	maximizes	the	conditional	expectation

over	all	 ,	so	the	value	we	get	by	plugging	in	 	will	certainly	be	at	least	as	big	as
the	value	we	get	by	plugging	in	 .

Secondly,	using	Jensen’s	inequality,	we	get	that

Combining	(7.26),	(7.27)	and	(7.25),	the	result	follows.	☐
Note	that	Example	7.3	and	7.4	both	meet	condition	(7.21),	so	that	Theorem	7.2	applies.

Now	consider	the	following	parametric	example,	where	one	can	employ	the	EM	algorithm
but	where	condition	(7.21)	is	not	satisfied.

Example	7.5	(Uniform	 deconvolution	 in	 exponential	model)	Let	 	 be	 a
sample	 from	 an	 exponential	 distribution	 with	 parameter	 	 and,
independent	of	this,	a	sample	 	from	the	uniform	distribution	on	 .
We	 are	 interested	 in	 estimating	 ,	 but	 only	 observe	 the	 random	 variables	
with	 .

Denote	by	 	 the	bivariate	sample	 ,	 taking	 its
value	in	 .	Then	we	have,	in	the	notation	used	so	far,	that	 	has	a	density	
with	respect	to	Lebesgue	measure	on	 :

where	 .	The	mapping	 	is	given	by



Under	 ,	 the	 random	vector	 	 has	 a	 density	 	with	 respect	 to	Lebesgue
measure	on	 ,	where

with

(7.28)

It	is	clear	that	(7.21)	cannot	hold	for	any	 	and	 .	The	convenient	explicit	expression	of
the	conditional	density	 	with	respect	 to	Lebesgue	measure	on	 	we	had	 in
the	presence	of	(7.21)	cannot	be	used	anymore.	Indeed,	the	conditional	distribution	of	
given	 	is	completely	supported	on	the	set

This	set	has	Lebesgue	measure	zero,	so	a	conditional	distribution	of	 	given	 	is
not	absolutely	continuous	with	respect	to	Lebesgue	measure	on	 .

Remark	For	 fixed	 values	 of	 	with	 ,	 one	 can	 arbitrarily	 (re-)	 define	 the
density	 	without	changing	the	corresponding	distribution	 .	If	 	 for
the	observed	 ,	it	is	therefore	not	clear	what	 	is;	the	function	 	is	only	defined	
-a.s.	This	 same	 fact	holds	 true	 in	many	 familiar	maximum	likelihood	density	estimation
problems.	It	 is	important	to	fix	the	version	of	the	density	to	be	used	without	(or,	before)
using	the	observed	data.

Let	us	now	consider	the	definition	and	monotonicity	property	of	the	EM	algorithm	in
the	 absence	 of	 condition	 (7.21).	 We	 will	 need	 the	 abstractly	 defined	 conditional
expectation	 to	 define	 the	 function	 .	 Under	 condition	 (7.21)	 we	 could	 fix	 the
observed	 	in	advance	and	define	the	conditional	expectations	without	considering	other
values	that	could	have	been	observed.	If	(7.21)	does	not	hold,	we	need	to	take	these	other
possible	 -values	into	account	and	carefully	manage	many	null	sets	that	enter	the	picture.

First	 the	 defining	 property	 of	 the	 conditional	 expectation	 of	 a	 measurable	 function	
,	given	 .	Let	 	be	a	measure	on	 	and	 	its

induced	measure	on	 .	Then

means	that	 	is	a	 Borel	measurable	function	satisfying



This	function	 	exists	and	is	 -a.e.	uniquely	determined.	Now	consider	one	EM	step,
starting	at	 .	Then	the	function	 	is	to	be	computed	at	all	values	 .	In	fact,	this
is	a	function	of	 	as	well.	Now,	for	our	fixed	 ,	we	can	for	each	 	define	the
function

In	fact,	for	each	 	we	select	a	version	of	this	conditional	expectation,	which	is	 -
a.e.	unique.

Second,	we	get:

where	(the	conditional	form	of)	Jensen’s	inequality	is	used	in	the	last	step.	But	we	have:

(7.30)

This	 is	 seen	 in	 the	 following	way.	Let	 the	 function	 	 represent	 the	 left	hand
side	of	(7.30):

(7.31)

Then	 	is	a	 -measurable	function	that	is	defined	by	the	following	relation:

(7.32)

(using	the	general	definition	of	conditional	expectations).	But	since	we	can	write

the	right	hand	side	of	(7.32)	can	be	written:

implying,	using	(7.32)	and	(7.33),



So	 (neglecting	 things	 happening	 on	 sets	 of	 -measure	 zero)	 we	 get	 that	 the	 last
expression	in	(7.29)	is	equal	to	zero!

Now,	by	combining	(7.25),	(7.26)	and	(7.29),	we	get

i.e.,	the	likelihood	for	the	parameter	 	in	the	observation	space	is	increased	(at	least	not
decreased)	at	each	step	of	the	EM	algorithm.

For	the	general	theory	on	change	of	variables	in	integrals	with	respect	to	measures,	see,
e.g.,	Billingsley,	1995,	 third	edition	(the	first	edition	of	 this	book	contained	an	 incorrect
result	of	this	type).

7.3	 The	Iterative	Convex	Minorant	Algorithm
In	Section	2.1,	we	considered	the	problem	of	minimizing	the	quadratic	function

(7.34)

over	the	closed	convex	cone	 .	Here	 	is	a
fixed	vector	to	be	projected	and	the	weight	vector	 	satisfies	 	for	all	 .	In
Lemma	 2.1	 it	 was	 derived	 that	 the	 solution	 to	 this	 optimization	 problem	 can	 be
constructed	using	the	convex	minorant	of	a	cumulative	sum	diagram	of	points.

Often,	one	has	to	minimize	a	more	complicated	convex	function	 	over	the	set	 .	If
the	function	 	is	smooth,	the	Newton	approach	to	this	problem	would	be	to	replace	this
minimization	 problem	 by	 a	 sequence	 of	 quadratic	 minimization	 problems	 where	 those
problems	 are	 chosen	 such	 that	 the	 objective	 function	 	 and	 its	 (local)	 quadratic
approximation	 coincide	 at	 the	 subsequent	 iterates	 up	 till	 second	order.	Such	 a	 quadratic
minimization	 over	 	 is	 usually	 complicated	 in	 itself.	 In	 view	 of	 Lemma	 2.1,	 it	 is
therefore	natural	 to	replace	the	full	quadratic	approximation	of	a	function	 	by	another
one,	 of	 the	 form	 (7.34).	 If,	 at	 some	 iterate,	 we	 can	 approximate	 the	 function	 	 by	 a
weighted	sum	of	squares	of	 this	 form,	we	can	solve	 the	 iteration-optimization	by	 taking
the	left	derivative	of	the	convex	minorant	of	a	collection	of	points.	This	is	the	basic	idea
behind	 the	 iterative	 convex	minorant	 (ICM)	 algorithm.	 Let	 us	 now	 state	 a	 smoothness
condition	on	 	and	more	formally	describe	the	algorithm.

Condition	7.1	(i)	 	 is	convex,	continuous	and	attains	its	minimum	over	 	at	a	unique
point	 ,

(ii)	 	is	continuously	differentiable	on	the	set	 .



Write	 	for	the	gradient	of	 	and	 	for	the	usual	inner	product	in	 .	It	can	be
proved	analogously	to	Lemma	7.2	(see	Exercise	7.21)	that

if	and	only	if	 	satisfies	the	optimality	conditions

(7.35)

The	first	 thing	to	do	is	 to	find	an	appropriate	approximation	for	 	at	a	certain	point	
	 with	 .	 By	 the	 assumption	 on	 ,	 we	 can	 write	 for	 each	 positive

diagonal	 	matrix	 	(which	may	depend	on	 ):

as	 .	 Here	 	 does	 not	 depend	 on	 .	 In	 the
terminology	in	Section	7.1,	the	most	natural	algorithmic	map	to	consider	is	the	point-to-
point	map

(7.36)

Described	as	generally	as	this,	the	algorithm	does	not	converge.	See	Exercise	7.5	and	7.10,
where	examples	are	given	where	the	algorithm	oscillates	between	two	iterates.

In	other	examples	it	may	happen	that	the	value	of	 	at	some	iterate	is	infinite,	so	that
the	 algorithm	 is	 not	 even	well	 defined.	 However,	 we	 can	modify	 the	map	 	 to	 get	 a
globally	convergent	algorithm.	The	key	to	this	modification	is	entailed	in	Lemma	7.1.	 It
states	that	when	moving	from	 	to	 	via	the	line	segment	connecting	these	points,
initially	 the	value	of	 	decreases.	 In	other	words,	 the	mapping	 	generates	 a	descent
direction	for	 	at	each	 	such	that	 .

Lemma	7.1	Let	 	satisfy	conditions	7.1	and	 	satisfy	 .	Then

for	all	 	sufficiently	small.

Proof	Fix	 	 with	 	 and	 define	 the	 function	 	 on	 	 as
follows:

It	suffices	to	show	that	the	right	derivative	of	 	at	zero,



is	strictly	negative.	From	the	definition	of	 	and	the	fact	that	 ,	it	follows	that

(7.37)

and

(7.38)

Subtracting	(7.38)	from	(7.37)	we	see	that

(7.39)

Note	 that	 the	 assumption	 	 implies	 that	 .	 Therefore,	 since	 	 is
positive	definite,	 the	 first	 term	at	 the	 left	hand	side	of	 (7.39)	 is	 strictly	positive,	 so	 that	

.	☐
Using	Lemma	7.1	we	can	construct	an	algorithm	that	converges	to	 .	The	idea	behind

this	(modified)	 iterative	convex	minorant	algorithm	is	 to	select	a	point	 	from	the
segment

such	that	the	value	of	 	decreases	sufficiently	when	moving	from	 	to	 .	This
modification	 is	 called	damping	 and	 is	 also	 often	 applied	 in	 general	Newton	 algorithms.
One	way	to	formalize	this	idea	is	to	define	the	algorithmic	map	

(7.40)

where	 	 is	fixed.	Writing	 	 for	 ,
Figure	 7.4	 illustrates	 the	 idea	 behind	 the	 definition	 of	 .	 Note	 that	

	 by	 Lemma	 7.1.	 If	
,	 .	 If	 ,	

	is	the	set	of	vectors	 	in	the	segment	connecting	 	and	 	corresponding	to	
	with	 .



	

Figure	7.4	 The	three	possible	forms	of	the	set	returned	by	the	algorithmic	map	 	in	the
parametrization	 .

Before	proving	that	this	algorithm	converges	under	general	conditions,	some	comments
on	 the	 practical	 implementation.	 To	 completely	 specify	 the	 algorithm	 for	 practical
implementation,	we	should	fix	an	initial	point,	a	rule	to	determine	 	from	
and	 a	 termination	 criterion.	 As	 an	 initial	 point	 we	 take	 any	 	 with	

.	 As	 a	 rule	 to	 choose	 	 from	 	 we	 propose	 to	 choose	
	whenever	it	belongs	to	 ,	and,	otherwise,	perform	a	binary

search	 for	 an	 element	 of	 	 in	 the	 segment	 .	 See	 the
pseudocode	that	follows	for	an	exact	description	of	this	binary	search,	which	can	easily	be
seen	to	terminate	after	a	finite	number	of	steps.	Finally,	we	base	our	stopping	criterion	on
(7.35),	where	we	use	that	the	inequality	part	of	(7.35)	is	equivalent	to	the	conditions

Modified	iterative	convex	minorant	algorithm
Input:

:	accuracy	parameter;
:	line	search	parameter;

:	initial	point	satisfying	 ;

begin
;

while	 	or	 	or
	do

begin
;

if 	then



else
begin

;	 ;	 ;

while 	(I)	or

	(II)	do

begin
if	(I)	then	 ;
if	(II)	then	 ;

;

;

end;
;

end;
end;

end.

To	 prove	 convergence	 of	 the	 modified	 ICM	 algorithm	 to	 the	 point	 ,	 we	 use
Theorem	7.1.

Theorem	 7.3	 Let	 the	 function	 	 satisfy	 Condition	 7.1	 and	
	satisfy	 .	Let	the	mapping	 	take	values	in	the	set	of

positive	definite	( )	diagonal	matrices	such	that	 	is	continuous	on	the
set

(7.41)

Then	an	algorithm	generated	by	the	mapping	 ,	as	defined	in	(7.40),	converges	to	 .

Proof	From	Lemma	7.1	 it	 follows	 that	 the	mapping	 	 is	well	defined	and	has	 	 as	 a
descent	function.	From	this	observation	it	follows	that

where	 	is	as	defined	in	(7.41).	From	Condition	7.1	and	the	fact	that	 ,	it
follows	that	 	is	compact.	Therefore,	in	view	of	Theorem	7.1,	closedness	of	 	at	each	

	would	imply	global	convergence	of	the	algorithm.

Fix	 	 and	 a	 sequence	 	 in	 	 such	 that	 .	 Let	
	 with	 	 for	 some	 .	 To	 prove	 closedness	 of	 ,	 we

have	to	prove	that	 .



First	note	that	continuity	of	the	mapping	 	on	 	and	Condition	7.1	yield
that

(7.42)

as	 .	From	this	it	follows	that	 	necessarily.	Now	consider	the
two	different	situations	that	can	occur.

The	first	situation	is	that

for	infinitely	many	values	of	 .	Letting	 	tend	to	infinity	along	a	subsequence	 	where
this	inequality	holds,	we	get	from	(7.42)	that

so	 that	 .	Moreover,	 along	 the	 same	 subsequence	 it	 follows	 from	 the
definition	of	 	 that	 .	 Therefore,	 for	 ,	 	 by
the	continuity	of	 .	This	shows	that	 ,	as	was	to	be	proved.

The	other	possibility	is	that	for	all	 	sufficiently	large

Letting	 	and	using	(7.42),	it	then	follows	that

Therefore,	 according	 to	 the	 definition	 of	 	 and	 the	 fact	 that	 ,	
	whenever

This,	however,	immediately	follows	from	the	fact	that	for	all	 	sufficiently	large

,	 	and	 .	☐
To	 illustrate	 the	 algorithm,	 we	 apply	 it	 to	 the	 interval	 censoring	 problem	 as	 in

Example	7.4.

Example	 7.6	 (Interval	 censoring	 case	 2)	Recall	 from	 Example	 7.4	 that	 we	 denote	 by	
	the	ordered	observed	times	(so	the	 s	as	well	as	the	 s);	an	ML

estimator	can	be	found	that	does	not	put	mass	outside	this	set	of	 s.	If	there	are	no	ties
(we	 will	 assume	 this	 in	 this	 example),	 .	 However,	 in	 view	 of	 log	 likelihood
function	(7.12),	the	number	of	potential	support	points	(points	at	which	there	is	mass)	of
the	ML	 estimator	 can	 be	 reduced	 further.	 Indeed,	 suppose	 	 identifies	 a	 subject	 with	

.	Then	the	corresponding	 	does	not	occur	in	the	log	likelihood;	only	
occurs.	 Similarly,	 	 does	 not	 occur	 in	 the	 log	 likelihood	 if	 	 is	 such	 that	



.	 Let	 us	 therefore	 perform	 a	 further	 reduction	 of	 the	 parameter	 space,
removing	 all	 s	 that	 correspond	 to	 s	 with	 	 and	 s	 with	 .
Abusing	 notation	 slightly,	 we	 represent	 the	 remaining	 points	 by	
(where	 	whenever	the	reduction	step	makes	a	difference).

Writing,	 for	 ,	 	 for	 the	distribution	function	 	 evaluated
at	 ,	 we	 obtain	 the	 natural	 parametrization	 for	 the	 ICM	 algorithm.	 Now	 define	 the
following	partition	of	 	three	disjoint	sets	of	indices	 	and	 :

Moreover,	define	the	function	 	as	follows:

In	 other	words:	 the	 	 corresponding	 to	 	 equals	 by	 definition	 a	 	 for	 some	
	with	 .	The	 	for	this	subject	 	also	appears	in	the	set	of	 s:

exactly	as	 ,	where	 .	Of	course,	 	automatically.	For	example,	if	
successive	realizations	of	 	are	given	by

(7.43)

then	the	ordered	and	pooled	observed	time	points	are	given	by	 .
This	set	reduces	to	the	following	 s:	 	(e.g.,	the	 	vanishes	because	it	is	
	 with	 corresponding	 ).	 Moreover,	 	 since	

corresponds	to	 ,	which	has	associated	 ,	and	similarly	 	corresponds	to	
with	 associated	 .	 Also,	 	 since	 	 with	 ,	 and	

	since	 	with	 .	The	function	 	 is	simply	 .
Using	this	notation,	we	can	rewrite	minus	the	log	likelihood	defined	in	(7.12)	as

Note	that	in	this	representation	we	sum	over	the	indexes	of	the	points	 	 rather
than	over	the	 	observation	points.

The	 aim	 is	 to	 minimize	 this	 function	 over	 the	 -dimensional	 cone	 .	 In	 order	 to
implement	the	ICM	algorithm,	we	need	the	first	and	second	partial	derivatives	of	 	with
respect	to	the	parameters	 	for	 .	These	first	derivatives	are	given	by



The	diagonal	entries	of	the	Hessian	matrix	of	 	are	given	by

Note	 that	 the	 Hessian	matrix	 is	 reasonably	 sparse,	 in	 the	 sense	 that	many	 off-diagonal
elements	 	for	 	are	zero	(see	also	Exercise	7.23).

Now,	 at	 a	 given	 iterate	 satisfying	 ,	 say	 ,	 a	 local	 quadratic
approximation	 of	 	 with	 diagonal	 Hessian	 (apart	 from	 an	 additive	 constant	 not
depending	on	 )	is	given	by

The	 minimizer	 of	 this	 function	 over	 	 can	 be	 computed	 using	 the	 remark	 following
Lemma	2.1.	Using	the	diagram	of	points	consisting	of	 	and	for	

the	 th	component	( )	of	the	minimizer	is	given	by	the	left	derivative	of	the
convex	minorant	of	this	diagram	of	points,	evaluated	at	 .

Using	the	same	data	as	 in	Example	7.4	and	starting	from	the	uniform	distribution	on	
	(so	 	for	 ),	Figure	7.5a	shows	 the	values	of	 the	 log

likelihood	at	the	successive	iterations.	Figure	7.5b	shows	the	resulting	approximation	after
	 iterations.	 It	 is	 interesting	 that	 the	 value	 of	 the	 log	 likelihood	 attained	 by	 the	EM

algorithm	 after	 	 iterations	 ( )	 is	 attained	 by	 the	 ICM	 algorithm	 after
only	 	(fast)	iterations.



	

Figure	7.5	 (a)	The	log	likelihood	values	of	the	consecutive	iterates	(starting	from	the
fourth,	for	reasons	of	scaling)	of	the	ICM	algorithm.	(b)	The	iterate	after	100	iterations
together	with	the	underlying	distribution	function.

7.4	 Vertex	Direction	Algorithms
Consider	the	normal	(or	Gaussian)	deconvolution	problem	introduced	in	Example	4.1.	The
sampling	density	of	 	 is	 then	 given	 by	 a	 (location)	mixture	 of	 unit	 variance	Gaussian
densities.	It	can	be	written	as

for	 some	mixing	 probability	measure	 .	 In	 other	words,	 the	 density	 	 belongs	 to	 the
convex	hull	of	the	set	of	basis	functions

All	 deconvolution	 models	 are	 mixture	 models.	 Also	 other	 classes	 of	 densities	 can	 be
identified	as	mixtures,	e.g.,	observation	densities	in	interval	censoring	models,	the	class	of
decreasing	densities	and	 the	class	of	convex	decreasing	densities	 (see	Exercise	7.25).	 In
this	section	we	consider	M-estimators	in	such	models.	These	are	defined	as	solution	to	a
(usually	infinite	dimensional)	minimization	problem	over	the	set	of	mixtures.

A	whole	class	of	algorithms,	called	vertex	direction	algorithms,	has	been	developed	that
can	be	applied	 to	solve	 these	optimization	problems.	The	 iterations	 in	algorithms	of	 this
type	 consist	 of	 two	 steps.	 First,	 starting	 from	 a	 current	 iterate,	 one	 or	 more	 profitable
directions	 for	 the	 objective	 function	 are	 determined.	 This	 step	 entails	 minimizing	 a
function	 over	 a	 low	 dimensional	 set	 ,	 parameterizing	 the	 set	 of	 basis	 functions	 (or
vertices)	 of	 the	model.	 In	 the	Gaussian	 deconvolution	 problem	 .	 Subsequently,
given	 the	 current	 iterate,	 the	 basis	 functions	 thus	 determined	 are	 used	 to	 decrease	 the
objective	 function.	 In	 many	 examples	 this	 latter	 step	 boils	 down	 to	 a	 moderate-
dimensional	minimization	problem.	Before	explaining	these	algorithms	in	more	detail,	we
first	state	the	general	optimization	problem.

Consider	the	following	type	of	optimization	problem



(7.44)

where	 	is	a	convex	function	defined	on	(a	superset	of)	a	convex	set	of	functions	 .	We
assume	throughout	that	 	has	a	unique	minimizer	over	 .

Assumption	7.1	 	is	a	convex	function	on	 	such	that	for	each	 	where	 	is
finite,	the	function	 	is	continuously	differentiable	for	 .

Now	 define,	 for	 each	 	 and	 ,	 a	 function	 such	 that	 for	 some	 ,	
,

Note	that	this	quantity	exists	(possibly	equal	to	 )	by	convexity	of	 .	As	we	will	see,	a
choice	often	made	for	 	is	 	for	some	arbitrary	 .	In	that	case	we	have

The	following	simple	but	important	result	gives	necessary	and	sufficient	conditions	for	
	to	be	the	solution	of	(7.44).

Lemma	7.2	Suppose	that	 	satisfies	Assumption	7.1.	Then

Proof	 First	 we	 prove	 .	 Suppose	 	 and	 choose	
arbitrarily.	Then,	for	

Now	 .	For	arbitrary	 ,	write	 	for	the	convex	function	
and	note	that

☐
An	interesting	special	case	emerges	when	 	is	the	convex	hull	of	a	class	of	functions,

as	in	the	Gaussian	deconvolution	model

(7.45)

in	the	sense	that

(7.46)

Example	7.7	(Convex	decreasing	density)	The	 class	 of	 convex	 decreasing	 densities	 on	



	has	representation	(7.46)	with

See	Exercise	(7.25)

Example	 7.8	 (Mixture	 of	 unit	 variance	 normals)	The	 Gaussian	 deconvolution	 problem
entails	 estimation	 of	 a	 density	 (and	 associated	 mixing	 distribution)	 that	 belongs	 to	 the
convex	hull	of	the	class	of	normal	densities	with	unit	variance:

In	 the	examples	 just	considered,	usually	one	has	a	sample	 	 from	the
unknown	 density	 ,	 and	 wants	 to	 estimate	 the	 underlying	 density	 based	 on	 that
sample.	 We	 now	 consider	 two	 types	 of	 nonparametric	 shape	 constrained	 density
estimators:	least	squares	(LS)	estimators	and	maximum	likelihood	(ML)	estimators.

We	define	a	LS	estimate	of	the	density	in	 	as	minimizer	of	the	function

(7.47)

over	 the	 class	 .	 Here	 	 is	 the	 empirical	 distribution	 function	 of	 the	 sample.	 The
reason	for	calling	this	estimator	a	LS	estimator	is	that	if	the	empirical	distribution	function

	had	a	density	 	with	respect	to	Lebesgue	measure,

would	be	the	natural	function	to	minimize	for	a	 least	squares	estimator.	The	last	 term	in
this	 expression	 does	 not	 depend	 on	 .	 The	 first	 two	 terms	 correspond	 to	 (7.47).	 See
Exercise	1.1	 and	 (2.27)	 for	 a	 related	 reasoning	 in	 the	 context	 of	 density	 estimation	 and
estimating	an	increasing	hazard	function.	Note	that	for	objective	function	(7.47)

As	maximum	likelihood	estimate	we	define	the	minimizer	of	the	function

over	the	class	of	densities	 .	Note	that	for	this	function

For	both	objective	functions	 ,	 the	 function	 	has	 the	 linearity	property	stated	as
follows.



Assumption	 7.2	 The	 function	 	 has	 the	 property	 that	 for	 each	 	 and	
,

(7.48)

Under	this	additional	assumption,	the	nonnegativity	condition	in	Lemma	7.2	that	has	to
hold	for	each	 	may	be	restricted	to	functions	 .

Lemma	 7.3	 Suppose	 that	 conv 	 with	 	 as	 in	 (7.45)	 and	 that	 	 satisfies
Assumptions	7.1	and	7.2.	Then

Proof	This	follows	immediately	from	Lemma	7.2,	the	fact	that	 	and	(7.48)	☐
For	the	situation	of	Lemma	7.3,	there	is	a	variety	of	algorithms	to	solve	(7.44)	that	can

be	called	“of	vertex	direction	(VD)	type.”	A	common	feature	of	VD	algorithms	is	that	they
consist	of	 two	basic	steps.	Given	a	current	 iterate	 ,	 find	a	value	of	 	such	 that	

	 is	 negative.	 (If	 such	 a	 value	 cannot	 be	 found,	 the	 current	 iterate	 is
optimal!)	This	means	that	traveling	from	the	current	iterate	in	the	direction	of	 	would
(initially)	decrease	the	value	of	the	function	 .

Having	found	such	a	feasible	profitable	direction	from	the	current	iterate,	the	next	step
is	to	solve	some	low-dimensional	optimization	problems	to	get	to	the	next	iterate.

For	the	original	VD	algorithm,	the	first	step	is	naturally	implemented	as	follows.	Given
the	current	 ,	 find	 	corresponding	 to	 the	minimizer	of	 	over	 .	The
second	step	is	then	to	choose	the	function

where	 	is	given	by

In	other	words,	 the	next	 iterate	 is	 the	optimal	convex	combination	of	 the	current	 iterate
and	the	most	promising	vertex	in	terms	of	the	directional	derivative.	It	is	clear	that	usually
the	next	iterate	has	one	more	support	point	than	the	current	iterate.

Another	algorithm	of	VD	type	 is	 the	vertex	exchange	algorithm,	which	not	only	uses
the	 parameter	 	 corresponding	 to	 the	 minimizer	 of	 ,	 but	 also	 the
maximizer	 	of	 	restricted	to	the	basis	functions	currently	represented	in
the	 current	 iterate	 to	 get	 a	 direction.	 The	 set	 of	 parameters	 corresponding	 to	 basis
functions	represented	in	a	mixture	 	is	called	the	support	of	 .	Denote	by	 	the
mass	 assigned	 to	 	 by	 the	mixing	 distribution	 corresponding	 to	 .	 Then	 the	 direction
given	by	the	algorithm	is	 .	The	new	iterate	becomes



where

If	 ,	the	point	 	is	eliminated	from	the	support	of	the	current	iterate,	and	the	mass
assigned	to	 	by	the	old	mixing	distribution	is	moved	to	the	new	point	 .	It	is	clear	that
in	this	algorithm	the	number	of	support	points	of	the	iterate	can	increase	by	one,	remain
the	same,	or	also	decrease	by	one	during	one	iteration	(if	 	and	 	already	belongs	to
the	 support).	 In	 specific	 examples,	 the	 number	 of	 support	 points	 of	 the	 solution	 	 is
known	to	be	smaller	than	a	constant	 	which	only	depends	on	the	data	(and	is	known	in
advance).

Another	variation	on	the	theme	is	called	the	intra	simplex	direction	algorithm.	The	set
of	 all	 local	 minima	 	 of	 ,	 where	 	 is	 negative,	 is
determined	 and	 the	 optimal	 convex	 combination	 of	 the	 current	 iterate	 and	 all	 vertices	

	 is	 the	new	iterate.	This	final	step	is	 to	minimize	a	convex	function	in	the
variables	 	under	the	constraint	 .

Another	 variation	 on	 the	 original	 VD	 algorithm	 is	 the	 Simar	 algorithm,	 originally
applied	to	solve	a	Poisson	mixture	problem.	It	sticks	to	the	original	idea	of	picking	one	
corresponding	 to	 a	 profitable	 direction.	 The	 second	 step	 differs	 from	 those	 indicated
earlier	 in	 the	sense	 that	 the	 the	new	 iterate	 is	chosen	 to	minimize	 the	objective	 function
over	 a	 finite	 dimensional	 subset	 of	 the	 mixture	 class	 rather	 than	 taking	 a	 convex
combination	 of	 the	 current	 iterate	with	 some	 other	 functions.	Denote	 by	 	 the	 set	 of
support	points	of	the	mixing	measure	corresponding	to	a	function	 .	Then,	given	
,	the	next	iterate	is	given	by

It	is	to	be	noted	that	support	points	can	(and	usually	do)	vanish	during	this	second	step.

We	 now	 illustrate	 the	 support	 reduction	 algorithm	 to	 compute	 the	 least	 squares
estimator	in	convex	regression.

Example	 7.9	 (Least	 squares	 estimation	 of	 a	 convex	 regression	 function)	Consider	 the
convex	 regression	problem	 introduced	 in	Section	4.3.	Data	 	 are
given,	and	these	are	assumed	to	be	generated	by	the	following	model:

where	 	 is	 a	 convex	 function	 on	 	 and	 the	 s	 are	 independent	 centered	 random
variables	 with	 finite	 second	 moment.	 Assume	 (if	 there	 are	 no	 ties	 without	 loss	 of
generality)	 that	 .	The	 least	 squares	 estimate	 for	 	 is	defined	as
the	minimizer	of	the	function

over	the	class	of	all	convex	regression	functions	 	on	 .	As	seen	in	Section	4.3,	we	may
(and	will)	restrict	ourselves	to	estimating	 	by	a	piecewise	linear	function	on	the	range	of



the	 s	with	knots	restricted	to	the	 s.	Existence	and	uniqueness	of	this	estimator	were
established	 in	 Lemma	 4.1.	 Now	 note	 that	 all	 convex	 functions	 of	 this	 type	 can	 be
represented	as

where	 	 for	 ,	 ,	 ;
therefore	the	class	of	functions	can	be	represented	as	a	(closed)	convex	cone	generated	by
the	 functions	 	 and	 the	 optimization	 problem	 fits	 within	 the
setting	of	vertex	direction	methods.

To	explain	the	algorithm,	consider	the	data	set	of	size	 	showed	in	Figure	7.6a.
The	 line	 in	 the	 picture	 is	 the	 usual	 least	 squares	 linear	 regression.	 This	 is	 a	 feasible
solution	 (the	 function	 is	 convex),	 but	 clearly	 not	 the	 optimal	 solution	 in	 the	 convex
regression	 problem	 at	 hand.	 Figure	 7.6b	 shows	 the	 directional	 derivative	 function
evaluated	at	the	current	iterate,	in	the	direction	of	generators	 :

	

Figure	7.6	 Scatter	plot	of	the	dataset	of	size	 	from	the	convex	regression	model
(a)	and	the	associated	function	 	defined	in	(7.49)	(b).

By	definition,	starting	from	the	linear	regression,	the	derivatives	in	the	directions	
and	 	are	zero	(a	property	that	will	be	forced	at	the	subsequent	iterates	as	well;	see	the
following).	 If	 	 would	 be	 nonnegative	 for	 all	 ,	 the	 current	 iterate	 would	 be	 the
optimal	solution.	As	can	be	seen	in	the	graph	of	 ,	this	is	certainly	not	the	case.	There
are	 various	 s	 for	which	 the	 directional	 derivatives	 are	 still	 negative.	 In	 the	 next	 step,
based	on	 ,	we	choose	the	 	such	that	 	is	most	negative.	In	this	case,	it	is	index	

,	 as	 indicated	 in	 the	 graph	 of	 .	Now	 a	minimization	 of	 	 is	 performed	 over	 all
piecewise	linear	functions	having	knots	at	 	and	 	and	satisfying



If	this	function	is	feasible	(i.e.,	convex	in	this	example),	this	is	the	new	iterate.	If	not,	a
support	reduction	step	is	performed.	This	means	that	starting	from	the	old	iterate,	the	new
(unrestricted)	iterate	is	approached	via	the	line	segment	connecting	the	two	points	in	 .
Before	 reaching	 the	 new	 iterate,	 at	 some	 point	 the	 convex	 combination	 of	 the	 two	will
become	infeasible,	in	the	sense	that	the	convexity	restriction	will	be	violated	if	one	would
go	 closer	 to	 the	 suggested	 unrestricted	 minimizer.	 At	 this	 point,	 the	 point	 where	 this
violation	 takes	 place	 is	 removed	 from	 the	 set	 of	 support	 points	 and	 a	 new	 unrestricted
iterate	is	computed.	This	process	is	continued	until	a	new	iterate	is	found	that	is	feasible.	It
can	be	proved	that	this	algorithm	leads	to	a	new	feasible	iterate	having	 	value	strictly
smaller	 than	the	old	value.	Moreover,	 the	resulting	algorithm	can	be	shown	to	converge.
Figure	7.7	shows	the	values	of	 	evaluated	at	the	subsequent	iterates	as	well	as	the	iterate
emerging	after	 	iterations.

	
Figure	7.7	 (a)	The	successive	values	 	for	the	iterates	produced	by	the	Support
Reduction	algorithm	(except	for	the	first	for	reasons	of	scaling).	(b)	The	scatter	plot	with
the	(final)	iterate	produced	by	the	algorithm	after	11	iterations.

We	end	 this	 section	with	with	 the	 bivariate	 interval	 censoring	 problem	 introduced	 in
Section	5.2.

Example	7.10	(Bivariate	 interval	censoring	case	2)	 In	 this	model	 (see	Section	5.2),	 the
log	likelihood	function	is	given	by	(5.19).

For	 computational	 purposes,	 it	 is	 convenient	 to	 introduce	 rectangles	 to	 which	 the
unobservable	observations	are	known	to	belong	(see	Figure	5.7),	where	we	represent	the
(one-sided)	unbounded	rectangles	by	finite	rectangles	with	upper	or	lower	bounds	outside
the	range	of	the	observed	data.	In	this	set	up	we	have	to	maximize

(7.50)

where	 	 is	a	vector	of	probability	masses	at	possible	points	of	mass	
	 and	 	 is	 a	 vector	 of	 length	 ,	 consisting	 of	 ones	 and	 zeros,	 where	 the



component	 	is	equal	to	 	if	the	point	 	is	contained	in	the	rectangle

and	 is	 zero,	 otherwise.	 The	 masses	 	 should	 be	 nonnegative	 and	 sum	 to	 .	 This
optimization	 can	 easily	 be	 handled	 by	 using	 iterative	 quadratic	 minimization	 and	 the
support	reduction	algorithm.

An	R	package,	called	MLEcens,	written	by	Marloes	Maathuis,	is	available	for	computing
the	MLE.	The	algorithm	determines	rectangles	where	the	MLE	has	mass	via	a	preliminary
reduction	algorithm,	and	next	computes	the	mass	of	the	MLE	in	these	rectangles,	using	the
support	reduction	algorithm.	The	reduction	algorithm	is	described	in	Maathuis,	2005.	The
R	package	uses	as	an	example	a	data	set,	studied	in	Betensky	and	Finkelstein,	1999.

We	computed	the	MLE	by	a	 	program	based	on	the	support	reduction	algorithm	with
iterative	quadratic	minimization	of	Groeneboom,	Jongbloed	and	Wellner,	2008,	which	 is
also	used	in	the	R	package	MLEcens.	There	is	an	extensive	discussion	on	where	to	put	the
mass	once	one	has	determined	rectangles	that	can	have	positive	mass,	see,	e.g.,	Sun,	2006,
Section	 7.3,	 Gentleman	 and	 Vandal,	 2002,	 Bogaerts	 and	 Lesaffre,	 2004,	 and
Maathuis,	 2005.	 The	 algorithm	 for	 computing	 these	 rectangles,	 proposed	 in
Maathuis,	2005,	seems	at	present	to	be	the	fastest.

We	propose	a	method	that	avoids	computation	of	these	canonical	rectangles,	also	avoids
discussion	of	whether	one	should	place	the	mass	of	the	MLE	at	the	left	lower	bound	or	the
right	 upper	 bound	 of	 the	 rectangles.	We	 specify	 in	 advance	 a	 set	 of	 points	 where	 one
allows	mass	 to	 be	 placed.	 In	 this	 way	we	 obtain	 an	MLE	 on	 a	 sieve,	 where	 the	 sieve
consists	 of	 distributions	 having	 discrete	 mass	 at	 these	 points.	 The	 bottleneck	 in	 the
computation	 of	 the	 MLE	 for	 the	 bivariate	 interval	 censoring	 problem	 is	 not	 the
determination	of	the	canonical	rectangles,	but	the	computation	of	the	mass	the	MLE	puts
on	these	canonical	rectangles,	since	there	usually	are	very	many.

The	 latter	 phenomenon	 shows	 up	 in	 particular	 in	 simulations.	 As	 an	 example,
simulating	data	from	the	distribution	with	density	 	on	the	unit	square,
with	a	uniform	observation	distribution,	we	got	for	sample	size	 	about	
possible	 rectangles	 where	 the	 masses	 could	 be	 placed,	 which	 is	 (at	 present)	 an	 almost
prohibitive	number	if	one	wants	to	do	simulations	for	the	limit	behavior	of	the	MLE	on	an
ordinary	table	computer.	Ultimately,	the	discussion	on	these	matters	should	be	determined
by	insights	into	the	distribution	theory	of	the	MLE	or	the	MLE	on	the	chosen	sieve.	But
unfortunately,	 if	 the	 underlying	 distributions	 are	 not	 assumed	 to	 be	 purely	 discrete,	 at
present	nothing	is	known	about	this,	in	contrast	with	the	situation	in	dimension	1.

We	found	the	following	method	for	choosing	points	of	possible	mass	 to	work	well	 in
practice.	 For	 each	 observation	 rectangle	 	we	generate	 uniformly	 a
point	 	 in	 	 and	 a	 point	 	 in	 .	 This	 yields	 	 points	 	 of
possible	positive	mass.	This	presupposes	that	the	rectangles	have	finite	bounds,	but	this	is
the	usual	set-up	for	computing	the	MLE:	the	infinite	bounds	are	replaced	by	bounds	just
outside	the	rectangle,	containing	the	observations.	Natural	choices	for	the	right	and	upper
bounds	 in	 the	Betensky-Finkelstein	data	would	be	 	 and	 ,	 since	 the	 intervals	 have
right	bounds	at	multiples	of	 ,	and	since	the	largest	observation	on	the	first	axis	is	 	and



on	the	second	axis	 .

To	illustrate	the	results	of	this	method	on	simulated	data,	we	show	the	estimate	of	the
bivariate	distribution	function,	which	we	call	MLE	again,	since	it	is	the	MLE	on	a	sieve,
in	Figure	5.8	 (in	Section	5.2)	 together	with	 a	 picture	 of	 the	 real	 underlying	distribution
function	 for	 a	 sample	 of	 size	 .	 Although	 there	 are	 	 possible	 points	 of
mass	 initially,	 the	 support	 reduction	 algorithm	 only	 selects	 	 of	 these	 as	 points	 of
positive	mass.	Figure	5.9	and	Figure	5.10	are	also	based	on	this	simulation	study.

The	 data	 of	 Betensky	 and	 Finkelstein,	 1999,	 are	 given	 in	 Table	 7.1,	 where	 the
rectangles	 to	 which	 the	 hidden	 observations	 are	 known	 to	 belong	 are	 denoted	 by	

,	 .	 The	 frequencies	 of	 the	 hidden	 observations
belonging	 to	 these	 rectangles	 are	 given	 in	 the	 th	 and	 th	 column.	 There	 are	
observation	 rectangles	 and	 the	 total	 sample	 size,	 taking	 the	 frequencies	 into	account,	 is	

.	The	table	is	also	given	in	Sun,	2006,	 table	7.1,	p.	165,	but	 there	the	rectangles	are
slightly	 changed	 from	 the	 data	 in	 Betensky	 and	 Finkelstein,	 1999,	 by	 lowering	 the	 left
bounds	by	 	if	they	are	larger	than	zero.	Since	we	do	not	see	a	pressing	reason	for	doing
that,	we	just	give	the	data	here	as	they	were	given	by	Betensky	and	Finkelstein,	1999.	 If
the	 upper	 bound	 	 is	 unknown,	 we	 put	 	 and	 if	 the	 lower	 bound	 	 is
unknown,	we	put	 .

Table	7.1	 The	Betensky-Finkelstein	Data	



The	 maximal	 intersection	 rectangles	 where	 the	 MLE	 will	 put	 its	 mass	 are	 given	 in
Table	7.2a.	They	can	be	computed,	for	example,	by	applying	the	reduction	algorithm,	used
in	the	R	package	MLEcens.

Table	7.2	 Maximal	Intersection	Rectangles	and	Masses	of	MLE	



To	facilitate	the	comparison	with	the	existing	literature,	we	will	only	discuss	the	MLE,
based	on	the	preliminary	reduction	to	rectangles	which	can	have	mass,	and	not	follow	the
procedure	we	used	for	computing	the	MLE	on	a	sieve	in	the	simulation	from	the	density	

	 on	 .	We	 will	 use	 the	 convention	 of	 putting	 the	 mass	 of	 the
MLE	in	the	left	lower	corner	of	these	rectangles,	except	that	we	do	not	allow	values	less
than	zero	(so	we	replace	 	by	 ),	 and	compute	 the	MLE	by	 the	 support	 reduction
algorithm	of	Groeneboom,	Jongbloed	and	Wellner,	2008.	The	result	is	shown	in	Table	7.2,
where	the	masses	of	the	MLE	are	given.	It	is	seen	that	this	is	in	close	correspondence	with
Table	 7.2	 on	 p.	 166	 of	 Sun,	 2006,	 apart	 from	 the	 slightly	 different	 definition	 of	 the
rectangles.	The	R	package	MLEcens	also	gives	this	result	(in	all	 	decimals).

As	 remarked	 earlier,	 we	 have	 some	 freedom	 in	 choosing	 the	 input	 to	 the	 support
reduction	algorithm.	We	can	first	compute	the	canonical	rectangles,	and	allow	as	possible
points	of	mass	the	left	lower	corners	of	these	rectangles,	or	we	could	just	allow	points	of
mass	 at,	 e.g.,	 the	 points	 ,	 .	 In	 both	 cases	 the	 support	 reduction
algorithm	 arrives	 at	 exactly	 the	 same	 result,	 given	 in	 Table	 7.2b.	 Note	 that	 the	 points	

	 and	 	 allow	 extra	 mass	 outside	 the	 region	 of	 the	 observation	 points,
since	 the	 largest	observation	points	on	 the	 first	 and	 second	coordinates	 are	 	and	 ,
respectively.	We	need	these	extra	points,	since	the	indicators	 	and	 	can	give	the
information	 that	 there	 are	 hidden	 observations	 outside	 the	 region	 formed	 by	 the
observation	points.

A	picture	of	the	MLE,	based	on	the	marginal	data	for	the	first	coordinate,	together	with
the	 first	 marginal	 df	 of	 the	 MLE	 for	 the	 bivariate	 distribution	 function,	 is	 shown	 in
Figure	7.8.	It	is	seen	that	the	two	estimates	are	very	similar,	and	only	start	differing	a	bit
on	the	last	interval.



	
Figure	7.8	 The	first	marginal	distribution	function	of	the	data	set	in	Betensky	and
Finkelstein,	1999,	computed	on	the	interval	 	(the	largest	observation	point	on	the
first	coordinate	is	 ).	The	solid	line	gives	the	MLE	of	the	first	marginal	distribution
function,	based	on	the	marginal	data,	while	the	dashed	line	gives	the	first	marginal
distribution	function	of	the	MLE	of	the	bivariate	MLE.

A	 picture	 of	 the	 bivariate	 MLE	 for	 the	 Betensky-Finkelstein	 data,	 restricted	 to	 the
rectangle	 ,	is	shown	in	Figure	7.9.	It	can	be	seen	from	this	picture	that
the	steep	increase	of	the	first	marginal	df	of	the	MLE	at	zero	is	due	to	the	“ridge”	for	the
larger	values	of	the	second	coordinate.	For	the	meaning	of	the	codings	CMV	and	MAC,
see	Betensky	and	Finkelstein,	1999,	or	Sun,	2006,	Section	7.3.



	
Figure	7.9	 Surface	(a)	and	level	plots	(b)	of	the	MLE	for	the	Betensky-Finkelstein	data,
restricted	to	the	interval	 .

7.5	 The	MLE	in	the	Competing	Risks	Model	with	Interval
Censoring
In	this	section	we	compare	the	performance	of	the	algorithms,	discussed	in	the	preceding
sections	for	the	MLE	in	the	competing	risk	model	with	interval	censored	data.	Note	that
this	also	covers	the	so-called	mixed	case	interval	censoring	where	there	can	be	more	than
two	observations	 	 per	unobservable	hidden	variable	 ,	 since	 only	 the	 surrounding
interval	matters	for	the	computation	of	the	MLE.	We	recall	that	the	log	likelihood,	divided
by	 ,	has	the	form

(7.51)

where	 .

For	the	EM	algorithm,	we	parameterize	via	the	point	masses	 	of	 	at	the	points	
,	where	 	belongs	to	the	set	 ,	allowing	extra	mass	

for	mass	for	 	at	infinity,	if	there	are	 	points	which	are	relevant	for	 .	Taking	the
derivative	of	the	criterion	function	with	respect	to	 ,	we	get	the	iteration	steps:

for	 .	 This	 leads	 to	 the	 following	 iterations	 for	 the	 distribution
functions:



Note	that	the	right-hand	side	has	the	interpretation	as	a	conditional	expectation	under	the
distribution	 	at	the	 th	iteration	step:

where	 	is	the	empirical	distribution	function	of	the	 th	subvariable,	assuming
that	the	mass	of	 	is	concentrated	in	the	observation	points.

For	the	iterative	convex	minorant	algorithm	we	use	the	characterization

for	each	 ,	where	 	is	defined	by

(7.53)

Note	that	this	characterization	is	an	extension	of	the	characterization	for	the	current	status
model	in	Lemma	5.2	of	Section	5.1,	where	the	inequalities	are	reversed	since	we	consider
the	tail	regions	 	in	the	integrals.

The	 solution	 can	 be	 computed	 by	 the	 iterative	 convex	 minorant	 algorithm	 in	 the
following	way.	Let	us	call,	for	each	 ,	an	observation	time	 	such	that	 	be
an	observation	of	type	1	(for	 )	and	an	observation	time	 	such	that	 	be	an
observation	of	 type	2	(for	 ).	Moreover,	 let	 	be	 the	strictly
ordered	observation	points	of	both	types	for	the	 th	component	function.	We	now	form	a
cusum	diagrams	with	weights	 	for	 ,	defined	by:



for	 ,	where	 .	The	 -coordinates	of	these	cusum	diagrams
are	the	cumulative	sums	of	 ,	where

If	 the	 largest	 order	 statistic	 of	 the	 observations	 is	 an	 observation	 with	 corresponding	
	 (meaning	 that	 this	 observation	 is	 a	 censoring	 time	 for	 all	 	 risks,

indicating	there	is	survival	beyond	this	point),	the	cusum	diagram	is	of	the	form

for	each	 ,	otherwise	it	is	of	the	form

where	 	is	defined	by	(7.53).	As	usual,	the	point	 	is	added	to	the	cusum	diagrams.
The	MLE	is	now	computed	by	iteratively	computing	the	greatest	convex	minorants	of	the
cusum	diagrams	and	taking	its	left	derivative	 .	Note	that,	using	this	approach,	the	left
derivative	 	minimizes	at	the	 th	step	the	sum	of	squares

over	 -tuples	 	of	distribution	functions,	where

After	 computing	 the	 left	 continuous	 slopes	 of	 the	 	 cusum	 diagrams,	 line	 search	 is
performed	which	approximately	minimizes	over	 :

where	 	 is	 defined	 by	 (7.51),	 	 consists	 of	 the
left	continuous	slopes	of	the	cusum	diagrams	(7.54)	or	(7.55)	and



We	choose	as	the	input	for	the	next	iteration

where	 	is	the	value,	determined	by	the	line	search.

Finally,	the	R	package	MLEcens	computes	 the	MLE	using	the	vertex	direction	method.
This	means	that	at	each	iteration	quadratic	minimization	is	used,	combined	with	Armijo’s
rule	 for	 line	 search,	 to	 go	 from	 one	 quadratic	 minimization	 iteration	 step	 to	 the	 next
quadratic	minimization	step,	where	the	weights	of	the	quadratic	minimization	are	adjusted.
The	procedure	 is	 in	 fact	 completely	 analogous	 to	 the	method	used	 for	bivariate	 interval
censoring,	case	2.	The	prototype	of	this	method	is	given	in	Groeneboom,	Jongbloed	and
Wellner,	2008,	in	the	treatment	of	the	Aspect	experiment	in	quantum	statistics.

It	 is	 of	 interest	 to	 compare	 the	 performance	 of	 the	 three	methods	 for	 computing	 the
MLE.	To	this	end,	we	consider	the	competing	risk	model	with	current	status	data	(so	the
middle	 term	 in	 the	 log	 likelihood	 (7.51)	 drops	 out),	 where	 .	 We	 consider	 the
model

leading	to:

The	observation	distribution	is	(independently)	uniform	on	the	interval	 .	A	picture	of
these	 subdistribution	 functions	 and	 their	 maximum	 likelihood	 estimators	 for	 the
competing	risk	model	with	current	status	data	is	given	in	Figure	7.10.



	

Figure	7.10	 The	two	distribution	functions	 	for	the
competing	risk	model	with	current	status	data	and	their	MLEs	for	a	sample	of	size	

.	The	upper	curves	give	the	sum	function	 	and	its	estimator	 .

The	performance	of	the	three	algorithms	to	compute	the	MLE	is	given	in	Table	7.3	for
sample	sizes	 	 and	 .	The	 time	was	measured	 in	 seconds,
using	the	C	procedure	clock().	For	the	vertex	direction	method	the	original	C	program,
which	was	the	basis	for	the	R	routine	in	MLEcens,	was	used	to	give	a	fair	comparison.	The
values	 given	 here	 are	 more	 or	 less	 typical	 for	 the	 performance.	 The	 algorithm	 was
considered	to	have	converged	if	the	Fenchel	conditions	were	satisfied	at	accuracy	 ,
that	is:

and

Table	7.3	 Comparison	of	the	Performance	of	Methods	to	Compute	the	MLE	



It	 is	 seen	 that	 the	 iterative	 convex	minorant	 algorithm	 is	 always	 fastest	 and	 that	 the
difference	 in	computing	 time	 increases	 for	 increasing	sample	size.	EM	did	not	converge
within	100,000	 iterations	for	 	and	 ;	 for	 	 and	 after
1446	 seconds	 the	 inner	 product	 (7.56)	was	 still	 larger	 than	 	 (although	 it	 possibly
would	 have	 converged	 for	 	 iterations).	 On	 the	 other	 hand,	 EM	 needs	 around	 4000
iterations	 for	 sample	 size	 .	 The	 iterative	 convex	 minorant	 algorithm	 only	 needs
between	40	and	150	iterations	for	all	cases.	Of	course	we	only	have	given	the	numbers	for
one	model	(and	one	laptop	computer)	here,	and	further	research	will	be	needed	to	give	an
overall	 picture	 of	 the	 behavior.	 It	 seems,	 though,	 that	 the	 iterative	 convex	 minorant
algorithm	and	 the	vertex	direction	method	are	 far	 superior	 to	 the	EM	algorithm	 for	 this
problem.

Exercises
7.1	Show	that,	given	starting	value	 ,	a	sequence	of	iterates	using	the	algorithmic

map	(7.3)	can	be	any	sequence	 	such	that

7.2	Show	that	a	continuous	point-to-point	map	is	closed.

7.3	Show	that	closedness	of	a	point-to-point	map	does	not	imply	continuity.	Think,	e.g.,	of
the	function	 	with	 	if	 	and	 	if	 .

7.4	 In	 this	 exercise	 it	will	 be	 seen	 that	 for	 nonconvex	 functions	with	 local	minima,	 the
limit	point	of	Newton’s	algorithm	depends	on	the	starting	value.	It	is	not	guaranteed
that	the	limiting	value	corresponds	to	the	global	minimum	of	the	function.	Consider
the	function

on	 .

a)	Verify	that	this	function	is	not	convex	but	that	it	does	attain	its	minimum	value.

b)	The	basic	Newton	steps	for	minimizing	this	function,

need	 not	 be	 well	 defined	 (second	 derivative	 could	 be	 zero).	 Nevertheless,
implement	this	algorithm	(using	your	favorite	package),	where	you	can	generate



sequential	iterates	using	a	starting	value	 	of	your	choice.

c)	Run	the	algorithm	using	starting	value	 .	See	Figure	7.11a.

d)	The	same	as	(c),	but	now	with	starting	value	 .

	
Figure	7.11	 (a)	The	function	 	defined	in	Exercise	7.4,	with	Newton	iterates
starting	from	 .	(b)	The	function	defined	in	Exercise	7.5,	with	the	local
quadratic	approximation	at	 	with	its	associated	minimum	( )

7.5	In	this	exercise	 it	will	be	seen	that	Newton’s	algorithm	applied	to	a	convex	function
does	not	necessarily	converge.	Consider	the	convex	function	 	on	 	as
shown	in	Figure	7.11b.

a)	 Make	 the	 formal	 Newton	 steps	 for	 minimizing	 	 over	 	 (as	 given	 in
Exercise	7.4(b))	explicit	for	this	function.

b)	 Verify	 that	 whatever	 starting	 value	 is	 chosen,	 the	 algorithm	 does	 not	 have	 a
descent	function.

c)	Observe	that	the	direction	proposed	by	the	algorithm	is	a	descent	direction	and	that
the	algorithm	can	be	made	to	converge	by	proper	damping.

7.6	Consider	the	situation	of	Example	7.2,	based	on	the	model	defined	in	(7.1).

a)	Show	that	a	random	variable	with	density	 	given	 in	 (7.1)	can	be	generated	as
follows,	based	on	a	random	variable	 	that	is	uniformly	distributed	on	 :

b)	Choose	a	parameter	 	and	sample	size	 .	Generate	a	sample	of	size	
from	 the	 corresponding	 density	 	 and	 implement	 the	 Newton	 procedure
described	 in	 Example	 7.2.	 Does	 the	 algorithm	 converge?	 Experiment	 with
various	values	of	the	parameter	 	and	sample	size	 .

7.7	Verify	(7.5).

7.8	Show	that	(7.7)	corresponds	to	the	solution	of	the	 -step	in	the	truncated	exponential
model.

7.9	Show	that	 	in	Example	7.3.



7.10	To	show	the	algorithm	based	on	the	algorithmic	map	 	of	(7.36),	take	 	and	the
function

Moreover,	 take	 	 and	 ,	 the	 identity	 matrix.	 Show	 that	
	for	 	even	and	 	for	 	odd	in	this	example.

7.11	Show	in	the	context	of	Example	7.3	that	 ,	which	by	Exercise
7.9	equals	 .

7.12	Prove	that	the	EM	algorithm	described	in	Example	7.3	converges	to	 .

7.13	 This	 exercise	 relates	 to	 Example	 7.4.	 Show	 that	 maximizing	 	 with	 respect	 to	
	gives

Hint:	relax	the	constraint	 	using	a	Lagrange	multiplier.

7.14	In	the	setting	of	Example	7.4	show	that

7.15	Use	properties	of	conditional	expectations,	and	assume	 that	certain	 interchanges	of
differentiation	and	integration	(or	summation)	are	allowed	to	show	that:

7.16	Show	that	whenever	the	iterate	 	in	(7.15)	satisfies	 ,	the	same
holds	true	for	 .	This	guarantees	that	starting	the	iterations	given	in	(7.15)	with	a
genuine	probability	vector	 	leads	to	probability	vectors	 	for	 .

7.17	This	exercise	relates	to	Example	7.3	and	(7.20).	From	Example	7.3	we	see	that

Show	that

if	and	only	if	 ,	where	 	is	given	in	(7.9).	Hence,	the	self-consistency	equation
holds	in	the	truncated	exponential	example.	Moreover,	there	is	only	one	 	satisfying
the	self-consistency	equation.

7.18	Show	that	the	convolution	of	the	exponential	density	with	parameter	 	and	standard
uniform	density	is	given	by	(7.28).



7.19	 In	 Section	 4.6	 the	 ML	 estimator	 in	 deconvolution	 models	 is	 introduced.	 As
illustration,	 the	 estimator	 was	 computed	 using	 the	 EM	 algorithm.	 Write	

	for	the	ordered	realizations	of	a	sample	from	 	where	
	 is	 a	 decreasing	 density	 on	 	 and	 	 a	 distribution	 function	 supported	 on	

.

a)	Show	that	 in	 this	case	 the	ML	estimator	for	 	 is	a	discrete	distribution	function
with	mass	concentrated	on	the	observed	data	points.

b)	For	 a	 discrete	 distribution	 function	 	 supported	on	 	 define	 the
probability	 vector	 	 with	 components	 	 for	 .
Given	 a	 probability	 vector	 ,	 show	 that	 the	 conditional
expectation	 (under	 )	 of	 the	 full	 log	 likelihood	 given	 the	 observed	 data	 is
given	by

where	 	 is	 the	 convolution	 density	 using	 probability
vector	 .

c)	 Starting	 from	 a	 probability	 vector	 ,	 show	 that	 the	 explicit
iteration	step	in	the	EM	algorithm	is	given	by

d)	Generate	a	sample	 	using	a	distribution	function	 	on	 	and	a
sample	 	from	a	decreasing	density	 	on	 .	For	example,	follow
Section	4.6	and	take

Then	define	 .	Use	the	uniform	distribution	on	 	as
starting	distribution	and	implement	the	iterative	scheme	of	(b).	Run	a	number	of
iterations	and	observe	that	the	log	likelihood	at	the	successive	iterates	increases
in	line	with	Theorem	7.2.

7.20	In	Section	2.3	an	explicit	 construction	 is	given	 for	 the	ML	estimator	 in	 the	current
status	model.	The	EM	algorithm	can	also	be	used	to	compute	this	estimator.	Follow
the	steps	of	Example	7.4	to	derive	an	explicit	iteration	scheme	in	the	spirit	of	(7.15)
to	compute	the	ML	estimator	using	EM.

7.21	Prove	(7.35).

7.22	Show	that	the	index	set	 	in	the	context	of	the	data	given	in	(7.43).

7.23	Verify	in	the	context	of	Example	7.6	that



Identify	more	zero	entries	of	the	Hessian	matrix	of	 	and	observe	that	 the	Hessian
matrix	is	sparse	in	general.

7.24	Suppose	 	are	i.i.d.	according	to	the	density

on	 	with	 	and	 .	Write	down	the	log	likelihood	for
	 and	 design	 (and	 implement)	 a	 vertex	 direction	method	 to	 compute	 the

maximum	likelihood	estimator	of	this	parameter	vector.

7.25	 Consider	 	 for	 	 as	 introduced	 in	 Example	 7.7.
Show	that	the	class	of	mixture	densities	corresponding	to	the	basic	class	of	densities	

	is	exactly	the	class	of	convex	decreasing	densities	on	 .

7.26	Define	the	class	uniform	densities	by	 	with	 .
Show	that	the	class	of	mixture	densities	corresponding	 to	 	 is	exactly	 the	class	of
decreasing	densities	on	 .

7.27	Verify	(7.49).
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who	 also	 refers	 to	 Gentleman	 and	Vandal,	 2002,	 and	 Bogaerts	 and	 Lesaffre,	 2004,	 for
discussions	 of	 the	 computation	 of	 the	 MLE	 for	 this	 data	 set.	 The	 computation	 of	 the
rectangles	where	 the	MLE	 puts	mass	 is	 also	 discussed	 in	 Song,	 2001.	Another	 type	 of



algorithm	that	can	be	used	to	solve	optimization	problems	as	discussed	in	this	chapter	are
interior	point	methods.	For	an	overview	of	those	methods,	see	Wright,	1997.



8
Shape	and	Smoothness

As	 seen	 in	 the	 examples	 discussed	 so	 far,	 shape-restricted	 estimators	 often	 satisfy	 the
required	 shape	 constraint	 with	 minimal	 smoothness	 properties.	 The	 Grenander	 density
estimator	is	decreasing,	but	discontinuous	(see	Figure	2.4).	The	least	squares	estimator	for
a	convex	decreasing	density	is	convex	and	decreasing,	but	its	derivative	is	discontinuous
(see	Figure	4.9).	Similar	observations	can	be	made	for	other	models.	Sometimes,	there	are
reasons	 to	assume	 that	an	underlying	distribution	 function	 is	 smooth.	 In	other	 situations
(as	will	be	encountered	 in	Chapter	9),	smoothness	of	an	estimated	model	 is	needed	 in	a
proof	that	a	bootstrap	method	works.

In	 this	 chapter,	 the	 problem	 of	 estimating	 a	 smooth	 shape-constrained	 function	 is
considered.	 The	 estimation	 of	 smooth	 functions	 without	 shape	 constraints	 has	 received
quite	some	attention	since	the	1950s.	Methods	such	as	kernel	smoothing	and	spline	fitting
have	 been	 widely	 applied	 and	 studied	 thoroughly.	 In	 order	 to	 obtain	 smooth	 shape-
constrained	 estimators,	 various	 approaches	 are	 possible.	 A	 first	 is	 to	 smooth	 the
nonsmooth	 shape-constrained	 estimator.	 In	Section	8.1	 this	 approach	 is	 illustrated	 using
the	maximum	likelihood	estimator	 (MLE)	 in	 the	current	status	model.	A	related	method
interchanges	the	order	of	smoothing	and	maximizing	in	this	procedure.	In	Section	8.2	it	is
first	 illustrated	 using	 the	 problem	 of	 estimating	 a	 decreasing	 density	 on	 	 as
introduced	 in	 Section	 2.2.	 Instead	 of	 using	 the	 empirical	 distribution	 function	 in	 the
definition	 of	 the	 log	 likelihood,	 a	 smooth	 estimator	 for	 the	 observation	 distribution
function	 is	 used	 and	 then	 the	 corresponding	 smoothed	 (log)	 likelihood	 maximized	 to
obtain	 an	 estimator.	 This	 method	 is	 also	 very	 natural	 if	 only	 binned	 observations	 are
available.	This	will	be	seen	in	the	context	of	Wicksell’s	problem	as	introduced	in	Section
4.1.	Another	method	is	to	first	estimate	the	distribution	without	using	the	shape	constraint
and	process	this	estimator	in	such	a	way	that	it	satisfies	the	shape	constraint	without	losing
its	smoothness.	Yet	another	method	that	can	be	used	for	M-estimators	(such	as	maximum
likelihood	or	 least	 squares)	 is	 to	 restrict	 the	maximization	over	 a	 class	of	 smooth	 shape
constrained	functions	or	penalize	for	roughness.	This	method	is	illustrated	in	Section	8.3,
using	the	problem	of	estimating	an	increasing	hazard	rate,	as	introduced	in	Section	2.6.	In
Section	8.4	an	example	of	 this	approach	(monotonic	rearrangements)	 is	 illustrated	in	 the
context	 of	 estimating	 a	nondecreasing	 regression	 function	 and	 a	distribution	 function	 in
the	deconvolution	model.

Sections	8.5,	8.6	and	8.7	 illustrate	 the	methods	of	Sections	8.1	and	8.2	 in	some	other
models.	 The	 maximum	 smoothed	 likelihood	 estimator	 for	 the	 current	 status	 model	 is
studied	in	Section	8.5.	In	Section	8.6	the	smoothed	maximum	likelihood	estimator	in	the
interval	censoring	case	2	problem	is	defined	and	studied.	Finally,	the	smoothed	maximum
likelihood	 estimator	 is	 applied	 in	 a	 two-dimensional	 problem,	 the	 bivariate	 interval
censoring	problem,	in	Section	8.7.

8.1	 Smoothing	a	Shape-Constrained	Estimator



Having	a	nonparametric	nonsmooth	shape	constrained	estimator,	a	smooth	estimator	can
be	obtained	by	smoothing	that	basic	estimator.	If	the	smoothing	does	not	disturb	the	shape
constraint,	the	smoothed	estimator	will	be	a	smooth	shape	restricted	estimator.	In	the	case
where	the	basic	estimator	is	the	maximum	likelihood	estimator,	the	resulting	estimator	is
called	a	smoothed	maximum	likelihood	estimator	(SMLE).

In	 this	 section,	we	 illustrate	 the	method	 using	 the	 current	 status	model	 introduced	 in
Section	2.3.	The	function	of	interest	is	the	distribution	function	 	(and	the	corresponding
density	 	with	respect	to	Lebesgue	measure,	if	it	exists)	of	the	event	times	 .
However,	only	information	on	the	current	status	of	subject	 	at	time	 	is	available,	so
the	data	consist	of

Based	on	these	data,	the	MLE	 	can	be	explicitly	constructed	by	taking	the	derivative
of	the	greatest	convex	minorant	of	a	diagram	of	points;	see	Section	2.3.	For	the	smoothing
part,	 we	 use	 kernel	 estimators.	 Given	 a	 symmetric	 smooth	 probability	 density	 	 on	

,	the	kernel,	with	corresponding	distribution	function	 	and	derivative	 ,	and
bandwidth	 ,	define	scaled	versions	of	 ,	 	and	 	by

We	will	use	the	triweight	kernel,	defined	by

Define	the	SMLE	 	for	 	by

(8.1)

where	 	 is	 the	MLE.	Clearly,	as	 	 is	a	piecewise	constant	step	function,	estimating
the	density	 	associated	with	 	cannot	be	done	by	simple	differentiation.	However,	the
SMLE	can	be	used	like	that.	Indeed,	the	SMLE	 	for	 	can	be	defined	by

Now	 note	 that	 monotonicity	 of	 	 implies	 monotonicity	 of	 ,	 since	 the	 latter
merely	 is	 a	 mixture	 of	 translated	 (monotone)	 functions	 	 (see	 Exercise	 8.1).
Consistency	of	 ,	for	 	follows	easily	from	uniform	consistency
of	 	and	(8.1),	implying	that

(8.2)



See	 also	Exercise	 8.2.	Derivation	 of	 the	 asymptotic	 distribution	 theory	 of	 the	 SMLE	 is
more	 involved.	 In	 Section	 11.3	 asymptotic	 normality	 of	 	 will	 be	 derived	 in
Theorem	11.4.

Figure	8.1	shows	 the	estimator	based	on	 the	rubella	data	described	 in	Section	2.3	for
two	choices	for	the	bandwith:	 	(solid)	and	 	(dashed).

	

Figure	8.1	 The	smoothed	MLE	based	on	the	Rubella	data	with	 	(solid)	and	
	(dashed)	based	on	the	triweight	kernel.

As	is	clear	from	Figure	8.1,	a	disturbing	property	of	 	is	that	in	case	the	first	point	of
jump	 of	MLE	 	 is	 smaller	 than	 ,	 the	 smoothed	MLE	 assigns	 positive	mass	 to	 the
negative	 half	 line.	 To	 overcome	 this	 problem,	 some	 boundary	 correction	 method	 is
needed.	See	Exercise	8.14	for	a	simple	possibility	of	boundary	correction.	In	Sections	8.5,
9.2	and	11.3	more	sophisticated	methods	with	better	performance	will	be	used.

Now	consider	 the	problem	of	bandwidth	selection.	This	problem	does	not	occur	with
the	plain	MLE,	but	is	the	price	to	be	paid	for	exploiting	smoothness.	The	asymptotically
mean	squared	error	optimal	rate	of	convergence	for	the	bandwidth	 	 turns	out	 to
be	 ;	see	Theorem	11.4.	Since	the	expression	for	the	asymptotically	optimal	constant
involves	 the	 underlying	 (unknown)	 density	 	 of	 ,	 this	 asymptotically	 optimal
constant	cannot	be	used	directly.	One	option	would	be	to	estimate	the	optimal	constant.	A
natural	way	of	doing	 that	would	be	based	on	kernel	smoothing,	using	a	pilot	bandwidth
typically	 larger	 than	 .	We	will	 describe	 another	 heuristic	 data	 dependent	 way	 to
choose	such	a	(local)	bandwidth,	based	on	the	bootstrap.

Choose	 .	In	order	to	find	an	approximately	MSE	optimal	bandwidth	to	estimate	
,	we	wish	to	minimize	the	function



as	function	of	 .	Here	we	make	the	dependence	of	 	on	 	explicit.	The	expectation	is
taken	with	respect	to	the	 s,	for	fixed	observation	points	 ,	where	the	 s
are	 conditionally	 independent	 (given	 the	 s)	 and	 Bernoulli( )	 distributed.	 This
function,	however,	cannot	be	computed	since	the	underlying	 	is	unknown.	The	function
can	be	estimated	by

where	 	is	an	initial	smooth	estimator	for	 ,	say	the	smoothed	maximum	likelihood
estimator	with	pilot	bandwidth	 .

The	 procedure	 is	 now	 to	 iteratively	 draw	 the	 Bernoulli( ),	 for	

,	 independently	 and	 compute	 the	 resulting	 	 for
values	 of	 	 on	 a	 fine	 grid.	 Having	 determined,	 say,	 	 of	 these	 vector	 of
squared	 losses,	 ,	 	 the	Monte	Carlo	 approximation
of	the	function	function	 ,

can	be	determined	on	the	grid	of	 -values	chosen.	For	the	point	 ,	 this	 function
based	on	 	realizations	using	 	with	bandwidth	 	is	given	in	the
left	panel	of	Figure	8.2.	The	right	panel	shows	the	picture	for	 .

	

Figure	8.2	 The	approximated	conditional	(on	the	 s)	MSE	on	a	grid	of	bandwidths.
(a)	The	picture	for	 ,	resulting	in	an	optimal	 	of	approximately	 .	(b)	the
function	for	 ,	yielding	 .	The	pictures	are	based	on	
repetitions.

In	 Sections	 8.6	 and	 8.7,	 SMLEs	 are	 studied	 in	 the	more	 complicated	 univariate	 and



bivariate	interval	censoring	case	2	model.

8.2	 Maximizing	a	Smoothed	Objective	Function
The	 maximum	 likelihood	 estimator	 for	 a	 shape	 constrained	 density	 maximizes	 the	 log
likelihood

(8.3)

over	 the	 shape-restricted	 class	 of	 observation	 densities.	 Here	 	 is	 the	 empirical
distribution	 function	 based	 on	 the	 data	 .	 In	 case	 of	 estimating	 a	 decreasing
density	 on	 ,	 the	 maximization	 can	 be	 restricted	 to	 decreasing	 densities	 that	 are
constant	 on	 the	 intervals	 	 up	 to	 	 (see	 Section	 2.2).
Writing

where	 ,	this	allows	the	following	rewrite	of	the	log	likelihood:

(8.4)

where	 the	 first	 integral	 at	 the	 right	 hand	 side	 is	minus	 ( 	 times)	 the	Kullback	Leibler
divergence	 of	 	 with	 respect	 to	 .	 The	 second	 term	 does	 not	 depend	 on	 .	 This
amounts	 to	 saying	 that	 the	 maximum	 likelihood	 (Grenander)	 estimator	 minimizes	 the
Kullback	Leibler	divergence	of	densities	 in	 the	class	of	decreasing	densities	on	
with	respect	to	the	wiggly	density	estimate	 ;	see	also	the	end	of	Section	2.2.

From	 the	 construction	 of	 the	 Grenander	 estimator	 it	 is	 clear	 that	 it	 inherits	 its
discontinuous	behavior	from	the	discontinuity	of	 .	A	natural	idea	to	obtain	an	estimator
with	 more	 smoothness	 is	 therefore	 to	 replace	 the	 density	 estimate	 	 in	 (8.4)	 by	 a
smoother	 one	 or,	 equivalently,	 replace	 the	 empirical	 distribution	 in	 (8.3)	 by	 a	 smoother
estimate	of	the	distribution	function.	For	this	reason,	the	resulting	estimator	is	called	the
maximum	smoothed	likelihood	estimator	(MSLE).	Replacing	the	empirical	distribution	by
a	smoother	estimator	 in	 the	 log	 likelihood	(or	 in	another	objective	function)	 is	 the	basic
idea	behind	the	general	method	that	is	illustrated	using	the	decreasing	density	problem	in
this	section.

For	 the	model	at	hand,	 the	method	will	be	 illustrated	with	a	kernel	estimator	as	basic
(generally	 not	 decreasing)	 density	 estimator.	 A	 first	 result	 is	 that	 the	 estimator	 can	 be
computed	in	the	same	spirit	as	the	Grenander	estimator	itself,	where	the	integrated	density
estimator	 	replaces	the	empirical	distribution	function	 .



Lemma	8.1	The	MSLE	for	a	decreasing	density,	maximizing	the	function

over	all	decreasing	densities	on	 ,	 is	given	by	 the	 right	derivative	of	 the	concave
majorant	of	the	function	 	over	 .

From	 this	 lemma,	 it	 is	 immediately	 clear	 that	 whenever	 the	 initial	 function	 	 is
already	concave	on	 ,	the	MSLE	will	actually	be	 	itself	(see	Exercise	8.5).	The
asymptotics	 of	 the	 MSLE	 will	 therefore	 be	 straightforward	 in	 case	 	 will	 become
concave	with	probability	tending	to	one.	The	uniform	convergence	result	in	the	following
lemma	 (which	 follows	 from	Theorem	C	 in	 Silverman,	1978)	 shows	 that	 for	 a	 range	 of
bandwidth	choices	the	derivative	of	the	kernel	estimator	will	converge	to	the	derivative	of
the	underlying	density	uniformly.

Lemma	 8.2	 Let	 	 be	 a	 kernel	 estimator	 based	 on	 a	 sample	 of	 size	 	 from	 a
decreasing	 density	 	 on	 .	 Assume	 the	 kernel	 function	 	 continuously
differentiable	and	that	the	conditions	of	Theorem	C	in	Silverman,	1978,	are	satisfied	for	

	 and	 .	 Moreover,	 suppose	 	 and	 .	 Then	 for
each	 ,

almost	surely.

It	is	well	known	that	the	optimal	rate	for	choosing	the	bandwidth	in	the	standard	kernel
estimation	 problem	 is	 	 (see	 also	 Exercise	 8.4).	 If	 the	 underlying	 	 satisfies	 the
conditions	of	Lemma	8.2	and	 	 is	an	 interval	where	 this	 	has	a	derivative	strictly
bounded	away	from	zero,	Lemma	8.2	shows	that	by	 taking	this	rate,	 the	estimator	
will	with	probability	one	become	monotone	on	 .	Using	some	additional	localization
argument	will	show	that	on	 	the	MSLE	will	with	probability	tending	to	one	(for	
tending	to	infinity)	coincide	with	 	and	hence	its	(pointwise)	asymptotic	distribution
for	 	will	be	the	same	as	that	of	 .

Another	interesting	application	of	the	idea	of	maximizing	a	smoothed	criterion	function
occurs	when	there	are	binned	observations.	A	nice	example	of	this	is	the	dataset	originally
studied	 by	Wicksell	 in	 1925	 (see	 Section	 4.1).	Wicksell	worked	with	 diameters	 in	mm
(rather	than	squared	radii)	and	used	cells	of	width	1	mm	to	describe	the	data.	The	original
measured	diameters	are	given	 in	Table	8.1.	One	could	 rewrite	 the	equations	 relating	 the
observation	distribution	and	 the	distribution	of	 interest	 in	 terms	of	diameters	 (or	 look	at
the	 equations	 Wicksell	 used),	 but	 we	 will	 instead	 use	 the	 binned	 observations	 of	 the
squared	circle	radii,	together	with	the	equations	derived	in	Section	4.1.	Figure	8.3	shows
the	resulting	(variable	bin	width)	histogram	of	squared	circle	radii.

Table	8.1	 Frequencies	of	Observed	Diameters	in	Cells	(i	+	0.5,	i	+	1.5],	i	=	1,	2,	…	14	



	

Note:	The	unit	of	measurement	is	mm.

	

Figure	8.3	 The	probability	(variable	binwidth)	histogram	based	on	the	diameters	of
Table	8.1,	transformed	to	squared	circle	radii.

The	 maximum	 likelihood	 estimator	 in	 Wicksell’s	 problem	 is	 not	 well	 defined;	 see
Exercise	 4.8.	 In	 the	 current	 situation,	 we	 do	 not	 have	 the	 precise	 data,	 since	 these	 are
binned.	 This	 makes	 it	 straightforward	 to	 define	 a	 maximum	 smoothed	 likelihood
estimator.	This	estimator	is	obtained	by	using	the	histogram	estimate	 	in	the	definition	of
the	log	likelihood	(which	is	available)	rather	than	the	empirical	distribution	function	of	the
data	 (which	 is	not	 available).	As	previously	mentioned,	 this	 estimator	 can	be	viewed	as
Kullback	 Leibler	 projection	 of	 the	 histogram-type	 estimator	 on	 the	 class	 of	 sampling
densities	that	can	occur	in	Wicksell’s	problem.	Another	approach	would	be	to	first	apply
the	inverse	Wicksell	transformation	to	density	estimate	 ,	obtaining	a	function	that	is	not
monotone,	and	projecting	this	on	the	class	of	monotone	functions.	We	will	 take	a	closer
look	at	this	type	of	estimator.

To	 start	 with,	 define	 the	 inverse	 estimator	 that	 is	 obtained	 by	 using	 relation	 (4.1)
expressing	 	in	terms	of	 ,	plugging	in	the	histogram	density	estimate	 	of	Figure	8.3.
Denote	by	 	( )	the	break	points	of	the	histogram	estimator	 	and	by	

	 the	 value	 of	 	 on	 the	 interval	 .	 By	 convention	 take	 	 and	
.	Note	that	 .	Then	the	histogram	density	can	be	represented	by



Following	the	(nonsmoothed)	approach	in	Section	4.1,	we	define

The	plug-in	estimate	thus	obtained	is,	for	 ,	 ,	given	by

See	Figure	8.4	for	a	picture	of	this	estimate.	It	is	clear	that	the	estimate	does	not	satisfy	the
conditions	 needed	 for	 a	 distribution	 function.	 It	 takes	 values	 below	 zero	 and	 it	 is	 also
initially	decreasing.

	

Figure	8.4	 The	plug-in	estimate	of	the	distribution	function	 	based	on	density
estimate	 	of	Figure	8.3.

Nevertheless,	this	estimator	can	be	used	as	an	ingredient	to	obtain	a	monotone	estimator
via	 isotonization.	 The	 resulting	 estimator	 can	 be	 interpreted	 as	 projection	 estimator
obtained	 by	 applying	 the	 inverse	Wicksell	 transformation	 to	 a	 smooth	 estimator	 of	 the
observation	density	(at	least,	more	smooth	than	the	empirical	distribution	function).	More
concretely,	 the	 estimator	 will	 be	 given	 by	 	 where	 	 minimizes	 the
following	function	over	all	decreasing	functions	on	 :

which	is	(as	also	seen	in	Section	2.6)	a	least	squares	type	estimator.	In	fact,	its	solution	is
obtained	by	taking	the	right	derivative	of	the	least	concave	majorant	of	the	function	



given	by

for	 ,	 .

See	Figure	8.5	for	 	and	its	least	concave	majorant	and	Figure	8.6	for	the	resulting
estimator	of	 	given	by	 .	This	example	shows	that	there	is	a	variety	of
possible	 estimation	 procedures	 based	 on	 optimizing	 an	 objective	 function	 based	 on	 a
smoothed	version	of	the	empirical	distribution	function.	In	Section	8.5,	the	MSLE	in	the
current	 status	 model	 will	 be	 studied,	 where	 a	 problem	 that	 is	 often	 present	 near	 the
boundary	of	the	domain	(e.g.,	near	zero)	is	also	dealt	with.

	

Figure	8.5	 (a)	The	functions	 	and	its	least	concave	majorant	 .	(b)	The	picture
locally;	the	functions	 	and	 	only	differ	on	a	small	interval	near	zero.



	

Figure	8.6	 The	estimate	of	the	distribution	function	 	based	on	the	function	 .	The
dashed	curve	is	the	plug-in	estimate.

8.3	 Penalized	M-Estimation
Another	method	 to	 obtain	 smooth	 shape	 constrained	 estimators	 is	 via	 penalization.	Not
only	 can	 smoothness	be	 forced	via	penalization,	 but	 also	 consistency	problems	near	 the
boundary	 (as	observed	 in	Exercises	2.7	and	4.11)	can	be	prevented.	 In	 this	 section	both
problems	 need	 to	 be	 solved	 in	 the	 model	 used	 to	 illustrate	 the	 approach:	 estimating	 a
smooth	increasing	hazard	rate	on	the	interval	 	for	some	 .	Recall	from	Section
2.6	that	 	are	i.i.d.	from	a	distribution	with	nondecreasing	hazard	rate	 	on	

.	The	problem	is	to	estimate	 	based	on	 .	A	possible	estimator	is	the
least	squares	estimator	 	minimizing	(2.27),

over	all	 increasing	hazard	 rates	on	 .	Here	 	 is	 the	 empirical	 cumulative	 hazard
function	based	on	 .	This	estimator	allows	for	an	explicit	representation	as	left
derivative	 of	 the	 greatest	 convex	 minorant	 of	 cusum	 diagram	 (2.29).	 According	 to
Exercise	 2.23,	 	 is	 inconsistent	 at	 	 and	 ,	 whereas	 it	 is	 uniformly
consistent	on	closed	subintervals	of	 .	We	now	 introduce	a	penalized	 least	 squares
criterion	 and	 show	 that	 it	 leads	 to	 a	 uniformly	 consistent	 estimator	 for	 .	 For
nonnegative	parameters	 	and	 ,	define



(8.5)

The	minimizer	of	this	function	over	all	nondecreasing	hazard	rates	on	 	is	given	by
the	left	derivative	of	the	greatest	convex	minorant	of	the	cusum	diagram	given	by

(8.6)

See	Exercise	8.7.	Figure	8.7	shows	the	cumulative	sum	diagram	and	resulting	estimate	for	
	when	 ,	so	in	the	nonpenalized	case.

	

Figure	8.7	 (a)	The	nonpenalized	cumulative	sum	diagram	with	its	convex	minorant	on
the	interval	 	based	on	a	sample	of	size	 	from	the	distribution	with	hazard
rate	 	on	 .	(b)	The	corresponding	estimate	of	the	hazard	rate	on	the
interval	 .

For	vanishing	 	and	 ,	uniform	consistency	of	the	resulting	estimator	on	intervals
of	 the	 type	 	 follows	 from	Lemma	 3.1.	Uniform	 consistency	 of	 the	 penalized
estimator	 on	 the	 interval	 	 is	 given	 in	 Lemma	 8.3,	 which	 is	 Corollary	 2.1	 in
Groeneboom	and	Jongbloed,	2013a.

Lemma	8.3	Let	 	be	continuous	and	nondecreasing	on	 	and	have	continuous	(one
sided)	derivatives	at	 	and	 .	Take	 .	Then:

(8.7)

See	Figure	8.8	for	this	penalized	estimator	based	on	the	same	data	as	Figure	8.7.	 It	 is
clear	 from	 the	 picture	 that	 the	 hazard	 estimate	 near	 the	 boundary	 improves	 by
penalization.



	

Figure	8.8	 The	penalized	cumulative	sum	diagram	with	its	convex	minorant	on	the
interval	 	(a)	and	the	resulting	estimate	for	 	based	the	same	data	as
Figure	8.7(b).	The	penalization	parameters	are	chosen	 	and	 .

Having	a	uniformly	consistent	estimator	for	 ,	the	next	step	is	to	impose	smoothness
by	penalization.	Let	 	be	a	penalty	parameter	and	define	the	smooth	penalized	local
least	squares	estimator	of	 	on	 	as	minimizer	of

(8.8)

over	the	set	of	differentiable	functions	 	on	 ,	where	 	is	the	monotone	(on	
)	piecewise	constant	estimate	that	minimizes	(8.5).	Our	first	lemma	gives	the	minimizer	of

	over	the	class	of	smooth	functions	on	 	under	boundary	constraints	at	 	and	 .
Note	that	the	estimator	is	not	required	to	be	monotone	at	this	stage.

Lemma	 8.4	 Let	 .	 Then	 the	 unique	 minimizer	 of	 	 over	 all	 smooth
functions	on	 	such	that	 	and	 	exists	and	is	given	by

(8.9)

where

(8.10)

and	 	and	 	are	chosen	such	that	 	satisfies	the	imposed	boundary	constraints.

Proof	Writing

(8.11)



we	get	Euler’s	differential	equation	from	calculus	of	variations:

This	 equation	 is	 to	 be	 solved	 under	 under	 the	 boundary	 conditions	 	 and	
.	This	results	in	the	second	order	integral	equation

(8.12)

with	boundary	constraints;	see	also	Exercise	8.8.

A	particular	solution	to	(8.12)	is	given	by	(8.10).	Note	that	 	is	a	smoothed	version	of
	in	the	sense	of	kernel	smoothing,	where	 	is	the	bandwidth	and	the	kernel	is	the

Laplace	density	(which	has	unbounded	support).	Adding	the	solutions	to	the	homogeneous
equation	 multiplied	 by	 constants	 	 and	 	 respectively,	 the	 unique	 solution	 to	 the
boundary	value	problem	is	obtained	by	choosing	 	and	 	appropriately	in	(8.9).	☐
Now	note	 that	 the	 requirement	 of	monotonicity	was	not	 included	 in	 the	optimization

problem.	 In	 case	 	 (a	 situation	 actually	 not	 covered),	 this	 would	mean	 that	 the
function	 	would	actually	be	monotone	since	 	is	a	local	average	of	the	monotone
function	 	near	 	(see	Exercise	8.1).

Various	 choices	 can	be	made	 to	determine	 	 and	 .	One	 is	 to	 fix	 the	value	of	 the
solution	at	the	value	of	the	initial	(consistent)	estimator	 .	This	choice	would	lead	to	a
monotone	 estimator	 of	 	 on	 ;	 see	 Exercise	 8.9.	 Another	 choice	 would	 be	 to
minimize	 	 over	 all	 nondecreasing	 hazard	 rates	 	 on	 .	 This	 can	 be	 done	 by
minimizing	 	over	the	functions	given	in	(8.9)	as	function	of	 	and	 .

One	can	easily	 think	of	variations	on	 the	 two-stage	penalization	method	described	 in
this	 section.	 One	 could,	 for	 example,	 also	 start	 off	 with	 a	 criterion	 function	 including
penalty	 terms	 for	 both	 the	 boundary	 behavior	 and	 smoothness	 properties.	Alternatively,
one	 could	 interchange	 the	 order	 and	 first	 construct	 a	 smooth	 estimator	 followed	 by
defining	criterion	functions	including	penalization	terms	for	the	behavior	of	the	estimator
near	the	boundaries.

8.4	 Monotonic	Rearrangements	of	Smooth	Estimators
A	simple	method	 that	 can	 be	 used	 to	 convert	 a	 nonmonotone	 function	 into	 a	monotone
function	is	monotonic	rearrangement.	To	understand	the	idea,	consider	a	(measurable)	real
valued	function	 	on	 ,	say.	Then,	by	definition,	the	sets	 ,	where

are	nested	in	the	sense	that	 	whenever	 .	Therefore,	the	function	
,	defined	by



where	 	 denotes	 Lebesgue	measure,	 is	 nondecreasing	 in	 .	 The	monotonic	 (consider
now	increasing)	rearrangement	of	 	is	given	by

It	is	clear	that	monotonicity	of	 	implies	monotonicity	of	 .	A	way	of	thinking	of	 	is
that	 it	 represents	 the	quantile	 function	of	 the	random	variable	 ,	where	 	has	 the
uniform	distribution	on	 .	Indeed,

Another	way	of	looking	at	the	monotonic	rearrangement	is	by	discretization.	Suppose	
is	continuous,	let	 	be	a	dense	equidistant	grid	in	
and	define	 	for	 .	Then	on	this	grid	the	monotonic	rearrangement
of	 	can	be	approximated	by

(8.13)

where	 	denotes	the	 th	order	statistic	of	the	 s.	Natural	extensions	of	this	approach
can	be	 easily	 constructed,	 e.g.,	 by	 choosing	 a	 different	measure	 	 to	 start	with,	 taking
bigger	intervals,	and	so	on.

Let	 us	 now	 see	where	 the	 approach	 leads	 in	 the	 setting	 of	monotone	 regression.	We
observe	pairs	 	where	 	and	 	is	a	realized	value	of

(8.14)

with	 	i.i.d.	normally	distributed	with	zero	expectation	and	variance	 	and	
nondecreasing.	A	first	naive	approach	could	be	to	estimate	 	only	at	the	observed	design
points	 by	 ,	 the	 th	 order	 statistic	 of	 the	 observed	 responses.	 See	 the	 left
picture	 in	Figure	8.9.	To	 show	 that	 also	 smooth	 estimators	 can	be	obtained,	we	use	 the
Nadaraya-Watson	 regression	 estimator	 for	 	 as	 basic	 estimator	 and	 construct	 its
monotonic	rearrangement.	To	this	end	we	use	the	discrete	sorting	approximation	of	(8.13).



	

Figure	8.9	 Monotonic	rearrangement	estimates	of	the	monotone	regression	function
based	on	a	sample	of	size	 	according	to	model	(8.14)	with	
(dashed	lines	in	the	plots),	 .	(a)	The	discrete	rearrangement.	(b)	A	rearrangement
based	on	the	Nadaraya	Watson	estimator	(dotted	line	in	the	plot)	based	on	the	data,	with
normal	kernel	and	bandwidth	 .

The	 method	 of	 monotonic	 rearrangement	 can	 of	 course	 also	 be	 used	 based	 on	 a
nonsmooth	 initial	 estimate.	 The	 result	will	 then	 in	 general	 also	 be	 nonsmooth,	 but	 still
monotone.	This	can	be	illustrated	using	the	deconvolution	problem	introduced	in	Section
2.4.	Figure	8.10	shows	the	naive	(nonmonotone)	estimator	of	the	distribution	function	
also	 shown	 in	 Figure	 2.10.	 Note	 that	 the	 naive	 estimator	 does	 not	 satisfy	 the	 range
constraint	 that	 holds	 for	 distribution	 functions	 (values	 in	 ).	 However,	 since	 this
estimator	 is	 by	 definition	 equal	 to	 one	 to	 the	 right	 of	 the	 highest	 observation	 ,	 the
monotonic	rearrangement	estimator	will	satisfy	the	range	constraint	 in	this	example.	See
also	Exercise	8.12.	If	monotonicity	were	only	imposed	on	a	finite	interval,	this	would	not
be	true.

	

Figure	8.10	 Naive	estimator	of	 	based	on	linear	interpolation	of	(the	left	continuous
version	of)	 	in	Figure	2.9	(a)	and	the	monotonic	rearrangement	estimator	based	on	this
(b).

Exercise	8.13	shows	how	the	method	of	monotonic	rearrangements	can	be	used	in	the
current	 status	 problem.	 There	 the	method	 does	 not	 give	 sensible	 results	 if	 it	 is	 applied
without	any	smoothing,	but	with	smoothing	(constructing	a	reasonable	initial	estimator),	it



will	lead	to	a	well	behaved	estimator.

8.5	 Maximum	Smoothed	Likelihood	Estimation	in	the
Current	Status	Model
The	 MLE	 for	 current	 status	 is	 characterized	 in	 Lemma	 2.3.	 The	 characterizing	 (in-)
equalities	can	be	represented	as

(8.15)

with	 equality	 if	 	 is	 a	 point	 of	 mass	 of	 .	 This	 characterization	 leads	 to	 a	 convex
minorant	algorithm	for	the	computation	of	the	MLE	and	it	was	crucial	in	the	derivation	of
the	asymptotic	distribution	of	the	MLE	in	Section	3.8.

If	 one	 is	 willing	 to	 assume	 smoothness	 of	 the	 underlying	 distribution	 function,	 it	 is
possible	to	construct	a	much	better	estimator	than	the	MLE,	in	the	sense	that	it	converges
to	the	underlying	distribution	at	a	faster	rate.	In	Section	8.1,	this	was	done	by	smoothing
the	MLE,	yielding	 the	SMLE.	The	 theory	for	 the	SMLE	will	be	 treated	 in	Section	11.3.
Alternatively,	the	approach	of	Section	8.2	can	be	taken,	by	first	smoothing	the	estimates	of
the	underlying	distributions	and	next	maximizing	over	the	distribution	function	one	wants
to	estimate.	The	maximizer	is	then	the	MSLE.	In	this	section	we	shall	consider	the	MSLE.

We	assume	again	that	the	support	of	the	distribution	to	be	estimated	is	an	interval	
.	In	order	to	define	a	smoothed	objective	function,	we	define	the	kernel	estimate	 	of
the	observation	density	 	by

(8.16)

and,	for	 ,	we	use	a	boundary	corrected	expression

Here	the	functions	 	and	 	are	chosen	in	such	a	way	that

(8.17)

and

(8.18)



For	 ,	we	define

Similarly,	we	define	 the	kernel	 estimator	of	 the	 subdensity	 	 of	 the	observation	 times
corresponding	to	 	by

(8.19)

and	for	

where	 the	 functions	 	 and	 	 satisfy	 (8.17)	 and	 (8.18).	 Finally	 we	 define	 for	
:

The	MSLE	 	now	maximizes	the	objective	function

The	key	to	the	analysis	of	the	MSLE	is	the	continuous	cumulative	sum	diagram

(8.21)

replacing	the	ordinary	cumulative	sum	diagram

which	 can	 be	 used	 to	 compute	 the	 MLE.	 It	 is	 proved	 in	 Groeneboom	 et	 al.,	 2010,
Theorem	 3.1	 on	 p.	 356,	 that	 the	MSLE	 is	 defined	 by	 the	 right	 continuous	 slope	 of	 the
greatest	 convex	 minorant	 of	 the	 cusum	 diagram	 (8.21).	 That	 is,	 the	 MSLE	 ,
maximizing	(8.20),	is	given	at	the	point	 	by	 ,	where	 	is	the	right	continuous
slope	 of	 the	 function	 ,	 evaluated	 at	 the	 point	 	 in	 the	 time	 scale	 ,	 and
where



is	the	lower	convex	hull	of	(8.21).	Figure	8.11	shows	the	cusum	diagram	for	the	ordinary
MLE	 and	 the	 MSLE	 for	 a	 sample	 of	 size	 ,	 where	 the	 bandwidth	 is	 taken	

,	 which	 is	 obviously	 too	 small,	 but	 still	 shows	 a	 discrepancy
between	 the	 cusum	 diagram	 and	 its	 greatest	 convex	 minorant.	 Figure	 8.12	 shows	 the
corresponding	MLE,	SMLE	(to	be	discussed	in	Section	11.3)	and	MSLE.

	

Figure	8.11	 Unsmoothed	(a)	and	smoothed	(b)	cusum	diagram	for	a	sample	of	size	
	for	the	current	status	model,	where	the	observation	distribution	and	the

distribution	of	the	hidden	variable	are	both	Uniform .	Bandwidth	
.



	

Figure	8.12	 MSLE	(solid),	SMLE	(dotted),	MLE	(dashed)	and	the	uniform	underlying
distribution	function	(dashed-dotted)	for	the	data	of	Figure	8.11.

Figure	 8.13	 shows	 the	 cusum	 diagram	 for	 the	 ordinary	 MLE	 and	 the	 MSLE	 for	 a
sample	of	size	 ,	where	the	bandwidth	is	taken	 ,	which	is
the	 right	 order,	 and	which	 shows	 a	 cusum	 diagram	which	 is	 convex	 itself.	 Figure	 8.14
shows	the	corresponding	MLE,	SMLE	and	MSLE.

	

Figure	8.13	 Unsmoothed	(a)	and	smoothed	(b)	cusum	diagram	for	a	sample	of	size	
	for	the	current	status	model,	where	the	observation	distribution	and	the

distribution	of	the	hidden	variable	are	both	Uniform .	Bandwidth	
.



	

Figure	8.14	 MSLE	(solid),	SMLE	(dotted),	MLE	(dashed)	and	the	uniform	underlying
distribution	function	(dashed-dotted)	for	the	data	of	Figure	8.13.

For	the	rest	of	this	section	we	assume	that	the	interval	 	is	given	by	 .	The
following	result	is	proved	in	Groeneboom	et	al.,	2010	(Corollary	3.4	on	p.	359).

Lemma	 8.5	 Let	 the	 conditions	 of	 Theorem	 11.4	 be	 satisfied.	 Furthermore,	 let	
,	where	 ,	 and	 let	 the	naive	 estimator	 	 of	 	be

defined	by

where	 	and	 	are	defined	by	(8.16)	and	(8.19).	Then,	if	 ,	we
have:

as	 .	 Consequently,	 for	 all	 	 the	 asymptotic	 distributions	 of	 (the
rescaled)	 	and	 	are	the	same.

In	 this	way	 the	asymptotic	 study	of	 the	MSLE	 is	 reduced	 to	 the	study	of	 the	 ratio	of
kernel	estimators



for	 which	 the	 monotonicity	 constraints	 are	 no	 longer	 active.	 This	 can	 be	 analyzed	 by
standard	methods	and	we	get	the	following	result	(Theorem	3.5	on	p.	360	of	Groeneboom
et	al.,	2010).

Theorem	8.1	Let	 the	conditions	of	Theorem	11.4	be	satisfied.	Fix	 	 so	 that	
	 and	 	 exist	 and	 are	 continuous	 at	 .	 Let	 	 ( )	 be	 the

bandwidth	used	in	the	definition	of	 	and	 .	Then

e	where

and

It	is	seen	from	the	formulation	of	Theorems	11.4	and	8.1	that	the	asymptotic	variance	of
the	 SMLE	 and	 the	MSLE	 is	 the	 same,	 and	 that	 the	 difference	 between	 the	 estimators
shows	up	in	the	bias.	One	cannot	say	that	one	estimator	is	uniformly	better	than	the	other.
Theorem	 3.5	 on	 p.	 360	 of	 Groeneboom	 et	 al.,	 2010,	 has	 the	 condition	 that	

,	but	this	not	necessary	for	the	validity	of	the	theorem;	it
is	only	for	the	conclusion	that	choice	of	bandwidth	 	leads	to	the	optimal	rate.	See
also	the	remark	following	Theorem	11.4.

Results,	 similar	 to	 Theorems	 11.4	 and	 8.1,	 can	 be	 derived	 for	 the	 corresponding
estimates	of	the	density	 .	In	this	case	the	rate	of	convergence	drops	to	 ,	which	is
the	 usual	 rate	 for	 the	 estimation	 of	 derivatives	 of	 densities	 (the	 inverse	 nature	 of	 the
estimation	problem	makes	 the	 estimation	of	 the	distribution	 function	 	 comparable	 to
the	estimation	of	a	density	and	estimation	of	the	density	 	comparable	to	the	estimation
of	the	derivative	of	a	density).	For	details	on	this	we	refer	to	Groeneboom	et	al.,	2010.

8.6	 Smooth	Estimation	for	Interval	Censoring	Case	2
In	 this	 section,	 we	 illustrate	 the	 smoothed	 maximum	 likelihood	 method	 introduced	 in
Section	8.1	as	well	as	the	maximum	smoothed	likelihood	estimator	of	Section	8.5	for	the
interval	censoring	case	2	problem.	This	problem	is	introduced	in	Section	4.7	and	studied
from	an	algorithmic	point	of	view	 in	Example	7.4.	Basically,	 there	 is	an	 (unobservable)
i.i.d.	sample	 	having	distribution	function	 	on	 	 and	 independent
of	 this	an	observable	 i.i.d.	sample	of	 random	vectors	 ,	 	with	 (joint)
density	 	such	that	 	with	probability	one.	The	observed	data	contain	for	each	



the	information	that	of	the	intervals	 ,	 	or	 	contains	 .	The	data
are	therefore	given	by

As	running	data	example	in	this	section,	we	use	the	data	set,	studied	in	Betensky	and
Finkelstein,	1999;	see	also	Table	7.1.	In	view	of	the	MLE	described	in	Example	7.4,	 the
smoothed	MLE	is	rather	straightforward	to	compute.	First	compute	the	MLE,	using,	e.g.,
the	 ICM	 algorithm	 of	 Section	 7.3,	 and	 then	 smooth	 the	 resulting	 distribution	 function
using	 kernel	 smoothing.	 This	 estimator	 is	 automatically	 monotone	 and	 smooth	 (see
Exercise	8.1).

We	recall	the	setting	for	this	problem,	also	allowing	for	ties	in	the	data	(as	present	in	the
example	considered	here).	The	log	likelihood	to	be	maximized	is	given	by

(8.22)

where	 	denotes	the	number	of	ties	at	the	 th	observation	pair	 	(also	called	the
multiplicity),	and	where

Denoting	 the	 MLE,	 obtained	 in	 this	 way,	 by	 ,	 an	 SMLE	 	 can	 be	 simply
obtained	by	computing

(8.23)

where	 	 is	 the	 chosen	 bandwidth	 and	 where	 	 is	 an	 integrated	 positive	 probability
kernel:

(8.24)

choosing	for	 	for	example	the	triweight	kernel,	given	by

See	also	Section	8.5.

The	data	for	the	first	marginal	of	the	observation	set	in	Betensky	and	Finkelstein,	1999,
are	 displayed	 in	 Table	 8.2.	 It	 is	 seen	 that	 this	 table	 exhibits	 some	 peculiarities;	 for
example,	there	are	some	degenerate	intervals	( 	observations	are	in	the	interval	 ,	
observations	in	the	interval	 ,	etc.).



Table	8.2	 First	Marginal	of	the	Betensky-Finkelstein	Data

	in	 Frequency

0 1 47
0 3 2 19
0 6 2 2
3 3 2 8
3 6 2 9
6 6 2 5
6 9 2 7
9 9 2 6
9 12 2 7
12 12 2 1
12 15 2 4

0 3 7
3 3 3
6 3 9
9 3 7
12 3 23
15 3 25
18 3 13
21 3 2
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We	now	reduce	the	optimization	problem	to	the	problem	of	maximizing

where	the	 	are	in	this	case	the	probability	masses	at	the	points	 ,	where
we	add	an	extra	point	larger	than	 ,	say	 ,	 to	allow	for	extra	mass	to	the	right	of	all
observations.	Furthermore,	 	is	the	set	of	indices	consistent	with	the	 th	observation.	In
the	present	case	we	get	from	Table	8.2:

where	we	number	the	 	in	a	obvious	way,	using	the	ordering	of	the	observation	points	
,	 augmented	 with	 the	 point	 to	 the	 right	 of	 all	 observation	 points.	 Note	 that

some	of	the	 	can	be	zero.	In	fact,	the	MLE	puts	zero	masses	 	at	the	points	 	and	
	in	this	example.

In	Figure	8.15	the	MLE	is	shown,	 together	with	an	MSLE,	using	the	triweight	kernel
and	bandwidth



is	 the	 number	 of	 observations.	 The	 factor	 	 corresponds	 to	 the	 length	 of	 the	 interval
where	 the	 estimation	 is	 done.	This	 choice	of	 	 is	 a	 common	 and	 simple,	 although	not
very	 sophisticated,	way	 of	 picking	 a	 bandwidth	 in	 density	 estimation.	The	 effect	 of	 the
choice	 of	 bandwidth	 is	 shown	 varying	 via	 the	 choices	 of	 the	 bandwidths	 ,	 	 and	

,	respectively.	If	one	takes	a	very	small	bandwidth,	as	in	Figure	8.15c,	the	SMLE	is
of	course	very	close	to	the	MLE.

	

Figure	8.15	 The	MLE	(solid)	and	SMLE	(dashed)	for	the	data	of	Table	8.2.	(a)	The
bandwidth	is	taken	 ;	(b)	 ;	and	(c)	 ,	where	 	and	 	is	the
total	number	of	observations.

The	MLE	maximizes	objective	function	(8.22),	which,	divided	by	the	total	number	of
observations,	can	be	written	in	the	form

where	 	is	the	empirical	measure	of	the	observations	 .	Writing	
for	 the	 empirical	 subdistribution	 function	 of	 the	 s	 with	 ,	 	 for	 the
empirical	 subdistribution	 function	 of	 the	 s	with	 	 and	 	 for	 the
bivariate	empirical	subdistribution	 function	of	 the	pairs	 	with	 ,	 (8.25)
can	be	rewritten	as

Replacing	 the	 subdistribution	 functions	 	 in	 (8.26)	 by	 smoothed	 versions	 	 one
gets	the	smoothed	log	likelihood:



Maximizing	 this	 function	over	distribution	 functions	 ,	yields	 the	maximum	smoothed
likelihood	estimator	(MSLE)	of	 .

A	 picture	 of	 the	 SMLE,	 together	with	 the	MLE,	 is	 shown	 in	 Figure	 8.16,	where	 the
same	bandwidth	 is	 used	 as	 in	Figure	8.15.	We	also	used	 the	 triweight	 kernel,	 just	 as	 in
Figure	 8.15.	 For	 the	 estimation	 of	 the	 density,	 corresponding	 to	 the	 two-dimensional
distribution	 function	 ,	 a	 product	 of	 two	 triweight	 kernels	 was	 used,	 and	 the	 same
bandwidth	as	used	before	was	used	for	both	coordinates.

	

Figure	8.16	 MLE	(solid)	and	the	SMLE	(dashed)	for	the	data	of	Table	8.2.

If	we	 have	 information	 that	 the	 support	 of	 the	 distribution	 is	 a	 known	 finite	 interval
(information	on	this	matter	was	less	clear	in	the	earlier	example,	and	we	therefore	did	not
use	 a	 boundary	 correction),	 it	 is	 often	 advisable	 to	 introduce	 a	 boundary	 correction	 to
avoid	 bias	 at	 the	 upper	 end	 of	 the	 interval.	 For	 example,	 if	 the	 support	 is	 known	 to	 be
equal	to	 ,	we	replace	(8.23)	by

(8.28)

which	 is	similar	 to	 the	boundary	correction	method	 to	be	used	for	 the	SMLE	in	Section
11.3.

8.7	 Smooth	Estimation	in	the	Bivariate	Interval	Censoring



Model
In	Section	5.2,	the	bivariate	interval	censoring	problem	is	introduced.	Analogously	to	the
approach	in	Section	8.1	and	8.6,	the	SMLE	for	this	bivariate	interval	censoring	model	 is
(at	interior	points)	easily	defined.	If	 	is	the	MLE	of	the	bivariate	distribution	function,
the	SMLE	of	the	density	is	defined	by

(8.29)

where,	as	used	before,	for	 ,

and	 	is	a	kernel	of	the	usual	kind,	such	as	the	triweight	kernel.	We	do	not	necessarily
have	 to	 use	 the	 product	 of	 two	 one-dimensional	 kernels	 for	 the	 estimate	 ,	 but	 this
seems	 the	 simplest	 choice.	The	 estimate	 of	 the	 two-dimensional	 distribution	 function	 is
now	obtained	by	integrating	 	over	both	coordinates.	Alternatively,	we	can	define
as	estimate	of	the	bivariate	distribution	function

(8.30)

where	the	integrated	kernel	 	is	defined	by

For	 a	 sample	 of	 size	 ,	 generated	 by	 the	 density	 	 on	
,	 bivariate	 current	 status	 data	 were	 obtained	 using	 uniformly	 distributed

observation	times	on	 .	The	SMLE	is	shown	in	Figure	8.17,	where	 the	bandwidth	
	 is	 used	 on	 both	 coordinates.	 We	 also	 use	 the	 boundary	 correction,	 to	 be

discussed	in	Section	11.3,	for	the	univariate	current	status	problem,	so	the	actual	definition
of	 ,	used	on	the	whole	domain,	is

if	the	domain	is	 	(see	(8.28)),	with	obvious	extensions	to	more	general	rectangles.
The	level	curves	for	the	SMLE	are	shown	in	Figure	8.18.



	

Figure	8.17	 The	SMLE	(a)	and	the	underlying	distribution	function	
	(b)	for	a	sample	of	size	 	from	the	density	

	on	 .	The	observation	density	is	uniform.	The	bandwidth	for
the	SMLE	is	 	in	both	directions.

	

Figure	8.18	 The	level	plots	of	the	SMLE	and	the	underlying	distribution	function
(dashed),	for	the	same	sample	as	in	Figure	8.17.	The	dashed	curves	are	the	corresponding
levels	of	the	underlying	distribution	function.

A	 picture	 of	 the	MLE	 and	 the	 SMLE	 for	 the	 Betensky-Finkelstein	 data	 is	 shown	 in
Figure	8.19	 and	 the	 picture	 of	 the	 level	 curves	 in	Figure	 8.20.	 It	 seems	 that	 the	 SMLE
might	be	the	more	sensible	estimate.



	

Figure	8.19	 The	MLE	(a)	and	SMLE	(b)	for	the	Betensky-Finkelstein	data,	restricted	to
the	interval	 .

	

Figure	8.20	 Contour	plot	of	the	MLE	(a)	and	SMLE	(b)	for	the	Betensky-Finkelstein
data,	restricted	to	the	interval	 .

It	is	also	straightforward	to	define	the	MSLE	for	smooth	estimation	of	the	distribution
in	these	models.	It	was	argued	in	Section	5.2	that	the	MLE	for	bivariate	interval	censoring
is	 a	 maximizer	 of	 the	 log	 likelihood	 (divided	 by	 )	 given	 by	 (5.20).	 The	 MSLE	 is
therefore	the	maximizer	of

where	 	is	a	smoothed	version	of	 .	EM-type	iterations	(see	Section	7.2),	based



on	(5.21),	with	 	replaced	by	 ,	take	the	form:

Once	 	 is	 determined,	 one	 can	 also	 compute	 ,	 and	 this	 can	 be	 given	 as
input	to	the	next	iterations.	But	it	is	clear	that	in	practice	one	has	to	discretize,	and	perform
these	iterations	on	a	grid	of	points.	The	computational	burden	is	considerable	and	we	still
do	not	have	experience	with	this	method	for	the	present	model.

Exercises
8.1	Let	 	be	a	nondecreasing	function	on	 	and	 	a	probability	density	on	 .	Show

that,	for	all	 ,	the	function

is	also	nondecreasing	on	 .

8.2	Use	uniform	strong	consistency	of	the	MLE	for	the	distribution	function	in	the	current
status	 model	 to	 show	 that	 the	 SMLE	 for	 this	 distribution	 function	 as	 defined	 in
Section	8.1	is	consistent.	Identify	conditions	needed	on	the	bandwidth	 .

8.3	In	the	setting	of	Section	8.2,	define	the	smoothed	maximum	likelihood	estimator	of	a
decreasing	density.	Show	that	on	the	interval	 	it	is	monotone	(where	 	is
the	bandwidth	chosen	and	the	kernel	function	 	has	support	 ).	Also	think	of
a	method	of	sampling	from	this	estimator.

8.4	Consider	a	sequence	of	i.i.d.	random	variables	with	density	 	on	 .	Suppose	
is	such	that	 	is	twice	continuously	differentiable	at	 	and	let	 	be	a	kernel	density
as	 described	 in	 Section	 8.1.	 Define	 the	 kernel	 estimator	 of	 	 based	 on	

	with	bandwidth	 	by



(8.34)

Show	that,	for	 	and	 	such	that	 ,

and

Conclude	 that	 the	 asymptotically	 mean	 squared	 error	 (MSE)	 optimal	 for	 the
bandwidth	 is	 given	 by	 	 for	 some	 .	 Also	 determine	 the
(asymptotically)	MSE	optimal	value	for	 .

8.5	Let	 	 be	 an	 arbitrary	probability	density	on	 .	 Show	 that	 for	 all	 other	 probability
densities	 	on	 ,

8.6	Define	and	compute	the	maximum	smoothed	likelihood	estimator	for	the	distribution
function	 	 in	Wicksell’s	 problem,	 based	 on	 the	 binned	 data	 from	Table	 8.1.	 This
entails	defining	the	smoothed	(log)	likelihood	and	using	techniques	from	Chapter	7	to
compute	its	maximizer.

8.7	Show	 that	 indeed	 the	minimizer	of	 (8.5)	over	all	nondecreasing	hazards	on	 	 is
given	by	the	left	derivative	of	the	greatest	convex	minorant	of	(8.6).

8.8	Consider	the	problem	of	minimizing	the	functional	 	given	in	(8.11),

over	 all	 continuously	 differentiable	 functions	 .	 Fix	 a	 continuously	 differentiable
hazard	function	 	on	 .

a)	Let	 	be	a	continuously	differentiable	function.	Show	that

b)	Now	suppose	 	satisfies	 .	Then	show	that

c)	Argue	from	(b)	that	a	necessary	condition	for	 	to	be	optimal	is	that	it	satisfies	the
second	order	differential	equation	given	in	(8.12),



Hint:	use	(b)	for	an	appropriate	sequence	of	test	functions	 .

8.9	Let	 	be	a	bounded	nondecreasing	hazard	function	on	 .	Consider	the	problem
of	minimizing	 (8.8),	with	 ,	 over	 all	 hazard	 functions	 	 on	 	 such	 that	

	and	 .	Argue	 that	 the	 resulting	minimizer	will	 also	be	a
nondecreasing	hazard	rate	on	 .

8.10	Apply	the	penalization	approach	of	Section	8.3	to	the	problem	of	estimating	a	smooth
decreasing	density.

8.11

a)	 Consider	 the	 function	 	 on	 the	 interval	 .	 Construct	 the
(increasing)	 monotonic	 rearrangement	 of	 this	 function.	 Also	 construct	 the
decreasing	rearrangement	of	this	function.

b)	Do	the	same	for	the	function	 ;	see	Figure	8.21.

c)	Now	generate	data	from	an	exponential	density,	compute	a	(not	decreasing)	kernel
estimator	 for	 the	 density	 and	 approximate	 its	 monotonic	 rearrangement
numerically.	 Note	 that	 it	 makes	 sense	 to	 work	 with	 the	 class	 of	 sets	

.

	
Figure	8.21	 The	nonmonotone	function	 	of
Exercise	8.11	(b).

8.12	Verify	that	the	monotonic	rearrangement	estimator	for	the	distribution	function	in	the
deconvolution	problem	as	discussed	in	Section	8.4	indeed	takes	values	in	the	interval



.

8.13	We	 consider	 current	 status	 data	 given	 distinct	 inspection	 times	 .	The
observable	 indicators	 are	 independent	 Bernoulli	 random	 variables	 with	

.

a)	Construct	 an	 estimator	 for	 	 based	on	monotonic	 rearrangements	 and	 the	basic
(unrestricted)	MLE	of	 	at	the	points	 .

b)	Describe	how	to	construct	a	monotonic	rearrangement	estimator	for	 	based	on
the	 Nadaraya	 Watson	 kernel	 regression	 estimator	 of	 .	 What	 will	 be	 the
behavior	of	this	estimator	for	(too)	small	values	of	the	bandwidth	and	(too)	large
values	of	the	bandwidth?

8.14	Generate	a	sample	of	size	 	from	the	standard	exponential	density	 .	Denote	the
data	by	 .

a)	Plot	 the	kernel	density	estimator	 	of	 the	sampling	density	based	on	 the	data
obtained;	see	(8.34).	Use	the	triweight	kernel	function	 .	Observe	that	the	value
of	the	estimate	is	too	small	in	a	right	neighborhood	of	zero.

b)	Show	that	for	the	situation	in	(a),

and	 argue	 from	 this	 that	 the	 kernel	 density	 estimator	 is	 inconsistent	 at	 zero.
Define	a	new	data	set	of	size	 ,	consisting	of	 .	Also	plot
the	kernel	density	estimate	based	on	these	data.	Denoting	this	estimator	by	 .

c)	Argue	that	the	function	 	is	symmetric	around	zero.

d)	 Define	 ,	 and	 plot	 this	 function.	 Observe	 that	 it
satisfies	the	shoulder	condition	 .

e)	Argue	that	 	is	consistent	for	 	and,	in	view	of	(d),	argue	that	 	is
not	consistent	for	 .
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9
Testing	and	Confidence	Intervals

The	usual	setting	for	nonparametric	tests	for	shape	restrictions	on,	for	example,	a	hazard
function	is	that	one	tests	that	a	hazard	is	constant	against	the	alternative	that	the	hazard	is
strictly	 increasing	 or	 decreasing.	 An	 interesting	 new	 angle	 is	 taken	 in	 Gijbels	 and
Heckman,	 2004,	 and	Hall	 and	Van	Keilegom,	 2005,	 where	 it	 is	 tested	 that	 a	 hazard	 is
increasing	 or	 decreasing	 against	 the	 alternative	 that	 there	 are	 local	 disturbances	 of	 the
monotonicity.	We	discuss	this	problem	and	various	approaches	that	can	be	adopted	in	this
situation	in	Section	9.1.

Another	 type	 of	 testing	 problems	 with	 shape	 constraints	 are	 two-	 or	 -sample
problems.	In	Section	9.2	we	discuss	various	procedures	 that	can	be	used	 to	 test	whether
two	 samples	 from	 distributions	 with	 decreasing	 densities	 on	 	 actually	 originate
from	the	same	(decreasing)	density.

Methods	for	 -sample	test	problems	in	the	situation	of	right	censored	data	have	been
around	 for	 a	 long	 time;	 in	 the	 interval	 censoring	 setting,	 such	 tests	 have	 only	 been
developed	 rather	 recently.	 The	 reason	 for	 this	 is	 probably	 that	 the	 treatment	 of	 right-
censored	 data	 is	 much	 closer	 to	 classical	 theory,	 where	 one	 has	 -convergence,
asymptotic	 normality,	 and	 so	 on.	 In	 Section	 9.3	we	 describe	 various	 procedures	 for	 the
two-sample	 tests	with	 current	 status	 observations	 and	 in	 Section	 9.4	we	 further	 explore
how	the	two-sample	test	can	be	formulated	for	the	more	general	interval	censoring	model.

In	 the	 testing	 problems	 discussed	 in	 this	 chapter,	 bootstrap	methods	 for	 determining
critical	values	for	the	test	statistics	play	a	crucial	role.	To	show	that	the	bootstrap	works,
the	nature	of	 the	original	 estimator	of	 the	model	parameters	 (under	 the	null	 hypothesis)
from	which	one	takes	the	bootstrap	samples	becomes	important.	It	turns	out	that	smooth
monotone	 estimators	 as	 discussed	 in	 Chapter	 8	 can	 be	 used	 to	 show	 that	 a	 bootstrap
technique	to	approximate	critical	values	works	in	practice.

The	classical	bootstrap	 is	used	again	 in	Section	9.5	on	 the	construction	of	confidence
intervals.	 In	 this	 case	 resampling	 from	a	 smooth	estimate	of	 the	distribution	 creates	 too
much	bias	 and	 it	 seems	better	 to	 stay	 close	 to	 the	original	data	by	 just	 resampling	with
replacement	 from	 them.	 By	 using	 the	 bootstrap,	 the	 problem	 of	 having	 to	 estimate
parameters	 in	 the	 construction	 of	 the	 confidence	 intervals	 is	 avoided.	 We	 base	 the
confidence	 intervals	on	 the	SMLE	and	on	density	 estimates,	 obtained	by	 smoothing	 the
MLE.	The	confidence	intervals	for	values	of	the	distribution	function	are	compared	with
confidence	 intervals	 directly	 based	 on	 the	 MLE	 itself,	 as	 presented	 in	 Banerjee	 and
Wellner,	2005.

9.1	 Testing	for	a	Monotone	Hazard
The	 problem	 of	 estimating	 a	 monotone	 hazard	 rate	 based	 on	 a	 sample	 from	 its
corresponding	 distribution	 was	 introduced	 in	 Section	 2.6.	 Also	 smooth	 monotone



estimators	were	studied	in	Section	8.3.	We	now	consider	testing	problems	in	the	setting	of
monotone	 hazard	 rates.	 To	 that	 end,	 consider	 a	 sequence	 of	 i.i.d.	 random	 variables	

	 with	 density	 function	 	 on	 .	 Denote	 the	 distribution	 function,
hazard	function	and	cumulative	hazard	function	associated	with	 	by	 ,	 	and	 ,
respectively,	and	recall	the	relations	between	these	functions:

(9.1)

Already	in	the	1960s,	procedures	were	developed	to	test	the	null	hypothesis	of	a	constant
hazard	 rate	 (corresponding	 to	 an	 exponential	 distribution)	 against	 the	 alternative	 of	 an
increasing	hazard	(presence	of	aging).	One	popular	test	statistic	in	this	context	is	the	test
statistic	of	Proschan	and	Pyke,	1967.

Example	 9.1	 (Proschan-Pyke	 test)	 Fix	 the	 sample	 size	 	 and	 denote	 by	
	the	order	statistics	of	the	sample.	Taking	 ,	define

the	normalized	spacings	as

(9.2)

Then,	if	 	were	the	exponential	density	with	rate	 	(so	 	on	 ),	 the	
s	 are	 independent	 and	 exponentially	 distributed	 random	 variables	 with	 rate	 .	 See

Exercise	 9.2.	 If	 the	 data	 are	 not	 exponentially	 distributed,	 but	 still	 have	 a	 convex
cumulative	hazard	function,	it	can	be	shown	(see	Exercise	9.4)	that

where	 	denotes	stochastic	ordering.	Hence,	if	for	a	given	sample	of	 s	resulting	
values	 tend	 to	 be	 bigger	 for	 smaller	 values	 of	 ,	 this	 points	 in	 the	 direction	 of	 an
increasing	 hazard	 rate.	 In	 Proschan	 and	 Pyke,	 1967,	 this	 is	 formalized	 by	 defining
indicators

and	as	test	statistic

Large	 values	 of	 	 indicate	 that	 in	 relatively	 many	 pairs	 	 with	 	 satisfy	
.	Hence	large	values	of	 	should	lead	to	rejection	of	 the	null	hypothesis	 that

the	hazard	rate	is	constant	in	favor	of	the	alternative	that	the	hazard	rate	is	increasing.

A	convenient	feature	of	 the	statistic	 	 is	 that	 it	 is	scale	 invariant,	so	 its	distribution
under	 the	 null	 hypothesis	 does	 not	 depend	 on	 the	 (further	 unspecified)	 rate	 of	 the
underlying	 exponential	 distribution.	 This	 allows	 for	 efficient	 computation	 of	 critical
values	using	Monte	Carlo	simulation.



Another	problem	that	was	more	recently	raised	in	Gijbels	and	Heckman,	2004,	and	Hall
and	Van	Keilegom,	 2005,	 concerns	 testing	 (local)	monotonicity	 of	 .	 More	 precisely,
given	 an	 interval	 ,	 one	 could	 test	 the	 hypothesis	 that	 	 is	 increasing	 (or
decreasing)	on	 the	 interval	 	 against	 the	alternative	 that	 it	 is	not.	We	 restrict	ourselves
here	 to	 intervals	 of	 the	 type	 	 and	 increasing	 hazard	 rates	 and	 consider	 the	 null
hypothesis	for	fixed	

against	the	alternative	that	this	monotonicity	does	not	hold.	Various	procedures	have	been
proposed	to	address	this	problem.

One,	adopted	by	Gijbels	and	Heckman,	2004,	is	directly	related	to	the	test	of	Example
9.1.	Actually,	the	test	statistic	is	a	multiscale	version	of	the	Proschan-Pyke	statistic,	in	the
sense	 that	 local	 versions	 of	 the	 statistic	 	 are	 combined	 into	 a	 statistic	 by	 taking	 the
maximum	of	these	local	versions,	including	various	scales	of	interval	lengths.	For	details,
see	Gijbels	and	Heckman,	2004.

In	Hall	and	Van	Keilegom,	2005,	another	approach	is	taken.	The	idea	is	that	convexity
of	 	on	 	can	be	stated	as

See	Exercise	9.1.	Estimating	the	cumulative	hazard	by	the	empirical	cumulative	hazard

(9.3)

they	define	the	following	test	statistic:

(9.4)

where	 	is	a	nonnegative	weight	function	and	 .	The	null	hypothesis	is	rejected	for
values	 of	 	 that	 are	 too	 large.	 Critical	 values	 for	 the	 test	 statistic	 are	 obtained	 by	 a
bootstrap	procedure.	The	bootstrap	data	are	generated	using	a	kernel	density	estimate	of
the	sampling	density.	The	bandwidth	is	chosen	in	a	particular	way.	First	a	pilot	bandwidth
is	 chosen,	 usually	 leading	 to	 a	 nonconvex	 corresponding	 cumulative	 hazard	 estimator.
Then	 the	 bandwidth	 of	 the	 density	 estimator	 is	 increased	 until	 the	 corresponding
cumulative	hazard	is	convex	on	 .	Using	the	density	estimate	thus	obtained,	bootstrap
realizations	of	 the	 statistic	 	 are	 generated,	 and	 the	 -quantile	of	 the	 realized
bootstrap	values	is	taken	as	critical	value.	For	an	application	of	this	test	statistic	(without
formal	testing)	in	paleobiology,	see	Steinsaltz	and	Orzack,	2011.	There	 the	hypothesis	 is
formulated	 as	 follows:	 “What	 is	 the	 probability	 that	 samples	 from	 a	 given	 nonconvex
survivorship	curve	can	mislead	us	into	thinking	it	was	convex?”

Another	type	of	test	statistic	for	this	problem	is	a	distance	between	two	estimators	for
the	 cumulative	 hazard	 function:	 one	 estimator	 that	 approximates	 	 well	 only	 under	



	and	one	that	works	well	also	if	 	does	not	hold.	This	approach	is	adopted	in
Durot,	 2008,	 and	 Groeneboom	 and	 Jongbloed,	 2013c.	 An	 estimator	 for	 	 without
assuming	 	 is	 just	 the	 empirical	 cumulative	 hazard	 function	 given	 in	 (9.3).	 An
estimator	of	 	under	 	is	the	least	squares	estimator	defined	as	minimizer	of	(2.27)
in	 Section	 2.6.	 On	 	 it	 is	 given	 by	 the	 left-continuous	 derivative	 of	 the	 greatest
convex	 minorant	 (GCM)	 of	 the	 empirical	 cumulative	 hazard	 function	 given	 by	 (9.3),
restricted	 to	 .	 The	 estimator	 	 of	 	 under	 the	 null	 hypothesis	 	 is
therefore	defined	by

(9.5)

Note	that	this	estimator	is	continuous	at	 ,	if	 	for	all	 .

A	possible	test	statistic	for	testing	 	is	an	empirical	 	distance	between	the	two
estimators	for	 	just	considered:

(9.6)

where	 	 is	 the	 distribution	 function	 corresponding	 to	 :	
.	Note	 that	 ,	 since	 	 is	 the	 greatest	 convex

minorant	 (hence	 a	 minorant)	 of	 	 on	 .	 Also	 note	 that	 under	 the	 alternative
hypothesis,	 	will	tend	to	be	higher	than	under	the	null	hypothesis.	See	Figure	9.1	for	a
cumulative	hazard	function	that	does	not	satisfy	 	 together	with	its	greatest	convex
minorant	on	the	interval	 .	When	the	sample	size	tends	to	infinity,	 	will	converge
to	 this	 underlying	 cumulative	 hazard	 	 on	 	 whereas	 	 will	 converge	 to	 the
convex	minorant	of	 .	Figure	9.1b	shows	the	distribution	functions	corresponding	
and	its	greatest	convex	minorant	on	 .	Other	measures	of	distance	between	 	and	

	may	also	be	used	to	define	a	test	statistic.	Examples	are

(9.7)

The	latter	statistic	is	studied	in	Durot,	2008.



	

Figure	9.1	 (a)	A	nonconvex	cumulative	hazard	 	and	its	greatest	convex	minorant	on	
	(dashed).	(b)	The	corresponding	distribution	functions.

(A)	Approximation	of	Critical	Values
In	 order	 to	 obtain	 critical	 values	 for	 statistic	 	 defined	 in	 (9.6)	 (or	 any	 of	 the	 other
statistics	 defined),	 there	 are	 various	 possible	 approaches.	 The	 first	 is	 to	 use	 that	 its
distribution	under	any	 	that	obeys	 	is	stochastically	bounded	by	its	distribution
under	 the	 distribution	 function	with	 the	 cumulative	 hazard	 function	 that	 is	 obtained	 by
linear	interpolation	on	the	interval	 :

(9.8)

See	Figure	9.2.

	

Figure	9.2	 (a)	A	convex	cumulative	hazard	 	and	its	corresponding	cumulative
hazard	 	for	 	defined	by	(9.8).	(b)	The	corresponding	distribution	functions.

Lemma	9.1	For	each	cumulative	hazard	function	 	that	is	convex	on	 ,

(9.9)



for	all	 .

Proof	 Let	 	 be	 an	 i.i.d.	 sequence	 of	 standard	 exponential	 random
variables.	Define

Then	the	 s	and	the	 s	are	samples	from	the	distributions	with	cumulative	hazard	
and	 	respectively	(see	Exercise	9.3).	Denote	by	 	the	test	statistic	(9.6)	based	on	the

s	 and	 by	 	 the	 statistic	 based	 on	 the	 s.	 Furthermore,	 define	 the	 function	
	by

(9.10)

Note	that	 	is	convex	and	increasing	on	 	and	that	 	for	all	 )
(see	Exercise	9.10).	Moreover,	 ,	since

Consequently,	also	 ,	where	 these	 functions	 refer	 to	 the	 empirical
cumulative	 hazards	 based	 on	 the	 samples	 of	 s	 and	 s	 respectively.	 Now	 define	

,	 where	 the	 latter	 denotes	 the	 greatest	 convex	 minorant	 of	 the
empirical	hazard	function	based	on	the	 s,	evaluated	at	 .	Then	 	is	a	minorant
of	 ,	i.e.,

Moreover,	 it	 is	 also	 convex.	 Indeed,	 using	 monotonicity	 and	 convexity	 of	 	 and
convexity	of	 	we	have	for	 	and	

Hence,	the	convex	minorant	 	of	 	is	smaller	than	or	equal	to	the	greatest	convex
minorant	 	of	 :

where	we	use	 the	obvious	notation	relating	cumulative	hazards	 to	distribution	functions.
This	implies	that

Noting	that	 	and	 ,	the	result
follows.	☐



If	 	 were	 known,	 the	 distribution	 of	 	 under	 	 could	 be	 approximated
efficiently	 using	Monte	 Carlo	 simulation.	 In	 practice,	 however,	 	 is	 unknown.	 In
order	to	really	use	the	approximation,	an	estimate	for	 	at	 	is	needed.	This	estimation,
combined	 with	 the	 stochastic	 domination	 of	 Lemma	 9.1,	 can	 be	 called	 a	 bootstrap
procedure.	A	natural	and	consistent	estimator	for	 	is	of	course	given	by	 .

It	 is	 clear	 that	 if	 the	 function	 	 is	 strictly	 convex	 on	 ,	 the	 lower	 bound	 of
Lemma	9.1	may	be	quite	rough.	In	that	case,	the	convex	minorant	of	its	empirical	version
will	 tend	 to	wrap	 tightly	 around	 this	 function	whereas	 in	 case	 the	 cumulative	 hazard	 is
linear	on	 	(as	in	the	exponential	case),	this	difference	will	tend	to	be	bigger.	This	is
related	 to	 the	 discrepancy	 between	 the	 limit	 processes	 as	 described	 in	 Section	 3.9	 and
Section	 3.10.	 The	 following	 theorem,	 proved	 in	 Groeneboom	 and	 Jongbloed,	 2013a,
describes	the	asymptotic	behavior	of	 ,	if	the	underlying	hazard	is	strictly	increasing	on	

.

Theorem	9.1	Let	 	be	strictly	increasing	and	positive	on	the	interval	 ,	with	a
bounded	continuous	derivative,	staying	away	from	zero	on	 .	Moreover,	let	 	be	the
distance	 at	 	 of	 the	process	 	 on	 	 to	 its	 greatest	 convex	minorant,
where	 	is	two-sided	Brownian	motion,	originating	from	zero,	and	let	 	satisfy

(9.11)

where

(9.12)

and	 	is	defined	by	(9.6).	Then

where	 	is	a	normal	distribution	with	mean	zero	and	variance	 ,	defined	by

(9.13)

It	is	shown	in	Groeneboom,	2011,	that

To	test	the	hypothesis	that	the	hazard	rate	is	strictly	increasing	on	 ,	one	could	try	to
estimate	 the	 parameters	 	 and	 	 of	 Theorem	 9.1	 and	 use	 the	 limiting	 normal



distribution	for	the	critical	values.	In	case	the	data	point	toward	the	alternative	hypothesis,
reflected	 in	 the	 shape-constrained	 estimator	 of	 	 approaching	 zero,	 it	 is	 not
straightforward	 how	 to	 deal	with	 this.	 For	 the	 bootstrap	 procedure,	which	we	will	 now
describe,	it	is	clear	how	to	apply	it	in	this	case.

The	 proposed	method	 runs	 as	 follows.	 First	 estimate	 the	 cumulative	 hazard	 function
under	 the	 null	 hypothesis	 by	 a	 smooth	 estimator,	 having	 the	 property	 that	 the
corresponding	hazard	satisfies	the	null	hypothesis.	Then	draw	samples	of	size	 	from	this
estimate	 	times	and	compute	 	times	the	bootstrap	version	of	the	test	statistic:	 ,	

.	 Finally,	 approximate	 the	 distribution	 of	 	 under	 the	 true	 cumulative
hazard	function	 	(assumed	to	belong	to	 )	by	the	empirical	distribution	of	these
bootstrap	values	and	its	critical	value	at	(for	example)	level	 	by	the	 th	percentile
of	this	generated	set	of	bootstrap	values.

In	 order	 to	 prevent	 inconsistency	 of	 the	 estimator	 for	 	 at	 the	 endpoints,	we	 use	 a
penalized	version	of	 ,	 	as	defined	in	Section	8.3.	This	estimator	is	the	derivative	of
the	penalized	cusum	diagram	consisting	of	the	points

(9.14)

The	 left	 derivative	 of	 the	 present	 cusum	 diagram	 minimizes	 the	 criterion	 (8.5)	 with	
,	over	all	nondecreasing	functions	 	on	 .	For	the	reason	for

choosing	a	penalty	of	order	 ,	see	Lemma	8.3.

For	 ,	we	estimate	 the	hazard	by	kernel	 smoothing	of	 .	Let	 	 be	 the
triweight	kernel

(9.15)

This	 is	 a	 mean	 zero	 probability	 density	 with	 second	 moment	 .	 Then,	 define	 for
bandwidth	

(9.16)

where	 .	 The	 corresponding	 estimate	 of	 	 and	 	 are	 then
given	by

(9.17)

To	 illustrate	 the	 behavior	 of	 the	 various	 tests	 we	 introduce	 the	 family	 of	 hazards	



,	also	considered	in	Hall	and	Van	Keilegom,	2005:

(9.18)

The	corresponding	distribution	functions	on	 	are	given	by:

(9.19)

If	 	we	get	a	strictly	increasing	hazard;	if	 ,	the	hazard	is	decreasing	between	
	and	if	 	the	hazard	has	a	stationary	point	at	 .

See	Figure	9.3a	for	some	hazards	in	this	family	and	Figure	9.4	for	the	projection	estimate
and	 penalized	 projection	 estimate	 based	 on	 a	 sample	 of	 size	 	 from	 the
distribution	with	hazard	rate	 .

	

Figure	9.3	 (a)	The	hazard	functions	 	for	
(dashed),	 	(full	curve)	and	 	(dotted)	corresponding	to
distribution	functions	(9.19).	(b)	The	corresponding	density	functions.



	

Figure	9.4	 The	estimate	 	(dotted)	of	the	hazard	 	(solid)	of	the	family	
	for	a	sample	of	size	 ,	together	with	the	(penalized	with	

)	isotonic	estimate	 	(dashed)	on	the	 	percentile	interval	

.	Bandwidth	 .

The	 rather	 different	 nature	 of	 the	 isotonic	 projection	 of	 the	 hazard	 rate	 and	 the
projection	of	Hall	and	Van	Keilegom,	2005	is	illustrated	in	Figure	9.5a,	where	 .
The	hazard	estimate	of	Hall	and	Van	Keilegom,	2005,	given	by	the	dashed-dotted	curve	in
Figure	9.5,	extends	(with	positive	values)	to	the	left	of	zero	and	has	a	slower	increase	to
the	right	of	 	than	the	actual	hazard,	which	is	given	by	the	black	curve	(which	is	clearly
not	 monotone).	 The	 isotonic	 projection,	 on	 the	 other	 hand,	 only	 lives	 on	 ,	 and
follows	the	steep	 increase	of	 the	real	hazard	 to	 the	right	of	 ,	whereas	 it	only	 locally
corrects	 for	 the	 nonmonotonicity.	 The	 interval	 on	which	 the	 hazard	was	 estimated	 (and
made	monotone)	was	 ,	where	 	in	(9.19)	with	

.	 On	 the	 other	 hand,	 for	 distribution	 functions	 at	 the	 other	 end	 of	 the	 family	
	at	 ,	and	 therefore	deep	 inside	 the	null	hypothesis	 region,

the	 starting	 bandwidth	 for	 the	 calibration	 of	 the	Hall	 and	Van	Keilegom,	2005,	method
immediately	gives	an	increasing	hazard	on	the	interval	 ,
where	 	with	 ,	and	the	projections	of	the	two	methods	are	less	different;
see	Figure	9.5b.



	

Figure	9.5	 The	real	hazard	function	 	(solid),	the	isotonic	estimate	 	of	the
hazard	(dashed),	the	Hall	and	Van	Keilegom	estimate	(dashed-dotted)	of	the	hazard	(after
calibration)	and	the	smoothed	isotonic	estimate	 	(dotted),	using	bandwidth	

,	for	a	sample	of	size	 	from	the	distribution	function	 .	(a)
Corresponds	to	 ;	(b)	to	 .

In	justifying	this	method	for	approximating	critical	values	for	 ,	we	use	the	following
bootstrap	version	of	Theorem	9.1,	proved	in	Groeneboom	and	Jongbloed,	2012.

Theorem	9.2	Let	the	conditions	of	Theorem	9.1	be	satisfied	and	let,	in	addition,	 	have
a	bounded	second	derivative	on	 .	Let	 	be	the	estimate	of	the	cumulative	hazard
function	 under	 the	 null	 hypothesis,	 defined	 by	 (9.17),	 and	 based	 on	 a	 sample	

	 from	 ,	where	we	 take	 a	 bandwidth	 ,	 satisfying	 .	 Let	
	 be	 a	 bootstrap	 sample	 generated	 by	 	 and	 let	 	 and	 	 be	 the

(bootstrap)	empirical	distribution	function	and	corresponding	estimate	 ,	based	on	the
greatest	 convex	 minorant	 of	 the	 function	 ,	 respectively.
Finally,	let	 	be	defined	by

Then	we	have,	in	probability,	as	 ,

where	 	 and	 	 are	 given	 in	 Theorem	 9.1.	 Hence	 	 and	 	 have	 the	 same
asymptotic	 critical	 values	 under	 the	 hypothesis	 of	 the	 theorem,	 and	 we	 can	 use	 the
bootstrap	procedure,	sampling	from	 ,	to	estimate	these	critical	values.

(B)	A	Simulation	Study
We	now	 compare	 the	 power	 behavior	 of	 the	 test	 based	 on	 test	 statistic	 ,	 defined	 by
(9.6),	with	other	 test	statistics	 for	 the	family	of	distributions	with	hazard	rate	 (9.18)	and



distribution	 function	 (9.19).	 See	 Figure	 9.3	 for	 these	 hazard	 rates	 and	 corresponding
densities.	The	bootstrap	resampling	for	 	was	done	by	taking	 	samples	from
the	estimate	 	defined	in	(9.17)	with	bandwidth	 .	For	 the	estimator	
on	which	 	is	based	(see	(9.14)),	the	penalty	was	taken	equal	to	 .	The	sample
was	generated	by	first	generating	a	standard	exponential	sample	 ,	producing
the	bootstrap	sample	via	 	(see	Exercise	9.3).	In	this	way,	

	values	 	were	obtained.	The	critical	value	is	taken	to	be	the	 th	percentile	of	these
values	of	 .

We	make	comparisons	with	tests	based	on	the	statistics	 	defined	in	(9.4)	and	
given	 in	 (9.7).	 For	 determining	 a	 critical	 value	 for	 ,	 again	 	 random
standard	exponential	samples	were	generated,	and	the	value

(9.20)

was	determined	for	each	such	bootstrap	sample	(taking	the	interval	 	as	interval
of	 convexity).	 The	 critical	 value	 was	 then	 taken	 to	 be	 the	 th	 percentile	 of	 the	 so
obtained	values	of	 .	Note	that	 this	procedure	is	equivalent	 to	 the	procedure	that	first
estimates	the	(constant)	hazard	rate	on	 	by	 ,	then	takes	bootstrap	samples
from	 the	 exponential	 distribution	 with	 this	 hazard	 rate	 and	 finally	 determines	 the
supremum	 distance	 between	 the	 two	 resulting	 estimators	 on	 the	 interval	 .	 This
method	 is	 the	same	as	described	 in	Lemma	9.1;	see	Exercise	9.8.	The	critical	value	for	

	was	determined	as	described	directly	after	(9.4).

In	 Table	 9.1,	 four	 tests	 are	 compared:	 the	 test	 based	 on	 	 with	 bootstrap
approximation	of	the	critical	value,	the	tests	based	on	 	and	 	and	the	test	based	on	

	using	the	method	of	Lemma	9.1	to	approximate	the	critical	value	(this	is	denoted	by	
).	For	 	and	 	the	critical	values	are	determined	as	just	described.	In	this	table	the

tests	 are	 compared	 on	 the	 fixed	 interval	 .	 In	 all	 cases	 we
generated	 2,000	 samples,	 and	 also	 	 bootstrap	 samples	 from	 each	 original
sample.

Table	9.1	 Estimated	Powers	(×	103)	for	Model	(9.19),	Where	α	=	0.1,	n	=	50,	and	d	=	‒
1,	‒0.9,	…,	‒0.1	

	

Note:	The	estimation	interval	is	 .



The	simulations	for	 	took	rather	long,	since	repeated	density	estimation	is	needed	at
each	 step	 in	 view	of	 the	 needed	 calibration	 of	 the	 bandwidth	 to	 create	 a	 nondecreasing
hazard	 in	 the	original	 sample.	Also,	one	has	 to	compute	an	estimator	of	 the	distribution
function,	 the	 density,	 and	 the	 derivative	 of	 the	 density	 to	 check	 whether	 one	 gets	 a
nondecreasing	hazard	on	the	chosen	interval	at	 the	critical	bandwidth.	The	estimation	of
the	 density	 and	 its	 derivative	was	 speeded	 up	 by	 using	 fast	 Fourier	 transform,	 and	 the
distribution	function	was	computed	by	numerically	integrating	the	density	estimate.

It	is	seen	from	Table	9.1	that	the	bootstrap	test	based	on	 	is	more	powerful	for	the
alternatives	 	for	 	than	the	test	based	on	 .	Table	9.2	shows	 that
the	test	based	on	 	is	rather	anticonservative	(or	liberal).	This	seems	to	suggest	that	the
high	 power	 in	 the	 region	 	 is	 at	 least	 partly	 due	 to	 the	 anticonservative
behavior	of	this	test.	The	test	based	on	 	is	very	conservative	for	this	interval,	as	is	to
be	 expected,	 since	 the	 estimated	 critical	 value	 is	 based	 on	 the	 exponential	 (worst	 case)
distribution.	The	test	based	on	 	has	a	middle	position:	it	is	more	conservative	than	the
test	 based	 on	 	 but	 less	 conservative	 than	 the	 test	 based	 on	 .	 A	 graphical
comparison	of	the	power	functions	is	given	in	the	left	panel	of	Figure	9.6.

Table	9.2	 Estimated	Rejection	Probabilities	 (×	103)	 for	Model	 (9.19)	 under	 the	Null
Hypothesis,	Where	α	=	0.1,	n	=	50,	and	d	=	0,	0.1,	…,	1	

	

Note:	The	estimation	interval	is	 .

	

Figure	9.6	 The	estimated	power	curves	for	the	family	 ,	for	the	
-procedure	(solid),	the	 -procedure	(dashed)	and	the	 -procedure	(dotted).	The

sample	size	 	and	the	testing	interval	is	 	with	 	(a)	and	
	(b).



Interestingly,	 the	power	of	 the	 test	based	on	 	 increases	 considerably	 if	we	 take	a
smaller	interval	 .	In	fact,	this	test	is	derived	under	the	assumption	that	not
all	 order	 statistics	 belong	 to	 the	 interval	 .	 But	 this	 often	 happens	 if	 we	 take	

,	in	particular	for	the	bootstrap	samples.

Another	reason	for	the	higher	power	of	the	test	based	on	 	in	this	situation	is	the	fact
that	the	isotonic	projection	of	the	hazard	 ,	for	 	is	almost	constant	on	the
interval	 ,	 since	 we	miss	 the	 steeply	 increasing	 part	 of	 the	 hazard	 from	

	to	 ,	so	sampling	from	the	isotonic	projection	is	almost	 the	same
as	sampling	(locally)	from	an	exponential	distribution	in	this	case.

For	 	the	results	are	shown	in	Tables	9.3	and	9.4,	and	Figure	9.6b.	The
test	based	on	 	 is	 very	 powerful,	 but	 also	 very	 anticonservative	 in	 this	 situation.	For
example,	for	 	(which	belongs	to	the	null	hypothesis	region)	one	gets	an	estimated
rejection	probability	of	more	than	 	instead	of	the	desired	 .

Table	9.3	 Estimated	Powers	(×	103)	for	Model	(9.19),	where	α	=	0.1,	n	=	50,	and	d	=
−1,	−0.9,	…,	−0.1	

	

Note:	The	hypothesized	interval	of	monotonicity	is	 .

Table	9.4	 Estimated	Rejection	Probabilities	 (×	103)	 for	Model	 (9.19)	 under	 the	Null
Hypothesis,	where	α	=	0.1,	n	=	50,	and	d	=	0,	0.1,	…,	1	

	

Note:	The	hypothesized	interval	of	monotonicity	is	 .

It	 is	 also	 of	 interest	 to	 compare	 the	 powers	 of	 the	 procedure	 based	 on	 bootstrapping
from	a	penalized	and	 smoothed	version	of	 the	hazard,	with	 the	powers	obtained	by	 just
bootstrapping	 from	 the	 isotonic	 piecewise	 constant	 hazard	 estimate	 	 without	 any
smoothing	 or	 penalizing.	 This	 is	 done	 in	 Figure	 9.7,	 showing	 that	 the	 difference	 is	 not
very	 large	 for	 this	 family	 (and	 this	sample	size).	The	general	 trend	 is	 that	bootstrapping
from	 	gives	slightly	more	conservative	critical	values.	Note	that	Theorem	9.2	applies	to



the	procedure	based	on	 ,	not	to	that	based	on	 .

	

Figure	9.7	 The	estimated	power	curves	for	the	family	 	of	the
isotonic	test	statistic	 ,	defined	by	(9.6),	for	critical	values	estimated	by	bootstrapping
from	a	penalized	and	smoothed	isotonic	estimate	(solid)	and	for	critical	values	estimated
by	bootstrapping	from	the	isotonic	estimate	itself	(dotted).	The	sample	size	 	and
the	estimation	interval	is	 	in	(a);	 	in	(b).

9.2	 -Sample	Tests	for	Decreasing	Densities
In	 Section	 2.2	 the	 problem	 of	 estimating	 a	 monotone	 density	 is	 introduced.	 The
nonparametric	maximum	likelihood	(Grenander)	estimator	 in	 this	setting	 is	studied	from
an	asymptotic	point	of	view	in	Section	3.2	and	3.6.	In	this	section	we	study	a	 -sample
problem	 for	 decreasing	 densities.	 More	 specifically,	 consider	 independent	 samples	

	 of	 size	 	 from	 a	 decreasing	 densities	 	 are	 taken,	 where	
.	We	wish	to	test	the	hypothesis

We	consider	various	test	statistics	that	can	be	used	to	perform	this	test.	The	first	is	rather
straightforward:	the	likelihood	ratio	test.	Under	the	null	hypothesis,	 the	complete	sample
can	be	viewed	as	sample	of	size	 	from	a	single	decreasing	density	 	and
the	maximum	likelihood	estimator	is	the	Grenander	estimator	introduced	in	Section	2.2.	In
case	 of	 the	 alternative	 hypothesis,	 the	 maximum	 likelihood	 estimator	 for	 	 is	 the
Grenander	estimator	based	on	the	observed	 	values	for	 .	Then	the	(log)
likelihood	ratio	statistic	for	testing	 	against	the	alternative	that	the	densities	are	not
the	same	is	given	by

(9.21)



where	 	is	the	Grenander	estimate	based	on	the	 th	sample	and	 	is	the	Grenander
estimate	 based	on	 the	 combined	 samples.	The	hypothesis	 can	 then	be	 rejected	 for	 large
values	of	this	 .

Alternative	test	statistics	are	based	on	other	measures	of	distance.	Durot	et	al.,	2013,	for
example,	consider	 -type	tests	based	on

(9.22)

and

(9.23)

where	the	 	are	the	Grenander	estimates,	defined	earlier,	for	the	 	samples,	and	 	is
the	Grenander	estimate	based	on	the	combined	samples.

Statistics	 of	 this	 type	 are	 shown	 to	 be	 asymptotically	 normal	 under	 	 in	Durot
et	al.,	2013,	under	the	following	conditions:

(A0)	The	 estimators	 	 are	 independent	 estimators	 of	 the	 distribution
functions	 	 of	 the	 	 samples,	 respectively,	 and	 for	 every	

,	 the	 estimator	 	 is	 a	 cadlag	 step	 process.	 For
example,	the	 	could	be	the	empirical	distribution	functions	of	the	 th	sample.

(A1)	 For	 each	 ,	 the	 function	 	 is	 decreasing	 and
continuously	 differentiable,	 such	 that	

	(in	our	case	 	is	the	density	in
the	 th	sample).

(A2)	For	each	 ,	there	exists	a	constant	 ,	such	that	for	all	
and	 ,	the	process	 	satisfies

Furthermore,	it	 is	assumed	that	there	exists	an	embedding	into	Brownian	bridges	(or,	for
tests	in	the	regression	model,	in	Brownian	motion):

(A3)	 For	 each	 ,	 there	 exists	 a	 Brownian	 bridge	 ,	 an	 increasing
function	 	 with	 ,	 and	 constants	 	 and	

,	such	that	for	all	 :



Since	 the	 	 are	 assumed	 to	 be	 independent,	 we	 can	 assume	 without	 loss	 of
generality	that	the	 	are	independent.	Note	that,	for	 ,	we	can	write

(9.24)

where	 the	 	are	 independent	Brownian	motions	and	 ,	 if	 	 is	Brownian
motion,	and	 	independent	of	 ,	if	 	 is	Brownian	bridge.	Finally,
the	following	smoothness	assumption	is	required.

(A4)	 There	 exist	 a	 	 and	 ,	 such	 that	 for	 all	 	 and
,

In	order	to	formulate	the	first	limit	theorem,	we	introduce	the	random	variables

(9.25)

where	 the	 argmax	 function	 is	 the	 supremum	 of	 the	 times	 at	 which	 the	 maximum	 is
attained,	 	are	independent	standard	two-sided	Brownian	motions.	The
following	 theorem	(Theorem	2.1	 in	Durot	et	al.,	2013)	 establishes	 asymptotic	 normality
for	test	statistic	 .

Theorem	9.3	Assume	(A0),	(A1),	(A2),	(A3),	(A4)	and	let	 	be	defined	by	(9.22).	Let	
	 be	 defined	 in	 (9.25),	 for	 ,	 with	 independent	 standard	 Brownian

motions	 .	If	 ,	then

where	 	is	a	normal	distribution	with	variance

and	where

with



(9.26)

The	 expressions	 for	 	 and	 	 can	 be	 simplified	 somewhat,	 since	 in	 our	 case	
,	the	distribution	function	of	the	 th	sample,	see	p.	943	of	Durot	et	al.,	2013.

This	 implies	 that	 	 does	 not	 depend	 on	 	 under	 .	 This	 phenomenon	 was
probably	first	observed	in	Groeneboom,	1985,	in	connection	with	the	asymptotics	of	the	

	 distance	 of	 the	 Grenander	 estimator	 to	 the	 real	 (decreasing)	 density	 (see	 also
Groeneboom	et	al.,	1999).

To	 formulate	 a	 similar	 result	 for	 the	 test	 statistic	 ,	 we	 need	 one	 more	 piece	 of
notation.	First,	for	each	fixed	 ,	define

(9.27)

where

(9.28)

with	 	 being	 the	 independent	 standard	 Brownian	 motions	 used	 to
define	(9.25)	and

(9.29)

where	 	is	the	distribution	functions	of	the	 th	sample.	Note	that	for	 	 fixed,
due	to	(9.29),	the	processes	 	and	 	are	distributed	as	standard	Brownian	motion,
which	means	that	 	and	 	have	the	same	distribution	as	 .	We	are	now	in
the	position	to	formulate	the	second	main	theorem	of	this	section.

Theorem	9.4	Assume	(A0),	(A1),	(A2),	(A3),	(A4)	and	let	 	be	defined	by	(9.23).	Let	
,	 	and	 	be	defined	in	(9.25)	and	(9.27),	respectively,	with	independent	standard

Brownian	motions	 .	If	 ,	then



where	 	is	a	normal	distribution	with	variance

with	 	defined	in	(9.26)	and

Furthermore,	 	may	depend	on	 	and	is	defined	by

If,	 in	 addition,	 ,	 for	 all	 ,	 for	 a	 given	 function	
	and	given	real	numbers	 ,	then	 	and	 	no	longer	depends

on	 .

Since	the	normalizing	constants	are	rather	intractable	for	the	purpose	of	a	statistical	test,
it	 is	 suggested	 in	Durot	 et	 al.,	2013,	 to	 estimate	 the	 critical	 values	 of	 a	 test	 by	 using	 a
bootstrap	method.

(A)	Finding	the	Critical	Value	by	a	Bootstrap	Procedure
It	 is	 known	 that	 the	 standard	 bootstrap	 typically	 does	 not	 work	 for	 Grenander-type
estimators,	 see,	 e.g.,	Kosorok,	2008a,	Sen	 et	 al.,	2010.	These	 authors	 propose	 a	 smooth
bootstrap	 based	 on	 generating	 from	 a	 kernel	 smoothed	 density	 estimate.	 Here	 we	 also
consider	a	smoothed	bootstrap.	This	will	require	the	use	of	a	smooth	estimator	 	which,
under	 the	 null	 hypothesis	 ,	 satisfies	 bootstrap	 versions	 of
assumptions	 (A0)–(A4).	 It	 is	 proved	 in	 Durot	 et	 al.,	 2013	 that	 the	 following	 general
property	will	be	sufficient	for	the	bootstrap	to	work.

(A*)	The	estimator	 	is	continuously	differentiable	on	 .	Furthermore,	there	exists
events	 	 and	 real	 numbers	 	 and	 ,	 such	 that	
and	 	 for	 any	 ,	 as	 ,	 and	 such	 that	 the	 following	 three
properties	hold	on	 :

and	for	all	 ,

(9.32)



By	means	of	the	estimator	 ,	one	builds	bootstrap	versions	 	of	test	statistics	 ,
for	 ,	 in	 such	 a	 way	 that	 under	 the	 null	 hypothesis	 and	 conditionally	 on	 the
original	 observations,	 	 converges	 in	 distribution	 to	 the	Gaussian
law	with	mean	zero	and	variance	 ,	in	probability,	i.e.,

(9.33)

where	 	 and	 	 are	 the	 limit	 bias	 and	 variance	 given	 in	Theorems	 9.3	 and	 9.4,	
denotes	 the	 distribution	 function	 of	 the	 standard	 normal	 distribution	 and	 	 is	 the
conditional	 probability	 given	 the	 original	 observations.	 In	 this	 case,	 for	 a	 fixed	 level	

,	 one	 can	 estimate	 the	 -upper	 percentile	 point	 	 of	 the	 conditional
distribution	of	 	and	consider	the	critical	region

(9.34)

If	assumptions	 (A0)–(A4)	 	are	 fulfilled,	 then	Theorems	9.3	and	9.4	 together	with	(9.33)
ensure	that	the	test	with	critical	region	(9.34)	has	asymptotic	level	 .

For	 ,	we	define

(9.35)

where	 	 is	a	 twice	continuously	differentiable	kernel,	with	a	bounded	 third	derivative,
symmetric	around	zero,	and	having	support	 .	Near	 the	boundary,	we	correct	 the
bias	by	means	of	boundary	kernels.	That	 is,	we	construct	 linear	combinations	of	
and	 	 with	 coefficients	 depending	 on	 the	 value	 near	 the	 boundary.	 For	

,	define

(9.36)

with,	taking	 ,

(9.37)



where	for	 ,	the	coefficients	 	and	 	are	determined	by

(9.38)

The	 following	 lemma	 guarantees	 that	 	 satisfies	 condition	 ( ).	 For	 the	 proof,	 see
Durot	et	al.,	2013;	see	also	Section	8.5.

Lemma	9.2	Let	 	be	defined	by	(9.35)	for	all	 	and	by	(9.36)
on	 	 and	 .	 Assume	 ,	 where	

	 and	 .	 If	 	 is	 twice
continuously	 differentiable	 on	 	 and	 (A3)	 holds	 with	 ,	 for
each	 ,	then	 	satisfies	( ).

As	 noted	 in	 Durot	 et	 al.,	 2013,	 it	 is	 tempting	 to	 consider	 bootstrapping	 from	 the
Grenander	estimator	 	itself,	where	 	is	based	on	the	pooled	samples,	since	

	does	not	depend	on	any	tuning	parameter.	From	the	results	 in	Kosorok,	2008a,	and
Sen	 et	 al.,	 2010,	 it	 appears	 that	 bootstrapping	 from	 the	 Grenander	 does	 not	 work	 for
simulating	 the	 local	 behavior	 of	 the	 statistic.	 However,	 in	 our	 situation	 we	 are
bootstrapping	statistics	that	are	integrals	of	the	difference	of	two	Grenander	estimators,	so
it	is	not	clear	whether	the	results	by	Kosorok,	2008a,	and	Sen	et	al.,	2010,	will	be	relevant.
We	take	a	look	at	bootstrapping	from	 	in	the	simulation	study	that	follows,	where	we
follow	Durot	et	al.,	2013.

(B)	A	Simulation	Study
We	 consider	 a	 three	 sample	 test	 in	 the	 monotone	 density	 model.	 The	 three	 densities	

	 and	 	 are	 chosen	 from	 the	 family	 of	 exponential	 densities	 truncated	 to	 the
interval	 :

(9.39)

for	 	and	 	otherwise.	See	Figure	9.8.



	

Figure	9.8	 Densities	of	the	type	(9.39)	for	 	(dotted),	 	(solid)	and	
(dashed).

Under	 the	 null	 hypothesis	 	 the	 bootstrap	 samples	 are	 generated
from	a	pooled	estimate	for	 	based	on	the	pooled	sample	of	size	 .
We	 correct	 the	 estimator	 at	 the	 boundaries	 by	 (9.36).	 According	 to	 Lemma	 9.2	 the
bootstrap	 should	work	 in	 this	 situation.	We	 first	 investigate	 how	 the	 bandwidth	 can	 be
chosen	data-adaptively.

(C)	Choice	of	Bandwidth
In	 the	 experiments,	 the	 least	 squares	 cross-validation	 function,	 as	 a	 function	 of	 the
bandwidth	 ,	is	given	by

(9.40)

where	 	 is	 the	 (smooth)	 estimate	 of	 the	 density,	 based	on	 the	 pooled	 samples,	with
bandwidth	 	and	 	is	the	empirical	distribution	function	of	the	pooled	samples.	Note
that	 if	 	 is	 the	 ordinary	 kernel	 estimator	 determined	with	 the	 empirical	 distribution
function	 ,	then	 	 is	an	unbiased	estimator	of	 the	mean	 integrated	squared
error	minus	the	squared	 -norm	of	the	density	 	(which	does	not	depend	on	 ):



The	 boundary	 correction	method	 (9.36)	 generally	 leads	 to	 a	 convex	 cross-validation
curve	with	a	clear	minimum,	as	shown	in	Figure	9.9a.	The	cross-validation	curve	for	the
smoothed	Grenander	(solid)	with	the	boundary	correction	(9.36)	attains	its	minimum	for	a
value	of	 	close	to	 ,	and	the	resulting	kernel	estimate	(solid)	is	shown	in	Figure
9.9b.	The	cross-validation	curve	in	Figure	9.9a,	based	on	a	sample	of	size	 	from
a	 truncated	 exponential	 distribution	 on	 ,	 of	 the	 ordinary	 kernel	 estimate	 (dashed)
with	 the	boundary	correction	(9.36)	and	 the	kernel	estimate	based	on	 the	Grenander	are
rather	 close,	 with	 a	 minimum	 at	 approximately	 the	 same	 bandwidth.	 But	 this	 kernel
estimate	will	 not	 necessarily	 be	 decreasing	 and	we	 actually	 prefer	 a	 decreasing	 density
such	 as	 the	 smoothed	 Grenander,	 which	 belongs	 to	 the	 allowed	 class	 of	 densities,	 for
generating	the	bootstrap	samples.

	

Figure	9.9	 Cross-validation	functions	 	for	the	smoothed	Grenander	(solid)
and	the	ordinary	kernel	estimator	with	boundary	correction	(9.36),	dashed	in	(a).	The
resulting	density	estimates	are	given	in	(b):	smoothed	Grenander	(solid),	ordinary	kernel
estimate	(dotted)	and	the	true	underlying	density	(dashed).

The	 overall	 performance	 of	 the	 smoothed	 Grenander	 estimator	 with	 boundary
correction	(9.36)	seems	to	be	the	best.	Therefore,	for	 	the	smooth	estimate
for	generating	the	bootstrap	samples	is	defined	as

(9.41)

where	 	 is	 a	 symmetric	 kernel	 with	 support	 	 and	 	 is	 the	 least	 concave
majorant	 of	 the	 empirical	 distribution	 function	 .	 We	 correct	 the	 kernel	 density
estimate	at	the	boundaries	of	 	by	means	of	(9.36)	with	 	instead	of	 .

(D)	Simulating	the	Level	and	Power	under	Alternatives
To	investigate	the	finite	sample	power	at	a	given	combination	 ,	three	samples
of	sizes	 	from	 ,	for	 ,	are	generated,	and	the	value	of	the	test
statistics	 	and	 	 is	computed,	as	defined	 in	 (9.22)	and	(9.23).	Next,	10,000	 times



three	 bootstrap	 samples	 of	 sizes	 ,	 	 and	 	 from	 the	 pooled	 estimate	 	were
generated,	and	the	values	 	and	 	of	both	test	statistics	and	their	5th	upper	percentiles	

	are	determined,	for	 .	This	whole	procedure	 is	 repeated	
times	and	 the	number	of	 times	 is	 counted	 that	 the	values	of	 the	 test	 statistics	 	and	

	 exceed	 the	 corresponding	 5th	 upper	 percentiles	 	 and	
respectively.	By	dividing	this	number	by	 ,	this	provides	an	approximation	of	the	finite
sample	power	of	both	test	statistics	at	underlying	truncated	exponentials	with	parameters	

,	 	and	 .

In	 view	 of	 the	 comments	 made	 after	 Lemma	 9.2,	 we	 compare	 the	 behavior	 of	 the
smooth	bootstrap	procedure	with	bootstrapping	from	the	pooled	Grenander	estimate	itself.
To	 this	 end,	we	 also	 run	 the	 same	 procedure	 as	 described	 earlier,	 but	 then	 generate	 the
bootstrap	samples	from	 	instead	of	the	smooth	estimate	 .

To	investigate	the	performance	under	the	null	hypothesis,	 	were	taken
equal	 to	 the	 values	 	 and	 equal	 sample	 sizes	 	 and

,	 for	 .	 The	 simulated	 levels	 are	 determined	 by	 means	 of	
	 repetitions.	 The	 simulations	 to	 investigate	 the	 finite	 sample	 power	 at

alternatives	 are	 done	 with	 sample	 sizes	 	 and	 alternatives	 for
which	 	and	 	varies	between	0	and	3.5	by	steps	of	0.1.

(E)	Comparison	with	True	Power
Finally,	in	order	to	calibrate	the	finite	sample	power	obtained	from	bootstrapping,	the	true
finite	 sample	 power	 for	 a	 given	 choice	 	 was	 also	 (approximately)
determined.	 To	 this	 end,	 10,000	 samples	 of	 size	 	 were	 generated
from	the	mixture	density

(9.42)

This	mixture	density	is	considered	to	be	the	least	favorable	density	among	all	densities
under	the	null	hypothesis,	in	the	case	of	three	truncated	exponentials	with	parameters	 ,	

	and	 .	For	each	of	 the	samples	 the	values	of	 the	 test	statistics	 	and	 	were
computed	 and	 used	 to	 determine	 the	 5th	 upper	 percentiles	 ,	 ,	 for
both	 test	 statistics.	 Next,	 another	 10,000	 times	 three	 samples	 of	 sizes	 	 from	

	 were	 generated,	 both	 test	 statistics	 were	 computed	 and	 the	 number	 of
times	it	exceeds	the	corresponding	5th	percentile	 	was	counted.	Dividing	these
numbers	by	10,000	provides	an	approximation	of	the	true	finite	sample	power	for	a	given
choice	 .	Note	that	such	a	calibration	is	not	implementable	in	practice	since	it
requires	 knowledge	 of	 	 and	 ,	 but	 it	may	 serve	 as	 a	 benchmark	 for	 the	 power
obtained	from	bootstrapping,	in	the	simulations.



(F)	Implementation
We	now	give	some	more	detail	on	how	bootstrapping	from	the	smoothed	Grenander	has
been	implemented.	First	consider	the	estimate	defined	in	(9.41)	for	 .	One
possibility	 to	 implement	 this	 estimate	 would	 be	 to	 use	 numerical	 integration	 of	 .
However,	one	can	avoid	this	by	a	summation	by	parts	procedure.

Let	 	be	 the	 jump	sizes	of	 the	Grenander	estimator	at	 the	points	of	 jump	
,	where	 	 is	 the	largest	order	statistic.	Note	that	 	is	left-

continuous	and	 that	 	 always	has	a	 jump	down	 to	zero	at	 the	 last	order	 statistic.	We
now	define

(9.43)

In	the	simulations	the	triweight	kernel

was	taken.	Then,	defining	 ,	for	 ,	we	can	write

so	 that	 for	 ,	 the	estimate	 	 can	now	be	computed	as	a	 finite	 sum
over	the	jumps	 	of	the	Grenander	estimator	 .	We	then	still	have	to	define	
for	 .	To	this	end,	for	 ,	let

Note	that	 ,	where	 	is	defined	in	(9.43).	As	before,	we	get	for	
,

where	 	and	 	are	defined	by	(9.38),	and	similarly	for	 ,



This	 means	 that	 also	 near	 the	 boundaries	 of	 ,	 the	 estimator	 	 can	 be
computed	in	terms	of	finite	sums	over	the	jumps	of	the	Grenander	estimator	 .

(G)	Results
First	 the	 level	 of	 the	 tests	 under	 the	 null	 hypothesis	 of	 all	 s	 equal	 to	 some	 	 is
investigated,	 where	 	 varied	 over	 .	 The	 significance	 level	

	 was	 taken	 and	 the	 bootstrap	 experiments	 were	 performed	 with	
	and	 .	The	results	are	listed	in	Table	9.5.

It	can	be	seen	 that	close	 to	 ,	which	corresponds	 to	 the	uniform	distribution,	 the
attained	level	is	much	too	small.	For	large	 	the	attained	levels	tend	to	be	somewhat	too
large.	 Note	 that	 the	 simulated	 levels	 obtained	 from	 bootstrapping	 from	 the	 Grenander
itself	are	comparable	to	the	ones	obtained	from	the	smooth	bootstrap.

Table	9.5	 Simulated	Levels	of	Sn1	and	Sn2	under	the	Null	Hypothesis	

	

Note:	The	target	value	is	α	=	0.05.

Next,	the	power	under	alternatives	of	the	form	 	and	
was	 investigated,	with	 .	A	picture	of	 the	power	 estimates	of	 the
smoothed	 Grenander,	 using	 cross-validation	 for	 the	 bandwidth	 choice,	 is	 shown	 in
Figure	 9.10	 together	 with	 the	 estimates	 obtained	 by	 bootstrapping	 from	 the	 Grenander
estimator.	 Figure	 9.10a	 displays	 the	 powers	 simulated	 by	 generating	 bootstrap	 samples
from	the	ordinary	Grenander	estimator	(solid	curves)	and	the	direct	estimates	of	 the	true
power	(dashed	curves).	The	top	solid	and	dashed	curves	correspond	to	test	statistic	 .
This	test	statistic	seems	to	be	uniformly	more	powerful	(over	the	alternatives	considered
here)	 than	 test	 statistic	 ,	which	 corresponds	 to	 the	 bottom	 solid	 and	dashed	 curves.
Figure	 9.10b	 displays	 the	 powers	 simulated	 by	 generating	 bootstrap	 samples	 from	 the
smoothed	Grenander	 estimator	 (solid	 curves)	 and	 the	 same	 direct	 estimates	 of	 the	 true
power	(dashed	curves).	Again	the	top	solid	and	dashed	curves	correspond	to	test	statistic	

.



	

Figure	9.10	 Simulated	powers	(solid)	from	bootstrapping	(in	(a)	from	the	Grenander
estimator	and	in	(b)	from	the	smoothed	Grenander	estimator)	and	estimated	true	powers
(dashed)	of	 	(lower	curves)	and	 	(upper	curves),	for	 .
The	level	of	the	test	is	taken	to	be	 .

The	 simulated	 powers	 in	 Figure	 9.10a,	 based	 on	 bootstrapping	 from	 the	 ordinary
Grenander,	 tend	 to	 be	 conservative.	 The	 simulated	 powers	 in	 Figure	 9.10b,	 based	 on
bootstrapping	 from	 the	 smoothed	 Grenander,	 tend	 to	 be	 slightly	 anticonservative.	 Note
that,	similar	to	the	simulated	levels	in	Table	9.5,	there	is	hardly	any	difference	between	the
results	 when	 using	 the	 smooth	 bootstrap	 or	 when	 bootstrapping	 from	 the	 ordinary
Grenander.	This	seems	to	be	an	interesting	point	for	further	research.

We	 finally	 make	 a	 comparison	 with	 the	 LR	 test	 statistic,	 defined	 by	 (9.21)	 (this
comparison	was	not	made	in	Durot	et	al.,	2013).	To	this	end,	we	recomputed	the	powers	of
the	 two	 tests,	 generating	 the	bootstrap	 samples	 from	 the	 least	 favorable	mixture	density
(9.42),	 and	also	computed	 the	powers	of	 the	LR	 test	 in	 this	way.	 It	 is	 seen	 from	Figure
9.11	that	the	powers	of	the	LR	test	are	very	close	to	the	powers	of	the	test	based	on	
in	 this	 example.	Whether	 this	means	 that	 these	 tests	 have	 some	 asymptotic	 equivalence
property	is	still	an	open	question	at	this	point.



	

Figure	9.11	 Estimated	true	powers	of	the	LR	test	(9.21)	(dotted)	and	the	test	based	on	
	(dashed)	and	 	(solid),	for	 .	The	level	of	the	test	is

taken	to	be	 .

9.3	 Two-Sample	Tests	for	Current	Status	Data
In	contrast	with	the	number	of	two-sample	tests	available	for	right	censored	data,	there	is
very	 little	 for	 interval	censored	data.	Permutation	 tests	 for	 the	 two-sample	problem	with
interval	censored	data	have	been	considered	in	Peto	and	Peto,	1972.	Since	they	rely	on	the
permutation	distribution,	such	tests	can	only	be	used	when	the	censoring	mechanism	is	the
same	in	both	samples.	For	right	censored	data,	permutation	tests,	considered	as	conditional
tests,	have	been	shown	to	be	asymptotically	independent	of	the	censoring	distributions	in
the	two	sample	problem	in	Neuhaus,	1993,	but	it	is	doubtful	that	this	property	persists	for
interval	censored	data.

We	consider	here	a	likelihood	ratio	based	test	for	testing	that	two	samples	come	from
the	same	distribution,	if	current	status	censoring	is	present.	To	be	more	specific,	we	have	a
sample	 	 from	 a	 distribution	 with	 density	 	 along	 with	 indicators	

	where	 	and	 the	 s	are	 independent	of	 the	 s
and	 distributed	 according	 to	 a	 distribution	 function	 	 (see	 also	 Section	 2.3).	We	 also
have	a	sample	 	of	size	 	( ),	independent
of	 the	 first,	 where	 the	 s	 are	 distributed	 according	 to	 a	 density	 	 and	 the	 s



according	 to	 a	distribution	 function	 .	Again	 .	The	hypotheses	 to	 be
tested	are

We	first	discuss	 the	 likelihood	ratio	 test.	Under	 the	null	hypothesis	of	equality	of	
and	 	we	have	to	maximize

over	all	distribution	functions	 .	Without	the	restriction	of	the	null	hypothesis	we	have	to
maximize

over	all	pairs	of	distribution	functions	 .

This	means	that	under	the	null	hypothesis	the	MLE	 	evaluated	at	 	is	given	by
the	left	hand	derivative	of	the	greatest	convex	minorant	of	the	cusum	diagram	of	the	points

	and	the	points

(9.44)

evaluated	 at	 .	 Here	 	 denotes	 the	 indicator	 corresponding	 to	 the	 th	 order
statistic	 	 in	 	 (see	 Section	 2.3).	 Denote	 by	 	 the	 th	 order
statistic	 of	 the	 s	 corresponding	 to	 the	 first	 sample	 .	 Under	 the
alternative	hypothesis,	the	MLE	 	of	 	at	 	is	then	given	by	the	left	continuous
slope	 of	 the	 greatest	 convex	minorant	 of	 the	 cumulative	 sum	diagram	 consisting	 of	 the
points	 	and	the	points

(9.45)

evaluated	 at	 ,	where	 	 is	 the	 indicator	 corresponding	 to	 .	 Similarly	 the
MLE	 	 of	 	 at	 	 is	 given	 by	 the	 left	 hand	 derivative	 of	 the	 greatest	 convex
minorant	of	the	cumulative	sum	diagram	of	the	points	 	and	the	points



(9.46)

where	 	 is	 the	 indicator	 corresponding	 to	 th	 order	 statistic	 	 of	 the	 second
sample	 .

Then	the	log	likelihood	ratio	test	statistic	is	given	by:

where	 the	 terms	with	 coefficients	 	 and	 	 are	 defined	 to	 be	 zero	 if	 	 and	
	are	zero,	respectively.

The	properties	of	this	LR	test	are	still	largely	unknown.	This	is	different	for	an	LR-type
test	based	on	maximum	smoothed	likelihood	estimators	introduced	in	Section	8.5.	We	will
now	discuss	this	latter	test	in	more	detail.

(A)	A	Likelihood	Ratio	Test,	Based	on	Maximum	Smoothed
Likelihood	Estimators
As	mentioned	in	Section	8.5,	smoothing	the	empirical	distribution	function	based	on	non-
negative	 data	 usually	 gives	 problems	 near	 zero	 in	 the	 sense	 that	 the	 resulting	 estimator
might	(and	probably	will)	assign	a	positive	probability	to	the	negative	half	axis.	In	order	to
avoid	such	problems,	we	restrict	the	domain	on	which	the	test	statistic	is	computed	to	an
interval	 ,	 where	 	 is	 the	 support	 of	 the	 underlying	 densities,
corresponding	to	the	distribution	functions	 	and	 	of	the	hidden	variables.	Inspired	by
the	LR	statistic	given	in	(9.47),	we	consider	the	statistic	 	given	by

where	 ,	 	and	 	 are	 the	maximum	smoothed	 likelihood	estimators	 (MSLEs)
for	 the	 first,	 second	 and	 combined	 sample,	 respectively,	 and	 	 and	 	 are	 kernel
estimates	of	the	relevant	observation	densities,	defined	in	the	following.	As	explained	in
Section	8.5,	 the	MSLEs	 for	 the	 combined	 samples	 and	 the	 first	 and	 second	 sample	 are
computed	 by	 replacing	 the	 cumulative	 sum	 diagrams	 (9.44),	 (9.45)	 and	 (9.46)	 by	 the
continuous	cumulative	sum	diagrams



(9.49)

(9.50)

and

(9.51)

respectively,	 where	 ,	 ,	 ,	 	 and	 their	 derivatives	 are	 defined	 in	 the
following	way.

The	densities	 	and	 	are	kernel	estimators	with	bandwidth	 ,	defined	by

(9.52)

Here	 	 is	 the	 empirical	 distribution	 of	 the	 observations	 	 of	 the	 first
sample	 and	 	 is	 the	 empirical	 distribution	 of	 the	 observations	

	 of	 the	 first	 sample,	with	 the	 analogous	 definitions	 of	
and	 	for	the	second	sample.	The	densities	 	and	 	are	defined	by

The	kernel	 	is	defined	in	the	usual	way	by

for	a	bandwidth	 ,	where	 	is	a	symmetric	positive	kernel	with	compact	support.
For	example	the	triweight	kernel

(9.53)

which	is	the	kernel	used	in	the	simulation	study	reported	in	the	following.

For	 	 and	 	 a	 boundary	 kernel	 is	 used,	 defined	 by	 a
linear	combination	of	 	and	 .	Other	ways	of	bias	correction	at	the	boundary
are	 also	 possible	 (see	 Exercise	 8.14),	 but	 it	 seems	 absolutely	 necessary	 to	 use	 such	 a
correction	 in	 order	 to	 obtain	 a	 reasonable	 behavior	 at	 the	 boundary.	 Using	 boundary
kernels,	the	simple	property	that	the	distribution	function	of	the	estimator	can	be	obtained
by	just	integrating	the	kernel	is	lost,	and	indeed	the	estimates	of	the	distribution	functions
were	 obtained	 by	 numerically	 integrating	 the	 estimates	 of	 the	 densities	 (and	 not	 by
integrating	the	kernels).	Using	these	conventions,	we	define



and	use	the	corresponding	numerical	integrals	in	the	continuous	cusum	diagrams	(9.49)	to
(9.51).	A	picture	of	the	MSLE	estimators	and	the	MLE	estimators	for	samples	of	size	
from	two	different	Weibull	distributions	with	densities

(9.54)

respectively,	 where	 	 holds	 for	 the	 first	 sample	 and	 	 for	 the	 second
sample,	is	shown	in	Figure	9.12.

	

Figure	9.12	 MSLEs	and	MLEs	on	 	for	samples	of	size	 	from	the
Weibull	densities	(9.54).	 	and	 	are	uniform	on	 ,	and	the	interval	

.	(a)	The	MSLE	estimates;	(b)	the	MLEs.	The	dashed	curves	give	the
estimates	for	the	first	sample	( ),	the	dotted	curves	the	estimates	for	the	second
sample	( ),	and	the	dashed-dotted	curves	the	estimates	for	the	combined	samples.
The	solid	curves	give	the	corresponding	actual	distribution	functions	for	these	three
situations.	The	bandwidth	for	the	computation	of	the	MSLEs	was	

,	where	 .

The	 following	 result	 shows	 that	 the	 test	 statistic	 	 is,	 for	 a	 suitable	 choice	 of	 the
bandwidth,	 an	 asymptotic	 pivot	 under	 the	 null	 hypothesis	 of	 equality	 of	 the	 two
distribution	functions	 	and	 	of	the	hidden	variables	in	the	two	samples.

Theorem	9.5	Let	the	test	statistic	 	be	defined	by	(9.48),	using	a	bandwidth	 	such
that	 ,	where	 .	Furthermore,	let	 	stay	away	from	0	and	1
on	 	 and	 have	 a	 bounded	 continuous	 second	 derivative	 	 on	 an	 interval	
containing	 ,	and	 let	 	and	 	 be	 continuous	densities	 that	 stay	 away	 from	0	on	

,	with	continuous	bounded	second	derivatives	on	 the	 interval	 .	Let	 the	 log
likelihood	ratio	statistic	 ,	based	on	the	MSLEs,	be	defined	by	(9.48).	Then	we	have	in
probability,	if	the	distribution	functions	of	the	hidden	variables	in	the	two	samples	are	both



equal	to	 	and	 ,	as	 ,

(9.55)

where	 	denotes	a	normal	distribution	with	mean	zero	and	variance

Remark	To	say	that	(9.55)	holds	in	probability	means	that

for	each	 ,	where	 	is	the	standard	normal	distribution	function	and	 	denotes
convergence	in	probability.

Remark	The	condition	 	is	necessary	for	having	the	asymptotic	equivalence
of	 the	 MSLEs	 to	 ratios	 of	 kernel	 estimators	 (see	 Corollary	 3.4	 in	 Groeneboom
et	 al.,	 2010),	 and	 	 prevents	 the	 bias	 from	 entering,	 which	 causes	 the
asymptotic	distribution	of	 	to	become	dependent	on	the	observation	densities	 	and	

.	The	bias	 term	drops	out	 if	 the	observation	densities	 	and	 	are	 the	same	 in	 the
two	samples.

However,	we	prefer	to	work	with	a	larger	bandwidth,	at	the	cost	of	introducing	a	bias
term,	depending	on	the	underlying	distributions,	as	shown	in	Theorem	9.6.	It	turns	out	that
this	bias	term	does	not	cause	problems,	if	critical	values	are	computed	using	the	bootstrap
procedure	 to	 be	 discussed	 later	 in	 this	 section.	 The	 key	 to	 this	 is	 that	 the	 bias	 term	 is
estimated	 automatically	 in	 the	 bootstrap	 resampling	 from	 a	 smooth	 estimate	 of	 	 and
that,	by	Theorem	9.2,	the	difference	between	this	estimate	of	the	bias	and	the	deterministic
bias	is	sufficiently	small,	so	that	we	can	replace	it	by	the	deterministic	bias	in	the	central
limit	theorem	for	the	bootstrap	test	statistic.

Theorem	9.6	Let	the	test	statistic	 	be	defined	by	(9.48),	using	a	bandwidth	 	such
that	 ,	where	 .	Furthermore,	let	 	stay	away	from	0	and	1
on	 	 and	 have	 a	 bounded	 continuous	 second	 derivative	 	 on	 an	 interval	
containing	 ,	and	 let	 	and	 	 be	 continuous	densities	 that	 stay	 away	 from	0	on	

,	with	continuous	bounded	second	derivatives	on	 the	 interval	 .	Let	 the	 log
likelihood	ratio	statistic	 ,	based	on	the	MSLEs,	be	defined	by	(9.48).	Then	we	have	in
probability,	if	the	distribution	functions	of	the	hidden	variables	in	the	two	samples	are	both
equal	to	 	and	 ,	as	 ,



where	 	is	defined	by:

and	 	denotes	a	normal	distribution	with	mean	zero	and	variance	 	defined
as	in	Theorem	9.5.

Remark	 If	 	 the	 situation	 becomes	 even	 more	 complicated.	 If	 the
observation	 densities	 	 and	 	 are	 the	 same,	 one	 still	 gets	 the	 asymptotic	 normality
result,	 as	 shown	 in	 the	 following	 theorem.	But	 if	 the	densities	 	and	 	 are	 different,
extra	nonnegligible	random	terms	enter	because	of	the	presence	of	the	bias	term.	We	will
not	discuss	this	further	here.

Theorem	9.7	Let	the	test	statistic	 	be	defined	by	(9.48),	using	a	bandwidth	 	such
that	 ,	where	 .	Furthermore,	let	 	stay	away	from	0	and	1
on	 	 and	 have	 a	 bounded	 continuous	 second	 derivative	 	 on	 an	 interval	
containing	 ,	 and	 let	 	 be	 a	 continuous	density	 that	 stays	 away	 from	0	on	

,	with	 a	 continuous	 bounded	 second	 derivative	 on	 the	 interval	 .	 Then	we
have	in	probability,	if	the	distribution	functions	of	the	hidden	variables	in	the	two	samples
are	both	equal	to	 	and	 ,	as	 ,

where	 	denotes	a	normal	distribution	with	mean	zero	and	variance	 	defined
as	in	Theorem	9.5.

Remark	We	 used	 a	 conditional	 formulation,	 since	 conditional	 tests	 are	 used	 in	 the
bootstrap	approach,	but	the	convergence	in	distribution	will	also	hold	in	Theorems	9.5	 to
9.7,	if	we	do	not	condition	on	 .

(B)	A	Bootstrap	Method	for	Determining	the	Critical	Value
Having	 defined	 a	 test	 statistic	 and	 knowing	 its	 asymptotic	 behavior	 under	 the	 null
hypothesis,	we	still	need	to	take	one	extra	step	to	make	the	method	work	in	practice.	We
will	now	describe	a	bootstrap	approach	to	determine	critical	values	in	practice.

First	 compute	 the	 MSLE	 	 for	 the	 combined	 sample,	 using	 a	 bandwidth	
.	 Then,	 using	 the	 observations	 	 and	 	 of	 the

two	 samples,	 generate	 corresponding	 bootstrap	 values	 	 and	



	 by	 letting	 the	 	 be	 independent	 Bernoulli	 	 random
variables.	So	in	practice	we	generate	independent	Uniform 	variables	 ,	and	 let	

	be	equal	to	 	if	 	and	0	otherwise.	If	the	observation	distributions,
generating	 	and	 ,	respectively,	are	different,	this	structure	is
preserved	 in	 this	 procedure;	 in	 the	 computation	 of	 the	 MSLEs	 	 in	 the	 bootstrap
samples,	 the	 estimates	 	 of	 	 in	 the	 original	 samples	 are	 used,	 for	 .
Repeating	this	procedure	 	times	yields	 	bootstrap	values	 ,	 ,	of	the
test	statistic.	The	distribution	of	 	under	the	null	hypothesis	is	now	approximated	by	the
empirical	distribution	of	these	bootstrap	values	and	the	critical	value	at	(for	example)	level

	by	the	 th	percentile	of	this	set	of	bootstrap	values	 .

In	 justifying	 this	 method	 for	 the	 test	 statistic	 ,	 the	 following	 theorem	 in
Groeneboom,	2012b,	can	be	used.

Theorem	9.8	Let,	under	either	of	 the	conditions	of	Theorems	9.5	 to	9.7,	 	 be	 the
MSLE	of	 	under	the	null	hypothesis,	defined	by	the	slope	of	the	cusum	diagram	(9.49),
where	the	bandwidth	 	satisfies	 .	Let	 	be	defined	by

where	 ,	 	 and	 	 are	 the	 MSLEs,	 computed	 for	 the	 samples	
	 and	 ,	 and	 where	 the	

are	Bernoulli	 	random	variables,	generated	in	the	way	described	before	the
statement	of	this	theorem;	 	and	 	are	kernel	estimates	of	the	relevant	observation
densities,	just	as	in	(9.52),	where

with	 the	 same	bandwidth	 	 as	 taken	 in	 the	original	 samples,	 and	where	 the	densities	
	and	 	are	the	same	as	in	the	original	samples.

Then,	under	 	that	the	conditional	distribution	function	of	 ,	given	 ,	
,	 ,	rescaled	in	the	same	way	as	in	Theorems	9.5	to	9.7	(depending	on	the

choice	of	bandwidth	 	and	presence	or	absence	of	the	condition	 ),	converges	at
each	 	 in	probability	 to	 ,	where	 	 is	 the	 standard	normal	distribution
function.

If	the	null	hypothesis	does	not	hold,	the	same	scheme	is	followed.	The	critical	value	is
again	 determined	 by	 first	 computing	 the	 ,	 using	 the	 MSLE	 ,	 based	 on	 the
combined	sample.



The	 method	 of	 Theorem	 9.8	 is	 illustrated	 in	 Figure	 9.13,	 where	 the	 empirical
distribution	 function	 of	 1,000	 samples	 of	 the	 standardized	 test	 statistic	 ,	 for	 sample
sizes	 ,	 is	compared	with	 the	empirical	distribution	function	of
1,000	bootstrap	samples	of	the	standardized	test	statistic	 ,	drawn	using	the	method	of
Theorem	9.8	from	one	original	sample.	Note	that	the	bootstrap	simulation	reproduces	the
original	distribution	quite	well	 if	 the	 samples	are	drawn	 from	 the	 same	distribution,	but
that	one	needs	much	larger	sample	sizes	for	the	normal	approximation	to	become	accurate;
at	 these	 sample	 sizes	 the	 distribution	 is	 still	 rather	 skewed.	 This	 is	 also	 noted	 in
Groeneboom,	2012b,	where	the	bootstrap	method	of	computing	critical	values	is	advised
for	precisely	this	reason.

	

Figure	9.13	 (a)	The	empirical	distribution	function	(solid)	of	 ,	standardized	as	in
Theorem	9.7,	for	1,000	samples	of	sample	sizes	 ,	where	the	samples	are
drawn	from	a	Weibull	distribution	with	parameters	 	and	 ,	and	the
empirical	distribution	function	of	1,000	bootstrap	samples	of	 	(dashed),	again
standardized	as	in	Theorem	9.7,	where	the	bootstrap	samples	are	drawn	using	the	method
of	Theorem	9.8	from	one	original	sample.	(b)	The	same,	but	now	the	first	sample	is	drawn
from	a	Weibull	distribution	with	parameters	 	and	 ,	and	the	second
sample	from	a	Weibull	distribution	with	parameters	 	and	 .	The	dashed
curve	for	the	bootstrap	samples	of	 	are	based	on	drawing	from	the	MSLE	of	the
distribution,	based	on	the	combined	sample.

(C)	Other	Nonparametric	Tests
Most	tests	that	have	been	proposed	for	this	problem	are	based	on	a	comparison	of	simple
functionals	of	the	 .	Under	the	assumption	that	the	observation	times	 	have	the	same
distribution	in	the	two	samples,	the	following	test	statistic	is	proposed	in	Sun,	2006:

(9.57)

The	variance	of	 	times	(9.57)	is	given	by:



(9.58)

if	 ;	see	Exercise	9.12.	Now	consider	as	(rescaled)	test	statistic

(9.59)

where	 	is	defined	by

and	where

(9.60)

Note	 that	 if	 ,	 	 has	 expectation	 zero	 and	 variance	 (9.58)	 under	 the	 null
hypothesis.	Moreover,	for	 ,

(9.61)

where	 	 is	 the	 limit	 (mixture)	 distribution	 of	 the	 combined	 samples	 (which	 is	 the
underlying	distribution	under	 ).	Hence	 	tends	to	a	standard	normal	distribution
under	the	null	hypothesis,	if	 .

Andersen	and	Rønn,	1995,	consider	a	 test	based	on	an	 -type	distance	between	 the
two	ML	estimators	based	on	the	two	samples	at	hand.	In	particular,	they	define

(9.62)

Under	 the	 conditions	 of	 Theorem	 9.5,	 and	 assuming	 ,	 they	 show	 that	 under	
,

where	 	is	the	standard	normal	distribution.



(D)	A	Simulation	Study
We	now	compare	the	LR	test	based	on	the	MSLEs,	 ,	with	the	methods	based	on	
and	 	defined	in	(9.59)	and	(9.62)	and	with	the	original	likelihood	ratio	test,	based	on	

,	 defined	 by	 (9.47).	 For	 ,	 the	 critical	 values	 are	 determined	 by	 (Bernoulli)
bootstrapping	 the	 ,	 using	 the	 MSLE	 	 for	 the	 combined	 samples	 at	 the
observations	 ,	by	taking	1,000	bootstrap	samples	and	determining	the	 th	percentile
of	 the	bootstrap	 test	statistics	so	obtained.	As	bandwidth	for	 the	SMLE	
was	 used,	 except	 for	 the	 bootstrap	 resampling	 for	 the	 MLE,	 where	 the	 bandwidth	

	was	used	(in	 this	case	 taking	 	made	 the	 test	based	on	 the
MLEs	 very	 conservative).	Moreover,	 the	 kernel	 (9.53)	 was	 used	 in	 computing	 ,	 as
described	 before.	 For	 	 and	 	 we	 just	 took	 	 as	 our	 critical	 value	 for	 the
absolute	 value	 of	 the	 test	 statistic,	 since	 the	 convergence	 to	 the	 standard	 normal
distribution	is	reasonably	fast	for	these	test	statistics	under	the	null	hypothesis.	In	this	way
one	can	rather	quickly	compute	tables	with	estimated	rejection	probabilities	for	these	test
statistics.	The	results	are	shown	in	Tables	9.6	to	9.13.

Table	9.6	 Estimated	Levels	

	

Note:	The	estimation	interval	is	 ,	and	 ;	 ,	 ,	

.	The	intended	level	is	 .

Table	9.7	 Estimated	Levels	

	

Note:	 The	 estimation	 interval	 is	 ,	 and	 ;	 ,	

,	 .	The	intended	level	is	 .

Table	9.8	 Estimated	Levels	



	

Note:	The	estimation	interval	is	 ,	and	 ;	 ,	

,	 .	The	intended	level	is	 .

Table	9.9	 Estimated	Levels	

	

Note:	The	estimation	 interval	 is	 ,	and	 .	The	 intended	 level	 is	

;	 ,	 ,	 .

Table	9.10	 Powers	for	Different	Shapes,	If	m	=	n	=	50	

	

Note:	The	estimation	interval	is	 .

Table	9.11	 Powers	for	Different	Shapes,	If	m	=	n	=	250	

	

Note:	The	estimation	interval	is	 .

Table	9.12	 Powers	for	Different	Baseline	Hazards,	Same	Shape,	If	m	=	n	=	50	



	

Note:	 The	 estimation	 interval	 is	 .	 The	 parameters	 	 are	 either	 both	 	 or

both	 	and	 	or	 ;	 	or	 .

Table	9.13	 Powers	for	Different	Baseline	Hazards,	Same	Shape,	If	m	=	n	=	250	

	

Note:	 The	 estimation	 interval	 is	 .	 The	 parameters	 	 are	 either	 both	 	 or

both	 	and	 	or	 ;	 	or	 .

As	mentioned	earlier,	the	critical	values	for	the	original	likelihood	ratio	test,	based	on	
,	 were	 also	 determined	 by	 (Bernoulli)	 resampling	 from	 the	 MSLE	 under	 the	 null

hypothesis	 ,	 based	 on	 the	 combined	 samples.	 This	 method	 still	 has	 no	 theoretical
justification,	but	it	is	interesting	to	try	it	out.	We	also	used	this	method	in	the	example	on
the	data	in	Hoel	and	Walburg,	1972,	using	the	SMLE	instead	of	the	MSLE.	An	interesting
question	 is	whether	 the	 bootstrapping	 from	 the	MLE	 	works	 for	 these	 statistics,	 in
view	of	negative	results	in	this	direction	on	bootstrapping	of	the	pointwise	behavior	from
the	 Grenander	 estimator.	 These	 negative	 findings	 seem	 to	 be	 countered	 somewhat	 by
positive	 findings	 on	 bootstrapping	 from	 the	 MLE	 for	 global	 statistics,	 as	 for	 example
reported	 in	 Section	 9.2,	 although	 under	 the	 null	 hypothesis	 a	 slightly	 anticonservative
behavior	was	observed	here.	This	was	also	tried	out	in	Groeneboom,	2012b,	where	again
anticonservative	 behavior	 under	 the	 null	 hypothesis	 was	 observed.	 For	 this	 reason
bootstrapping	from	the	MSLE	was	preferred,	also	for	bootstrapping	the	test,	based	on	the
MLEs.	We	report	these	findings	too	in	the	second	line	of	the	tables,	which	are	taken	from
Groeneboom,	2012b.	The	question	on	whether	bootstrapping	from	the	MLE	itself	works
in	this	case	is	still	not	answered.

In	the	first	simulations,	the	observation	densities	 	and	 	for	the	observation	times	
	 are	 uniform	 on	 .	 Because	 ,	 Theorem	 9.7	 applies.	 This	 allows	 us	 to

resample	from	the	MSLE	 ,	which	was	also	used	in	the	computation	of	the	test	statistic
for	the	original	samples.	The	samples	of	 -values	were	taken	from



(9.64)

and	the	second	sample	from	the	density

(9.65)

where	 	or	 ,	and	 	or	 .	The	value	of	 	is	 	or	
.

The	powers	and	 levels	computed	 in	 the	following	for	 the	 test	statistics	 	 (MSLEs)
are	determined	by	 taking	1,000	samples	 from	the	original	distributions	and	 taking	1,000
bootstrap	 samples	 from	 each	 sample,	 rejecting	 the	 null	 hypothesis	 if	 the	 value	 in	 the
original	 sample	was	 larger	 than	 the	 th	 order	 statistic	 of	 the	 values	 obtained	 in	 the
bootstrap	 samples.	 The	 values	 given	 in	 the	 following	 tables	 represent	 the	 fraction	 of
rejections	for	the	1,000	samples	from	the	original	distributions.	The	tabled	values	are	also
based	on	1,000	samples	from	the	original	(Weibull)	distributions.

To	 illustrate	 the	 effect	 of	 different	 observation	 distributions	 in	 the	 two	 samples,	 we
generated	the	first	sample	of	 s	again	from	the	uniform	density	on	 ,	but	the	second
sample	from	the	decreasing	density

see	Tables	9.7	and	9.9.	Note	that	in	this	case	Theorem	9.7	does	not	apply,	and	we	have	to
use	Theorem	9.5	 or	 9.6.	Nevertheless,	 the	 critical	 values	 using	 the	 bootstrap	 procedure
were	rather	insensitive	to	the	difference	of	the	observation	distributions	 	and	 .

The	results	of	the	experiments	can	be	summarized	in	the	following	way.	The	test	based
on	 	has	almost	no	power	 for	different	 shape	alternatives	of	 the	 type	 shown	as	 solid
curves	in	Figure	9.12,	even	for	sample	sizes	 .	The	test	based	on	 	has
somewhat	more	power	here,	but	is	clearly	also	not	very	good	for	this	type	of	alternative,
as	 already	 discussed	 in	 Andersen	 and	 Rønn,	 1995	 (they	 call	 this	 the	 “crossing
alternatives,”	since	the	distribution	functions	indeed	cross).	The	test,	based	on	the	MSLEs,
has	 much	 more	 power	 here.	 The	 test,	 based	 on	 ,	 is	 surprisingly	 powerful	 for	 the
alternatives	that	have	the	same	shape	but	different	baseline	hazards,	and	the	test,	based	on	

,	also	has	more	power	here.	The	other	test,	based	on	the	MSLEs	or	MLEs,	also	has	a
reasonable	power	here.	Finally,	Tables	9.7	and	9.9	show	that	the	observation	distributions
in	 the	 two	 samples	can	be	different	 if	we	use	 the	MSLE-type	 tests,	 in	 contrast	with	 the
other	tests,	considered	here.	In	fact,	it	has	a	disastrous	effect	for	the	tests	 	and	 ;	

	even	gives	 	rejection	under	the	null	hypothesis	for	several	combinations	of	the
parameters.

As	 a	 general	 rule	 one	 can	 say	 that	 the	 tests,	 based	 on	 	 or	 ,	 can	 only	 have
power	 if	 the	 corresponding	 moment	 functionals	 are	 different	 from	 zero.	 For	 	 this
functional	is	given	by



(9.66)

and	for	 	it	is	given	by

(9.67)

It	is	clear	that	 	and	 	can	be	very	different	and	still	satisfy

and	 in	 that	 case	 that	 test,	 based	on	 	 or	 ,	 respectively,	will	 have	no	power;	 see
Exercise	 9.13.	 The	 MSLE	 test	 will	 not	 suffer	 from	 this	 drawback,	 since	 it	 involves	 a
Kullback-Leibler	 type	 distance,	 and	 is	 locally	 (for	 example,	 if	 one	 would	 consider
contiguous	alternatives)	equivalent	to	the	squared	 	distance

(9.68)

where	 	 is	 the	 distribution	 function	 of	 the	 combined	 sample.	Moreover,	 it	 allows	 the
observation	distributions	to	be	different	in	the	two	samples,	something	the	other	test	also
does	not	allow.

The	Weibull	alternatives,	considered	 in	 the	simulation	study,	 form	a	family	for	which
the	 integrals,	 corresponding	 to	 the	 statistics	 	 and	 ,	 are	 different	 under	 the
alternatives	considered	there.	So	for	these	types	of	alternatives	the	tests	 	and	 	can
be	 expected	 to	 have	 a	 power	 exceeding	 the	 level	 of	 the	 test.	 But	 if	 the	 first	 sample	 is
generated	 from	 a	 Weibull	 distribution	 function	 	 with	 parameters	 	 and	

	 and	 the	 second	 sample	 is	 generated	 from	 a	Weibull	 distribution	 function	
with	parameters	 	and	 ,	the	distribution	functions	are	very	different
(see	Figure	9.14a),	although	we	get:

(9.69)

Taking	again	the	observations	 	and	 	 to	be	uniform	on	 ,	we	get	 that	 the	 test
based	on	the	MSLE	has	power	 	for	this	alternative,	whereas	the	tests	based	on	
have	 power	 	 (which	 is	 lower	 than	 the	 level	 ),	 taking	 sample	 sizes	

.



	

Figure	9.14	 (a)	The	Weibull	distribution	function	with	parameters	 	and	
	(solid	curve)	and	the	Weibull	distribution	function	with	parameters	

	and	 	(dashed).	(b)	Similarly,	but	with	 	and	
(solid)	and	 	and	 	(dashed).

If	the	first	sample	is	generated	from	a	Weibull	distribution	function	 	with	parameters
	and	 	and	the	second	sample	 is	generated	from	a	Weibull	distribution

function	 	with	 parameters	 	 and	 ,	 the	 distribution	 functions	 are
again	rather	different	(see	the	right	panel	of	Figure	9.14),	although	we	get:

Taking	 	again,	the	SLR	test	has	power	 	for	this	alternative,
whereas	the	tests	based	on	 	have	power	 	(which	is	again	lower	than	the	level	

),	taking	sample	sizes	 	again.

9.4	 Two-Sample	Tests	for	Case	2	Interval	Censored	Data
We	give	a	brief	heuristic	discussion	of	the	extension	of	the	test	discussed	in	Section	9.3	to
two-sample	tests	for	 interval	censored	data	with	two	observation	times	per	unobservable
event	time	 .	Research	on	this	topic	is	still	in	progress.

Proceeding	 as	 in	 Section	 9.3,	 we	 consider	 the	 statistic	 ,	 similar	 to	 (9.48),	 and
defined	by



where	 ,	 	and	 	 are	 the	maximum	smoothed	 likelihood	estimators	 (MSLEs)
for	 the	 first,	 second	and	combined	sample,	 respectively,	and	 	and	 	are	kernel
estimates	of	the	relevant	observation	densities,	defined	as	follows:

and

for	 ,	where	 	 ( )	 for	 the	 first	 (second)	 sample.	 In	 a	 similar	way	we
define	the	estimates

and

of	 the	 observation	 densities	 	 of	 the	 ,	 	 of	 the	 	 and	 	 of	 the	 ,
respectively,	 in	 the	 th	 sample.	Note	 that	 ,	 	 and	 	 are	 estimates	 of	 the
densities

and

where	 	is	the	distribution	function	of	the	hidden	variables	in	the	 th	sample.

It	 is	 discussed	 in	Section	 11.5	 that,	 under	 the	 so-called	 separation	 hypothesis	 (which
means	 that	 the	 observation	 intervals	 	 do	 not	 become	 arbitrarily	 small),	 the
MSLEs	 ,	 ,	have	the	following	asymptotic	representation:



where

and	 	is	given	by:

We	likewise	have	the	representation

where

Under	the	null	hypothesis	of	equality	of	the	distribution	functions	of	the	hidden	variables
in	the	two	samples	we	have:

Using	the	representations	(9.71)	and	(9.73),	one	can	derive	the	asymptotic	distribution	of	
	under	the	null	hypothesis	of	equality	of	the	distributions	of	the	hidden	variables	in	the

two	samples	in	the	separated	case	for	this	model.

In	the	nonseparated	case	the	MLE	itself	is	conjectured	to	have	the	following	asymptotic
behavior:

where	 	 is	 the	 location	of	 the	maximum	of	 two-sided	Brownian	motion	minus	 ,	 see
(4.31)	in	Section	4.7.	Using	(11.65),	the	approximation	for	 ,	where	 	is
the	SMLE,	is	given	by:



and	we	expect	the	MSLE	to	have	the	same	local	asymptotic	variance	in	the	nonseparated
case.

Since	 this	matter	 is	 still	under	 investigation	at	 the	present	 time,	we	only	discuss	here
how	the	bootstrap	procedure,	used	in	Section	9.3	for	the	two-sample	test	for	current	status
data,	works	 in	 the	present	situation.	We	first	have	 to	 face	 the	problem	of	computing	 the
MSLEs	in	(9.70).	We	use	a	simple	EM	algorithm	for	computing	the	MSLEs.	This	means
that	we	use	the	iterations

on	a	grid	of	points	 .	The	 integrals	are	 simply	approximated	by	Riemann	sums	on	 this
grid,	and	we	put

where	the	 	are	points	of	the	grid.	A	picture,	comparable	to	Figure	9.12	for	the	current
status	 model,	 is	 shown	 in	 Figure	 9.15.	 Here	 we	 used	 as	 observation	 distribution	 the
uniform	distribution	on	the	upper	triangle	of	the	unit	square	and	an	equidistant	grid	with
steps	of	size	0.01	in	both	coordinates	for	the	EM	algorithm.

	

Figure	9.15	 MSLEs	and	MLEs	on	 	for	samples	of	size	 	from	the
Weibull	densities	(9.54)	for	interval	censored	data	(see	Figure	9.12	for	the	corresponding
figure	obtained	with	current	status	data).	 	and	 	are	uniform	on	 ,	and	the
interval	 .	(a)	The	MSLE	estimates;	(b)	the	MLEs.	The	dashed	curves
give	the	estimates	for	the	first	sample	( ),	the	dotted	curves	the	estimates	for	the
second	sample	( ),	and	the	dashed-dotted	curves	the	estimates	for	the	combined
samples.	The	solid	curves	give	the	corresponding	actual	distribution	functions	for	these
three	situations.	The	bandwidth	for	the	computation	of	the	MSLEs	was	

,	where	 ,	and	 .

The	critical	values	for	a	test	of	equality	of	the	distributions	 	in	the	two	samples	is
estimated	by	resampling	the	indicators	 	and	 ,	where	the	binomial	distribution	we
used	for	the	current	status	data	is	replaced	by	a	trinomial	distribution.	Here	we	work	again
conditionally,	keeping	the	observation	times	 	and	 	fixed	in	the	two	samples,	and	for



the	trinomial	distribution	a	smooth	estimate	of	the	distribution	of	the	two	samples	under
the	null	hypothesis	is	used,	obtained	by	computing	either	the	MSLE	or	the	SMLE	for	the
combined	 samples.	 It	 is	 to	 be	 expected	 that	 a	 procedure	 of	 this	 type	 will	 have	 higher
power	than	the	similar	test	for	current	status	data.

9.5	 Pointwise	Confidence	Intervals	for	the	Current	Status
Model
In	Banerjee	and	Wellner,	2005,	confidence	intervals	for	values	of	the	distribution	function
and	quantile	function	at	a	fixed	point	 	are	discussed	for	the	current	status	model.	There
several	methods	are	considered	for	constructing	these	intervals.	These	are	distinguished	in
LR	test	based	intervals,	MLE	based	intervals	and	subsampling	intervals.	Also	parametric
fitting	is	discussed,	but	a	preference	for	the	LR	based	intervals	is	expressed.

The	MLE	based	intervals	for	the	distribution	function	are	constructed	in	Banerjee	and
Wellner,	2005,	 in	 the	 following	way,	where	we	 take	 the	 	 intervals	 as	 an	 example.
Starting	 with	 the	 limit	 distribution	 of	 the	 MLE	 ,	 based	 on	 a	 sample	

	(see	Theorem	3.7),	the	 	asymptotic	confidence	 intervals
are	of	the	following	form:

(9.74)

Here	 	 is	 the	 th	percentile	of	 the	Chernoff	distribution	(see	Section	3.9,	 in
particular	Table	3.1	for	the	quantiles).	Moreover,	 	is	defined	by

where	 	and	 	are	estimates	of	 	and	the	observation	density	 ,	respectively.	Since	
	is	a	piecewise	constant	function,	 	cannot	directly	be	deduced	from	 ,	and	other

methods	 have	 to	 be	 used	 to	 construct	 this	 estimator.	 The	 estimate	 	 could	 just	 be	 an
ordinary	 kernel	 estimator	 and	 the	 natural	 estimate	 of	 	 is	 the	 SMLE	 introduced	 in
Section	8.1

where	 	is	the	MLE.	These	estimators	are	indeed	used	in	Banerjee	and	Wellner,	2005,
and	they	use	likelihood	based	cross-validation	to	choose	the	bandwidth	in	the	estimates	for
	and	 .

The	LR	test	based	intervals	are	based	on	inverting	the	acceptance	region	of	the	LR	test
for	the	null	hypothesis	 	and	use	the	fact	that



where	 	 and	 	 are	 the	 nonrestricted	 MLE	 and	 the	 MLE	 restricted	 by	 the	 null
hypothesis	 ,	respectively,	and	 	has	a	distribution	characterized	in	Banerjee
and	Wellner,	2001	(see	Theorem	2.5	in	that	paper).	We	note	here	that,	in	contrast	with	the
distribution	 of	 ,	 no	 analytic	 information	 is	 available	 for	 the	 distribution	 of	 .
However,	the	 th	percentile	of	the	distribution	of	 	was	determined	by	simulation	to	be
approximately	 .

In	our	current	approach,	it	is	more	natural	to	base	the	confidence	intervals	on	the	SMLE
or	the	MSLE	more	directly.	Moreover,	this	approach	will	also	allow	us	to	give	confidence
intervals	for	the	density	and	hazard,	which	is	not	possible	without	smoothing	of	the	MLE.
We	first	show	here	how	to	compute	SMLE	based	confidence	intervals	for	the	distribution
function	 	 and	 confidence	 intervals	 for	 the	 density	 ,	 based	 on	 the	 SMLE	 and	 the
density	estimate

where	 	is	the	MLE.

The	 essential	 idea	 in	 our	 construction	 of	 the	 confidence	 intervals	 is	 the	 asymptotic
representation	of	the	SMLE,	given	in	(11.51)	in	Section	11.3.	This	 representation	allows
us	 to	use	 the	bootstrap	 in	constructing	confidence	 intervals	 for	 the	distribution	 function	

.	Similar	representations	for	the	density	estimate	allow	us	to	construct	the	confidence
interval	for	the	density	 	and	the	hazard	 	in	the	same	way.

There	are	some	important	differences	between	the	approaches,	based	on	the	MLE	and
SMLE,	respectively.	How	appropriate	it	is	to	use	the	MLE	will	largely	depend	on	whether
one	expects	that	the	distribution	function	will	have	jumps.	If	one	expects	the	distribution
function	 to	 be	 smooth,	 the	 jumps	 of	 the	MLE	will	 have	 no	 real	meaning,	 nor	will	 the
corresponding	jumps	in	the	confidence	intervals	have	meaning.

Second	in	the	construction	of	the	confidence	intervals,	based	on	the	MLE,	the	bias	of
the	MLE	plays	no	role.	But	if	one	constructs	confidence	intervals,	using	the	SMLE	with
an	 optimal	 bandwidth,	 the	 bias	will	 play	 a	 role	 in	 the	 limiting	 distribution.	There	 is	 an
extensive	 literature	 on	 how	 to	 deal	 with	 the	 bias	 in	 nonparametric	 function	 estimation;
some	 approaches	 use	 undersmoothing,	 other	 approaches	 oversmoothing.	A	 recent	 paper
discussing	 this	 literature	 and	 giving	 a	 solution	 for	 confidence	 bands	 is	 Hall	 and
Horowitz,	2013.	We	will	use	undersmoothing,	as	suggested	in	Hall,	1992.

(A)	Construction	of	SMLE-Based	Confidence	Intervals	for
the	Distribution	Function
Let	 	 be	 defined	 on	 an	 interval	 	 with	 	 satisfying	 	 and	



.	Then	we	can	estimate	 	by	the	SMLE,	using	the	boundary	correction:

(9.75)

where	 	 is	 the	MLE,	 	and	 	 is	 the	usual	 symmetric	kernel
with	 compact	 support,	 such	 as	 the	 triweight	 kernel.	 See	 (11.37)	 in	 Section	 11.3	 for	 the
boundary	correction	method.	If	 	the	SMLE	is	just	given	by

the	other	two	terms	in	(9.75)	are	just	there	for	correction	at	the	left	and	right	boundary.

Let	 	be	a	current	status	sample,	where	the	 	are	generated
from	a	distribution	with	distribution	function	 	and	density	 ,	and	where	the	Bernoulli
random	 variable	 	 equals	 	 with	 probability	 .	 For	 the	 construction	 of	 the	

	 confidence	 interval	 we	 take	 a	 number	 of	 bootstrap	 samples	
	with	 replacement	 from	 .	 For	 each

such	sample	we	compute	the	SMLE	 ,	using	the	same	bandwidth	 	as	used	for	the
SMLE	 	 in	 the	original	sample,	and	 the	same	 type	of	boundary	correction.	Next	we
compute	at	the	points	 :

where	 	 is	 the	 ordinary	 MLE	 (not	 the	 SMLE!)	 of	 the	 bootstrap	 sample	
.

Let	 	be	 the	 th	 percentile	 of	 the	 	 values	 .	 Then,	 disregarding	 the
bias	for	the	moment,	the	following	bootstrap	 	interval	is	suggested:

(9.77)

where

The	 bootstrap	 confidence	 interval	 is	 inspired	 by	 the	 fact	 that	 the	 SMLE	 is
asymptotically	equivalent	to	the	toy	estimator



see	(11.53),	which	has	a	sample	variance

and	also	by	Theorem	11.4,	which	 tells	us	 that,	 if	 ,	 under	 the	 conditions	of
that	theorem,	for	each	 ,

where

and

see	Section	11.3.

We	now	first	study	the	behavior	of	intervals	of	type	(9.77)	for	a	situation	where	the	bias
plays	no	role	(the	uniform	distribution)	and	compare	the	behavior	of	the	intervals	with	the
confidence	intervals	in	Banerjee	and	Wellner,	2005,	based	on	LR	tests	for	the	MLE.

(B)	Simulation	for	Uniform	Distributions
We	 generated	 1,000	 samples	 	 by	 generating	 ,	

,	 from	 the	 uniform	 distribution	 on	 	 and	 generated,	 independently,	 a
sample	 ,	also	from	the	uniform	distribution	on	 .	If	 	we	got	a
value	 ,	otherwise	 .	For	each	such	sample	 	we
generated	1,000	bootstrap	samples,	and	computed	the	 th	and	 th	percentile	of	 the
values	(9.76)	at	the	points	 .	On	the	basis	of	these	percentiles
we	constructed	the	confidence	intervals	(9.77)	for	all	of	the	( )	 s	and	checked	whether

	 belonged	 to	 it.	 The	 percentages	 of	 times	 that	 	 did	 not	 belong	 to	 the
interval	are	shown	in	Figure	9.16.	We	likewise	computed	the	confidence	interval,	based	on
the	LR	test	for	the	MLE	proposed	in	Banerjee	and	Wellner,	2005,	 for	each	 ,	and	also
counted	 the	 percentages	 of	 times	 that	 	 did	 not	 belong	 to	 the	 interval.	 The
corresponding	confidence	intervals	for	one	sample	are	shown	in	Figure	9.17.



	

Figure	9.16	 Proportion	of	times	that	 	is	not	in	the	
CIs	in	1,000	samples	 	using	the	SMLE	and	1,000	bootstrap
samples	from	the	sample	 .	In	(a),	the	SMLE	is	used	with	CIs
given	in	(9.77).	In	(b)	CIs	are	based	on	the	LR	test.	The	samples	are	uniformly	distributed.

	

Figure	9.17	 Uniform	samples:	 	confidence	intervals	for	
for	one	sample	 .	For	(a)	the	SMLE	and	1,000

bootstrap	samples	are	used;	 	is	dashed	and	the	SMLE	solid.	For	(b)	the	LR	test	is	used;	
	is	dashed	and	the	MLE	solid.

(C)	Simulation	for	Truncated	Exponential	Distributions
To	 investigate	 the	 role	 of	 the	 bias,	 we	 also	 generated	 1,000	 samples	

	 by	 generating	 ,	 ,	 from	 the	 uniform
distribution	 on	 	 and,	 independently,	 samples	 ,	 from	 the	 truncated
exponential	distribution	on	 ,	with	density

If	 	 we	 get	 ,	 otherwise	 .	 For	 each	 such	 sample	
	 we	 generated	 	 bootstrap	 samples,	 and	 computed



the	 confidence	 intervals	 in	 the	 same	way	 as	 for	 the	 uniform	 samples,	 discussed	 earlier,
where	the	interval	is	of	the	form	(9.77)	and	bias	is	neglected.	This	is	compared	in	Figure
9.18	with	the	results	for	confidence	intervals	of	the	form

(9.78)

where	 ,	 	 and	 	 are	 as	 in	 (9.77),	 and	 where	 	 is	 the	 actual
asymptotic	bias,	which	is,	for	 ,	given	by

For	 	this	expression	is	of	the	form

if	 	and

if	 ,	see	(11.39).

	

Figure	9.18	 Truncated	exponential	samples.	Proportion	of	times	that	
is	not	in	the	 	CIs	in	1,000	samples	

.	In	(a)	the	confidence	intervals	(9.77)	are	used,	in	(b)	the	bias
corrected	confidence	intervals	(9.78).

It	 is	 seen	 in	 Figure	 9.18	 that	 if	 we	 use	 the	 bandwidth	 	 and	 do	 not	 use	 bias
correction	 for	 the	 SMLE,	 the	 	 coverage	 is	 off	 at	 the	 left	 end	 (where	 the	 bias	 is
largest),	but	that	the	intervals	are	on	target	if	we	add	the	asymptotic	bias	to	the	intervals,
as	 in	 (9.78).	However,	we	 cannot	use	 the	method	of	Figure	9.18b	 in	 practice,	 since	 the



actual	 bias	will	 usually	 not	 be	 available.	We	 are	 faced	 here	with	 a	 familiar	 problem	 in
nonparametric	 confidence	 intervals	 and	 we	 can	 take	 several	 approaches.	 Two	 possible
solutions	are	estimation	of	the	bias	or	undersmoothing.

In	the	present	case	it	turns	out	to	be	very	difficult	to	estimate	the	bias	term	sufficiently
accurately.	Moreover,	Hall,	1992,	argues	that	undersmoothing	has	several	advantages;	one
of	these	is	that	estimation	of	the	bias	term	is	no	longer	necessary.	For	the	present	model,
we	changed	 the	bandwidth	of	 the	SMLE	from	 	 to	 	 (if	 )	 and
computed	 the	 confidence	 intervals	 again	 by	 the	 bootstrap	 procedure,	 given	 earlier.	 This
gave	a	remarkable	improvement	of	the	coverage	at	the	left	end,	as	is	shown	in	Figure	9.19.
Nevertheless,	 the	 undersmoothing	 has	 the	 tendency	 to	 make	 the	 confidence	 interval
slightly	anticonservative,	as	can	be	seen	from	Figure	9.19,	so	one	might	prefer	to	take,	for
example,	the	 th	and	 th	percentile	 if	one	wants	 to	have	a	coverage	 .	The
effect	 of	 this	 method	 is	 shown	 in	 Figure	 9.19b	 and	 the	 coverage	 of	 this	 method	 is
compared	 to	 the	 coverage	 of	 the	 method,	 using	 the	 LR	 test,	 as	 in	 Banerjee	 and
Wellner,	2005,	in	Figure	9.20.	Undersmoothing,	together	with	the	method	of	Figure	9.19,
will	generally	of	course	still	produce	narrower	confidence	intervals	than	the	method,	based
on	 the	 LR	 test	 (which	 is	 based	 on	 cube	 root	 	 asymptotics),	 under	 the	 appropriate
smoothness	conditions,	as	can	be	seen	in	Figure	9.21.

	

Figure	9.19	 Truncated	exponentials.	Proportion	of	times	that	
	is	not	in	the	CIs	in	1,000	samples

.	In	(a)	the	SMLE	and	(9.77)	are	used	for	 	with
undersmoothing.	In	(b),	(9.77)	is	used	with	 	instead	of	 	and	the
same	undersmoothing	as	in	(a).



	

Figure	9.20	 Truncated	exponentials.	Proportion	of	times	that	
is	not	in	the	CIs	in	1,000	samples	

.	Figure	(a)	uses	the	SMLE	with	the	method	of	Figure	9.19b.	In	(b)	the	LR	test	for	the
MLE	is	used.

	

Figure	9.21	 Truncated	exponentials:	 	confidence	intervals	for	
for	one	sample	 .	In	(a)	the	SMLE

is	used	with	undersmoothing	and	the	method	of	Figure	9.19.	Dashed:	real	 ,	solid:
SMLE.	In	(b)	the	LR	test	for	the	MLE	is	used.	Dashed:	real	 ,	solid:	MLE.

Another	 way	 of	 undersmoothing	 is	 to	 use	 a	 higher	 order	 kernel,	 for	 example	 a	 th
order	 kernel,	 but	 still	 use	 a	 bandwidth	 of	 order	 .	 Since	 a	 th	 order	 kernel	 has
necessarily	negative	parts,	and	since	the	estimate	of	 	will	be	close	to	zero	or	 	at	the
boundary	of	the	interval,	this	gives	difficulties	at	the	end	of	the	interval.	We	also	tried	this
method	 for	 constructing	 confidence	 intervals	 for	 the	 density,	where	 it	 again	 gave	 rather
unstable	 behavior.	 We	 therefore	 stuck	 to	 the	 earlier	 method,	 also	 in	 constructing
confidence	intervals	for	the	density.

(D)	Confidence	Intervals	for	the	Density
Let	 	 be	 a	 current	 status	 sample,	 where	 the	 	 are	 generated
from	a	distribution	with	distribution	function	 	and	density	 	on	 ,	and	where	the



Bernoulli	random	variable	 	with	probability	 .	For	the	construction	of	the	
	 confidence	 interval	 for	 the	 density	 we	 take	 again	 	 bootstrap	 samples	

	with	 replacement	 from	 .	 For	 each
such	sample	we	compute	the	density	estimate	 ,	using	the	same	bandwidth	 	as	used
for	the	density	estimate	 	in	the	original	sample.

Since	we	want	the	bias	to	be	(at	least)	of	order	 	on	the	whole	interval,	if	 	 is
the	chosen	bandwidth,	we	cannot	use	the	Schuster-type	boundary	correction	we	used	for
the	SMLE,	which	is	only	 	at	the	boundary	(for	the	density	estimate).	We	therefore
used	 the	boundary	correction,	given	by	 (9.37),	 that	 is,	 for	 ,
we	define

with,	taking	 ,

and	for	 ,	the	coefficients	 	and	 	are	determined	by

We	now	use	that	 	is	asymptotically	equivalent	to	the	toy	estimator

see	(11.58).

In	 the	 simulation	 from	 the	 truncated	 exponential	 distribution	 on	 	 we	 took	
	 and	 ,	 using	 	 instead	 of	 	 in	 view	 of	 the

undersmoothing.	For	example,	 the	optimal	bandwidth	at	 ,	 taking	 care	of	bias	 and
variance	would,	according	to	Theorem	4.3,	p.	366	of	Groeneboom	et	al.,	2010,	actually	be	

	 if	 ,	 where	 ,	 giving	 (for	 )	 a
bandwidth	even	larger	than	half	the	length	of	the	interval.

Analogously	to	what	we	did	for	the	SMLE,	we	computed	in	the	bootstrap	samples:



where	 	 is	 the	 ordinary	 MLE	 (and	 again	 not	 the	 SMLE!)	 of	 the	 bootstrap	 sample	
,	 ,	 ,	and	where	 	is	defined	by

Let	 	be	the	 th	percentile	of	the	 	values	 .	Then	the	bootstrap	
interval	defined	by:

where

In	 the	 simulations	we	 took	 	 and	 the	 th	 and	 th	 order	 statistics	 of	 the
values	 in	 the	 bootstrap	 samples	 instead	 of	 the	 th	 and	 th	 order	 statistics.	 We
allowed	 negative	 values	 of	 the	 estimates	 in	 the	 bootstrap	 samples,	 since	 otherwise	 the
coverage	is	not	good	at	the	right	side	of	the	interval.	The	results	are	shown	in	Figure	9.22.

	

Figure	9.22	 Truncated	exponential	samples.	(a)	Proportion	of	times	that	
is	not	in	the	estimated	 	CIs	in	1,000	samples,	using	the

	with	bandwidth	 .	(b)	 	confidence	intervals,	based	on	one
sample	and	1,000	bootstrap	samples.	Solid:	density	estimate.	Dashed:	real	density.

(E)	Confidence	Intervals	Based	on	the	Hepatitis	A	Data
In	Section	1.3	we	discussed	the	hepatitis	A	data	analyzed	in	Keiding,	1991.	We	now	show
the	results	of	the	methods	presented	here	can	be	used	in	constructing	confidence	intervals



for	the	distribution	function	and	density	in	this	model.

The	SMLE	 	is	given	by	(9.75),	where	 ,	 ,	 ,	
the	MLE	and	 .	However,	in	the	construction	of	the	confidence
intervals	 we	 use	 undersmoothing,	 and	 take	 instead	 .	 We
compute	 the	 confidence	 intervals	 on	 an	 equidistant	 grid	 with	 distance	 	 between
successive	points,	with	 first	point	 	 and	 last	 point	 .	The	confidence	 intervals
were	 computed	 in	 exactly	 the	 same	 way	 as	 the	 confidence	 intervals	 (9.77)	 in	 the
simulation	with	the	truncated	exponential	distribution.

The	bootstrapping	was	done	by	first	constructing	a	file	with	 	values	of	 ,
where	within	each	group	of	equal	 s	 the	number	of	 s	equal	 to	1	was	given	by	 the
proportions	of	the	data.	As	an	example,	for	the	first	 	 s	all	 s	are	equal	to	 ,
three	 s	 are	 equal	 to	 	 and	 the	 other	 s	 are	 zero,	 see	 Table	 1.3.	 Next	 we	 drew
randomly	 (according	 to	 the	 discrete	 uniform	 distribution	 on	 the	 	 point)	 with
replacement	 from	 these	 values	 	 a	 sample	 ,
computed	from	these	first	the	MLE	and	next	the	SMLE	from	the	MLE.	This	was	repeated
1,000	 times,	 giving	 1,000	 values	 of	 (9.76).	 From	 these	 values	 the	 confidence	 intervals
(9.77)	were	constructed.	The	lower	and	upper	bounds	were	made	monotone	to	the	right	by
taking	the	maximum	of	neighboring	values.	See	Figure	9.23	for	the	resulting	confidence
sets	as	well	as	those	based	on	the	LR	test.

	

Figure	9.23	 Hepatitis	A	data:	 	bootstrap	confidence	intervals	for	
.	(a)	Based	on	the	SMLE.	The	solid	curve	inside	the

confidence	intervals	is	the	SMLE	(9.75),	using	bandwidth	 .	(b)	Based	on
the	LR	test	for	the	MLE,	as	in	Banerjee	and	Wellner,	2005.	The	solid	curve	inside	the
confidence	intervals	is	the	MLE.

The	 confidence	 intervals	 for	 the	 density	 were	 computed	 with	 a	 bandwidth	
.	 For	 the	 remaining	 part	 the	 computation	 for	 the	 bootstrap

confidence	intervals	followed	exactly	the	same	path	as	the	computation	of	the	confidence
intervals	for	the	density	in	the	example	with	the	truncated	exponentials.

We	 also	 computed	 the	 confidence	 intervals,	 based	 on	 the	 asymptotic	 theory	 and
obtained	by	plugging	in	estimates	of	the	relevant	parameters.	The	result	is	shown	in	Figure



9.24.	The	intervals	are	of	the	form

where	 ,	 if	 ,	 and	 a	 rather	 complicated
function	 of	 	 if	 ,	 which	 is	 specified	 in	 the	 following.	 The
bandwidth	 ,	and	 	is	an	ordinary	kernel	estimate	of	the	density	
of	the	observation	times	 	with	the	boundary	correction	(9.36).

	

Figure	9.24	 	confidence	intervals	for	 	for
the	hepatitis	A	data.	The	solid	curve	inside	the	confidence	intervals	is	the	density	estimate,
using	bandwidth	 .	In	(a)	the	 	bootstrap	confidence	intervals,	obtained
by	bootstrapping,	are	shown;	(b)	shows	the	intervals	obtained	by	using	the	asymptotic
formula.

The	function	 	is	defined	in	the	following	way.	If	 ,	 	is	a	function	of	
,	and	given	by

If	 ,	 	is	a	function	of	 ,	and	given	by

The	function	 	 is	continuous	on	 ,	with	a	maximum	approximately	 	at	
	 and	 .	 The	most	 conspicuous	 differences	 between	 the	 bootstrap	 intervals

and	 the	 asymptotic	 intervals	 are	 at	 the	 boundary,	 where	 the	 bootstrap	 intervals	 clearly



exhibit	skewness	and	are	wider;	the	asymptotic	intervals	are	symmetric	with	respect	to	the
estimator	 (but	are	 truncated	at	zero	on	 the	 right-hand	side).	The	asymptotic	 intervals	do
not	 lead	to	a	very	good	coverage	close	 to	 the	boundary.	For	 the	asymptotic	 intervals	we
need	 to	 estimate	 the	 observation	 density	 ,	 which	 is	 not	 necessary	 in	 the	 bootstrap
approach.

Banerjee	 and	 Wellner,	 2001	 in	 fact	 starts	 with	 the	 monotone	 density	 model	 as	 an
example	 of	 a	 situation	 to	 which	 their	 methods	 could	 conceivably	 also	 be	 applied.
However,	they	did	not	develop	LR	tests	or	confidence	intervals	for	this	model.

This	raises	the	question	whether	the	LR	test	for	the	monotone	density	case	is	actually
similar	 to	 this	 test	 for	 the	current	status	model.	Will	 the	 limit	distribution	under	 the	null
hypothesis	 of	 the	 LR	 test	 be	 the	 same	 for	 the	 two	 models	 or	 will	 this	 distribution	 be
different?	 And	 also,	 for	 the	 current	 status	 model	 we	 get	 a	 universal	 limit	 distribution,
which	can	be	used	for	the	construction	of	confidence	intervals;	what	can	we	expect	for	the
monotone	 density	 case?	 The	 problem	 that	 makes	 computation	 more	 difficult	 is	 the
restriction	 	which	the	solution	should	satisfy.

The	 matter	 has	 been	 very	 recently	 resolved	 in	 Groeneboom	 and	 Jongbloed	 (2014),
using	 “Lagrange-modified”	 cusum	 diagrams.	 The	 diagrams	 are	 used	 to	 compute	 the
restricted	MLEs.	 They	 are	 also	 used	 to	 prove	 that	 the	 limit	 distribution	 of	 the	 LR	 test
under	the	null	hypothesis	is	indeed	the	same	as	in	the	current	status	model,	implying	that
we	can	use	the	same	critical	values	for	the	confidence	intervals.

Figure	9.25	shows	a	picture	of	the	ordinary	MLE	and	the	restricted	MLE	for	the	fertility
data	of	Example	2.3.	It	is	seen	that	the	condition	 	induces	a	global	change
of	the	MLE,	caused	by	the	necessary	redistribution	of	mass,	in	contrast	with	the	only	local
change	of	the	MLE	for	the	current	status	model,	if	one	computes	the	restricted	MLE.	See
also	 Figure	 2.6	 in	 Section	 2.2	 for	 confidence	 intervals	 for	 the	 survival	 function	 in	 this
model,	based	on	LR	tests	for	MLEs	which	also	have	a	restriction	at	zero.



	

Figure	9.25	 MLE	(solid)	and	MLE,	restricted	to	have	value	 	at	 	(dashed),	for
the	fertility	data	of	Example	2.3.

Exercises
9.1	Consider	 a	 Lebesgue	measurable	 function	 	 on	 the	 interval	 	 for	 .	 The

function	 	is	called	midpoint	convex	on	 	if	for	all	

a)	 Show	 that	 convexity	 of	 	 is	 equivalent	 with	 midpoint	 convexity	 of	 .	 One
implication	is	trivial,	the	other	is	a	result	due	to	Sierpinski.

b)	Use	(a)	to	show	that	 	is	convex	on	 	if	and	only	if

for	all	 	and	 	such	that	 .

9.2	Let	 	be	independent	and	exponentially	distributed	with	expectation	 .
Define,	for	 ,	the	normalized	spacings	by

a)	Show	that	 	is	standard	exponentially	distributed.



b)	 Show	 that	 	 given	 	 has	 the	 same	 distribution	 as	
	 where	 	 are	 independent	 standard

exponentially	distributed	random	variables.

c)	Show	that	 	given	 	is	standard	exponentially	distributed.

d)	Conclude	that

9.3	Let	 	be	a	standard	exponentially	distributed	random	variable	and	 	a	continuous
and	strictly	increasing	cumulative	hazard	function	on	 .	Denote	its	 inverse	by	

.	Show	that	 the	 random	variable	 	 is	distributed	according	 to	 the
distribution	with	cumulative	hazard	function	 .

9.4	Use	Exercises	9.2	and	9.3	to	show	that	if	 	has	a	convex	cumulative	hazard	 ,

where	 the	 s	 are	 defined	 as	 in	 (9.2)	 and	 	means	 that	 	 is	 stochastically
bigger	than	 	so	that	for	all	 ,	 .

9.5	 Implement	 the	 Proschan-Pyke	 test	 of	 Example	 9.1,	 use	Monte	 Carlo	 simulation	 to
approximate	its	 	critical	value	and	its	power	for	Weibull	alternatives	of	the	type

on	 	for	 	and	 .	Repeat	this	for	various	values	of	the	sample	size
.

9.6	Show	that	the	function	 	defined	in	(9.10)	is	convex	and	increasing	on	 .

9.7	Verify	by	 inspecting	 the	proof	of	Lemma	9.1	 that	 the	stochastic	ordering	 result	also
holds	 if	 in	 the	 definition	 of	 	 	 would	 be	 used	 for	 some	

	rather	than	for	 .

9.8	Show	that	generating	a	realization	of	(9.20)	based	on	a	sample	of	independent	standard
exponential	random	variables	corresponds	to	the	procedure	described	in	Lemma	9.1.

9.9	 Show	 that	 the	 (log)	 likelihood	 ratio	 statistic	 for	 testing	 equality	 of	 two	 decreasing
densities,	(9.21),	is	scale	invariant.	This	means	that	this	statistic	based	on	the	original
random	 variables	 	 is	 the	 same	 as	 the	 statistic	 based	 on	 the	 scaled
random	variables	 	for	any	 .	What	can	be	said	 in	 this	respect
about	the	(log)	likelihood	ratio	test	in	the	current	status	model,	(9.47)?

9.10	 In	 order	 to	 implement	 the	 likelihood	 ratio	 test	 for	 testing	 the	 null	 hypothesis	 of
equality	against	the	Lehmann	alternative	(9.82)	in	the	current	status	setting,	the	ML
estimator	for	 	under	the	alternative	needs	to	be	computed.	Find	a	way	to	solve	this
computational	problem.

9.11	Let	 	be	a	random	variable	with	 	and	 .	Let	 	and	
	 be	densities	 on	 	 and	 	 and	 	 distribution	 functions	 on	 .	 Then,

construct	the	random	variable	 	as	follows:



Determine	 	 and	 infer	 (9.61)	within	 this	 setup,	where	 the	 s	 are	 independent
copies	of	 .

9.12	Show	that	the	variance	of	(9.57)	is	indeed	given	by	(9.58)	if	 	and	 .
Also	 derive	 the	 variance	 if	 .	 Recall	 that	 	 and	

.

9.13	 In	 view	 of	 (9.66),	 construct	 other	 combinations	 of	 	 and	 	 for	 which	 the	 test
based	on	 	can	be	expected	to	have	power	close	to	the	level	of	the	test.

9.14	Let	 	be	the	triweight	kernel

and	let	the	density	estimate	 	at	the	boundary	be	given	by

where	 	is	defined	by	(9.37).	Show	that,	using	the	notation	of	(9.37),

(i)

where,	for	 ,

(9.79)

and

(ii)

where,	for	 ,

(9.81)

and	 	is	given	by	(9.80).
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10
Asymptotic	Theory	of	Smooth	Functionals

In	Chapter	3,	 asymptotic	 results	were	derived	 for	 the	basic	problems	with	monotonicity
restrictions.	 The	 consistency	 results	 were	 global	 (sometimes	 uniform)	 whereas	 only
pointwise	 asymptotic	 distributions	 were	 derived.	 These	 results	 were	 related	 to	 convex
minorants	 and	 explicit	 representations	 of	 estimators.	 In	 this	 chapter,	 asymptotic	 results
will	 be	 derived	 for	 quantities	 that	 depend	more	 globally	 on	 the	 underlying	 distribution.
These	results	can	be	obtained	using	so-called	smooth	functional	theory.

In	 Section	 10.1,	 we	 discuss	 the	 asymptotic	 distribution	 of	 the	 maximum	 likelihood
estimator	of	 the	 expected	value	of	 the	underlying	 random	variable	 in	 the	deconvolution
model.	 Computing	 this	 estimator	 requires	 some	 computational	 effort.	 We	 compare	 the
asymptotics	 of	 this	 estimator	 to	 that	 of	 a	 natural	 and	 easy-to-compute	 competitor,	 the
sample	 mean	 minus	 the	 expectation	 of	 the	 noise	 variable.	 The	 approach	 is	 based	 on
smooth	functional	theory,	where	functionals	of	the	underlying	distribution	of	interest	are
approximated	by	smooth	functionals	of	the	observation	distribution.

The	 remaining	 sections	 are	 devoted	 to	 smooth	 functionals	 for	 the	 interval	 censoring
model.	 The	 theory	 is	 still	 moderately	 straightforward	 for	 the	 interval	 censoring	 case	 1
model	 (or	 current	 status	 model)	 to	 be	 considered	 in	 Section	 10.2,	 where	 we	 have	 an
explicit	 expression	 for	 the	 score	 functions.	 This	 is	 rather	 different	 for	 the	 interval
censoring	case	2	model,	where	one	can	only	say	that	these	score	functions	are	solutions	of
certain	 integral	 equations	 and	 the	whole	 theory	 has	 to	 be	 developed	 from	 properties	 of
these	solutions.	 Important	properties	will	be	studied	 in	Section	10.3.	 In	Section	10.4	 the
properties	 are	 used	 to	 derive	 the	 asymptotic	 distribution	 of	 the	 MLE	 for	 smooth
functionals	 in	 the	 interval	censoring	case	2	model.	We	only	 treat	 the	so-called	separated
case,	 where	 the	 intervals	 between	 the	 two	 observation	 times	 cannot	 become	 arbitrarily
small.	This	separated	case	is	treated	in	full	detail,	since	it	seems	to	give	the	prototype	for
what	to	do	in	the	case	that	the	score	functions	are	not	explicitly	given.	It	is	believed	that
for	the	deconvolution	model	a	similar	analysis	should	be	possible,	but	this	theory	still	has
to	be	developed.

The	 theory	 of	 the	 smooth	 functionals	 demonstrates	 that	 the	 usual	 rate	 	 can	 be
achieved	for	certain	smooth	functionals	of	the	model,	while	at	the	same	time	the	local	rate
is	slower,	for	example	 	for	the	MLE	for	the	current	status	model.	Also,	the	MLE	will
give	 efficient	 estimates	 of	 the	 smooth	 functionals	 for	 the	 interval	 censoring	model.	The
same	is	conjectured	to	be	true	for	the	deconvolution	model	(and	can	be	proved	for	special
cases,	such	as	the	uniform	and	exponential	deconvolution	model).

10.1	 Estimating	the	Expectation	in	Deconvolution	Models
Consider	 the	 problem	of	 estimating	 the	 expectation	 of	 a	 distribution	 function	 	 in	 the
deconvolution	model	as	described	in	Sections	2.4	and	4.6.	Recall	that	there	is	a	sequence	

	 of	 independent	 random	 variables	 with	 distribution	 function	 ,	 and



independent	 of	 this	 a	 sequence	 of	 independent	 random	 variables	 	 having
(known)	density	function	 .	The	observations	then	consist	of	 ,	where

are	independent	random	variables	from	the	density	 ,	which	is	the	convolution	of
the	density	 	and	the	distribution	function	 :

The	first	candidate	for	estimating	 	is	a	moment	estimator	given	by

Assume	 that	 	 and	 	 are	 finite,	 implying	 that	
	 is	 finite	 as	 well.	 Then	 the	 central	 limit	 theorem

immediately	gives	that

Estimator	 	will	be	the	same	for	all	densities	 	having	the	same	first	moment.	It	only
uses	 that	 aspect	 of	 this	 kernel.	 In	 this	 section	 we	 will	 study	 an	 alternative	 estimator
asymptotically,	 the	 estimator	 that	 is	 obtained	 by	 plugging	 in	 the	 maximum	 likelihood
estimator

(10.1)

This	 estimator	 uses	 more	 properties	 of	 the	 kernel	 function	 	 (as	 the	 log	 likelihood,
maximized	by	 ,	depends	on	 the	density	 	not	only	via	 its	 first	moment)	and	can	be
more	efficient	in	general.	A	drawback	is	that	it	is	computationally	harder	to	determine	than

,	but	as	seen	in	Chapter	7,	 there	are	many	ways	 to	solve	 the	computational	problem.
We	start	with	a	simple	example,	where	the	estimate	of	the	first	moment,	using	the	MLE,
coincides	with	a	moment	estimate.

Suppose	now	that	the	noise	variables	 	have	a	(known)	normal	 	distribution.
The	estimator	 	of	the	first	moment	of	the	distribution	of	the	 	is	then	given	by

(10.2)

The	MLE	of	the	unknown	distribution	function	of	the	 	is	the	distribution	function	 ,
maximizing



over	 ,	where	 	is	the	empirical	distribution	function	of	the	 	and	 	is	the	standard
normal	 density.	 Using	 this	 maximizer	 ,	 the	 estimator	 	 defined	 in	 (10.1)	 can	 be
computed.	 Exercise	 10.1	 shows	 that,	 in	 fact,	 ,	 so	 the	 two	 methods	 produce
exactly	the	same	(efficient)	estimate	here.

This	 relation	 does	 not	 hold	 for	 higher	 moments,	 however.	 We	 could,	 for	 example,
estimate	the	variance	of	the	 	by	a	moment	estimator,

(10.3)

where	 	is	the	mean	of	the	 ,	but	also	by

Here	we	do	not	get	 ;	 for	 example,	 	 can	have	negative	values,	 in	 contrast
with	 	 (see	 Exercise	 10.2).	 On	 theoretical	 grounds,	 one	 would	 expect	 the	 MLE	 to
produce	an	asymptotically	 efficient	 estimate	of	 the	variance,	but	 looking	at	 simulations,
one	also	would	expect	this	efficiency	only	to	show	up	for	huge	sample	sizes,	because	of
the	 highly	 discrete	 character	 of	 the	MLE,	which	 only	 has	 very	 few	 points	 of	mass	 for
moderate	sample	sizes.

A	 usual	 method	 of	 producing	 estimates	 of	 	 is	 to	 first	 estimate	 the	 characteristic
function	of	the	data	in	some	way,	and	then	use	the	fact	that	the	characteristic	function	of
the	convolution	is	a	product,	meaning	that	one	can	divide	by	the	characteristic	function	of
the	distribution	of	the	known	component	of	the	deconvolution	to	obtain	the	characteristic
function	 of	 the	 unknown	 component	 (see	 also	 Section	 4.6).	 This	 does	 not	 necessarily
produce	efficient	estimates	of	the	smooth	functionals,	however,	while	for	the	MLE	there	is
a	general	theory	predicting	the	efficiency	of	the	estimates	of	smooth	functionals	based	on
the	MLE.

Dividing	by	the	characteristic	function	of	 the	known	noise	distribution	becomes	more
difficult	if	this	characteristic	function	has	zeroes,	as	in	the	case	of	the	uniform	distribution
(see	 Exercise	 10.3).	 In	 this	 uniform	 deconvolution	 problem	 (also	 known	 as	 boxcar
deconvolution)	the	moment	estimator	(10.2)	also	does	not	produce	an	efficient	estimate	of
the	first	moment.	We	consider	here	the	simplest	case,	where	the	distributions	of	the	
and	 	both	have	support	 	and	the	 	have	an	absolutely	continuous	distribution
function	 .	As	 discussed	 in	Groeneboom	and	Wellner,	1992	 (Exercise	 2,	 Section	 2.3,
p.	61),	the	model	is	equivalent	to	the	current	status	model	in	this	case.	This	is	seen	in	the
following	way.

Based	on	the	observed	 ,	define	for	 	the	random	variables



	and

(10.4)

Then	 	 is	 distributed	 as	 a	 sample	 from	 a	 Uniform 	 distribution;	 see
Exercise	10.4.	Moreover,	the	log	likelihood	for	the	unknown	distribution	function	 	can
be	written

and	we	have,	for	

and

so	 we	 get	 factorization	 of	 the	 current	 status	 model	 for	 	 and	 the	 corresponding
observation	 .	This	means,	by	Theorem	5.5	in	Groeneboom	and	Wellner,	1992,	that

where

(10.5)

See	also	(10.7)	and	Theorem	10.1	in	Section	10.2.

On	 the	other	hand,	 if	we	 take	 the	moment	estimate	 	of	 (10.2)	 to	estimate	 the	 first
moment	of	the	distribution	of	the	 ,	we	would	get

where

(10.6)



Since

a	 simple	 variational	 argument	 shows	 that	 ,	 unless	 	 is	 the	 uniform
distribution	function,	 in	which	case	 	(see	also	Exercise	10.5).	So	 in	 this	case,
the	estimate	of	 the	 first	moment,	based	on	 the	MLE,	 is	more	efficient	 than	 the	moment
estimate	 ,	in	contrast	with	the	situation	described	in	the	normal	deconvolution	model.

10.2	 Estimating	Smooth	Functionals	in	the	Current	Status
Model
The	current	status	(or	interval	censoring	case	1)	model	is	introduced	in	Section	2.3	and	the
pointwise	cube	root	 	asymptotics	derived	in	Section	3.8.	Smooth	functional	theory	for
the	current	status	model	can	be	considered	to	be	one	of	the	first	successes	of	the	use	of	the
MLE,	which	is	generally	efficient	for	the	estimation	of	these	functionals.	The	asymptotic
distribution	of	 ,	for	fixed	 ,	 is	derived	in	Section	3.8,	where	 	 is	 the
obtained	convergence	rate.	In	part	II,	chapter	5,	of	Groeneboom	and	Wellner,	1992,	 it	 is
shown	that,	under	some	extra	conditions,

(10.7)

with	 	the	density	of	the	distribution	of	the	observation	times.	Huang	and	Wellner,	1995,
prove	 a	 similar	 result	 for	 a	 wider	 class	 of	 functionals.	 The	 proof	 in	 Groeneboom	 and
Wellner,	1992,	uses	the	convergence	rate	of	the	supremum	distance	between	the	MLE	and
the	underlying	distribution	function,	which	is	replaced	by	a	simpler	argument	based	on	
-distance	properties	in	Huang	and	Wellner’s	proof.

In	studying	information	lower	bounds	for	estimating	smooth	functionals	 	of	 ,
we	can	define	‘smooth”	to	mean	“differentiable	along	a	Hellinger	differentiable	path.”	The
derivative	is	represented	by	the	canonical	gradient	(or	efficient	influence	function)	 	at	

,	which	 is	 an	 element	of	 the	Hilbert	 space	 	 of	 square	 integrable	 functions	
with	 respect	 to	 the	 measure	 ,	 satisfying	 .	 More	 formally,	 we	 consider
functionals	that,	locally	near	a	fixed	distribution	function	 ,	allow	the	representation

(10.8)

where	 	denotes	the	 -norm	of	a	function.	Linear	functionals	 like	the	mean	value
are	 smooth	 in	 this	 sense,	 since	 then	 ,	 and	 the	 order	 term
disappears.



Since	there	is	only	indirect	information	about	the	random	variables	 	generated	by	
,	 the	 smooth	 functional	 	 is	 only	 implicitly	 defined	 as	 	 in	 terms	 of	 the

distribution	 	of	the	observable	random	variables	 .

For	interval	censoring	case	1,	an	explicit	formula	for	the	information	lower	bound	for
smooth	 functionals	 can	 be	 obtained.	 The	 fact	 that	 an	 explicit	 formula	 can	 be	 found	 is,
however,	not	common.	This	property	will	be	 lost	 in	 the	 interval	censoring	case	2	model
that	will	be	considered	in	Sections	10.3	and	10.4.

Suppose	the	unobservable	event	times	 	have	a	distribution	function	 	with	support
contained	 in	 ,	 and	 density	 .	 The	 observation	 times	 	 have	 an	 absolutely
continuous	distribution	function	 	with	density	 ;	 	and	 	are	independent	and	
is	dominated	by	 .	Then	it	follows	from	Exercise	10.6	that	 the	score	operator	 	has
the	form

(10.9)

with	adjoint	(see	Exercise	10.7)

(10.10)

Note	that	 the	adjoint	operator	 	does	not	depend	on	 	 (given	 ,	 the	distribution	of
the	 vector	 	 does	 not	 depend	 on	 the	 distribution	 of	 	 anymore),	 which	 is	 the
reason	 for	 dropping	 the	 index	 	 in	 the	 notation	 of	 the	 adjoint.	 We	 consider
differentiability	of	functionals	 	at	the	point	 .	The	key	property	that	is	needed	for	
of	 the	 type	(10.8)	 to	be	a	smooth	 functional	 is	 that	 	 is	contained	 in	 the	 range	of	 the
operator	 ,	so

If	this	holds,	then	the	canonical	gradient	for	 the	probability	measures	on	the	observation
space	is	the	unique	element	 	in	 	satisfying

(10.11)

We	consider	the	case	 ,	giving	that	 	 for	some	 .
Then	the	score	equation	 	has	to	be	solved	in	 .	It	can	be	written
as	an	equation	in	 :

(10.12)



where	 	is	the	integrated	score	function

See	 Exercise	 10.9.	 The	 advantage	 of	 solving	 for	 the	 integrated	 score	 function	 in	 this
context	will	become	clear	in	the	following.

Suppose	 	to	be	continuously	differentiable.	Then,	taking	derivatives,

Hence,	if	 ,

(10.13)

yielding	the	canonical	gradient

(10.14)

and	information	lower	bound:

We	 now	 want	 to	 relate	 this	 to	 the	 theory	 of	 the	 MLE	 .	 We	 have	 the	 following
theorem,	where	we	take	the	general	interval	 	instead	of	 .

Theorem	 10.1	 Let	 the	 observation	 density	 ,	 with	 distribution	 function	 ,	 be
continuous	on	the	interval	 ,	where	 ,	for	all	 .	Furthermore,
let	 	have	bounded	support	 ,	where	 	is	absolutely	continuous,	with	a	bounded
derivative	 	on	 ,	which	satisfies

Moreover,	 let	 	be	a	continuous	function,	so	 that	 	 is	 continuous	on	
	and

Finally,	assume	that	the	functional	 	of	 	satisfies:



(10.15)

where	 	denotes	 -distance	with	respect	to	Lebesgue	measure.	Then

(10.16)

Here	 	 is	defined	as	 in	 (10.14)	and	 	 is	 the	 (true	underlying)	probability
measure	of	the	observations	 .

Remark	The	proof	 follows	 a	general	method	 that	 is	 also	used	 in	 the	more	 complicated
cases	of	interval	censoring.	See	the	rejoinder	of	the	discussion	in	Groeneboom,	2013b,	on
the	general	aspects	of	this	method.

Proof	We	may	assume	 ;	see	Exercise	10.8.	The	goal	is	to	prove

(10.17)

since	(10.16)	clearly	follows	from	this.	We	split	the	proof	in	several	steps.

(i)	The	nonlinear	aspect	of	the	functional	is	negligible.
This	means:

(10.18)

By	(10.15)	this	is	fulfilled	if

It	is	proved	in	Van	de	Geer,	2000,	that	the	Hellinger	distance	 	satisfies

(10.19)

from	which	 	 follows,	which	 is	 stronger	 than	what	we
need;	see	Exercise	10.11.

(ii)	Transformation	to	the	observation	space	measure.
For	the	dominant	term	at	the	right	hand	side	of	(10.18)	we	wish	to	show	that



A	first	step	in	this	direction	is	to	prove	that

(10.20)

where

(10.21)

and	where

(10.22)

Note	that	 	is	no	longer	a	canonical	gradient,	since	 	has	jumps,	whereas
the	canonical	gradient	has	 to	be	absolutely	continuous	with	respect	 to	 .	Relation
(10.20)	can	be	verified	by	straightforward	calculation	(see	Exercise	10.12),	but	holds
quite	generally.

(iii)	Use	that	 	is	the	MLE.

We	introduce	a	modification	 	of	 	such	that	 	is	absolutely	continuous
with	respect	to	 ,	and	satisfies:

(10.23)

Here

(10.24)

To	specify	 ,	we	define	the	map	 	on	 	by



(10.25)

where	the	 	are	successive	points	of	jump	of	 ,	and	we	define

(10.26)

The	definition	of	 	is	illustrated	in	Figure	10.1.

	

Figure	10.1	 The	three	different	possibilities	for	the	function	 .	(a)	
all	 ;	(b)	 	for	some	 ;	(c)	 	for	all	 .

Then	we	have

(10.27)

and	(10.23)	now	follows	from	Exercises	10.15	and	10.16.	We	can	now	write,	using
(10.20),

(iv)	Asymptotic	variance	equals	information	lower	bound.
We	finally	have	to	show	that

The	 fact	 that	 the	class	of	 functions	 that	are	 integrated	 form	a	uniform	 -Donsker
class,	 and	 convergence	 of	 	 to	 	 in	 -norm	 or	 in	 supremum	 norm
(Groeneboom	and	Wellner,	1992),	can	be	used	to	show	that



which	is	sufficient	for	our	purposes.

In	fact,	the	stronger	result

can	be	proved.	☐

10.3	 The	Integral	Equation	for	Interval	Censoring	Case	2
For	 the	current	 status	model,	 the	asymptotic	distribution	of	 the	ML	estimator	of	 smooth
functionals	of	the	event	time	distribution	function	 	is	derived	in	the	previous	section.	A
crucial	step,	 that	of	solving	the	integral	equation,	can	be	taken	explicitly	in	that	context,
leading	 to	an	expression	 for	 the	 (efficient)	variance	of	 the	ML	estimator.	For	 the	case	2
interval	censoring	model	(see	Section	4.7),	 it	will	be	seen	in	 this	section	that	 there	is	no
explicit	 solution	 of	 the	 integral	 equation.	 As	 in	 Section	 10.2,	 the	 smooth	 functional	

	is	only	implicitly	defined	as	 	in	terms	of	the	distribution	 	of	the	random
variables	 	in	the	observation	space.	The	key	property	that	is	needed	is
again

(10.28)

where	 the	operators	 	and	 	 (the	adjoint	of	 )	 can	be	 interpreted	 as	 conditional
expectations	and	have	the	following	form:

(10.29)

and

We	 drop	 the	 index	 	 for	 the	 adjoint	 operator	 	 again,	 since	 this	 operator	 does	 not
depend	on	 	(see	Exercise	10.10).

As	in	Section	10.2,	the	approach	is	not	to	consider	the	score	functions	themselves,	but
instead	 the	 integrated	 score	 functions	 	 and	 to	 extend	 the
definition	of	 these	 integrated	 score	 functions	 to	 functions	 	which	 are	 not	 absolutely
continuous	with	respect	to	 ,	so	not	having	the	representation



This	also	means	that	the	basic	equations	(10.28)	and	(10.30)	are	extended	to	functions	 ,
defined	 in	 terms	 of	 ,	 where	 	 has	 both	 discrete	 and	 absolutely	 continuous	 parts.
Taking

the	basic	equation	(10.28)	becomes:

Differentiating	with	respect	to	 	yields	equation

where	 	and	 	is	defined	by

(10.34)

Just	as	in	the	current	status	model,	the	solution	 	contains	a	factor	 .	The
structure	of	 	already	suggests	this	factor	to	be	present.	It	can	also	be	proved	formally
with	hardly	any	extra	effort.	So	we	write

The	 function	 	 is	 only	 defined	 on	 .	 Plugging	 this
formula	 into	 (10.33)	 and	 performing	 some	 reordering	 yields	 the	 following	 integral
equation	in	 :

(10.35)

Here	 	is	given	by

(10.36)



and

We	now	first	list	the	model	conditions	(M1)	to	(M3)	(M	stands	for	model).	We	suppose:

(M1)	 	 is	 a	 nonnegative	 absolutely	 continuous	 random	 variable	 with	 distribution
function	 .	Let	 .	 	is	contained	in	the	class

	 is	 the	distribution	on	which	we	want	 to	obtain	 information;	however,	we	do	not
observe	 	directly.

(M2)	 Instead,	 we	 observe	 the	 pairs	 ,	 with	 distribution	 function	 .	 	 is
contained	 in	 ,	 the	 collection	 of	 all	 two-dimensional	 distributions	 on	

,	 absolutely	 continuous	 with	 respect	 to	 two-dimensional
Lebesgue	measure.	Let	 	 denote	 the	 density	 of	 ,	with	marginal	 densities
and	distribution	functions	 ,	 	and	 ,	 	for	 	and	 ,	respectively.

(M3)	If	both	 	and	 	put	zero	mass	on	some	set	 ,	then	 	has	zero	mass	on	 	as
well,	so	 .	This	means	that	 	does	not	have	mass	on	sets	in	which
no	observations	can	occur.

Condition	 (M3)	 is	 needed	 to	 ensure	 consistency.	Moreover,	without	 this	 assumption	 the
functionals	we	are	interested	in	are	not	well	defined.	So	discrete	distribution	functions	
should	be	excluded	from	 .	Apart	from	the	model	conditions	(M1)	to	(M3),	some	extra
conditions	will	have	to	be	introduced	in	order	to	make	the	proofs	in	this	section	possible
(S	for	smoothness):

(S1)	 	and	 	are	continuous,	with	 	for	all	 .

(S2)	 	is	continuous	on	 .

(S3)	 	for	some	 	with	 ,	so	 	does	not	have
mass	close	to	the	diagonal.

(S4)	 	 is	either	a	continuous	distribution	function	with	support	 ,	or	a	piecewise
constant	 distribution	 function	 with	 a	 finite	 number	 of	 jumps,	 all	 in	 ;	
satisfies

(S5)	 	is	continuous	on	 .

Of	course,	(S2)	implies	continuity	of	 	and	 ,	which	is	also	stated	in	(S1).	(S1)	is	the
equivalent	 of	 continuity	 of	 	 and	 	 in	 the	 current	 status	 model.	 Note	 that	 (S1)
implies	that	 	is	bounded;	see	Exercise	10.17.	Conditions	(S3)	and	(S4)	are	needed	 to
avoid	singularity	in	the	integral	equation:	if	 	becomes	very	small,	we	have	

.	In	fact,	the	domain	of	integration	in	(10.33)	can	be	restricted	to	
and	 	respectively;	 	should	be	smaller	than	 	by	(M3).



We	will	also	need	a	Lipschitz	property	of	 	and	 ,	uniformly	over	 	 for
which	we	need	two	extra	conditions	(L	for	Lipschitz):

(L1)	 The	 partial	 derivatives	 	 and	 	 exist,	 except	 for	 at	 most	 a
countable	number	of	points,	where	left	and	right	derivatives	exist.	The	derivatives	are
bounded	uniformly	over	 	and	 .

(L2)	 	is	differentiable,	except	for	at	most	a	countable	number	of	points	
,	where	left	and	right	derivatives	exist.	The	derivative	is	bounded	uniformly	over	 .

Under	 these	 conditions	 we	 have	 uniqueness	 of	 the	 solutions	 	 and	 ,	 using	 the
following	fact	from	the	theory	of	integral	equations.

Lemma	10.1	Let	 	be	a	normed	linear	space,	and	let	 	be	a	compact	linear
operator.	Consider	the	homogeneous	equation

(10.37)

If	the	homogeneous	equation	only	has	the	trivial	solution	 ,	then	for	each	
the	inhomogeneous	equation

has	a	unique	solution	 	and	this	solution	depends	continuously	on	 .

Remark	This	 is	 an	 immediate	 consequence	 of	 Theorem	 3.4	 in	 Kress,	 1989.	 Note	 that
hardly	any	restrictions	are	imposed	on	the	space	 .

Define,	for	 ,	 	as	the	space	of	cadlag	(right	continuous	with	left	 limits)
real	 valued	 functions	 on	 .	 No	 topology	 (like	 the	 Skorohod	 topology)	 is	 given	 to	

.

Theorem	10.2	The	 -equation	 (10.33)	 has	 a	 unique	 solution	 in	 .	 The	 -
equation	(10.35)	has	a	unique	solution	in	 ,	where

Proof	The	condition	in	Lemma	10.1	will	be	verified	for	the	 -equation;	the	proof	for	the	
	equation	proceeds	along	similar	lines.	We	define:

(10.38)

with	 	defined	as



and	consider	the	homogeneous	equation

This	equation	can	only	be	satisfied	for	a	function	 	 that	at	most	has	jumps	at	 the	same
place	 as	 .	 Moreover,	 a	 solution	 	 implies	 a	 solution	 .	 The
homogeneous	equation	is	equivalent	to

(10.39)

Suppose	there	exists	a	point	 	with	 .	If	the	supremum	is	attained,	say	at	 ,
we	get,	since	 ,

The	right-hand	side	is	strictly	smaller	than

which	contradicts	equation	(10.39).

It	may	happen	that	 	jumps	downward	just	before	the	supremum	is	attained,	so

Then	the	same	contradiction	can	be	derived.	Formally,	the	argument	goes	as	follows.
One	can	find	a	 	such	that	 	and

Hence

again	 contradicting	 (10.39).	 So	 the	 homogeneous	 equation	 is	 only	 solvable	 for	 .
Hence	the	condition	in	Lemma	10.1	is	satisfied.	☐
Since	the	solutions	 	and	 	are	contained	in	 	and	 ,	respectively,



we	already	know	they	are	bounded.	However,	we	will	need	boundedness	of	the	solutions	
	and	 	uniformly	over	a	class	of	distribution	functions	 .	The	function	 	 is	held

fixed	all	the	time.	The	class	we	will	use	is

(10.40)

We	have	the	following	property	of	the	solution.

Lemma	10.2	Let	 	and	 	be	given	by	(10.34)	and	(10.36),	respectively.	Then

implying

Moreover,

Proof	Let	 	be	arbitrary.	For	 	with	 	we	have,	using	(S3)
and	(S4),

If	 ,	 we	 have	 .	 Hence	 	 by	 (S1),	 implying	
.	The	argument	for	 	runs	in	a	similar	way.

For	 	the	argument	is	similar.	☐
This	gives	us	the	uniform	boundedness	property	of	the	solutions.

Lemma	10.3	The	classes	 	and	 	are	uniformly	bounded.

Proof	Let	 .	Define

and

So	we	have

The	argument	is	based	on	the	observation	that	 	and	 	have	a	reducing	influence	on
the	value	of	the	extremum.

First	suppose	that	the	minimum	and	the	maximum	of	 	are	attained.	Let



Since	 	reaches	its	minimum	at	 ,	 the	 integrands	 in	 the	definitions	of	 	and	
	do	not	change,	 implying	that	 	and	 .	Hence,	 for	each	

,

Likewise,	from	 	and	 	we	derive

for	every	 .

If	 the	 maximum	 is	 not	 attained,	 one	 can	 use	 a	 similar	 kind	 of	 argument	 as	 in
Theorem	10.2,	yielding

If	 the	minimum	 is	not	 attained,	we	have	 	 for	 all	 .	From
boundedness	of	 	and	uniform	boundedness	of	 ,	uniform	boundedness
of	 	follows.	☐
Remark	Note	 that	 if	 	 is	 nonnegative,	 	 is	 nonnegative	 as	 well;	 likewise,	
implies	 .

The	following	lemma	shows	that	the	solutions	 	and	 	depend	continuously	on	 .

Lemma	10.4	For	 	and	 ,	the	respective	solutions	 	and	 	to	the	integral
equation	(10.33)	satisfy	(for	some	constant	 )

Consequently,

The	same	holds	for	 .

For	the	proof	of	this,	which	relies	on	the	compactness	of	the	integral	operator,	we	refer
to	Geskus	and	Groeneboom,	1996.	We	now	arrive	at	the	crucial	lemma	in	this	treatment	of
the	smooth	functionals	for	interval	censoring	case	2,	which	shows	that	the	continuous	part
of	 the	 solution	 is	 absolutely	 continuous	with	 respect	 to	 Lebesgue	measure	 and	 that	 the
discrete	part	of	 the	solution	 is	absolutely	continuous	with	respect	 to	 the	discrete	part	of	

,	uniformly	for	 .

Lemma	10.5	Under	the	assumptions	stated	in	this	section,	we	have:

i.	 The	derivative	of	 	at	the	points	of	continuity	is	bounded,	uniformly	over	
and	the	points	of	continuity,	implying

if	 	and	 	are	in	the	same	interval	between	jumps.	 	is	independent	of	 	and	



.	The	same	holds	when	 	is	replaced	by	 .

ii.	 At	the	discontinuity	points	 	of	 ,

with	 	independent	of	 	and	 .

Proof

i.	 At	 each	 continuity	 point	 	 of	 	 we	 have,	 using	 left	 or	 right	 derivatives	 if
necessary:

Rewriting	gives,	using	 ,

By	 Lemma	 10.2,	 Lemma	 10.3	 and	 the	 conditions,	 the	 right	 hand	 side	 is	 bounded
uniformly	over	 	and	 .	Since	 the	part	between	brackets	on	 the	 left	hand	 side	 is
bounded	away	from	zero,	we	get	uniform	boundedness	of	 .

ii.	 At	each	point	of	 jump	 	of	 	we	get	a	similar	expression.	Defining	 	by	
,	we	have

with	 	given	by

Again	we	have	boundedness	uniformly	over	the	points	of	jump.



☐
Finally,	we	turn	back	to	the	solvability	of	 .

Theorem	10.3	Let	 	be	an	absolutely	continuous	distribution	function,	with	a	density	
bounded	away	from	zero,	say	 .	Let	the	conditions	(M1)	to	(M3),	(S1)	to	(S5)
and	(L1)	and	(L2)	be	satisfied.	Then	the	equation	 	is	solvable.

Proof	The	proof	follows	the	same	pattern	as	Lemma	10.5,	part	(i).	The	right	hand	side	of
equation	(10.42)	gets	an	extra	term,	since	 	is	no	longer	piecewise	constant:

which	is	bounded	uniformly	over	 .	So	we	get

implying	 .	☐

10.4	 Smooth	Functional	Estimation	in	the	Interval
Censoring	Case	2	Model
Having	derived	 important	properties	of	 the	 solutions	of	 crucial	 integral	 equations	 in	 the
previous	 section,	 these	 are	 now	 used	 to	 derive	 the	 asymptotic	 distribution	 of	 smooth
functionals	 within	 the	 interval	 censoring	 case	 2	 problem.	 Write	 	 for	 the	 (true)
underlying	 distribution	 function	 of	 the	 ,	 assumed	 to	 be	 continuous.	 Let	 	 be	 the
MLE	 of	 ,	 based	 on	 the	 sample	 of	 observations	

.	 It	 is	 obtained	 by	 maximizing	 the
likelihood

(10.44)

over	 the	 class	 of	 nondecreasing	 functions	 	 with	 	 and	 .	 The
factor	 	 is	 of	 no	 importance	 in	 the	 maximization	 procedure,	 and	 can	 be
neglected.

As	 also	 seen	 in	 Section	 4.7,	 only	 the	 values	 of	 	 at	 the	 observation	 times	 occur
explicitly	in	the	likelihood,	and	not	even	all	of	them	do	so.	If	 ,	 i.e.,	 ,
the	 corresponding	 	 does	 not	 appear	 in	 (10.44).	 Likewise,	 if	 ,	 the
corresponding	 	does	not	enter	in	the	likelihood.	The	remaining	observation	points	are
called	 the	 relevant	 observation	 points.	The	 order	 restriction	 on	 	makes	 it	 a	 function
that	is	piecewise	constant	and	uniquely	defined	on	large	parts	of	its	domain.	Generally	the
intervals	of	constancy	contain	several	observation	times.	The	only	places	where	 	is	not
uniquely	 defined	 are	 between	 two	 consecutive	 ordered	 relevant	 observation	 times	 for



which	 	has	a	different	value.	How	 	is	chosen	there	has	no	bearing	on	the	properties
that	follow.	Moreover,	one	can	show	that	the	total	length	of	these	intervals	shrinks	to	zero
as	the	sample	size	goes	to	infinity.

So,	without	loss	of	generality,	we	impose	 	to	be	piecewise	constant	everywhere,	and
only	to	have	jumps	at	the	observation	points.	Then	it	is	uniquely	determined	everywhere
between	the	first	and	the	last	point	of	jump.	The	EM	algorithm	described	in	Example	7.4,
Section	7.2,	or	the	ICM	algorithm	described	in	Example	7.6,	Section	7.3,	can	be	used	to
compute	 .	 Throughout	 we	 let	 	 and	

,	 with	 	 and	 	 is	 a	 point	 of	 jump	 of	
.	 So	 	 and	 	 are	 the	 first	 and	 last	 point	 of	 jump	 of	 ,

respectively.	Except	for	the	case	that	all	 s	are	one,	we	always	have	 	and	
	is	uniquely	determined	from	 	to	 .

At	the	other	end	we	may	end	up	with	a	degenerate	distribution,	having	 	at
all	observation	points.	This	occurs	if	the	largest	observation	time	corresponds	to	an	event
time	 beyond	 that	 observation	 time.	 For,	 if	 	 is	 this	 largest	 observation	 time,	

	in	the	likelihood	formula	should	be	larger	than	zero.	Then	the	MLE	is	not
uniquely	 determined	 beyond	 .	 The	 asymmetry	 between	 the	 left	 hand	 side	 and	 the
right	 hand	 side	 of	 	 is	 due	 to	 the	 right	 continuity	 of	 the	 MLE.	 However,	 for
properties	 concerning	 the	 limit	 behavior,	 this	 matter	 does	 not	 play	 any	 role,	 since	 the
probability	 of	 getting	 a	 defective	 distribution	 function	 tends	 to	 zero	 as	 ,	 as	 is
shown	in	the	following	lemma.

Lemma	10.6

Proof	Let	 	denote	the	largest	observation	time	 ,	and	let	 	be	the	corresponding
(unobservable)	 event	 time.	 Then	 we	 have,	 using	 integration	 by	 parts	 (see	 also
Exercise	10.18),

The	result	now	follows	from	Lebesgue’s	dominated	convergence	theorem.	☐
As	 seen	 in	 Section	 4.7,	 under	 uniqueness,	 necessary	 and	 sufficient	 conditions	 for	 a

function	 to	 maximize	 (10.44)	 can	 be	 derived.	 Proposition	 1.3	 in	 Groeneboom	 and
Wellner,	1992,	gives	an	alternative	formulation	for	these	conditions.	Given	a	sample



let	 	be	the	(random)	class	of	distribution	functions	 	satisfying

and	having	mass	concentrated	on	 the	 set	of	observation	points	augmented	with	an	extra
point	bigger	than	all	observation	points.	It	is	easily	seen	that	 	belongs	to	this	class.	For
distribution	functions	 ,	the	following	process	 	is	properly	defined:

(10.45)

where	 	 is	 the	 empirical	 probability	 measure	 of	 the	 points	
.

We	now	state	Proposition	1.3	in	Part	II	of	Groeneboom	and	Wellner,	1992.

Lemma	10.7	The	function	 	maximizes	(10.44)	over	all	 	if	and	only	if

(10.46)

and

(10.47)

Moreover,	 	is	uniquely	determined	by	(10.46)	and	(10.47).

It	 is	 actually	 a	 different	 formulation	 of	 Lemma	 4.7.	 The	 following	 corollary	 is	 an
immediate	consequence.

Corollary	10.1	Any	function	 	that	is	constant	on	the	same	intervals	as	 	satisfies



for	 .

Proof	 We	 use	 the	 following:	 if	 ,	
	 and	 ,	 then	

.	This	easily	follows	by	writing

Taking	 	and	 ,	and	using	Lemma	10.7,	we	get	from	this:

The	result	now	follows,	since	 	is	constant	on	the	intervals	 .	☐
Remark	Lemma	10.7	characterizes	maximization	of	 the	 likelihood,	 in	 contrast	with	 the
so-called	 self-consistency	 equation	 which	 only	 yields	 a	 necessary	 but	 not	 a	 sufficient
condition.	 If	 the	points	of	 jump	of	 the	MLE,	and	hence	 the	 intervals	of	constancy,	were
known,	 the	problem	would	be	reduced	 to	a	normal	maximization	problem	without	order
restrictions.	 Lemma	 10.7	 and	 Corollary	 10.1	 have	 the	 partial	 derivatives	 of	 the
loglikelihood	 appearing	 in	 the	 integrand.	 The	 fact	 that	 only	 the	 interval	 	 is
playing	 a	 role	 is	 caused	 by	 the	 extra	 restriction	 that	 the	 solution	 should	 have	 values
between	zero	and	one;	see	also	Section	4.7.

One	can	also	prove	Corollary	10.1	by	noting	that,	for	any	 ,

and	 by	 taking	 	 proportional	 to	 	 for	 ,	 and	
,	 elsewhere.	 One	 can	 interpret	 this	 result	 by	 saying	 that	 the

derivative	in	directions	absolutely	continuous	with	respect	to	 	is	zero.	This	variational
idea	is	also	omnipresent	in	Chapter	2.

We	 also	 have	 uniform	 consistency	 of	 the	 MLE	 of	 	 (see	 Groeneboom	 and
Wellner,	1992,	part	II,	Section	4.3):

(10.48)



In	 Section	 10.3,	 we	 defined	 the	 set	 	 as	 the	 set	 of	 piecewise	 constant	 distribution
functions	 	on	 ,	satisfying	condition	(S4):

(10.49)

For	 ,	we	now	define	the	function	 	by

(10.50)

and	similarly

(10.51)

We	will	also	need	the	functions	 ,	defined	by

(10.52)

for	 which	 Theorem	 2.2	 in	 Van	 de	 Geer,	 1996,	 specialized	 to	 our	 situation,	 holds.	 The
theorem	is	given	as	Lemma	10.8	for	easy	reference.

Lemma	 10.8	 Let	 	 denote	 the	 set	 ,	 and	 suppose	 that,	 for	 some	
,

(10.53)

where	 	 denotes	 the	 random	 -entropy	 of	 the	 set	 	 with	 respect	 to	 the
(random)	 -distance,	defined	by

Then	for

(10.54)

we	have

(10.55)

where	 	denotes	the	Hellinger	distance	between	 	and	 .



Theorem	2.2	 in	Van	de	Geer,	1996	 is	 in	 fact	more	general	 than	Lemma	10.8,	 but	we
only	need	the	present	version	of	the	result.	The	more	general	result	is	needed,	for	example,
for	 the	situation	where	 the	observation	 times	can	be	arbitrarily	close	 to	each	other	 (e.g.,
when	the	density	of	the	observation	times	is	strictly	positive	on	the	diagonal;	see,	for	this,
Geskus	and	Groeneboom,	1999).

We	obtain	the	following	corollary	of	Lemma	10.8.

Corollary	10.2	Let,	for	distribution	functions	 	and	 	 in	 ,	 	denote
the	 -distance,	defined	by

where	 	and	 	denote	the	marginal	distribution	functions	of,	respectively,	the	first	and
the	second	observation	time	of	the	pair	of	observation	times	 .	Then

i.	 The	Hellinger	distance	 	satisfies

ii.	 The	 -distance	 	satisfies

Proof	(i):	For	the	functions	 ,	defined	by	(10.52),	we	have

In	dealing	with	the	first	and	third	term	on	the	right	hand	side	of	(10.56)	we	use	arguments
similar	to	those	in	Section	3.1	of	Van	de	Geer,	1996.	The	functions

(10.57)

and



(10.58)

are	uniformly	bounded	monotone	functions.	We	have,	for	 ,

where	 	 is	 the	 random	 measure,	 defined	 by	
.	By	 the	Markov	 inequality	we	 have

for	 :

Hence,	if	we	denote	the	class	of	functions	 ,	by	
	and	the	class	of	functions	(10.57)	by	 	(also	for	 ),	we	get

using	 entropy	 results	 from	Ball	 and	 Pajor,	 1990,	 or	 Birman	 and	 Solomjak,	 1967.	 In	 a
similar	way,	denoting	the	class	of	functions

by	 ,	we	get

Finally,	denoting	the	class	of	functions

(10.59)

by	 ,	we	also	get

This	follows	from	the	fact	that,	by	(S3)	and	(S4),	the	denominator	of	the	function	(10.59)
is	bounded	away	 from	zero	on	 the	set	where	 the	distribution	 function	 	of	 the	pair	of
observation	 times	 	 puts	 its	 mass,	 together	 with	 the	 fact	 that	 the	 numerator	 of
(10.59)	contains	the	difference	of	uniformly	bounded	monotone	functions.

Thus,	denoting	the	class	of	functions	 	by	 ,	we	get



It	follows	that	we	can	apply	Lemma	10.8	with	 ,	and	(i)	now	follows.
(ii):	This	follows	from	(i)	and	the	inequalities	(see	Exercise	10.20)

☐
Before	formulating	the	main	theorem,	we	still	have	two	extra	conditions.

for	all	distribution	functions	 	with	support	contained	in	 ,	where	 	is
the	 -distance	between	the	distribution	functions	 	and	 	with	respect	 to	Lebesgue
measure	on	 .
(D2)				The	distribution	function	 	has	a	density	bounded	away	from	zero.	

We	are	now	ready	to	formulate	our	main	theorem.

Theorem	10.4	Let	the	following	conditions	on	 ,	 	and	 	be	satisfied:
(M1)	 to	 (M3),	 (S1)	 to	 (S3),	 (S5),	 (L1)	 and	 (L2)	 of	 the	 preceding	 section	 and	 (D1)	 and
(D2).
Then	we	have

(10.60)

Proof	Note	that	it	is	sufficient	to	show	that

(10.61)

Then	an	application	of	the	central	limit	theorem	yields	that	the	MLE	of	 	has	the
desired	asymptotically	optimal	behavior.	The	proof	consists	of	the	following	steps,	which
we	also	took	in	Section	10.2	for	the	current	status	model.

i.	 The	nonlinear	aspect	of	the	functional	is	negligible.
By	conditions	(S1)	and	(D1),	and	Corollary	10.2,	part	(ii),	we	have

ii.	 Transformation	to	the	observation	space	measure.
For	 ,	we	have	defined	the	functions	 	and	 	as	solutions	to	the	integral
equations	(10.33)	and	(10.35),	respectively.	These	solutions	can	be	used	to	extend	the
definition	of	the	canonical	gradient	to	 	for	 :



(10.62)

where	 	and	 	are	defined	to	be	zero	if	
or	 if	 ,	 respectively.	 (At	 points	 where	 denominator	 the	 middle	 part	 of
(10.62)	becomes	zero,	we	have	 	as	well,	so	there	we	need	not	define	
.)	 Note	 that	 these	 	 no	 longer	 have	 an	 interpretation	 as	 canonical	 gradient.	 In
Lemma	10.9	the	following	will	be	shown:

Recall	that	the	latter	integral	can	be	restricted	to	 .

iii.	 Use	that	 	is	the	MLE.
We	will	 use	 Corollary	 10.1.	 Since	 	 and	 	 are	 not	 piecewise	 constant,	 we
introduce	 the	 functions	 	 and	 .	 These	 functions	 are	 constant	 on	 the	 same
intervals	 	as	 .	The	values	of	 	and	 	on	 	is	defined

to	be	as	 	and	 ,	respectively,	where	

	is	defined	as	in	(10.25).	Let	 	denote	the	function	defined	in	(10.62),	but	with
	replaced	by	 .	Now	Corollary	10.1	says

yielding

(10.63)

The	second	term	will	be	shown	to	be	 	in	Lemma	10.10.	Note	that,	since	points	
	with	 	 do	 not	 occur,	 the	 area	 of	 integration	 of	 	 can	 be

taken	to	be	 	as	well.

iv.	 Asymptotic	variance	equals	information	lower	bound.
The	first	term	on	the	right	hand	side	of	(10.63)	is	further	split	into

The	last	term	will	be	shown	to	be	 	(Lemma	10.11).

This	finishes	the	proof.	☐
The	remaining	part	of	this	section	is	devoted	to	proving	the	lemmas	quoted	in	(i),	(iii)



and	(iv).

Lemma	10.9	For	any	 	we	have

Proof	Let,	 for	 ,	 	 be	 defined	by	 (10.29)	with	 adjoint	
,	defined	by	(10.30).	As	noted	after	definition	(10.30),	 the	structure	of	 	does	not

depend	 on	 .	 Furthermore,	 let	 	 denote	 the	 constant	 function	
.	 Under	 	 this	 transforms	 into	 the	 constant	 function	
	on	 .	We	have

If	we	can	prove

we	are	done.	This	is	shown	as	follows.

Recall	 that	 the	 integral	 equation	was	 obtained	 by	 taking	 derivatives	 in	 the	 equation	
	 for	 all	 ,	 with	 .	 Hence	 we	 get	 by

integrating:

For	the	constant	 	we	have

It	is	easily	seen	that	 	is	contained	in	 .	We	also	have

The	result	now	follows.	☐
Note	that	this	result	can	as	well	be	proved	by	writing	down	the	integrals.	However,	the

proof	 presented	 here	 suggests	 that	 a	 similar	 result	may	 hold	more	 generally.	 Basically,
what	is	needed	is:

	for	all	
,
.

The	next	lemma	shows	that	we	can	replace	 	by	the	function	 ,	belonging	to	the



range	of	the	score	operator	 .

Lemma	10.10

Proof	Let	the	function	 	be	defined	by

Using	the	decomposition	 ,	and

we	get

Applying	the	Cauchy-Schwarz	inequality	we	get:

By	Lemma	4	(i)	of	Geskus	and	Groeneboom,	1996,	and	(D2)	we	find

(10.64)

and	applying	Corollary	10.2	 finishes	 the	proof.	Property	 (10.64)	 is	 seen	 as	 follows.	 For
example,	 if	 the	interval	 	has	a	point	 	where	 	and	 	have	equal	value,	we
have



The	same	argument	is	used	for	the	other	two	situations,	with	 	replaced	by	 	or	
and	one	 	sign	replaced	by	a	 	sign.	☐
Lemma	10.11

Proof	Consider	the	class	of	functions

By	 the	 uniform	 consistency	 result	 (10.48)	 we	 know	 that	 	 with
probability	tending	to	one	as	 .	Hence	it	suffices	to	consider	distribution	functions
in	 .

Let	 	denote	the	random	 -entropy	with	respect	to	the	 -distance	 ,
defined	by

Then

(10.65)

This	is	shown	in	the	following	way.	The	function	 	can	be	written

where	 .	 By	 Lemma	 4	 of	 Geskus	 and
Groeneboom,	1996,	 the	 functions	 	 are	of	 uniformly	bounded	variation,	 for	 .
This	implies	that	the	functions	 	are	also	of	uniformly	bounded	variation,	for	 .

The	middle	part	of	 (10.66)	 is	composed	of	 the	 functions	 	 and	 ;	 both	 functions
belong	 to	 a	 class	 of	 functions	 of	 uniformly	 bounded	 variation.	 This	 is	 clear	 for	 the
distribution	 function	 	 and	 for	 the	 functions	 	 it	 again	 follows	 from	 Lemma	 4	 of
Geskus	 and	 Groeneboom,	 1996.	 In	 an	 approximating	 net	 for	 the	 functions	

	we	can	take	functions	of	the	type



where	 	is	an	approximand	to	 ,	and	 	and	 	are	approximands	to	 	such	that	
	( 	is	a	bracket	for	 ;	see	Section	3.4).	Here	we	do	not	assume

that	 	is	related	to	 	or	 	via	 	or	 ;	the	only	thing	needed	is
that	 	 belongs	 to	 a	 class	 of	 functions	 of	 uniformly	 bounded	 variation.	We	 have,	 if	

:

for	a	constant	 ,	since,	by	the	definition	of	 ,

Hence	we	get

Relation	(10.65)	now	follows	from	(10.66),	(10.67)	and	the	uniformly	bounded	variation
of	 the	 functions	 ,	 	 and	 ,	 for	 ,	 using	 the	 entropy	 results	 in	 Ball	 and
Pajor,	1990	or	Birman	and	Solomjak,	1967.	Thus	we	get	for	the	random	entropy	integral:

Using	uniform	consistency	of	 ,	Lemma	3	of	Geskus	and	Groeneboom,	1996,	and	the
uniform	boundedness	of	 ,	we	get

with	 probability	 one.	 The	 result	 now	 follows	 by	 a	 standard	 application	 of	 the	 chaining
lemma;	see,	e.g.,	Pollard,	1984,	p.	150	(15,	Equicontinuity	Lemma).	☐

Exercises
10.1	Show	that	in	the	normal	deconvolution	model	of	Section	10.1,



where	 	 is	 the	ML	 estimator	 of	 	 and	 	 is	 the	 expected	 value	 of	 the
(normal)	noise.	Hint:	in	Lemma	4.6,	necessary	and	sufficient	conditions	for	the	ML
estimators	 are	 derived	 by	 taking	 derivatives	 of	 the	 log	 likelihood	 in	 the	 vertex
directions	 .	There	are	also	other	ways	of	deriving	necessary	conditions
for	optimality.	Given	the	ML	estimator	 ,	it	is	obvious	that	for	 	the	function

is	 also	 a	distribution	 function.	Use	 this	 fact,	 a	variational	 argument	 and	 the	 crucial
relation	between	the	normal	density	and	its	derivative,

to	show	the	required	equality.

10.2	Consider	the	normal	deconvolution	model	with	standard	normal	noise,	so	 	and	
,	and	sample	size	 .

a)	 Show	 that	 the	 estimator	 of	 the	 variance	 of	 the	 underlying	 random	 variable	
given	in	(10.3)	reduces	to

b)	Compute	in	this	setting	the	probability	that	 	is	negative,	and	conclude	that	this
probability	is	nonzero.

10.3	 Let	 	 be	 uniformly	 distributed	 on	 .	 Show	 that	 its	 characteristic	 function	 is
given	by

so	that	 	for	 	with	 .

10.4	Show	that	the	random	variables	 ,	 ,	as	defined	in	(10.4),	are	independent
and	standard	uniformly	distributed	on	 .

10.5	Show	that	in	the	uniform	deconvolution	problem,	 	with	equality	if	and	only
if	 	corresponds	to	the	uniform	distribution	on	 .	Here	 	and	 	are	defined
in	(10.5)	and	(10.6).	Hint:	write	 	and	show	that

10.6	Let	 	have	probability	density	 	on	 ,	 	be	independent	of	 	with	density	
	on	 .	Define	 .	Show	that	the	conditional	densities	of	 ,	given

that	 	and	 	(or	 ),	are	given	by



Use	this	to	derive	the	second	equality	in	(10.9).

10.7	The	defining	property	of	the	adjoint	is	that

Show	that	 	and	 	defined	in	(10.9)	and	(10.10)	satisfy	this	equality.

10.8	Let	 	be	the	MLE	for	the	current	status	model,	discussed	in	Theorem	10.1.	Prove
that

under	the	conditions	of	Theorem	10.1.

10.9	Deduce	the	score	equation	(10.12).

10.10	Verify	the	two	conditional	expectations	given	in	(10.29)	and	(10.30).

10.11	 Let	 	 be	 defined	 as	 in	 (10.19).	 Show	 that,	 under	 the	 conditions	 of

Theorem	10.1,

Hint:	use	(10.19).

10.12	Verify	(10.20).

10.13	Why	does	(10.27)	hold?

10.14	Let	 	be	defined	by	(10.26).	Show	that

where	 	is	the	Hellinger	distance.

10.15	With	the	notation	introduced	in	Section	10.2,	show	that

10.16	 Deduce,	 using	 ,	 from	 Exercise	 10.15	 that	 in	 the	 context	 of
Section	10.2

(10.68)



This	implies	(10.23).

10.17	Show	that	condition	(S1)	in	Section	10.3	implies	the	function	 	defined	in	(10.34)
to	be	bounded.

10.18	In	the	context	of	the	interval	censoring	case	2	model,	show	that	the	probability	that
the	ML	estimator	based	on	a	sample	of	size	 	is	defective	can	be	represented	as

Here	 	 is	 the	distribution	 function	of	 the	event	 times	 	and	 	 is	 the	marginal
distribution	function	of	 	(with	corresponding	density	function	 ).	Hint:	observe
that	the	ML	estimator	is	defective	if	and	only	if	the	observation	indicators	 	and	

	corresponding	to	the	index	 ,	with	the	maximal	value	of	 ,	equal	zero.

10.19	 Show	 that	 the	 formulations	 of	 the	 necessary	 and	 sufficient	 conditions	 for	 the
(unique;	so	piecewise	constant	with	jumps	only	possible	at	the	recorded	observation
times)	 MLE	 in	 the	 case	 2	 interval	 censoring	 problem	 given	 in	 Lemma	 10.7	 and
Lemma	4.7	are	equivalent.

10.20	For	 ,	show	that
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11
Pointwise	Asymptotic	Distribution	Theory

for	Univariate	Problems

In	Chapter	3,	pointwise	asymptotic	results	are	derived	for	estimators	in	some	of	the	basic
models	 involving	 monotonicity	 as	 described	 in	 Chapter	 2.	 In	 this	 chapter,	 further
asymptotic	pointwise	results	will	be	derived,	now	for	estimators	introduced	in	Chapter	4
and	Chapter	 8.	 The	 first,	 in	 Section	 11.1,	 gives	 the	 asymptotic	 distribution	 of	 the	 least
squares	estimator	of	a	convex	decreasing	density,	as	introduced	in	Section	4.3.	This	needs
to	 be	 derived	 solely	 from	 the	 characterization	 of	 the	 estimator,	 since	 an	 explicit
representation	 of	 the	 estimator	 is	 lacking.	 The	 approach	 is	 based	 on	 the	 asymptotic
behavior	of	the	characterization.	Section	11.2	is	concerned	with	an	interesting	and	useful
tail	bound	for	the	maximum	likelihood	estimator	in	the	current	status	model	introduced	in
Section	2.3.

In	Section	11.3,	a	 local	variant	of	smooth	 functional	methods	 is	applied	 to	derive	 the
asymptotic	pointwise	distribution	of	the	smoothed	maximum	likelihood	estimator	(SMLE)
in	the	current	status	model	as	introduced	in	Section	8.1.	The	 	rate	of	convergence	for
the	plain	MLE	of	the	distribution	function	derived	in	Section	3.8	is	replaced	by	the	rate	

	 for	 the	SMLE.	For	 the	 interval	censoring	case	2	model	of	Section	4.7,	 the	SMLE
and	the	maximum	smoothed	likelihood	estimator	(MSLE)	are	considered	in	Section	11.4
and	 Section	 11.5.	 Under	 the	 separation	 of	 inspection	 times	 hypothesis,	 the	 rates	 of
convergence	 of	 these	 estimators	 are	 shown	 to	 be	 ,	 just	 as	 in	 the	 current	 status
situation.

Finally,	 in	Section	11.6,	 the	problem	of	estimating	a	nondecreasing	hazard	 rate	under
right	censoring	as	introduced	in	Section	2.6	is	considered.	Also	in	this	setting	local	smooth
functional	theory	is	applied	to	derive	the	asymptotic	distribution	on	the	SMLE.

11.1	 The	LS	Estimator	of	a	Convex	Density
The	 least	 squares	estimator	of	a	convex	decreasing	density	as	 introduced	and	studied	 in
Section	4.3	cannot	be	expressed	in	terms	of	the	empirical	distribution	as	easily	as,	e.g.,	the
maximum	 likelihood	 (or	 least	 squares)	 estimator	 of	 a	 decreasing	 density.	 The
characterization	in	Lemma	4.4	is	rather	implicit.	Consequently,	methods	based	on	explicit
constructions	for	the	estimators	as	applied	in	Chapter	3	cannot	be	applied	to	establish	the
asymptotics	 of	 this	 estimator.	 Instead,	 the	 asymptotic	 distribution	 of	 	 is	 derived	 by
taking	its	characterization	to	the	limit.

An	important	result	we	will	not	prove	here	concerns	the	existence	of	a	joint	distribution
that	 is	 related	 to	Brownian	motion.	The	 asymptotic	 distributions	of	 	 and	
will	be	expressed	in	terms	of	this	distribution.	In	fact,	this	invelope	of	integrated	Brownian
Motion	 	 is	 a	 process	 that	 takes	 a	 prominent	 role	 the	 asymptotic	 behavior	 of
estimators	of	convex	functions	and	can	in	that	sense	be	compared	to	the	greatest	convex



minorant	 of	 Brownian	 motion	 	 (see	 Section	 3.9)	 in	 the	 context	 of	 estimating
monotone	functions.

Theorem	 11.1	 (Theorem	 2.1	 and	 Corollary	 2.1(ii)	 in	 Groeneboom	 et	 al.,	 2001b).	 Let	
	 where	 	 is	 standard	 two-sided	 Brownian	 motion	 starting

from	 ,	 and	 let	 	 be	 the	 integral	 of	 ,	 satisfying	 .	 Thus	
	 for	 .	 Then	 there	 exists	 an	 almost	 surely	 uniquely

defined	random	continuous	function	 	(invelope	of	integrated	Brownian	motion	 )
satisfying	the	following	conditions:

i.	 The	function	 	is	everywhere	above	the	function	 :

(11.1)

ii.	 	 has	 a	 convex	 second	 derivative,	 and,	 with	 probability	 one,	 	 is	 three	 times
differentiable	at	 .

iii.	 The	function	 	satisfies

(11.2)

Note	that	whenever	inequality	(11.1)	holds	strictly	on	an	interval,	(11.2)	implies	that	on
this	interval	 	has	to	be	constant,	meaning	that	 	will	be	a	cubic	polynomial	on	this
interval.

In	fact,	 the	second	derivative	of	 	gives	the	random	function	that	is,	after	rescaling,
the	asymptotic	 form	of	 the	convex	 least	 squares	estimator	and	 the	 third	derivative	gives
the	piecewise	constant	monotone	estimate	that	is	the	derivative	of	this	estimator.	A	picture
of	the	realization	of	the	process	 	and	the	associated	process	 	is	given	in	Figure	11.1.



	

Figure	11.1	 The	functions	 	(solid)	and	 	(dashed)	for	standard	two-sided	Brownian
motion	on	 .

The	 limit	 result	we	will	 discuss	 in	 this	 section	 is	Theorem	11.2.	 In	 contrast	with	 the
limit	 distribution	 of	 the	 Grenander	 estimator,	 we	 establish	 here	 the	 distributional
convergence	of	a	pair	of	estimators,	the	convex	density	itself	and	its	derivative.

Theorem	11.2	Suppose	that	 	is	a	convex	decreasing	density	on	 	and	 	is	such
that	 	 and	 that	 	 is	 continuous	 in	 a	 neighborhood	 of	 .	 Then	 the	 least
squares	estimator	 ,	studied	in	Section	4.3,	satisfies

where	 	are	the	second	and	third	derivatives	at	 	of	the	invelope	 	of
	as	described	in	Theorem	11.1	and

(11.3)

The	derivatives	 	may	be	interpreted	as	left	or	right	derivatives.

Remark	As	noted	in	Theorem	11.2,	the	derivatives	 	may	be	interpreted	as	left	or
right	 derivatives.	 To	 avoid	mentioning	 this	matter	 again	 in	 the	 following	 text,	 we	will,



somewhat	arbitrarily,	settle	on	taking	the	right	derivatives	in	the	sequel.

Remark	 From	 Exercise	 6.13,	 an	 asymptotic	 lower	 bound	 to	 the	 minimax	 risk	 for
estimating	 	 at	 a	 fixed	 point	 can	 be	 derived.	 If	 the	 approach	 used	 in	 Example	 6.2	 is
followed,	this	bound	equals	(apart	from	a	constant	not	depending	on	 )	 .	See,
e.g.,	Theorem	5.1	in	Groeneboom	et	al.,	2001a.	This	phenomenon	can	also	be	seen	in	the
context	of	estimating	a	decreasing	density	using	the	Grenander	estimator.	Compare	to	this
end	 the	 lower	 bound	 obtained	 in	 Example	 6.2	 and	 the	 asymptotic	 distribution	 of	 the
Grenander	estimator	given	in	(3.12).

As	 usual,	 we	 first	 consider	 the	 rate	 of	 convergence	 that	 can	 be	 expected.	 Define	 a
localized	 -process	by

and	a	localized	 -process	by

where

Noting	that

where

we	want	to	show	that	 	is	tight.	We	have

which	will	be	 ,	provided	we	can	show	that

(11.6)

where	 	is	the	last	jump	point	of	 	before	 ,



(11.7)

and

(11.8)

For	 	a	similar	calculation	works.

However,	before	we	start	proving	(11.6)	to	(11.8),	we	prove	a	 technical	 lemma	in	 the
spirit	of	Kim	and	Pollard,	1990.	As	in	Section	4.3,	we	denote	by	 	the	set	of	changes	of
slope	of	 .

Lemma	11.1	Let	 	be	an	interior	point	of	the	support	of	 .	Then:	Let,	for	 ,
the	random	function	 	be	defined	by

(11.9)

Then	 there	 exist	 constants	 	 and	 	 such	 that,	 for	 each	 	 and	 each	
satisfying	 :

(11.10)

Proof	Note	that

where

Since	the	collection	of	functions

is	a	VC-subgraph	class,



for	 	 in	some	appropriate	neighborhood	 	of	 .	 It	now	follows	from
Theorem	2.14.1	in	Van	der	Vaart	and	Wellner,	1996,	that

for	small	values	of	 	and	a	constant	 .

Hence	there	exists	a	 	such	that,	for	 ,	 	and	 :

for	constants	 ,	 independent	of	 .	The	result	now	follows.
See	also	Exercise	11.1.	☐
With	the	help	of	Lemma	11.1,	we	can	now	prove	the	first	tightness	result	(11.6)	needed.

Lemma	11.2	Let	 	be	a	point	at	which	 	has	a	continuous	and	strictly	positive	second
derivative.	 Let	 	 be	 an	 arbitrary	 sequence	 of	 numbers	 converging	 to	 	 and	 define	

	and	 .	Then,

Proof	Let	 	be	the	last	point	of	change	of	slope	of	 	 	and	 	the	first	point	of
change	of	slope	of	 	 .	Note	that,	since	the	number	of	changes	of	slope	is	bounded
above	by	 	by	Lemma	4.1,	we	can	only	have	strict	changes	of	slope.	Moreover,	let	 	be
the	midpoint	of	the	interval	 .	Then,	by	the	characterization	of	Lemma	4.2:

Using	(4.13),	this	can	be	written:

(11.13)

Replacing	 	and	 	by	their	deterministic	counterparts,	and	expanding	the	integrands
at	 ,	we	get	for	large	 :

using	 the	 consistency	 of	 	 to	 ensure	 that	 	 belongs	 to	 a	 sufficiently	 small



neighborhood	 of	 	 to	 allow	 this	 expansion.	 But,	 by	 Lemma	 11.1	 and	 the	 inequality
(11.13),	this	implies:

Hence:

☐
Having	established	the	order	of	the	difference	of	successive	points	of	changes	of	slope

of	 ,	we	can	 turn	 the	consistency	result	 into	a	 rate	 result	 saying	 that	 there	will,	with
high	probability,	be	a	point	in	an	 	neighborhood	of	 	where	 the	difference
between	the	estimator	and	the	estimand	will	be	of	order	 .	Lemma	11.3	has	the	exact
statement.

Lemma	 11.3	 Suppose	 ,	 ,	 and	 	 is	 continuous	 in	 a
neighborhood	of	 .	Let	 	be	a	sequence	converging	to	 .	Then	for	any	 	there
exists	an	 	and	a	 	such	that	the	following	holds	with	probability	bigger	than	

.	 There	 are	 bend	 points	 	 of	 	 with	
	and	for	any	of	such	points	we	have	that

Proof	Fix	 	and	observe	 that	Lemma	11.2,	applied	 to	 the	sequences	 ,
gives	that	 there	is	an	 	such	that	with	probability	bigger	 than	 ,	 there	exist
jump	 points	 	 and	 	 of	 	 satisfying	

	for	all	 .

Let	 	be	such	points	of	jump.	Fix	 	and	consider	the	event

(11.14)

On	this	set	we	have:

On	the	other	hand,	the	equality	conditions	in	(4.9)	imply:



Therefore,	by	(11.14),

(11.15)

But	the	collection	of	functions

is	a	VC-subgraph	class	of	functions	with	envelope	function

so	that

(11.16)

for	 	in	some	appropriate	neighborhood	 	of	 .	Therefore,	we	get

So	the	probability	of	(11.14)	can	be	made	arbitrarily	small	by	taking	 	sufficiently	big.	☐
Using	 Lemma	 11.3	 monotonicity	 of	 the	 derivatives	 of	 the	 estimators	 and	 the	 limit

density	 ,	we	obtain	the	local	 	consistency	of	 the	density	estimators	and	
consistency	of	their	derivatives,	that	is,	the	second	tightness	results	(11.7)	and	(11.8)	 (see
Exercise	11.2).

Lemma	 11.4	 Suppose	 ,	 ,	 and	 	 is	 continuous	 in	 a
neighborhood	of	 .	Then	for	each	 ,

(11.17)

and,	interpreting	 	as	left	or	right	derivative,

(11.18)

We	now	have	localized	the	process,	giving	the	asymptotic	distribution	of	 ,	which	is
an	important	step	in	giving	the	proof	of	Theorem	11.2.	However,	unlike	the	situation	with
the	Grenander	 estimator	 and	 the	 current	 status	model,	 the	 limit	 situation	 is	 different.	 In



case	of	 the	Grenander	estimator	and	 the	MLE	in	 the	current	status	model,	we	get	 in	 the
limit	that	the	solution	on	 	coincides	with	the	solution	on	a	finite	interval	around	zero.
For	 the	 solution,	 giving	 the	 asymptotic	 distribution	 of	 ,	 it	 is	 not	 clear	 that	 a	 similar
situation	occurs.	Here	it	seems	that	the	points	of	touch	of	the	invelope	and	the	integrated
Brownian	motion	 	may	change	for	the	solution	on	each	finite	interval	 ,	if	we
vary	 .	 But	 it	 is	 important	 to	 realize	 that	 the	 solutions	 on	 a	 finite	 interval	
converge	 to	 a	 unique	 solution,	 as	 ,	 as	 is	 proved	 in	Groeneboom	 et	 al.,	 2001b.
Using	 this	 fact,	we	get	 by	 the	 localization	 lemmas	 just	 proved	 the	 limit	 result	Theorem
11.2.

Note	 that	 with	 the	 Grenander	 estimator	 the	 rate	 is	 ,	 if	 the	 density	 is	 strictly
decreasing,	 and	 that	 for	 the	 estimator	 of	 a	 convex	 function,	 the	 rate	 is	 	 for	 the
convex	 function	 itself	 and	 	 for	 its	 (piecewise	 constant)	 derivative,	 so	 the	 rates
encapsulate	the	rate	for	the	Grenander	estimator.

The	 proof	 of	 Theorem	 11.1	 is	 given	 in	 Theorem	 2.1	 and	 Corollary	 2.1(ii)	 in
Groeneboom	et	al.,	2001b.	The	main	issue	is	to	prove	the	existence	of	a	unique	invelope,
which	 is	 a	 cubic	 spline	 lying	 inside	 the	 integrated	Brownian	motion	 	 and	having	a
convex	second	derivative.	It	is	conjectured	that	the	points	of	touch	of	the	invelope	and	the
integrated	 Brownian	 motion	 	 are	 isolated,	 but	 this	 still	 has	 not	 been	 proved.	 At
present,	 there	 is	 still	 no	 analytical	 information	 on	 the	 form	 of	 the	 limit	 distribution
available.

Remark	Simulations	indicate	that	the	density	of	the	distribution	of	the	second	derivative
of	 the	 invelope	 at	 zero	 (and	 hence	 the	 limit	 distribution	 of	 the	 convex	 least	 squares
estimate	or	convex	density	estimate)	is	not	symmetric.

11.2	 Tail	Bounds	for	the	MLE	in	the	Current	Status	Model
Consider	the	current	status	model	as	introduced	in	Section	2.3,	and	denote	the	underlying
distribution	of	the	event	times	by	 	and	the	MLE	of	 	based	on	a	sample	of	size	 	by	

.	It	is	well-known	that	 	for	 ,	see,	e.g.,	Van	de
Geer,	2000,	Example	7.4.3.	One	can	prove	this	by	first	proving	that	the	Hellinger	distance
is	 	and	then	deducing	from	this	the	result	for	the	 -distance,	for	
.	The	proof	for	the	Hellinger	distance	uses,	for	example,	an	inequality	of	the	type

(11.19)

where	 	is	the	Hellinger	distance	and

Inequality	 (11.19)	 is	 given	 in	 Lemma	 4.1	 of	 Van	 de	 Geer,	 2000,	 and	 called	 a	 basic
inequality,	 see	 (3.4)	 for	 a	 related	 inequality.	 The	 result	 for	 the	 Hellinger	 distance	 then



follows	from	Theorem	7.4	in	Van	de	Geer,	2000,	by	standard	empirical	process	theory	for
classes	 of	 uniformly	 bounded	 monotone	 functions;	 see	 Example	 7.4.3	 in	 Van	 de
Geer,	2000.

However,	 for	 later	 purposes	 in	 connection	 with	 the	 smoothed	 maximum	 likelihood
estimator	(the	SMLE),	one	would	like	to	have	more	precise	information.	In	particular,	the
following	result	is	needed,	at	an	interior	point	 :

(11.20)

if	 ,	as	 .	This	does	not	 follow	from	the	global	bound	on	 ;
see	Exercise	11.3.

Now	let	 	be	the	density	of	 ,	with	support	 .	Assuming	that

(11.21)

it	follows	from	Durot,	2007,	that	for	 ,

The	bound	(11.20)	is	unfortunately	not	implied	by	this	result,	since	it	does	not	cover	the
situation	 .	We	 now	 set	 out	 to	 discuss	 a	 similar	 result	 for	 the	 	 bound,	 for	 all	

.	This	can	be	done	by	an	extension	of	the	methods	used	in	the	proof	of	Lemma	3.5.
We	assume	(11.21)	to	hold.

Note	that,	by	Exercise	11.4	applied	to	 ,

and,	that,	by	the	switch	relation	(3.36),

Therefore,

Also,	defining	 	as	the	inverse	of	 ,	that	is

it	follows	that



By	(11.21),	 	is	uniquely	determined	for	 .

We	 have	 the	 following	 theorem,	 which	 gives	 a	 stronger	 version	 of	 Lemma	 2	 in
Durot,	2007,	in	the	present	situation.

Theorem	 11.3	 Suppose	 	 has	 a	 continuous	 density	 	 with	 support	 	 that
satisfies	 (11.21).	 Also	 suppose	 that	 the	 observation	 distribution	 	 has	 a	 continuous
derivative	 	that	stays	away	from	zero	and	infinity	on	 .	Then	there	exist	constants

	such	that,	for	every	 	and	 ,

(11.23)

In	the	proof	of	this	result	we	use	the	following	lemma.	Here	 	denotes	the	empirical
measure	 of	 the	 observations	 ,	 	 and	 	 the	 empirical	 distribution
function	of	the	observed	 ,	 .

Lemma	11.5	Let	 	and	 	be	defined	by

and	 let	 .	 Then	 there	 exist	 constants	 	 such	 that,	 for	 each	
	 ,

Likewise,	there	exist	constants	 	such	that,	for	each	 ,

Proof	We	only	prove	(11.24),	since	 the	proof	of	 (11.25)	 is	 similar.	We	get	 from	Doob’s
submartingale	inequality	and	next	Markov’s	inequality,	conditionally	on	 ,



This	is	often	called	exponential	centering.	Furthermore,

Hence	the	conditional	upper	bound	on	the	right	hand	side	of	(11.26)	can	be	written:

Taking	the	expectation	over	 ,	the	upper	bound	becomes:



Therefore,

and

Hence	 it	 follows	 from	 the	 inequality	 ,	 for	 all	 ,	 that	 the
unconditional	upper	bound	(11.24)	is	bounded	above	by



Let	 .	 Then,	 by	 the	 assumptions	 of	 Theorem
11.3,	 	and	the	upper	bound	(11.25)	is	bounded	above	by

using

The	integrands

and

have	a	uniform	upper	bound	 ,	as	 	and	 .	Hence,	 for	



Let	 .	By	Exercise	11.5,	the	function

(11.29)

attains	its	maximum	at	the	point

At	this	point	we	have:

where	we	use	 	 again	 in	 the	 inequality.	 So,	 going	 back	 to	 (11.26),	 the
conclusion	is:

This,	in	turn,	implies



We	similarly	find	that	there	exist	constants	 	so	that

The	statement	of	the	lemma	now	follows.	☐
We	 now	 proceed	 with	 the	 proof	 of	 Theorem	 11.3.	 Let	 .	 If	

	 there	 exists	 a	 	 such	 that	 	 and	
.	Hence

We	now	get

where	 .	By	(11.24),	this	is	bounded	above	by

This	is	obviously	equivalent	to	an	upper	bound	of	the	form	 	for	the	probability
that	 ,	 for	 .	 Since	 a	 similar	 bound	 holds	 for	 the
probability	that	 ,	Theorem	11.3	now	follows.

Remark	Theorem	2.1	of	Groeneboom	et	al.,	1999,	says	that

(11.31)

for	 processes	 similar	 to	 the	 processes	 	 and	 	 used	 here,	 but	 connected	 to	 the
Grenander	 estimator	 of	 a	 decreasing	 density	 .	 Here	 the	 positive	 constant	 	 only
depends	on	the	density	 ,	but	not	on	 	(see	also	Section	13.1,	Theorem	13.2).

Using	Theorem	11.3	we	get	from	(11.22)	that

(11.32)

for	a	constant	 ,	uniformly	in	the	chosen	point	 .	By	similar	methods,	it
can	be	shown	that



(11.33)

for	 a	 constant	 ,	 uniformly	 in	 the	 chosen	 point	 .	 Combining	 these
inequalities	leads	to

(11.34)

for	a	constant	 ,	for	any	 .	Moreover,	by	Exercise	11.6,	(11.20)	also	follows	from
(11.32)	and	(11.33).

11.3	 The	SMLE	in	the	Current	Status	Model
In	Section	8.1	and	8.5,	 smooth	estimators	are	 introduced	 for	 the	distribution	 function	of
the	 event	 times	 in	 the	 current	 status	model.	One	 of	 these,	 the	 SMLE	of	 Section	 8.1,	 is
defined	 by	 first	 computing	 the	 ordinary	 ML	 estimator	 	 (see	 Section	 2.3)	 and	 then
smoothing	 this	 using	 a	 smoothing	 kernel.	 More	 specifically,	 we	 define	 the	 SMLE	

	at	points	 	away	from	the	boundary	by

(11.35)

where	 	is	an	integrated	kernel,	defined	by

(11.36)

and	 	 is	 a	 symmetric	 kernel	 of	 the	 usual	 kind,	 used	 in	 density	 estimation.	 We	 will
assume	that	 	has	support	 .

A	 tricky	 part	 of	 the	 theory	 is	 the	 handling	 of	 the	 boundary.	Denoting	 the	 interval	 of
support	of	 the	distribution	corresponding	 to	 	by	 ,	we	 propose	 to	 do	 this	 via	 an
asymmetric	version	of	Schuster’s	method	(see	Schuster,	1985),	by	defining

(11.37)

for	 the	 estimation	 of	 the	 distribution	 function.	 The	 corresponding	 density	 estimate	 is
obtained	by	differentiating	with	respect	to	 :



(11.38)

and	 equals	 the	 boundary	 correction	 in	 Schuster,	 1985.	 Note,	 however,	 that	 the	 SMLE,
boundary	corrected	via	the	asymmetric	Schuster	method,	has	a	bias	of	order	 	(see
the	following),	while	density	estimate,	corrected	by	Schuster’s	method,	has	a	bias	of	order	

,	unless	the	derivative	of	the	density	is	zero	at	the	boundary	(known	as	the	shoulder
condition).

Note	that	(11.37)	reduces	to	(11.35)	if	 ,	and	that

using	 ,	 if	 	and	 .	A	picture	 of	 the
MLE,	together	with	the	SMLE,	both	uncorrected	and	corrected	for	the	boundary	effects,
using	the	asymmetric	Schuster-type	method,	is	shown	in	Figure	11.2.

	

Figure	11.2	 MLE	(solid)	and	SMLE	(dashed)	for	a	sample	of	size	 	for
current	status	data	from	the	distribution	function	 	(dotted)	on	

,	taking	the	bandwidth	 	and	without	(a)	and	with	(b)	the	boundary
correction.	The	observation	distribution	is	uniform.

The	bias	for	 	is	given	by:

Integrating	by	parts	yields,	again	for	 :



Let	 .	Then	the	bias	equals:

if	 	is	twice	differentiable	on	 ,	uniformly	for	 .	Note	that	the	bias	is
of	order	 	at	 .

It	can	be	proved	in	a	similar	way	that	the	bias	of	the	estimate	defined	by	(11.37)	is	also
of	order	 	uniformly	for	 ,	so	we	get	that	the	bias	is	of	order	
uniformly	for	 .	This	means	 that,	 in	 fact,	 the	modified	SMLE	 ,	 as
defined	by	(11.37),	converges	pointwise	at	rate	 	to	 	for	each	
(but	 not	 uniformly	 in	 ,	 because	 we	 have	 to	 deal	 with	 Gumbel-type	 extreme	 value
behavior	if	we	look	at	the	maximum	distance	to	 ,	for	 ).

The	 way	 the	 pointwise	 distribution	 theory	 for	 this	 estimator	 can	 be	 treated	 is	 the
prototype	of	local	smooth	functional	theory:	for	sufficiently	large	bandwidth	the	estimator
will	 be	 asymptotically	 normal	 and	 the	 local	 behavior	 of	 the	MLE,	with	 the	 nonnormal
limit	distribution,	will	be	washed	away	by	the	smoothing	operation.	To	be	more	specific,
from	Section	3.8	it	is	known	that	the	behavior	of	the	ML	estimator	is	determined	locally	in
neighborhoods	with	lengths	of	order	 .	 In	 those	 intervals,	estimates	based	on	local
averages	will	 not	be	monotone.	 In	 this	 section,	neighborhoods	with	 length	of	 the	order	

	are	used.	Local	averages	over	this	type	of	neighborhoods	tend	to	be	monotone.	See
also	the	heuristic	reasoning	for	the	(related)	Grenander	estimator	given	in	Section	3.2.

We	 now	 assume	 for	 simplicity	 that	 ,	 where	 	 is	 the	 point	 at
which	 we	 want	 to	 study	 the	 asymptotic	 behavior	 of	 the	 SMLE,	 and	 first	 define	 the
(canonical)	score	function	or	efficient	influence	function	in	the	hidden	space:

for	 a	 symmetric	 positive	 kernel	 	 with	 support	 .	 The	 images	 of	 the	 score
operator	in	the	observation	space	are	given	by:



(11.40)

where	 	is	a	score	in	the	hidden	space.	Note	that

and

With	this	notation,	we	want	to	solve	the	equation

where	 	is	the	density	of	the	observation	time	distribution.	If	 	is	a	solution	of	this
equation,	we	get:

where	 	 is	 the	underlying	probability	measure	for	 the	pairs	 .	This	 is	 the	first
step	 in	 reducing	 the	 integral	

	to	an	integral	in	the
observation	space	for	which	asymptotic	normality	can	be	proved.

Lemma	11.6	The	equation	(11.41)	is	solved	by

Proof	We	have:



using	integration	by	parts	in	the	last	step.	☐
As	in	the	treatment	of	the	global	smooth	functionals	in	Section	10.2,	we	now	define

(11.43)

Note	that	 	no	longer	has	the	interpretation	(11.40).	But	we	retain	relation	(11.42),
that	is,	we	have:

where	 	is	the	underlying	probability	measure	for	the	pairs	 .	We	now	turn	this
into	a	representation	as	an	integral	with	respect	to	the	empirical	measure	 	in	the
observation	space.

We	have,	by	(11.43),

We	next	define,	analogous	to	the	treatment	in	Section	10.2,

(11.45)

and



where	the	 	are	successive	points	of	jump	of	 .	Note	that	we	follow	exactly	the	same
method	of	proof	as	used	for	the	global	smooth	functional	estimation;	see	also	Figure	10.1.

We	then	get,	by	the	equality	condition	in	the	characterization	(8.15)	of	the	MLE:

Furthermore,

So	we	find:

and	the	asymptotic	behavior	of	 	will	(almost)	have	been	pinned	down	if	we	can
deal	with	the	remainder	term

(11.48)

By	the	Cauchy-Schwarz	inequality,



where	 	denotes	smaller	than	or	equal	to,	up	to	a	fixed	positive	multiplicative	constant,
and

By	the	choice	of	the	function	 ,

(compare	 this	 with	 the	 treatment	 in	 Section	 10.2),	 and	 hence,	 by	 the	 Cauchy-Schwarz
inequality	and	(11.34),

Since,	for	the	same	reason,

we	get	from	(11.49)

So	we	get,	if	 ,

Hence	we	have	obtained,	using	(11.46),

that	is,	we	have	an	asymptotic	representation	of	the	relevant	functional	in	the	hidden	space
by	an	empirical	integral	in	the	observation	space.	It	is	proved	in	Lemma	A.7	on	p.	382	of
Groeneboom	et	al.,	2010,	using	entropy	methods	from	empirical	process	theory,	that

and



(this	 is	 indeed	 what	 is	 proved	 in	 Lemma	 A.7	 on	 p.	 382	 of	 Groeneboom	 et	 al.,	 2010,
although	in	the	statement	of	the	lemma	the	 	is	printed	as	 ).	Combining	these
results	yields

where	 	is	defined	by	(11.45).

So	we	obtain:

and,	 if	 ,	 then	 	 is
asymptotically	normal	with	mean	zero	and	variance

for	each	 .

Remark	 We	 note	 that	 the	 argument	 for	 treating	 the	 remainder	 term	 (11.48)	 in
Groeneboom	et	al.,	2010,	is	different.	Apart	from	the	fact	that	the	boundary	correction	is
not	incorporated,	it	is	used	that

and	that

where	 	and	 	are	successive	point	of	jump	of	 	(see	(2.3)	and	(2.4)	on	p.	355	of
Groeneboom	 et	 al.,	 2010).	 The	 argument	 is	 replaced	 here	 by	 an	 -bound	 and	 the
Cauchy-Schwarz	inequality,	using	Theorem	11.3.	In	 this	way	the	 treatment	of	 the	global
and	local	smooth	functional	theory	becomes	completely	similar.

The	preceding	leads	to	the	following	theorem	(Theorem	4.2	on	p.	365	of	Groeneboom



et	al.,	2010).

Theorem	11.4	Let	the	distribution	corresponding	to	 	have	support	 	and	let	
have	a	density	 	staying	away	from	zero	on	 .	Furthermore,	let	 	have	a	density
	with	a	support	that	contains	 	and	let	 	stay	away	from	zero	on	 ,	with	a

bounded	derivative	 .	Finally,	let	 	be	an	interior	point	of	 	such	that	 	has	a
continuous	derivative	 	at	 .	Then,	if	 	and	the	SMLE	 	is	defined
by	(11.35),

where

and

Remark	In	Theorem	4.2	on	p.	365	of	Groeneboom	et	al.,	2010,	there	is	the	extra	condition
that	 .	This	condition	is	not	needed	for	the	validity	of	Theorem	11.4,	but	only	to
ensure	that	a	bandwidth	of	order	 	is	the	optimal	choice.	If	 ,	the	squared
bias	 vanishes	with	 respect	 to	 the	 variance	 and	 in	 that	 situation	 one	 can	 choose	 a	 larger
bandwidth	 to	 obtain	 a	 faster	 convergence	 than	 order	 .	 For	 more	 details,	 see
Groeneboom	et	al.,	2010.

Theorem	11.4	was	used	 in	Section	9.5,	 in	constructing	pointwise	confidence	 intervals
using	 the	 classical	 bootstrap	 by	 resampling	 with	 replacement	 from	 the	 sample	

	 .	It	is	not	immediately	obvious	that	the	classical	bootstrap	will
work.	There	is,	for	example,	the	result	in	Kosorok,	2008a,	which	states	 that	 the	classical
bootstrap	is	inconsistent	for	the	MLE	itself.	But	(11.51)	tells	us	(see	Exercises	11.12	and
11.13)	that	the	SMLE	is	asymptotically	equivalent	to

and	this	toy	estimator	satisfies	the	conditions	that	allow	us	to	use	the	classical	bootstrap.

The	 sample	 variance	 of	 the	 toy	 estimator	 (11.53)	 (it	 is	 a	 toy	 estimator	 because	 it
contains	 the	 density	 	 and	 the	 distribution	 function	 ,	 which	 have	 to	 be	 estimated,
something	we	do	not	have	to	do	if	the	SMLE	is	used)	is	given	by



Note	that,	for	 ,

By	similar	methods	one	can	prove	the	following	result	for	the	density	estimate:

Theorem	11.5	(Groeneboom	et	al.,	2010,	Theorem	4.3,	p.	366.)	Fix	 	such	that	
is	 continuous	 at	 .	 Suppose	 	 has	 compact	 support	 	 and	 stays	 strictly	 away
from	zero	on	 	and	suppose	 that	 the	observation	density	 	also	stays	away	from
zero	on	 	and	has	a	bounded	derivative	on	 .	Let	 	( )	be
the	bandwidth	used	in	the	definition	of	 .	Then

where

(11.54)

For	 ,	we	use	a	boundary	correction	of	another	 type	 than	used	for
the	SMLE.	If	we	use	the	Schuster	boundary	correction

the	bias	is	of	order	 	instead	of	 	under	the	usual	smoothness	condition,	unless	
.	We	 therefore	use	 the	boundary	correction	similar	 to	 the	boundary

correction	given	by	(9.35)	and	(9.36).	This	means	 that	we	 replace	 the	kernel	 	by	 the
kernel

(11.55)

where,	for	 ,	the	coefficients	 	and	 	are	determined	by

With	these	definitions,	we	further	define



(11.56)

Instead	of	the	equation	(11.41)	we	now	get	the	equation

We	now	have	the	following	lemma,	analogous	to	Lemma	11.6.

Lemma	11.7	Equation	(11.57)	is	solved	by

where

Proof	The	proof	proceeds	along	the	same	lines	as	the	proof	of	Lemma	11.6.	We	have:

using	integration	by	parts	in	the	last	step.	☐
From	 this	 lemma	we	get,	 by	 an	 analysis	 similar	 to	 the	one	used	 for	 the	SMLE,	 that	

	is	asymptotically	equivalent	to	the	toy	estimator

From	this	representation	we	see	that	the	asymptotic	variance	of	 	is	given	by:

for	each	 ,	if	 .	The	asymptotic	equivalence	with	the	toy	estimator
is	used	in	the	justification	of	the	bootstrap	confidence	intervals	for	the	density	in	Section
9.5.

We	likewise	get	the	following	result	for	the	estimate	of	the	hazard,	defined	by:



Theorem	11.6	(Groeneboom	et	al.,	2010,	Corollary	4.4,	p.	366.)	Let	 the	conditions	of
Theorem	11.5	be	satisfied.	Then	we	have,	for	the	estimate	 	of	the	hazard	 ,

where

11.4	 The	SMLE	for	Interval	Censoring	Case	2
The	case	2	 interval	censoring	model	 is	 introduced	 in	Section	4.7	 and	 the	SMLE	 for	 the
event	 time	 distribution	 is	 considered	 in	 Section	 8.6.	 Compared	 with	 the	 current	 status
model,	the	asymptotic	theory	for	the	SMLE	in	the	interval	censoring	case	2	model	is	still
incomplete.	Recall	that	the	smoothed	MLE	(SMLE)	for	the	interval	censoring	model	case
2	is	defined	by

where	the	integrated	kernel	 	is	defined	by	(11.36)	again.	The	corresponding	estimator
of	the	density	 	of	the	underlying	distribution	function	 	is	given	by

where	 	is	a	symmetric	kernel	function.

Let	 	be	the	density	of	 ,	with	first	marginal	density	 	and	second	marginal
density	 ,	and	let	 	be	a	solution	of	the	integral	equation	(in	 ):

where

and	the	function	 	is	defined	by

(11.61)



Moreover,	let	the	function	 	be	defined	by

(11.62)

where	 .	Then,	as	in	Geskus	and	Groeneboom,	1997	(the	separated	case,	where	the
two	 observation	 times	 for	 each	 subject	 cannot	 be	 arbitrarily	 close),	 we	 have	 the
representation

In	Geskus	and	Groeneboom,	1999,	 a	 similar	 representation	 is	used	 for	 the	nonseparated
case	(where	the	two	observation	times	can	be	arbitrarily	close),	using	a	pair	of	functions.
For	 	the	integral	equation	becomes

We	now	first	treat	(heuristically)	the	properties	of	the	solution	in	the	nonseparated	case.
The	dominating	part	of	the	solution	will	be	defined	on	a	shrinking	neighborhood	of	 	and
assuming

we	get

Likewise,	assuming

we	get

So	we	end	up	with	the	approximate	equation



implying

(11.64)

Using	 the	 theory	 in	Geskus	and	Groeneboom,	1999,	we	get	 that	 the	 solution	
gives	as	an	approximation	for	

The	 approximation	 seems	 to	work	 rather	well,	 as	 can	 be	 seen	 in	Table	 11.1,	where	 the
actual	variance	for	samples	of	size	 	is	estimated	by	generating	10,000	samples
of	 size	 	 from	 a	 Uniform	 	 distribution	 	 and	 a	 uniform	 observation
distribution	 	on	the	upper	triangle	of	the	unit	square.	Note	that	we	have

in	this	case.

Table	 11.1	 Estimates	 of	 the	 Actual	 Variances	 	 (times	 n)	 and	 	 of

(11.65),	Where	hn	=	n−1/5,	for	Sample	Size	n	=	1000	

	

Note:	The	estimates	of	 the	actual	variances	were	based	on	10,000	samples	of	size	1,000
from	 a	Uniform	 (0,	 1)	 distribution	F0	 and	 a	 uniform	 observation	 distribution	H	 on	 the
upper	triangle	of	the	unit	square.



A	 picture	 of	 	 for	 the	 Uniform 	 distribution	 	 and	 	 is
shown	 in	 Figure	 11.3;	 the	 function	was	 computed	 by	 solving	 the	 corresponding	matrix
equation	 on	 a	 	 grid.	 Note	 that	 we	 apply	 the	 smooth	 functional	 theory
(which	is	also	discussed	in	Groeneboom,	1996)	not	for	a	fixed	functional,	but	for	changing
functionals	on	shrinking	intervals	(in	the	hidden	space).	The	reason	that	this	can	be	done	is
that	the	bandwidth	 	 is	chosen	to	be	of	a	larger	order	than	the	critical	rate	 ,	and
that	 then	 a	 different	 type	 of	 asymptotics	 sets	 in;	with	 asymptotic	 normality,	 and	 so	 on,
instead	 of	 the	 nonstandard	 asymptotics	 of	 the	MLE	 itself.	 This	method	 is	 also	 used	 in
Section	11.3,	for	the	current	status	model.

	

Figure	11.3	 The	function	 ,	for	 ,	 ,	
,	the	Uniform 	distribution	 	and	a	uniform	observation	distribution	

	on	the	upper	triangle	of	the	unit	square.

In	 analogy	 with	 Theorem	 11.4,	 we	 expect	 the	 following	 result	 to	 hold,	 using	 the
conditions	on	 the	underlying	distributions,	discussed	 in	Geskus	and	Groeneboom,	 1997,
and	 Geskus	 and	 Groeneboom,	 1999.	 To	 avoid	 messy	 notation,	 we	 will	 denote	 the
smoothed	MLE	by	 	instead	of	 	in	the	remainder	of	this	section.

Conjecture	 11.1	 Let	 the	 conditions	 of	 Theorem	 1,	 p.	 212,	 in	 Geskus	 and
Groeneboom,	 1997	 (separated	 case),	 or	 Theorem	 3.2,	 p.	 647,	 in	 Geskus	 and
Groeneboom,	1999	(nonseparated	case),	be	satisfied.	Moreover,	let	the	joint	density	 	of
the	 joint	 density	 of	 	 have	 a	 continuous	 bounded	 second	 total	 derivative	 in	 the
interior	of	its	domain	and	let	 	have	a	continuous	derivative	at	the	interior	point	 	of	the



support	 of	 ,	 and	 let	 	 be	 the	 smoothed	 MLE,	 defined	 by	 (11.60).	 Then,	 if	
,	we	have

where	 	is	the	standard	normal	distribution	and	 	is	defined	by

(11.66)

with	 	given	by	(11.62).

Note	 that	 Conjecture	 11.1	 covers	 both	 the	 separated	 and	 the	 nonseparated	 case.	 The
functions	 ,	defining	the	function	 	and	hence	also	the	variance	 ,	are	of
a	rather	different	nature	for	the	separated	case	and	the	nonseparated	case.	For	an	example
of	this,	see	Figure	11.4.

	

Figure	11.4	 The	function	 ,	for	 ,	
,	the	Uniform 	distribution	 	and	(nonseparated	case)	a	uniform	observation
distribution	 	on	the	upper	triangle	of	the	unit	square	(solid	curve)	and	the	function	

	for	the	(separated)	case	where	the	observation	distribution	 	is
uniform	on	the	triangle	with	vertices	 ,	 	and	 ,	where	
(dashed).



The	variance	 	can	be	estimated	by

where

for	 ,	where	 	solves	the	integral	equation

where	 	is	a	kernel	estimate	of	the	density	 	and	where

For	 	chosen	as	in	the	theorem,	the	distribution	function	 	will	be	strictly	increasing
with	probability	tending	to	one.	Since	 	is	also	continuously	differentiable,	the	equation
(11.67)	will	have	an	absolutely	continuous	solution	 ,	and	we	do	not	have	to	take
recourse	to	a	solution	pair,	as	 in	Geskus	and	Groeneboom,	1999,	which	deals	separately
with	a	discrete	and	absolutely	continuous	part	in	treating	the	MLE	itself.

In	 the	corresponding	result	 for	 the	current	status	model	we	have	explicit	expressions,
and	we	briefly	discuss	the	analogy	here,	using	a	notation	of	the	same	type.	Let	 	be
the	 smoothed	MLE	 for	 the	 current	 status	model,	 defined	 by	 (11.35),	 but	 now	using	 the
MLE	 	 in	 the	current	 status	model.	 In	 this	 case	 the	 function	 ,	 representing	 the
functional	in	the	observation	space,	is	given	by

(11.68)

where	 	is	given	by:

and	 	 is	 defined	 by	 (11.61).	 Moreover,	 	 is	 the	 density	 of	 the	 (one-dimensional)



observation	 distribution.	 The	 solution	 	 gives	 as	 an	 approximation	 for	

:

Moreover,

so	in	this	case	we	obtain	the	central	limit	theorem

where

see	Theorem	11.4.

It	 is	 seen	 here	 that	 the	 asymptotic	 variance	 of	 the	 SMLE	 is	 equal	 to	 the	 asymptotic
variance	of	the	MSLE	in	the	current	status	model,	and	we	also	expect	this	to	be	true	in	the
interval	 censoring	 case	 2	 situation.	Actually,	 the	 dominating	 part	 of	 the	 solution	 of	 the
equation	(11.63)	in	the	separated	case	seems	to	be	given	by

and	plugging	this	into	the	expression	for	the	variance	(11.65),	we	get:

which	 is	 in	 fact	 the	 asymptotic	 variance	 of	 the	 MSLE	 for	 the	 separated	 case,	 see
Theorem	11.7	in	Section	11.5.	Although	we	expect	this	also	to	hold	for	the	nonseparated
case,	we	do	not	have	a	similar	heuristic	argument	for	that	situation.



This	leads	to	the	last	conjecture	of	this	section.

Conjecture	11.2	Let	 	be	the	SMLE	for	the	interval	censoring	case	2	model,	and	let	the
conditions	of	Conjecture	11.1	for	the	separated	case	be	satisfied.	Then,	if	 ,
we	have

where	 	is	a	normal	distribution,	with

and

Remark	According	to	 this	conjecture,	 the	asymptotic	bias	 is	 the	same	as	for	 the	current
status	model	(Theorem	11.4	in	Section	11.3)	and	 the	asymptotic	variance	coincides	with
the	asymptotic	variance	of	the	MSLE	(Theorem	11.7	in	Section	11.5).

11.5	 The	MSLE	for	Interval	Censoring	Case	2
Just	 like	 the	SMLE,	 the	MSLE	 for	 the	 interval	 censoring	model	 case	2	 is	 introduced	 in
Section	8.6.	Let	 	be	the	empirical	measure	of	the	quadruples	 ,	for	

.	Let	 	 and	 	 be	 estimates	 of	 the	 densities	 ,	 ,	 and	 the
two-dimensional	density	 ,	where

and

The	MSLE	is	then	defined	as	maximizer	of	the	smoothed	log	likelihood

over	distribution	functions	 .



Parameterizing	by	the	density	 ,	we	have	to	maximize

under	the	side	condition	 	and

Pointwise	maximization	of	 the	 integrand,	 ignoring	 the	positivity	 requirement,	 yields	 the
equations

which	gives	the	self-consistency	equation,

which	can	be	used	 for	an	EM-type	algorithm	maximizer	of	 the	smoothed	 log	 likelihood
over	a	rich	class	of	functions	 .

The	MSLE	minimizes	the	Kullback-Leibler	distance

(11.73)

over	distribution	functions	 ,	where	 	is	a	smoothed	version	of	 ,	defined	by

where	 	is	a	bounded	measurable	function,	and	the	three	measures	on	the	right	hand	side
are	smoothed	versions	of	the	measures	 ,	 	and	
,	respectively.	Furthermore,	 	is	defined	by

where	 	is	given	by



Minimizing	(11.73)	is	equivalent	to	maximizing	the	smoothed	log	likelihood	(11.71)	over	
.

In	order	to	formulate	a	theorem	establishing	the	asymptotic	distribution	of	the	MSLE,
some	preliminary	definitions	are	needed.	The	first	definition	is,	for	 	in	the	interior	of	the
support	of	 ,

This	leads	to	the	definition

(11.76)

and	finally	to

(11.77)

a	quantity	that	will	appear	in	the	asymptotic	variance.	Furthermore,

is	needed	to	define	the	asymptotic	bias	 :

(11.79)

The	following	result	is	proved	in	Groeneboom,	2014.

Theorem	11.7	Let	conditions	(S1)	to	(S4)	and	(L1)	and	(L2)	of	Section	10.3	be	satisfied.
Moreover,	let	 	be	twice	differentiable,	with	a	bounded	continuous	derivative	 	on	the
interior	of	 ,	which	 is	bounded	away	from	zero	on	 ,	with	a	 finite	positive
right	limit	at	 	and	a	positive	left	 limit	at	 .	Also,	let	 	have	a	bounded	continuous
derivative	on	 	and	 let	 	and	 	be	 twice	differentiable	on	 the	 interior	of	 their
supports	 	 and	 ,	 respectively.	 Furthermore,	 let	 the	 joint	 density	 	 of	 the	 pair	 of
observation	 times	 	 have	 a	 bounded	 (total)	 second	 derivative	 on	

.	Suppose	that	 	is	independent	of	

Then,	choosing	the	bandwidth	 ,	we	have,	for	each	 ,



where	 	is	a	normal	distribution	with	first	moment	zero	and	variance	
given	in	(11.77)	and	the	bias	 	is	given	by	(11.79).

The	 proof	 is	 based	 on	 a	 version	 of	 the	 implicit	 function	 theorem	 in	 Banach	 spaces,
which	 leads	 to	 a	 non-linear	 integral	 equation,	 characterizing	 the	MSLE	 asymptotically.
Subsequently,	 it	 is	 shown	 that	 the	 solution	 of	 the	 non-linear	 integral	 equation	 is
asymptotically	equivalent	to	the	solution	of	a	linear	integral	equation.	Finally,	it	is	shown
that	the	‘off-diagonal’	elements	of	the	linear	integral	equation	give	a	contribution	of	lower
order,	 implying	that	 the	MSLE	is	asymptotically	equivalent	 to	a	 toy	estimator	for	which
the	bias	and	variance	can	be	computed	explicitly.	A	further	discussion	of	this	can	be	found
in	Groeneboom,	2013b.	Note	that	the	bias	is	considerably	more	complicated	than	the	bias
of	the	SMLE	of	Section	11.4,	but	that	the	asymptotic	variance	is	expected	to	be	the	same
as	that	of	the	SMLE.

A	picture	of	an	observation	density,	satisfying	the	conditions	of	Theorem	11.7,	is	shown
in	Figure	11.5;	 	is	defined	by:

(11.80)

on	the	triangle	with	vertices	 ,	 	and	 ,	where	 .

	

Figure	11.5	 The	bivariate	observation	density	 	on	 ,	where	 .



For	the	non-separated	case,	where	the	intervals	 	can	be	arbitrarily	small,	there
presently	does	not	exist	a	result,	corresponding	to	Theorem	11.7.

11.6	 Estimation	of	a	Nondecreasing	Hazard	in	the	Right
Censoring	Model:	SMLE
In	 Section	 2.6	 the	 MLE	 for	 a	 nondecreasing	 hazard	 in	 the	 right	 censoring	 model	 is
introduced.	We	now	 introduce	an	SMLE	for	a	decreasing	hazard	 rate	 in	 the	presence	of
right	censoring	and	analyze	this	estimator	asymptotically,	using	similar	methods	as	in	the
preceding	 sections	 to	 analyze	 the	 SMLE.	 The	 data	 observed	 are	 independent	 and
identically	distributed	copies	 	of	random	variables

The	ML	estimator	 	 of	 the	 hazard	 rate	 	 of	 	 is	 defined	 as	 in	 Section	 2.6.	Then,
taking	bandwidth	 	 and	 a	 kernel	 function	 	 satisfying	 the	 usual	 conditions,	 the
SMLE	of	 	can	be	defined	as

We	assume	that	the	underlying	distribution	function	 	of	 	is	concentrated	on	
and	 that	 both	 	 and	 	 are	 finite,	 continuous	 and	 strictly	 positive	 on	 ,	 where	

	 is	 the	 right	 derivative	 at	 zero	 and	 	 is	 the	 left	 derivative	 at	 .	 Since	
,	we	have	 .

Differentiation	of	log	likelihood	(2.34)	with	respect	to	 	gives:

This	implies	relations	of	the	form

for	functions	 	which	are	constant	on	the	same	intervals	as	 .	The	intervals	correspond
to	 regions	 where	 the	 greatest	 convex	 minorant	 of	 the	 cusum	 diagram	 has	 a	 constant
derivative.	This	implies	for	such	functions	that



where	 .

The	continuous	variant	of	the	sum	in	(11.81)	is:

In	accordance	with	the	methods	used	in	the	preceding	section,	this	means	that	we	look
for	a	function	 	(approximately)	satisfying

and	a	piecewise	constant	modification	 	of	 ,	satisfying	(11.81).	Note	that	if	 	satisfies
(11.83),	it	also	satisfies

except	at	points	 	where	 	has	a	jump.

We	have	the	following	lemma.

Lemma	 11.8	 Suppose	 .	 Then	 the	 unique	 solution	 ,
satisfying	(11.84)	and	such	that	 	for	 ,	is	given	by:

Proof	If	 ,	the	right	hand	side	of	(11.84)	is	zero,	and	we	get	the	equation

(11.86)

which	has	as	general	solution



(11.87)

where

see	Exercise	11.16.

Hence	the	general	solution	of	(11.84)	is	given	by:

Note	that

which	implies,	choosing	 	in	such	a	way	that	 	if	 ,

☐
Now,	using	 	(Exercise	11.15),

Let	 	be	the	solution	of	the	integral	equation



Then	it	can	be	shown	in	a	similar	way	that

(11.89)

The	solutions	(11.85)	and	(11.89),	where	 	 for	 	and	 	both	uniform	and	
,	 ,	 are	 shown	 in	Figure	11.6.	Note	 that	 	and	 	 are	 zero	 if

.

	

Figure	11.6	 The	functions	 	(dashed)	and	 	for	 ,	when	 	for	a
sample	of	size	 ;	 	and	 	are	the	standard	uniform	distribution	functions.

Lemma	11.9	Let	the	function	 	be	defined	by	(11.85)	and	let

Then

Proof	Observe	that



☐
Now	consider	a	piecewise	constant	modification	 	of	 ,	which	 is	constant	on	 the

same	 intervals	 as	 .	 We	 choose	 the	 value	 of	 	 in	 the	 same	 way	 as	 was	 done	 in
Section	11.3	for	 	with	respect	to	 :

where	the	 	are	successive	points	of	jump	of	 .	Then

This	can	also	be	written	as:

So	we	find:



where

We	will	need	the	following	lemma.

Lemma	11.10	For	all	 	and	all	 ,	we	have:

(11.93)

for	a	constant	 ,	uniformly	in	the	chosen	point	 .	Similarly,

(11.94)

for	a	constant	 ,	uniformly	in	the	chosen	point	 .

Proof	 In	 proving	 Lemma	 11.10	we	 use	 the	 switch	 relation	 and	 the	 process	 inverse	 to	
.	 To	 this	 end,	 a	 cumulative	 sum	 diagram	

	is	defined.	Here

with

and

The	 coordinate	 	 runs	 through	 the	 interval	 	 and	 the	 first	 point	 of	 the
cumulative	sum	diagram	is	 .	The	process	 	is	close	to	the	process

where	 	 is	 the	 distribution	 of	 the	 observation	 times	 	 and	 	 its
inverse.	We	now	define	the	process	 	by

(11.95)



Then	we	have	the	switch	relation

(11.96)

This	implies	that,	if	 ,

As	in	Section	3.8,

(11.98)

where	 	only	depends	on	 the	underlying	distributions,	and	not	on	 ,	where	
.	The	result	now	follows	from

and

see	also	Exercise	11.4.	☐
Lemma	11.11

Proof	This	 follows	 immediately	 from	Lemma	 11.10	 and	Markov’s	 inequality.	 See	 also
Exercise	11.6	for	a	related	argument	in	the	current	status	model.	☐
For	the	last	term	in	(11.92)	we	now	have	the	following	result.

Lemma	11.12	Let	 .	Then:

Proof	Note	that



and,	by	the	Cauchy-Schwarz	inequality,

Therefore

for	a	constant	 ,	where	we	write	 	and	 	for	the	values	of
these	functions	at	the	chosen	point	for	the	definition	of	 	in	the	interval	containing	 ;
we	also	use

So	the	conclusion	is:

☐
We	 now	 have	 the	 following	 asymptotic	 representation	 of	

	in	the	observation	space.

Lemma	11.13	Let	 	be	the	cumulative	hazard	function,	corresponding	to	 ,	i.e.,

Then,	if	 ,



where

and	the	function	 	solves	the	following	integral	equation	in	 :

The	asymptotic	variance	is	given	by

The	asymptotic	representation	in	Lemma	11.13	leads	to	the	following	result.

Theorem	11.8	Let	the	hazard	 	be	twice	continuously	differentiable	at	 ,	with	 	and	
	 strictly	 positive,	 and	 let	 	 be	 its	MLE	 under	 the	 restriction	 that	 	 is	 increasing.

Moreover,	let	the	distribution	function	 	of	the	variables	of	interest	and	the	distribution
function	 	 of	 the	 censoring	 variable	 be	 absolutely	 continuous,	 and	 let	 	 be	 the
smoothed	maximum	likelihood	estimator	of	 ,	defined	by

where	 	is	a	symmetric	positive	kernel	with	support	 ,	like	the	triweight	kernel.
Then,	if	 ,

where

and



Remark	Note	that	this	shows	that	the	SMLE	and	the	estimator	 ,
where	 	 is	 the	 Nelson-Aalen	 estimator	 of	 the	 cumulative	 hazard,	 have	 the	 same
asymptotic	distribution.

In	the	example	where	both	 	and	 	are	standard	uniform	distribution	functions,	we
get:

Remark	Another	method	of	proving	Theorem	11.8	is	to	first	show	that	 	(the	integrated
estimator	 )	 has	 a	 supremum	 distance	 of	 order	 	 to	 the	 Nelson-Aalen
estimator	and	next	use	integration	by	parts.	A	method	of	 this	 type	was	used	 in	Theorem
3.1	on	p.	183	of	Groeneboom	and	Jongbloed,	2013a,	 for	 a	kernel	 estimate,	based	on	an
isotonic	estimate	of	the	hazard	if	there	is	no	censoring.	On	the	basis	of	this	result	Theorem
11.8	was	conjectured	by	Nane,	2013.

The	present	method,	using	the	integral	equation	approach,	seems	to	have	more	potential
for	generalizing	to	other	models,	such	as	the	Cox	regression	model,	since	the	bounds	for
the	 supremum	 distance	 for	 the	 integrated	 functions	 may	 not	 be	 available	 in	 these
situations.

Exercises
11.1	Derive	(11.10)	from	(11.12).

11.2	Prove	Lemma	11.4.

11.3	Construct	a	sequence	of	distribution	functions	 ,	 ,	and	a	distribution
function	 	on	 	such	that

for	a	sequence	 .

11.4	 Let	 	 be	 a	 bounded	 random	 variable	 with	 distribution	 function	 	 and	 .
Define	 .	Show	that

11.5	 Show	 that	 the	 function	 	 defined	 in	 (11.29)	 attains	 its	 maximum	 at
.

11.6	Let	 	be	a	sequence	of	vanishing	positive	numbers.	Show	that	(11.32)	and	(11.33)
imply	that	for	each	 ,	there	exists	a	 	such	that



for	all	 	(i.e.,	(11.20)).	Hint:	use	Markov’s	inequality	and	Fubini.

11.7	 Verify	 that	 the	 boundary	 corrected	 estimator	 of	 the	 distribution	 function,	 (11.37),
reduces	to	the	traditional	estimator	(11.35)	if	 .

11.8	Prove	(11.50).

11.9	 The	 SMLE	 for	 the	 distribution	 function	 in	 the	 current	 status	 model	 satisfies	 an
equality	of	the	type	given	in	(10.20).	Show	that

11.10	 Let	 the	 conditions	 of	 Theorem	 11.4	 be	 satisfied	 and	 suppose	 that	 ,	
	and	that	 	is	continuous	in	a	neighborhood	of	 	with	a	left	limit	

at	 .	 Show	 that	 the	 bias	 of	 the	 SMLE	 for	 	 in	 ,	 using	 the	 asymmetric
Schuster	correction,	is	given	by:

Note	that	this	means	that	the	leading	term	of	the	bias	converges	to	zero,	as	 .

11.11	 Let	 the	 conditions	 of	 the	 preceding	 exercise	 be	 satisfied.	 Show	 that	 the	 SMLE
satisfies:

(a)	For	 	we	have:

(b)	For	 	we	have:

(c)	For	 	we	have:

11.12	Deduce	from	Exercise	11.11	that,	under	the	conditions	of	that	exercise,	the	SMLE	is
asymptotically	equivalent	to	the	following	toy	estimator:

(a)	For	 	we	have:



(b)	For	 	we	have:

(c)	For	 	we	have:

11.13	Prove	that	Theorem	11.4	also	holds	for	the	toy	estimator	of	the	preceding	exercise.

11.14	Show	that,	 for	 ,	 the	estimator	of	 the	density	 in	 the	current	 status
model,	based	on	the	SMLE,	satisfies:

11.15	Show	that	under	the	conditions,	given	at	the	start	of	Section	11.6:

where	 	is	defined	by

11.16	Show	that	the	first	order	differential	equation	(11.86)	has	solution	(11.87).

11.17	Prove	that	(11.89)	is	the	solution	of	the	integral	equation	(11.88).

11.18	The	density	 estimate	 	 of	 the	density	 	 in	 the	 current	 status	model	 can,	 for	
,	be	defined	by

where	 we	 assume	 that	 	 is	 the	 left	 boundary	 of	 the	 interval	 on	 which	 we	 do	 the
estimation,	and	where	 	and	 	are	the	weights	of	the	boundary	kernel,	defined	by
(9.38).	 Deduce	 formulas	 for	 the	 bias	 and	 variance,	 analogous	 to	 (11.54)	 for	 the
asymptotic	 bias	 and	 variance.	 Same	 question	 for	 ,	 where	 	 is	 the
right	endpoint	of	the	estimation	interval.

11.19	Under	the	same	conditions	as	Exercise	11.18	an	estimate	of	 ,	for	 ,	is
given	by:



Show	 that,	 under	 the	 conditions	 of	 Theorem	 11.5,	 this	 is	 a	 consistent	 estimate	 of	
.	Deduce	the	same	type	of	result	for	 ,	if	 ,	is	 	is	the	upper

end	of	the	observation	interval	and	the	boundary	kernel	is	used	on	 .

Remark	 Note	 that	 for	 the	 triweight	 kernel	 	 the
derivatives	 	and	 	can	be	deduced	from	Exercise	9.14.
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12
Pointwise	Asymptotic	Distribution	Theory

for	Multivariate	Problems

Pointwise	asymptotic	results	for	estimators	in	basic	shape	constrained	models	are	derived
in	Chapter	3.	For	estimators	in	more	complicated	models	and	estimators	satisfying	certain
smoothess	 conditions,	 pointwise	 asymptotic	 results	 are	 derived	 in	 Chapter	 11.	 In	 this
chapter,	 additional	 results	 will	 be	 discussed	 for	 multivariate	 models,	 as	 introduced	 in
Chapter	5.

In	Section	12.1,	 the	 local	 asymptotic	 distribution	 theory	 for	 the	maximum	 likelihood
estimator	(MLE)	in	the	competing	risk	model	with	current	status	data	will	be	given.	In	this
model,	 several	 subdistribution	 functions	 are	 estimated	 simultaneously.	 Section	 12.2
discusses	 the	 (multivariate)	 smoothed	 maximum	 likelihood	 estimator	 (SMLE)	 for	 this
model	and	gives	an	asymptotic	normality	result	for	the	SMLE	in	Theorem	12.6.

Finally,	the	bivariate	current	status	model	is	considered	in	Section	12.3.	A	cube	root	
consistent	 estimator	 for	 the	 distribution	 function	 is	 defined,	which	 is	 different	 from	 the
MLE	 in	 this	model.	We	 also	 discuss	 the	 SMLE	 for	 this	model,	 for	 which	we	 give	 the
conjectured	(normal)	limit	distribution.	The	rate	the	MLE	achieves	is	still	unknown,	but	it
is	conjectured	to	be	cube	root	 	with	possibly	an	extra	logarithmic	factor.

12.1	 The	ML	Estimator	in	the	Competing	Risk	Model
with	Current	Status	Data
It	is	considerably	more	difficult	to	derive	the	local	asymptotics	for	the	MLE	for	competing
risk	models	with	current	status	data	than	to	do	this	for	the	MLE	based	on	one-dimensional
current	status	data	as	considered	in	Section	3.8.	The	reason	for	the	increased	difficulty	lies
in	the	fact	that,	in	contrast	with	the	situation	for	ordinary	current	status	data,	the	relevant
cumulative	 sum	diagram	does	 in	 fact	 depend	on	 the	 solution	 itself:	 the	 cumulative	 sum
diagram	is	self-induced.

This	cumulative	sum	diagram	 is	given	by	 (5.10)	 in	Section	5.1.	Note	 that	 the	 second
coordinate

is	just	as	it	is	in	the	ordinary	current	status	(and,	in	particular,	is	not	self-induced),	but	that
the	first	coordinate

involves	 ,	which	is	part	of	the	solution	of	the	maximization	problem.	In	fact,	defining



,	this	expression	can	be	rewritten	as

where	 	 is	 the	 empirical	 distribution	 function	 of	 the	 .	 This	 shows	 that,	 up	 to	 the
perturbation

the	first	coordinate	is,	just	as	in	the	ordinary	current	status	case,	the	empirical	distribution
function	 .	 Also	 note	 that	 the	 population	 equivalent	 of	 the	 last	 perturbation	 term
satisfies

Therefore,	 the	perturbation	can	be	expected	 to	go	 to	zero.	However,	 this	does	not	mean
that	 the	 asymptotics	 of	 the	 MLE	 can	 be	 reduced	 to	 the	 asymptotics	 of	 the	 MLE	 for
ordinary	current	status.

To	develop	 the	asymptotics	 it	 is	 important	 to	get	hold	of	 the	asymptotic	behavior	of	
,	 and	 this	not	only	on	neighborhoods	of	order	 	 of	 a	 fixed	point	 ,	 but	 also

outside	these	neighborhoods.	It	is	to	be	shown	that	no	strange	things	will	happen	outside
the	 	neighborhood,	which	could	spoil	the	cube	root	asymptotics.	The	crucial	result
for	this	is	the	following	theorem.

Theorem	12.1	(Theorem	4.10	in	Groeneboom	et	al.,	2008a)	Let	 	be	such	that	for
all	 ,	 .	Also,	 let	 	 and	 	 be	 continuously
differentiable	at	 	with	strictly	positive	derivatives	 	and	 .	For	
,	define

Then	there	exists	a	constant	 	so	that

The	 method	 of	 proof	 of	 Theorem	 12.1	 is	 very	 similar	 to	 the	 methods	 of	 proof	 of
Theorem	11.3	in	Section	11.2.	We	can,	for	example,	take	 .	Then	 	becomes



Using	 ,	we	get	the	following	corollary.

Corollary	 12.1	 (Corollary	 4.16	 in	 Groeneboom	 et	 al.,	 2008a)	 Let	 the	 conditions	 of
Theorem	12.1	be	 satisfied.	Then	 there	exists	 an	 	 such	 that	 for	 every	 	and	

	there	exist	 	and	 	such	that

The	main	point	of	this	corollary	is	that	it	shows	that	
increases	slower	than	 	if	 	is	of	larger	order	than	 	and	that	therefore
the	 quadratic	 drift	 in	 the	 second	 coordinate	 of	 the	 cusum	 diagram	 will	 cause	 the
asymptotics	 to	be	 localized	 to	an	 	neigborhood	around	 .	As	a	consequence	we
have	the	following	result.

Theorem	 12.2	 (Theorem	 4.17	 in	 Groeneboom	 et	 al.,	 2008a)	 Let	 the	 conditions	 of
Theorem	12.1	be	 satisfied.	Then	 there	exists	 an	 	 such	 that	 for	 every	 	and	

	there	exist	 	and	 	such	that

for	all	 	and	 .

This	 shows	 that	we	 can	 indeed	 localize	 and	 that,	 for	 the	 asymptotic	 distribution,	we
only	have	to	consider	 	neighborhoods	of	 .	We	now	define	the	drifting	Brownian
motion	 processes	 that	 will	 be	 needed	 in	 the	 limit	 in	 Definition	 12.1,	 and	 their	 convex
minorants	in	Definition	12.2.

Definition	12.1	Let	 	be	a	 -tuple	of	two-sided	Brownian	motion
processes	originating	from	zero,	with	mean	zero	and	covariances

where	 ,	for	
.	Furthermore,	let

Remark	 The	 processes	 	 are	 the	 limits	 of	 the	 rescaled	 and	 recentered	 processes	
.	The	correspondence	is:

in	the	Skorohod	topology	on	 .

Definition	12.2	For	each	 ,	let	 	be	the	greatest	convex	minorant	of	
,	i.e.,	 	is	the	unique	convex	function	satisfying	the	following	conditions:



Let	 ,	 and	 let	 	 be	 the	 vector	 of	 right
derivatives	of	 .

The	 limiting	 distribution	 of	 the	 naive	 estimator	 ,	 where	 the	 component
subdistribution	 functions	 	 are	 estimated	 as	 in	 ordinary	 current	 status,	 is	 given	 in
Theorem	12.3.

Theorem	 12.3	 Fix	 .	 For	 each	 ,	 let	 	 be	 continuously
differentiable	 at	 	 with	 strictly	 positive	 derivative	 .	 Furthermore,	 let	 	 be
continuously	differentiable	at	 	with	strictly	positive	derivative	 .	Then

in	the	Skorohod	topology	on	 ,	where	 	is	as	defined	in	Definition	12.2.

We	 let	 	 for	 ,	 where	 .
The	limiting	process	 	for	the	MLE	is	a	self-induced	process.	The	difference	with	 	is
caused	by	extra	terms	involving	the	sum	of	the	drifting	Brownian	motions	and	the	sum	of
the	 components	 .	Theorem	12.4	 characterizes	 ,	 and	 establishes	 its	 existence	 and
uniqueness.	The	limiting	distribution	of	the	MLE	is	given	in	Theorem	12.5.

Theorem	 12.4	There	 exists	 an	 almost	 surely	 unique	K-tuple	 	 of
convex	 functions	with	 right	 continuous	 derivatives	 ,	 satisfying	 the
following	conditions:

i.	 ,	 for	 ,	
.

ii.	 ,
.

iii.	 For	 each	 	 and	 each	 ,	 there	 exist	 points	 	 and
	so	that

Theorem	12.5	Let	the	conditions	of	Theorem	12.3	be	satisfied.	Then

in	the	Skorohod	topology	on	 .

Proofs	of	these	results	are	given	in	Groeneboom	et	al.,	2008b.



12.2	 The	SMLE	in	the	Current	Status	Competing	Risk	Model
In	Li	and	Fine,	2013,	smoothed	nonparametric	estimation	for	current	status	competing	risk
data	is	studied.	It	can	be	expected	that	the	treatment	will	proceed	along	similar	lines	as	the
treatment	 of	 the	 SMLE	 for	 ordinary	 current	 status	 model,	 but	 there	 are	 additional
difficulties,	since	the	tools	we	were	using	for	ordinary	current	status	have	to	be	extended
to	 this	 situation.	Li	 and	Fine,	2013,	 note	 that	 the	 proofs	 for	 the	 naive	MLE	 estimators,
studied	 in	Jewell	et	al.,	2003,	where	 the	 individual	component	distribution	functions	are
estimated	as	if	they	were	generated	by	ordinary	current	status	data,	can	be	transformed	to
SMLEs	just	as	in	Groeneboom	et	al.,	2010.	They	refer	for	this	to	Lemma	5.9	in	Part	II	of
Groeneboom	and	Wellner,	1992,	where	 it	 is	 proved	 that	 for	 the	MLE	 	 for	 ordinary
current	status	data

and	where	it	is	also	proved	that	the	distance	between	the	locations	of	successive	jumps	is
of	the	same	order.

In	our	present	treatment	of	the	SMLE	for	current	status	data	in	Section	11.3,	however,
we	do	not	need	these	supremum	bounds	any	more,	but	use	instead	 	methods,	just	as	for
the	 global	 smooth	 functionals	 theory,	 applying	 Theorem	 11.3	 in	 Section	 11.2.	 So	 the
theory	for	the	naive	estimators,	studied	in	Li	and	Fine,	2013,	which	treats	the	component
distribution	functions	as	if	they	were	just	ordinary	current	status	data,	proceeds	just	as	in
Section	11.3,	using	the	 	bounds	instead	of	the	supremum	bounds.

For	the	real	SMLE	for	the	competing	risk	model,	however,	we	need	more,	because	the
SMLE	is	based	on	a	self-induced	cusum	diagram,	depending	on	 ,	given	by	(5.10)	in
Section	5.1.	Nevertheless,	the	argument	is	analogous	to	the	argument	in	Section	11.3.

Fix	the	point	 	at	which	we	want	to	study	the	asymptotic	behavior	of	the	SMLE,
and	 define	 the	 (canonical)	 score	 function	 or	 efficient	 influence	 function	 in	 the	 hidden
space:

for	a	symmetric	positive	kernel	 	with	support	 ,	where	 	is	the	observation
interval.	Letting	 ,	the	images	of	the	score	operator	in	the	observation
space	are	given	by:

(12.3)

where	 	 is	 the	 failure	 cause,	 and	 	 is	 a	 score	 in	 the	 hidden	 space.	 By	 p.	 102	 in
Groeneboom,	1996,	we	get



where	 we	 use	 	 in	 the	 second	 equality,	 and	 where	 	 is	 the	 probability
distribution	of	 .

Analogously	 to	 the	 approach	 followed	 in	 the	 ordinary	 current	 status	 problem,	 the
following	equation	has	to	be	solved

Here	 	 is	 the	density	of	 the	observation	 time	distribution	and	 	denotes	a	unit	vector
with	 	as	the	 th	component	and	zeroes	otherwise.	The	solution	to	this	equation	is	given
in	the	following	lemma.

Lemma	12.1	Equation	(12.4)	is	solved	by

Proof	We	have,	for	 :

☐
We	now	have,	just	as	in	the	ordinary	current	status	model:



We	next	define,	as	in	Section	11.3,

(12.6)

and

where	 the	 	 are	 successive	 points	 of	 jump	of	 .	We	 are	 now	going	 to	 use	 another

representation	of	 ,	given	in	the	following	lemma	(see	Exercise	12.4).

Lemma	12.2	The	function	 	has	the	alternative	representation:

where	 	is	defined	by	(12.6).

We	assume	that	 	is	an	interior	point	of	the	support	of	the	distributions	 .	Hence,	for
shrinking	 	the	maximum	point	 	of	Lemma	5.2	will	not	belong	to	 .
Therefore,	defining

we	obtain	from	Lemma	5.2	that

for	large	 .	Thus:

see	(11.47).

Hence,	assuming	that,	similarly	as	in	Section	11.3,



and

we	obtain	the	following	result,	similar	to	Theorem	1	in	Li	and	Fine,	2013,	p.	177.

Theorem	 12.6	Assume	 that,	 for	 ,	 	 has	 a	 positive	 subdensity,	 strictly
staying	 away	 from	 zero	 on	 .	Moreover,	 suppose	 the	 density	 	 also	 stays	 away
from	zero	on	 ,	with	a	bounded	derivative	 .	Finally,	let	 	be	an	interior	point	of	

	such	that	 	has	a	continuous	derivative	 	at	 .	Then,	if	 	and
the	SMLE	 	is	defined	by

where	 	is	the	MLE,	we	have:

where

and

(A)	The	Bangkok	Cohort	Study
In	 Section	 1.4	 we	 discussed	 the	 Bangkok	 cohort	 study,	 which	 was	 interpreted	 in	 the
context	of	a	competing	risk	model	in	Maathuis	and	Hudgens,	2011,	and	Li	and	Fine,	2013.
We	 now	 show	 how	 to	 construct	 confidence	 intervals	 for	 the	 SMLE	 and	 the	 hazard
estimates.	For	this,	we	use	exactly	the	same	methods	as	were	used	in	Section	9.5.

The	 data	 consist	 of	 1,365	 subjects,	 of	 whom	 	 subjects	 were	 not	 infected,	
subjects	were	infected	with	subtype	B,	 	subjects	were	infected	with	subtype	E,	and	

	subjects	were	infected	with	another	subtype.	The	confidence	intervals	were	computed
in	 the	 following	way.	We	 took	 1,000	 bootstrap	 samples	 of	 size	 1,365	with	 replacement
from	 the	 pairs	 ,	 where	 	 runs	 through	 the	 ages	 of	 the	 subjects	 and	 the	 first
component	of	 	is	equal	to	 	if	the	subject	is	not	infected,	the	second	component	is	
when	 the	 subject	 is	 infected	 with	 subtype	 B,	 the	 third	 component	 equals	 	 when	 the
subject	is	infected	with	subtype	E,	and	the	fourth	component	equals	 	otherwise.	For	each
of	 these	bootstrap	samples	 the	MLE	and	SMLE	were	computed.	Denoting	 the	bootstrap



SMLE	of	the	subdistribution	function	 	by	 ,	we	obtained	in	this	way,	analogously
to	(9.76),	1,000	values	of

where	 	is	the	 th	component	of	the	ordinary	MLE	(not	the	SMLE)	of	the	bootstrap
sample	 	and	where	we	use	the	notation	 	for	the	
th	component	of	the	 th	value	of	 	in	the	bootstrap	sample	(see	Section	5.1).	We	let	
	 run	 through	 the	values	on	an	equidistant	grid	of	 	 points	 in	 the	 interval	

(the	age	interval	for	the	subjects),	and	 	is	the	SMLE	in	the	original	sample.

The	MLEs	in	the	original	sample	and	in	the	bootstrap	samples	were	computed	by	the
iterative	 convex	minorant	 algorithm,	 as	 described	 in	 Section	 7.5	 (for	 the	more	 general
interval	censoring	model).	This	algorithm	turned	out	to	be	about	 	times	faster	than	the
support	 reduction	 algorithm,	 used	 in	 the	 R-package	 MLEcens,	 which	 is	 important	 if	 one
starts	bootstrapping	or	performing	simulations.	The	SMLE	subdistribution	functions	were
computed	from	the	MLE	subdistribution	functions,	using	definition	(9.75),	where	
and	 ,	so:

and	similarly

for	 the	 bootstrap	 samples.	 Let	 	 be	 the	 th	 percentile	 of	 the	 1,000	 values	
.	Then	the	 	bootstrap	confidence	interval	for	 	is	given	by:

(12.7)

where

In	the	present	case	we	took	as	bandwidth	 	(undersmoothing
as	 in	 Section	 9.5),	 and	 for	 	 we	 took	 the	 integrated	 triweight	 kernel.	 The	 resulting
confidence	intervals	for	the	subdistribution	functions	for	the	subjects	with	type	B	and	type
E	infections	are	shown	in	Figure	12.1.	The	confidence	upper	and	lower	bounds	were	made
monotone	from	the	middle,	by	taking	iteratively	the	maximum	of	two	neighboring	values,
going	to	the	right	of	 .



	

Figure	12.1	 	confidence	intervals	for	the	subdistribution	functions	of	the	ages	for
the	group	with	type	B	(a)	and	type	E	(b)	in	the	Bangkok	cohort	data.

In	constructing	the	confidence	intervals	for	the	hazard,	we	estimated	the	hazard	of	the	
th	component	by:

where	 	and	 .	The	variance	of	 this	 estimator	 is	 dominated
by	the	variance	of	 	and	estimated	by

(12.8)

apart	from	a	factor	depending	on	the	density	of	the	observation	times	 ,	where	 	 is
the	 th	component	of	the	MLE,	and	where	 	is	given	by

We	now	define

(12.9)

where	 	is	the	variance	in	the	bootstrap	sample,	defined	as	(12.8),	with	 ,	

	and	 	replaced	by	 ,	 	and	 ,	respectively.

Let	 	 be	 the	 th	 percentile	 of	 the	 1,000	 values	 .	 Then	 the	
confidence	interval	is	defined	by:



The	result	is	shown	in	Figure	12.2.	It	is	seen	that	the	results	are	similar	to	the	results	in	Li
and	 Fine,	 2013,	 but	 that	 the	 confidence	 bounds	 are	 somewhat	 narrower	 for	 the	 hazard
estimates.	We	kept	the	same	scaling	as	in	Li	and	Fine,	2013,	for	an	easy	comparison.

	

Figure	12.2	 	confidence	intervals	for	the	hazards	for	the	group	with	type	B	(a)	and
type	E	(b)	in	the	Bangkok	cohort	data.

It	turns	out	that	in	the	present	case,	confidence	intervals	directly	based	on

instead	 of	 (12.9)	 lead	 to	 almost	 exactly	 the	 same	 confidence	 intervals	 for	 the	 hazard,
indicating	that	scaling	by	 	and	 	is	not	really	necessary	here.

12.3	 The	Bivariate	Current	Status	Model
Basically,	 the	 MLE	 for	 the	 one-dimensional	 current	 status	 model	 as	 introduced	 in
Section	2.3	is	the	monotone	derivative	of	the	cusum	diagram

Here	 	 is	 the	 observation	 interval	 and	 	 the	 empirical	 distribution	 function	 of	 the
observations	 .	 So	 it	 can	 be	 considered	 to	 be	 a	 monotone	 version	 of	 the
derivative	 .	Note	that	if	we	replace	 	and	 	by	their	deterministic
equivalents,	the	derivative	becomes

so	it	is	indeed	the	object	we	want	to	estimate.



For	 the	 simplest	 bivariate	 current	 status	model,	which	 is	 sometimes	 called	 the	 in-out
model,	we	only	have	the	information	of	whether	the	hidden	variable	is	below	and	to	the
left	of	the	observation	point	 	or	not.	In	this	case	we	could	also	define

where	 	represents	the	situation	that	the	hidden	variable	is	below	and	to	the	left	of	
.	 If	 the	empirical	observation	distribution	 is	 again	denoted	by	 ,	we	 this	 time

want	 to	 estimate	 the	 “derivative”	 ,	 since,	 replacing	 	 and	
by	their	deterministic	equivalents,	the	derivative	becomes

So	we	want	to	find	a	version	of	the	derivative	 ,	under	the	(shape)
restriction	that	it	is	a	bivariate	distribution	function.

However,	a	natural	cusum	diagram	for	this	situation	does	not	seem	to	exist.	But	we	can
define	 a	 two-dimensional	 Fenchel	 process,	 incorporating	 the	 duality	 conditions	 for	 a
solution	of	 the	optimization	problem.	Analogously	 to	 the	one-dimensional	current	 status
model,	 the	 Fenchel	 duality	 conditions	 for	 the	 isotonic	 least	 squares	 (LS)	 estimate,
minimizing

over	all	bivariate	distribution	functions	 ,	where	the	 	are	the	hidden	variables,
are:

(12.10)

with	equality	if	 	is	a	point	of	mass	of	the	solution.	So	we	have	to	deal	with	a	process

(12.11)

that	has	to	lie	above	the	process

with	points	of	touch	at	points	of	mass	of	 .	Denoting	temporarily	the	process	(12.11)	by	
,	 we	 get	 that	 the	 isotonic	 least	 squares	 estimator	 can	 (formally)	 be	 denoted	 by	

	 (which	 no	 longer	 necessarily	 coincides	 with	 the	MLE!).	 Note,



however,	that	the	function	 	is	not	necessarily	close	to	a	convex	or	concave	function,
so	here	the	analogy	with	 -dimensional	current	status	breaks	down.	But	it	must	have	the
property	that	its	derivative	with	respect	to	 	must	be	a	distribution	function,	which	is
analogous	 to	 the	 fact	 that	 the	 derivative	 of	 the	 convex	minorant	 of	 the	 cusum	 diagram
must	be	a	distribution	function	in	the	one-dimensional	case.

For	the	full	bivariate	current	status	model	the	situation	is	more	complicated,	since	we
then	 have	 to	 deal	 with	 four	 regions	 instead	 of	 two	 per	 observation	 time;	 see	 also
Section	5.2.	From	(5.16)	we	get:

where	 ,	with	equality	if	 	is	a	point	of	mass	of	 .

It	has	been	conjectured	 that	 the	MLE	 in	 the	bivariate	 current	 status	model	 converges
locally	 at	 rate	 ,	 just	 as	 in	 the	 one-dimensional	 current	 status	 model	 (with	 smooth
underlying	distribution	functions).	Song,	2001,	proves	a	minimax	 lower	bound	of	order	

.	It	would	be	somewhat	surprising	if	the	one-dimensional	rate	would	be	preserved
in	 dimension	 two,	 since	 in	 general	 one	 gets	 lower	 rates	 for	 density	 estimators	 if	 the
dimension	 gets	 up,	 and	 the	 estimation	 of	 the	 distribution	 function	 in	 the	 current	 status
model	is	similar	to	density	estimation	problems,	as	argued	earlier.

To	 show	 that	 it	 is	 in	 principle	 possible	 to	 attain	 the	 local	 rate	 ,	 we	 construct	 a
purely	 discrete	 estimator,	 converging	 locally	 at	 rate	 .	 We	 restrict	 ourselves	 for
simplicity	 to	 distributions	with	 support	 	 in	 the	 remainder	 of	 this	 section,	 but	 the
generalization	to	more	general	rectangles	is	obvious.	We	have	the	following	result,	which
is	proved	in	Groeneboom,	2013a.

Theorem	 12.7	 Consider	 an	 interior	 point	 ,	 and	 define	 the	 square	 ,	 with
midpoint	 ,	by:

Moreover,	 suppose	 that	 the	 observation	 distribution	 	 is	 twice	 continuously
differentiable	at	 	with	a	strictly	positive	density	 	at	 ,	and	 that	 	 is
twice	continuously	differentiable	at	 .	Moreover,	suppose



(12.12)

Then	the	estimator

where	 	is	the	empirical	distribution	function	of	the	observations	 	and	 	is
the	empirical	distribution	function	of	the	observations

satisfies:

where	 	is	a	normal	distribution	with	first	moment

and	variance

We	now	allow	as	possible	points	of	mass	the	points	 ,	
running	through	a	rectangular	grid,	where	the	distances	between	the	points	on	the	 	and	
	 axis	 are	of	order	 ,	 and	define	 the	 estimate	 	 at	 each	point	 	 as	 in

Theorem	12.7.	Next	we	define	the	masses	 	at	the	points	 	by	the	equations

Note	that	the	estimate	 	we	obtain	in	this	way	is	not	necessarily	a	distribution	function
and	that	the	masses	 	can	have	negative	values.

Also	note	 that	we	get	 roughly	order	 	equations	 in	 this	way,	which	 turns
out	 to	 be	 solvable,	 although	 it	 is	 not	 clear	 beforehand	 that	 the	 system	 is	 nonsingular.
Nevertheless,	one	can	build	the	system	from	left	and	below	to	the	right	and	above,	where
one	 gets	more	 and	more	 values	 in	 the	 corresponding	matrix,	 so	 it	 seems	 likely	 that	 in
general	the	solution	exists.	This	is	a	point	for	further	research.	A	picture	of	 ,	together
with	the	MLE,	computed	on	the	sieve	of	points	of	mass	of	the	plug-in	estimator,	is	shown
in	 Figure	 12.3.	 The	 sieved	 MLE	 is	 a	 proper	 (discrete)	 distribution	 function,	 so	 all	 its
masses	are	nonnegative.



	

Figure	12.3	 The	plug-in	estimator	 	(a)	and	the	MLE	on	points	of	mass	of	the	plug-in
estimator	(b),	for	a	sample	of	size	 	of	bivariate	current	status	data,	where	the
hidden	variables	have	a	distribution	with	density	 ,	and	the	observation
distribution	is	uniform	on	 .

Let	 	be	a	symmetric	nonnegative	kernel.	Moreover,	let	the	integrated	kernel	 	be
defined	by

We	follow	the	approach	for	 the	one-dimensional	case,	discussed	 in	Section	11.3	and	 the
references	Geskus	and	Groeneboom,	1996,	and	Groeneboom	et	al.,	2010.

At	 an	 interior	 point	 ,	 not	 too	 close	 to	 the	 boundary,	 the	 smoothed	 maximum
likelihood	estimator	(SMLE)	is	just	defined	by

(12.14)

To	 prevent	 the	 negative	 bias	 at	 the	 right	 and	 upper	 boundary	 of	 the	 support,	 we	 now
generally	define

This	 definition	 of	 the	 (integrated)	 boundary	 kernel	 is	 based	 on	 the	 reflection	 boundary
used	in	dimension	1	in	(11.37).	Note	that	 the	definitions	(12.14)	and	(12.15)	coincide	 if	

.

We	next	define	the	score	function	in	the	hidden	space:

Scores	in	the	observation	space	are	given	by



(12.16)

where	 	is	a	score	in	the	hidden	space.	We	have,	for	example,

With	this	notation,	we	want	to	solve	the	equation

Defining

(12.18)

where	 	is	a	score	function	in	the	hidden	space,	and	differentiating	(12.17)	with	respect	to
	and	 ,	we	now	obtain	the	equation:

This	equation	has	the	solution

Note	that	the	solution	satisfies:

This	suggests	that	the	asymptotic	behavior	of	the	SMLE	is	given	by:



where

leading	at	interior	points	 	to	an	asymptotic	variance,	given	by:

Assume	that	 .	Then	the	bias	is	given	by:

The	 SMLE	 is	 compared	 with	 the	 MLE	 in	 Figure	 12.4.	 Using	 (12.20),	 we	 get	 the
following	conjectured	result.



	

Figure	12.4	 The	MLE	(a)	and	SMLE	(b)	for	for	a	sample	of	size	 	of
bivariate	current	status	data,	where	the	hidden	variables	have	a	distribution	with	density	

,	and	the	observation	distribution	is	uniform	on	 .

Conjecture	 12.1	 Under	 the	 conditions	 of	 Theorem	 12.7	 we	 have,	 for	 each	 point	
	satisfying	these	conditions,	if	 ,

where	 	is	a	normal	distribution	with	first	moment

and	variance

Remark	Note	that	choosing	 	 is	 the	asymptotically	optimal	choice	(modulo
constants)	since	the	variance	is	of	order	 	and	the	bias	of	order	 ,	unless	 the
bias	 is	 of	 order	 	 (as	 happens	 when	 	 is	 the	 uniform	 distribution	 function	 on	

).	 Also	 note	 that	 the	 bias	 term,	 caused	 by	 the	 interaction	 of	 the	 observation
distribution	 	 and	 the	 distribution	 function	 ,	 which	 entered	 into	 the	 bias	 term	 of
Theorem	12.7,	plays	no	role	here.

Simulation	results,	comparing	the	plug-in	estimator,	the	SMLE	and	the	MLE,	are	given
in	Groeneboom,	2013a.

Exercises
12.1	 Let	 the	 conditions	 of	 Theorem	 12.1	 be	 satisfied	 and	 let,	 respectively,	 for	

,	 	and	 	 be	 the	 largest	 jump	point	 	 and	 the	 smallest
jump	point	 	of	 .	Deduce	from	Theorem	12.2	that	there	exists	an	 	such



that	for	all	 	there	exist	 	such	that

12.2	Suppose	that	all	subdistribution	functions	in	the	current	status	competing	risk	model
are	 defined	 on	 	 and	 that	 .	 The	 SMLE	 for	 a	 component
subdistribution	function	is	then	generally	defined	by

However,	we	do	not	have	the	property	 ,	as	in	the	ordinary	current	status
model.	What	does	this	mean	for	the	bias	of	 	on	 ?

12.3	 In	 Section	 9.5	 bootstrap	 confidence	 intervals	were	 constructed	 for	 the	 distribution
function	 in	 the	 current	 status	 model,	 using	 the	 SMLE.	 Describe	 an	 analogous
procedure	for	confidence	intervals	for	the	subdistribution	functions	in	the	competing
risk	model,	based	on	the	SMLEs.

12.4	Show	that	the	representation	of	 	given	in	Lemma	12.2	holds.

12.5	In	Section	9.5	likelihood	ratio	tests,	based	on	the	MLE,	as	discussed	in	Banerjee	and
Wellner,	2005,	were	introduced	and	compared	with	the	confidence	intervals,	based	on
the	 SMLE.	 Is	 a	 construction	 of	 this	 type,	 using	 LR	 tests,	 also	 possible	 for	 the
competing	risk	model?

12.6	Give	a	 sketch	of	proof	of	Theorem	12.6,	 using	methods	 analogous	 to	 the	methods
used	in	Section	11.3.

12.7	 In	 the	 study	 of	 the	 SMLE	 for	 the	 one-dimensional	 current	 status	 model	 the	 toy
estimator	(11.53)	was	introduced,	which	is	asymptotically	equivalent	with	the	SMLE
for	 this	 model.	 The	 treatment	 in	 Section	 12.3	 suggests	 a	 similar	 toy	 estimator
equivalent	to	the	SMLE	in	the	bivariate	current	status	model.	How	is	 this	estimator
defined?

Bibliographic	Remarks
This	chapter	 treats	material	 that	 is	still	 in	full	development.	The	 local	asymptotic	 theory
for	 the	MLE	 in	 the	competing	 risk	model	with	current	 status	data	was	developed	 in	 the
papers	 Groeneboom	 et	 al.,	 2008a,b,	 but	 although	 the	 rate	 of	 convergence	 has	 been
determined	and	the	limit	distribution	has	been	characterized,	an	analytic	characterization
of	this	limit	distribution	is	still	not	available.

The	 limit	 distribution	 of	 the	 SMLE,	 density	 and	 hazard	 in	 this	 model	 has	 been
developed	 in	Li	 and	Fine,	2013.	Their	 treatment	 relies	 in	 last	 instance	 on	 a	 conjectured
relation	 (see	 (S18)	 and	 (S19)	 on	 p.	 10	 and	 11	 in	 the	 supplementary	 material	 to	 their
article),	assuming	an	analogue	of	Lemma	5.9	in	Part	II	of	Groeneboom	and	Wellner,	1992.
We	proposed	in	Section	12.2	to	replace	this	by	an	 -type	bound,	as	in	our	treatment	of
the	SMLE	in	the	current	status	model	in	Section	11.3.



If	we	take	a	continuum	of	competing	risks,	we	get	the	so-called	continuous	mark	model
as	 introduced	 in	Section	5.3.	For	 this	model	 the	MLE	 is	 inconsistent,	 see	Maathuis	and
Wellner,	 2008,	 but	 the	 MSLE	 will	 be	 consistent	 if	 one	 chooses	 the	 right	 smoothing
parameters,	see	Groeneboom,	Jongbloed	and	Witte,	2012.

Still	 less	 is	known	about	 the	distribution	 theory	 in	 the	bivariate	current	 status	model.
Theorem	12.7,	which	is	proved	in	Groeneboom,	2013a,	is	the	only	distributional	result	we
are	aware	of	at	present;	the	limit	distribution	and	even	the	rate	of	convergence	of	the	MLE
is	still	unknown.	Nevertheless	it	seems	rather	likely	that	the	limit	behavior	for	the	SMLE,
as	stated	in	Conjecture	12.1	(and	also	in	Groeneboom,	2013a),	will	hold.	In	fact,	since	the
tools	in	proving	limit	results	for	the	MLE	and	the	SMLE	are	rather	different,	we	probably
do	 not	 need	 to	 know	 the	 limit	 distribution	 of	 the	MLE	 for	 the	 derivation	 of	 the	 limit
distribution	of	the	SMLE.	We	still	need	certain	bounds	for	the	SMLE,	though,	analogous
to	the	bounds	we	were	using	for	the	SMLE	in	the	one-dimensional	current	status	problem,
to	prove	Conjecture	12.1.



13
Asymptotic	Distribution	of	Global	Deviations

Chapter	3	 and	Chapter	 11	 deal	with	 pointwise	 asymptotic	 distribution	 theory	 for	 shape
constrained	estimators	 in	a	variety	of	models.	 In	Chapter	9,	several	 testing	problems	are
discussed	where	 test	 statistics	 are	 based	 on	 global	 deviations	 of	 the	 estimator	 from	 the
hypothesized	 function.	 In	 this	 chapter	 asymptotic	 theory	 will	 be	 developed	 for	 global
deviation	measures	in	three	particular	models.

The	 first	 is	 the	 monotone	 density	 model	 introduced	 in	 Section	 2.2.	 The	 asymptotic
distribution	 of	 the	 -distance	 between	 the	 Grenander	 estimator	 and	 the	 underlying
(decreasing)	density	will	be	derived.	The	method	used	relies	heavily	on	the	switch	relation
introduced	 in	Section	3.3.	 In	Section	13.2	one	of	 the	global	 test	 statistics	 for	 testing	 the
monotonicity	hypothesis	of	a	hazard	function	as	discussed	in	Section	9.1	is	studied.	The
method	applied	is	based	on	first	approximating	the	test	statistic	by	a	random	variable	that
depends	 on	Brownian	motion	 rather	 than	 the	 empirical	 process.	After	 that,	 this	 random
variable	(which	is	an	integral	over	an	interval	 )	is	written	as	a	sum	of	local	integrals.
Finally,	this	sum	is	dealt	with	using	an	appropriate	central	limit	result.

In	 Section	 13.3	 the	 asymptotic	 distribution	 (under	 the	 null	 hypothesis)	 of	 the	 two
sample	quasi-LR	test,	introduced	in	Section	9.3	for	current	status	data,	based	on	maximum
smoothed	likelihood	estimators	(MSLEs),	is	studied.	This	time	the	treatment	is	based	on
the	 asymptotic	 theory	 of	 degenerate	 -statistics,	 taking	 advantage	 of	 the	 asymptotic
linearization	performed	by	the	MSLEs.

13.1	 The	 	Loss	of	the	Grenander	Estimator
The	MLE	(Grenander	estimator)	of	a	decreasing	density	is	 introduced	in	Section	2.2.	 Its
pointwise	 asymptotic	 behavior	 is	 derived	 in	 Section	 3.2	 and,	more	 formally,	 in	 Section
3.6.	Under	some	smoothness	assumption	on	the	underlying	density	 ,	the	pointwise	rate
of	convergence	of	 the	Grenander	estimator	 is	 ,	 the	same	as	 the	 lower	bound	on	the
minimax	risk	derived	in	Example	6.2.	In	this	section,	the	asymptotic	behavior	of	the	
loss	 of	 the	 Grenander	 estimator	 is	 studied.	 The	 following	 result	 is	 stated	 in
Groeneboom,	1985,	with	a	sketch	of	proof.

Theorem	13.1	Define

(13.1)

where	 	denotes	standard	 two	sided	Brownian	motion	on	
originating	 from	 zero.	 Let	 	 be	 a	 twice	 differentiable	 decreasing	 density	 on	 [0,1],
satisfying

(A1)	 ,	for	 .



(A2)	 .

(A3)	 .

Then,	with	 ,

where	 	is	a	normal	distribution	with	mean	zero	and	variance

The	 	loss	of	the	Grenander	estimator,	scaled	at	rate	 ,	converges	in	probability
to	a	constant	 .	The	difference	between	this	rescaled	loss	and	 ,	blown	up	at	rate	 ,
converges	 in	 distribution	 to	 a	 normal	 limit	 distribution.	 The	 result	 shows	 that,
approximately,	the	 	loss	multiplied	by	 	is	normally	distributed	with	expectation	of
the	order	 	and	variance	 .	The	details	of	the	proof	are	provided	in	Groeneboom
et	al.,	1999.	Just	as	 in	 the	analysis	of	 the	 local	behavior,	 the	 inverse	process	 that	can	be
obtained	via	the	switch	relation	plays	an	important	role	in	the	proof,	 that	is,	 the	process	

,	where	 	is	defined	as	the	last	time	that	the	process	
	attains	its	maximum:

(13.2)

where	we	assume	that	 	is	the	support	of	the	density.	The	following	result	is	a	crucial
tool	for	the	proof	of	Theorem	13.1.

Theorem	13.2	Let	the	conditions	of	Theorem	13.1	be	satisfied	and	let	 .
Then	 there	 exists	 a	 constant	 ,	 only	 depending	 on	 ,	 such	 that	 for	 all	 ,	

	and	 ,

Note	that	this	result	is	similar	to	Theorem	11.3	in	Section	11.2.	In	both	cases	the	result
is	proved	by	martingale	methods,	but	the	martingales	are	rather	different	in	the	two	cases.
We	will	use	 the	 following	notation	 to	describe	 the	 relevant	martingales.	For	 ,	we
write:

where	 	 is	 the	 underlying	 distribution	 function.	 In	 Groeneboom	 et	 al.,	 1999,	 the
following	lemma	is	proved.



Lemma	13.1	Let	 	 and	 let	 .	Moreover,	 let	 	 be	 defined
by:

(13.3)

Then

for	each	 	such	that	 ,	and

for	each	 	such	that	 .

The	following	lemma	introduces	the	martingales.

Lemma	13.2	Let	 .	Consider,	for	 	fixed,	the	processes

and

Let	 	 and	 .	 Then,
conditionally	on	 ,	 the	process	 	 is	a	 reverse	 time	martingale	with	respect	 to
the	filtration	 	and	 	is	a	forward	time	martingale	with	respect	to
the	filtration	 .

Next,	Doob’s	inequality	is	used	to	obtain	the	following	lemma.

Lemma	 13.3	 Let	 ;	 see	 Figure	 13.1.	 Then,	 for	
,	 	and	 	such	that	 :

and	for	 ,	 	and	 	such	that	 :



	

Figure	13.1	 The	function	 	defined	in	Lemma	13.3.

Proof	We	start	with	 the	proof	of	 the	first	 inequality.	According	to	Lemma	13.2	we	have
that	for	each	 ,	conditionally	on	 ,	the	process	 	is	a	reverse
time	submartingale.	Hence,	by	Doob’s	inequality,

Since	 	 has	 a	 binomial	 distribution	 with	 parameters	 	 and	
,	the	last	expression	is	equal	to:

by	putting	 	in	the	last	equality.	This	proves	the	first	exponential	bound.

For	the	proof	of	the	second	inequality,	note	that,	for	 :



where	again	Doob’s	inequality	is	used.	Taking	 	and	 ,
we	get

☐
Remark	The	function	 ,	used	in	Lemma	13.3,	is	a	well	known	function	in	large
deviation	 theory.	 It	 is	 nonnegative	 and	 convex	 on	 ,	 and	 can	 be	 written	 as	

,	 .	Its	minimum	0	is	attained	at	 ;	see	Exercise	13.1.

We	can	now	prove	Theorem	13.2.

Proof	of	Theorem	13.2	We	write	 .	First	consider	the	probability

(13.4)

If	 ,	this	probability	is	zero,	in	which	case	there	is	nothing	to	prove,	so	we
can	restrict	ourselves	to	values	of	 ,	such	that	 .	Let

where	 .	Note	that	 ,	since	 	is	strictly	decreasing.	We	also	have,	using
assumption	(A1)	of	Theorem	13.1,

Hence	 ,	for	a	constant	 ,	independent	of	 	such	that	 .
By	Lemma	13.1,	the	probability	in	(13.4)	is	bounded	above	by

According	to	Lemma	13.3	this	probability	is	bounded	by

(13.5)

Using	 a	 Taylor	 expansion	 with	 a	 Lagrangian	 remainder	 term	 of	 the	 convex	 function	



	at	 ,	we	get

(13.6)

where	 .	But

and	hence,	by	(13.6),

for	 a	 constant	 ,	 independent	 of	 	 such	 that	 .	 Since	
,	 it	 now	 follows	 that	 (13.5)	 is	 bounded	 above	 by	

.

Now	consider	the	probability

(13.7)

If	 ,	this	probability	is	zero,	so	we	can	restrict	ourselves	to	consider
an	 	such	that	 .	Define

The	fact	that	 	is	strictly	decreasing	this	time	implies	that	 .	Using	Lemma	13.1	it
is	seen	that	(13.7)	is	bounded	above	by

which,	by	Lemma	13.2,	leads	to	the	upper	bound

We	have,	using	 :

where	in	this	case	 .	Following	the	same	line	of	argument	as	was	used	earlier,
we	get	the	upper	bound	 .	☐
The	preceding	results	show	that	the	difference	between	the	 	risk



(13.8)

and	the	integral

defined	 in	 terms	 of	 the	 inverse	 process,	 is	 of	 order	 .	 In	 fact,	 we	 have	 the
following	important	corollary	as	a	consequence	of	Theorem	13.2.

Corollary	13.1	Let	 	be	the	Grenander	estimator	and	let	 	be	defined	in	(13.2).	Then

(13.9)

Proof	The	difference	on	the	left	hand	side	of	(13.9)	can	be	written	as

where	 ,	 .	 We	 show	 that	 the	 first	 term	 is	 .	 The
second	term	can	be	treated	similarly.

We	have:

According	to	Theorem	13.2	we	have	for	the	second	difference	on	the	right	hand	side:

(13.10)

Let	 	and	 .	Then	write

Then,	according	to	Theorem	13.2,

Hence	by	the	Markov	inequality	we	can	conclude	that

(13.11)



Let	 	 be	 a	 sequence	 of	 Brownian	 bridges	 given	 by	 the	 Hungarian	 embedding
approximating	 ,	see	Komlós	et	al.,	1975.	Then

Since	 ,	where	 	 denotes	Brownian	motion,	 the	 right	 hand
side	can	be	bounded	by	a	random	variable	that	has	the	same	distribution	as

Note	that	 .	Furthermore,	since	for	any	 ,

we	have	that

which	implies	that	 .	Together	with	(13.10)	and	(13.11)
this	proves	that

☐
The	preceding	result	shows	that	in	Theorem	13.1	the	proof	of

can	be	reduced	to	the	proof	of

Moreover,	it	is	shown	in	Groeneboom	et	al.,	1999,	that	we	can	replace	the	process	 	by
the	argmax	process	 ,	where

where	 	 is	 a	 sequence	 of	 Brownian	 motion	 processes	 on	 ,
coupled	to	the	sample	processes.	The	process	 	is	strong	mixing,	with	mixing	function

so	 the	 dependence	 dies	 out	 rather	 rapidly	 with	 	 (see	 Theorem	 3.3	 of	 Groeneboom



et	 al.,	 1999).	 This	 shows	 that,	 in	 fact,	 the	 central	 limit	 theorem	 can	 be	 reduced	 to	 a
theorem	on	strongly	mixing	sequences	of	stationary	random	variables,	given	in	Ibragimov
and	Linnik,	1971.	For	more	details,	see	Groeneboom	et	al.,	1999.

These	results	have	been	further	developed	by	Durot	et	al.,	2012;	see	also	Section	9.2.

13.2	 Empirical	 -Test	for	a	Monotone	Hazard
In	 the	 context	 of	 testing	 monotonicity	 of	 a	 hazard	 function	 on	 the	 interval	 ,	 the
following	test	statistic	is	introduced	in	Section	9.1:

(13.12)

This	is	 the	empirical	 -distance	between	the	empirical	cumulative	hazard	function	and
its	greatest	convex	minorant	on	 ;	see	also	Section	2.6.	In	this	section	we	point	out
the	main	steps	to	derive	the	asymptotic	distribution	of	this	test	statistic.	This	distribution	is
derived	by	considering	the	quantity

(13.13)

that	 turns	 out	 to	 have	 the	 same	 asymptotic	 distribution	 as	 .	 Using	 a	 convenient
representation	of	 	in	terms	of	integrals	of	functionals	of	Brownian	motions,	the	integral
is	viewed	as	 the	sum	of	 increasingly	(as	 	grows)	many	 local	 integrals.	For	 this	sum	a
central	limit	theorem	can	be	used	to	derive	its	asymptotic	normal	distribution.	To	this	end,
the	first	two	moments	of	the	local	integrals	will	be	needed.	These	moments	are	related	to
the	moments	of	a	process	associated	with	two	sided	Brownian	motion.	One	could	say	that
the	 asymptotic	 distribution	 of	 	 is	 derived	 using	 standard	 asymptotics	 for	 a	 sum	 of
independent	random	variables	(CLT)	where	the	terms	in	the	sum	need	to	be	handled	using
nonstandard	 asymptotics	 involving	 the	 convex	 minorant	 of	 Brownian	 motion	 with	 a
parabolic	drift.

We	 start	 by	 representing	 	 in	 terms	 of	 a	Brownian	motion	 process	 rather	 than	 the
empirical	process.	To	this	end,	approximate	the	process	 	in	 	by	the
process

(13.14)

where	 	 is	 the	 empirical	 process	 	 and	 	 is	 the	 greatest	 convex
minorant	of	the	process



(13.15)

see	 Exercise	 13.2.	 Then	 use	 the	 strong	 (Hungarian)	 approximation	 of	 the	 empirical
process	by	a	Brownian	bridge	 .	This	approximation	entails	that	Brownian	bridges	
on	the	same	sample	space	as	 	can	be	constructed	such	that

is	a	random	variable	with	with	 	for	all	 .	This	yields	approximation

to	the	process	(13.15).	See	Theorem	3	in	Komlós	et	al.,	1975,	for	the	approximation	and
Exercise	3.9	for	the	definition	of	Brownian	bridge.	This	process	is	distributed	as

(13.16)

where	 	 is	 standard	 Brownian	 motion	 on	 ;	 see	 Exercise	 13.3.	 So,	 if	 	 is	 the
greatest	convex	minorant	of	the	process	 	on	 ,	we	have	(where	we	add	an	 -
term	we	do	not	discuss	in	detail	here):

The	integral	at	the	right	hand	side	of	(13.17)	shows	that	for	the	asymptotic	distribution	of	
,	properties	of	the	(well	understood)	Brownian	motion	process	are	needed.

Having	 established	 representation	 (13.17),	 we	 proceed	 by	 breaking	 up	 the	 interval	
	 into	 	 intervals	 	with	 (equal)	 length	 of	 order	 	 (big	 blocks),

separated	by	intervals	 	 ( )	with	 length	of	order	
(small	blocks).	The	 idea	 is	 that	 the	bigger	 intervals	dominate	 the	behavior	of	 the	whole
integral,	whereas	 the	 smaller	 intervals	 ensure	 that	 the	 integrals	over	 the	bigger	 intervals
are	 approximately	 independent.	The	 small	 interval	 	 to	 the	 left	 of	 	 has	 half	 the
length	of	 the	other	 separating	blocks	 as	has	 the	 small	 interval	 	 to	 the	 right	 of	

.	Hence,

For	 ,	 let	 	be	 the	 interval	with	 the	 same	 right	endpoint	as	



with	 half	 the	 length	 of	 	 and	 take	 .	 For	 	 let	
	 be	 the	 interval	with	 the	 same	 left	 endpoint	 as	 	with	 half	 the	 length	 of	
	and	 .	Then

where	 all	 	 intervals	 have	 the	 same	 length	of	 order	 	 and	 the	 	 intervals
have	the	same	length	of	(smaller)	order	 .	Finally,	let	the	interval	 	be
defined	by

(13.18)

Note	that	 	(see	Exercise	13.4)	and	see	Figure	13.2	for	the	structure
of	the	partition.

	

Figure	13.2	 Partition	of	[0,	a]	in	big	blocks	separated	by	small	blocks.

Lemma	13.4	states	that	on	intervals	 	the	global	convex	minorant	of	 	(defined	in
(13.16))	 over	 	 coincides	 with	 high	 probability	 with	 the	 restriction	 to	 	 of	 the
local	convex	minorant	of	the	process	 	on	the	interval	 .

Lemma	 13.4	Let	 	 be	 strictly	 positive	 on	 ,	 with	 a	 strictly	 positive	 continuous
derivative	 	on	 ,	which	also	has	a	strictly	positive	right	limit	at	 	and	a	strictly
positive	left	limit	at	 .	Then:

i.	 The	probability	that	there	exists	a	 ,	 ,	such	that	 the	greatest	convex
minorant	 	of	 	 is	different	on	the	interval	 	from	the	restriction	 to	 	of
the	(local)	greatest	convex	minorant	of	 	on	 ,	is	bounded	above	by

for	constants	 ,	uniformly	in	 .

ii.	 The	probability	that	there	exists	a	 ,	 ,	such	that	 	has	no	change	of
slope	in	an	interval	 	or	 	is	also	bounded	by

for	constants	 ,	uniformly	in	 .

This	is	an	important	lemma,	as	it	allows	us	to	focus	on	the	individual	contributions	to
(13.17)	 of	 the	 intervals	 .	 For	 each	 	 and	 	 define	 independent
standard	Brownian	motions	 	and	consider	the	(local)	processes



Denote	the	greatest	convex	minorants	of	these	processes	(on	 )	by	 .	Furthermore,
define	the	processes	 	by

(13.19)

A	consequence	of	 the	“big	blocks	separated	by	small	blocks”	construction,	with	 interval
lengths	as	described,	is	that	it	can	be	shown	that

All	this	leads	to	the	following	approximation	to	 :

(13.20)

To	derive	the	asymptotic	distribution	of	 this	sum,	we	need	to	consider	 the	asymptotic
behavior	 of	 the	 individual	 terms.	 It	 will	 be	 seen	 soon	 that	 the	 following	 process	 (also
encountered	in	Section	3.9)	will	play	an	important	role	in	this	behavior

(13.21)

with	 	standard	two	sided	Brownian	motion	on	 	and	 	the	greatest	convex	minorant
of	 	on	 .	In	particular,	for	 ,	the	integral	 	with

(13.22)

will	be	important.	See	Figure	13.3	for	a	picture	of	the	process	 	and	its	greatest	convex
minorant,	restricted	to	the	interval	 .	For	 ,	the	following	lemma	can	be	proved.



	

Figure	13.3	 The	greatest	convex	minorant	of	 ,	restricted	to	 .

Lemma	13.5

where	 	 is	 the	value	of	 the	greatest	convex	minorant	 	of	 the	process	 	 at	 zero,
and

All	moments	of	 	exist	and	(in	particular)	the	fourth	moment	is
uniformly	bounded	 in	 	 and	 converges	 to	 the	 fourth	moment	 of	 the	 normal	
distribution,	as	 .

We	 now	 connect	 the	 individual	 terms	 in	 (13.20)	 to	 the	 quantity	 .	 Let	
	and	

.	We	then	have



where	 	is	the	greatest	convex	minorant	of	the	process

on	 .	 See	 Exercise	 13.5	 for	 the	 latter	 approximation.	We	 also	 use	 that	 adding	 a
linear	function	to	a	function	does	not	change	the	difference	between	this	function	and	its
greatest	convex	minorant.	Process	(13.23)	is	two	sided	Brownian	motion	with	a	quadratic
drift,	but	not	yet	precisely	like	(13.21).	Using	Brownian	scaling	(see	Exercise	13.6)	it	can
be	seen	that	this	process	on	 	has	the	same	distribution	as	the	process

(13.24)

on	the	interval	 ,	where

(13.25)

Therefore,	 writing	 	 for	 the	 greatest	 convex	 minorant	 of	 the	 process	 (13.24)	 on	
,	and	noting	that	this	convex	minorant	can	be	expressed	as	 	where	

	is	the	convex	minorant	of	the	process	defined	in	(13.21)	on	 ,	we	can	write



“Chopping	 off”	 the	 boundary	 parts	 in	 the	 integral	 was	 needed	 to	 decouple	 the	 global
integral	independent	local	integrals.	This	modification	of	the	integral	can	be	shown	to	be
small	enough	to	guarantee	that	the	latter	integral	behaves	like	the	integral	over	the	whole
interval,

where	 	 is	 the	 convex	 minorant	 of	 	 taken	 over	 ,	 rather	 than	
,	and	 	is	as	defined	in	(13.22).	This	means	that

Therefore,	using	Lemma	13.5,	it	can	be	seen	that

uniformly	in	 ,	where

and	 	is	defined	as	in	Theorem	13.5.	Likewise,	also	with	 	as	defined	in	Theorem
13.5,

see	Exercise	13.7.

Finally,	 all	 contributions	 to	 the	 full	 integral	 over	 	 are	 added.	 Since	 the	 fourth
moments	of

can	be	shown	to	be	uniformly	bounded,	Chebyshev’s	inequality	yields	that	for	each	
,

Using	 that	 	 and	 that	 the	 intervals	 	 have	 lengths	 of	 order	
,	we	get:



Using	that	 ,	the	normal	convergence	criterion	on	p.	316	of	Loève,	1963,
gives:

where

(13.28)

Also	note	that

This	reasoning	leads	to	the	following	lemma.

Lemma	 13.6	Let	 	 be	 strictly	 positive	 on	 ,	 with	 a	 strictly	 positive	 continuous
derivative	 	on	 ,	which	also	has	a	strictly	positive	right	limit	at	 	and	a	strictly
positive	left	limit	at	 .	Moreover,	let	 	be	defined	as	in	Lemma	13.5	and	 	as	in
(13.28).	Then:

where

(13.29)

Finally,	this	leads	to	the	following	asymptotic	result	for	test	statistic	 .



Theorem	 13.3	Let	 	 satisfy	 the	 conditions	 of	 Lemma	 13.6.	Moreover,	 let	 	 be	 as
defined	in	(13.16)	and	 	be	its	convex	minorant.	Define

Then,	for	 	defined	in	(13.12),

where	 	is	as	defined	in	(13.28).

13.3	 Two-Sample	Tests	for	Current	Status	Data
For	the	current	status	model	introduced	in	Section	2.3,	a	two	sample	test	is	introduced	in
Section	 9.3.	 It	 is	 based	 on	 the	 likelihood	 ratio	 statistic	 ,	 defined	 by	 (9.48),	 using
MSLEs.	 In	 this	 section	 the	 asymptotic	 behavior	 of	 this	 global	 deviation	 measure	 is
studied.	Full	 proofs	of	Theorems	9.5	 through	9.8	 are	given	 in	 the	online	 supplement	of
Groeneboom,	2012b.	Here	we	will	give	a	sketch	of	the	main	line	of	the	argument.

By	Lemma	8.5	(also	Corollary	3.4	in	Groeneboom	et	al.,	2010),	using	the	two	sample
problem	notation,	we	have,	with	probability	tending	to	one,

(13.30)

Here	 	and	 	are	the	kernel	estimators	defined	in	(9.52).	Hence,	the	MSLE	is	just
equal	to	the	ratio	of	two	kernel	estimators	for	 ,	with	probability	tending	to	one.
Similarly,	with	probability	tending	to	one,

(13.31)

again	using	the	definitions	given	in	(9.52)	and

(13.32)

Hence	 we	 assume	 in	 the	 following	 that	 ,	 	 and	 	 have	 the	 representations
(13.30),	(13.31)	and	(13.32),	respectively.

Next,	 using	 Giné	 and	 Guillou,	 2002,	 which	 in	 turn	 relies	 on	 Talagrand,	 1994,	 and
Talagrand,	1996,	if	 the	bandwidth	 	satisfies	 ,	 it	 is	proved	 that,	under	 the
conditions	of	any	Theorems	9.5	to	9.7:



(13.33)

and

(13.34)

implying	that	also:

This	leads	to	the	representation	of	the	following	lemma.

Lemma	13.7	Let	 any	 of	 the	 conditions	 of	 Theorems	 9.5	 to	 9.7	 be	 satisfied	 and	 let	 the
bandwidth	 satisfy	 ,	where	 	 (and	hence	 )	 satisfies	 the	 conditions	 of	 the
corresponding	Theorem	9.5,	9.6	or	9.7.	Then

where

Moreover,

where

and

Note	that	 	if	 .

Lemma	13.7	gives	an	(asymptotic)	representation	of	the	statistic	 	in	terms	of	the	



-statistics	with	degenerate	kernel	 ,	 	and	 ,	 together	with	 an	extra	bias	 term	
.	Note	that	(13.35)	of	Lemma	13.7	gives	that	 	has	the	asymptotic	representation

as	a	weighted	integral	of

which	is	an	estimate	of

Under	the	null	hypothesis	 	we	get,	if	 ,

If	 	and	 ,	also	the	second	bias	term	 	comes	into	play.

This	 type	 of	 decomposition	 is	 somewhat	 typical	 for	 the	 representation	 of	 global
deviation	 measures	 in	 density	 estimation.	 ,	 	 and	 	 are	 -statistics	 with
degenerate	kernels,	which	are,	 for	example,	analyzed	in	Hall,	1984.	The	sum	of	 the	 -
statistics	 ,	 	 and	 	 can	 be	 treated	 by	 using	 a	 central	 limit	 theorem	 for
martingale	 difference	 arrays.	 This	 is	 slightly	 tricky,	 due	 to	 the	 conditioning	 on	

;	 the	 unconditional	 version	 of	 the	 result	 is	 easier,	 but	 leads	 to	 a	 bootstrap
procedure	where	one	has	to	resample	both	the	 	and	 	instead	of	only	the	 ,	as	is
done	in	the	conditional	approach.

In	Groeneboom,	2012b,	 the	 -algebras	 ,	 ,	 are	 introduced,	where	
	is	the	trivial	 -algebra,	and	 	is	the	 -algebra,	generated	by	 ,	where	
	is	of	the	form

As	an	example,

where

and

The	sequence	 	is	a	martingale,	since



Furthermore	we	have,	in	probability,

which	gives	for	 ,	in	probability,

see	 Groeneboom,	 2012b.	 We	 next	 can	 apply	 the	 martingale	 convergence	 theorem	 on
p.	 171	 for	 martingale	 difference	 arrays	 in	 Pollard,	 1984,	 to	 prove	 that	 	 is
asymptotically	normal.

The	 terms	 	 and	 	 can	 be	 treated	 in	 a	 similar	way.	 In	 this	way	we	 obtain	 the
asymptotic	 normality	 of	 the	 test	 statistic	 ,	 conditioning	 on	 ,	 where	 the
asymptotic	 normality	 holds	 in	 probability,	 that	 is:	 for	 each	 	 the	 probability	 that	 the
rescaled	 	 is	 smaller	 than	 	 tends	 to	 ,	 the	 standard	 normal	 distribution
function,	evaluated	at	 .

Proving	that	bootstrapping	from	 	works	is	a	bit	subtle	and	not	at	all	trivial.	First
of	 all,	 if	 we	 take	 bandwidth	 ,	 the	 second	 derivative	 is	 not	 uniformly
bounded,	 and	hence	 	 does	 not	 satisfy	 the	 same	 differentiability	 conditions	 as	 the
underlying	distributions	in	Theorems	9.5	to	9.7.	Second,	we	have	to	show	that	this	way	of
bootstrapping	does	not	change	the	bias,	and	that,	for	example,	exactly	the	same	bias	as	in
Theorem	9.6	 is	reproduced.	That	 this	 indeed	happens	 is	due	to	 the	fact	 that	we	keep	the
observation	times	 	of	the	original	sample	fixed	in	the	bootstrap	procedure.	We	give	here
the	main	line	of	the	proof	of	Theorem	9.8.

We	may	assume	that,	for	large	 ,	 	has	the	representation

for	 ,	where	 .	This	gives

where



and	 	is	defined	by:

By	the	assumptions	on	 ,	and	using	 ,	we	have

uniformly	 for	 	 (note	 that	 the	 -term	 is	 an	 -term	 conditionally	 on	
).	Furthermore,	since

we	get:

and	hence

(13.37)

It	can	be	proved	in	a	similar	way	that

The	bootstrap	test	statistic	 	now	has	the	representation

where

and	the	 	are	defined	by



for	 independent	 random	 variables	 ,	 independent	 of	 the	 random	 variables	
,	 ,	and	where	we	may	assume,	as	before,	that

Note	that	the	only	extra	randomness	is	introduced	by	the	uniform	random	variables	 ,
and	that	the	bandwidth	 ,	used	here,	may	be	smaller	than	the	bandwidth	 ,	used	in	the
computation	of	 .	In	fact,	 	 is	 the	bandwidth	 that	 is	used	in	 the	original	sample
and	we	have,	by	assumption,

where	 ,	and	where	we	allow	 	 if	 it	 is	assumed	that	 .
The	densities	 	have	been	computed	in	the	original	sample,	using	this	possibly	smaller
bandwidth	 .

We	now	get:

where

and	the	bias	term	 	is	given	by:



Note	(again)	 that	 	 if	 	 and	 that	 the	bias	 term	 	 is	equal	 to	 the	bias
term	of	the	original	statistic.

However,	the	distribution	function	 	does	not	satisfy	the	condition	that	the	second
derivative	 is	 uniformly	 bounded	 on	 an	 interval	 ,	 containing	 ,	 which	 is	 a
condition	on	 	in	Theorems	9.5	to	9.7.	But	this	condition	was	only	needed	to	take	care	of
bias	terms	of	the	form

in	the	term

which	appears	in	the	numerator	of	the	integrand	in	the	first	term	of	the	representation	of	
:

see	(13.35).

But	(13.39)	transforms	in	the	bootstrap	representation	into

Since	 	is	represented	by

and	since

uniformly	in	 ,	we	get:



So	 the	 only	 thing	 that	 has	 changed	 with	 respect	 to	 the	 representation	 of	 the	 original
statistic	is	that	the	remainder	term	 ,	coming	from	the	bias,	has	been	changed	to	

,	and	the	dominating	term	for	the	bias	is	again

which	 appears	 squared	 in	 the	 numerator	 of	 the	 integrand	 in	 the	 first	 term	 of	 the
representation	(13.40)	of	 .	Theorem	9.8	now	follows.

Exercises
13.1	Consider	the	function	 	defined	in	Lemma	13.3	and	shown	in	Figure	13.1,

a)	Show	that	 	can	be	represented	as

b)	Show	that	 	is	nonnegative	and	convex	on	 	and	attains	its	minimum	value
at	 .

13.2	Observe	that	the	integrand	in	(13.13)	can	be	rewritten	as

where	 	 is	 the	 empirical	 process.	 Verify	 that	 (13.14)	 indeed
approximates	this	integrand	on	 	up	to	an	 	remainder	term.

13.3	Let	 	be	the	standard	Wiener	process	on	 	and	 	Brownian	bridge	on	 .
Show	that	the	processes

have	the	same	distributions.	Use	that	both	processes	are	Gaussian	and	compute	their
mean	and	covariance	functions.	For	the	covariance	functions,	see	Exercise	3.9.

13.4	Show	that	the	number	of	 -intervals	 	is	indeed	of	the	order	 	if	the
lengths	of	the	 -	and	 	intervals	is	of	order	 	and	



respectively,	as	described	in	Section	13.2.

13.5	Let	 	 be	 a	 sequence	 in	 	 and	 let	 the	distibution	 function	 	 on	 	 be
twice	continuously	differentiable	on	 .	As	usual,	denote	by	 ,	 	and	 	 the
density,	 hazard	 rate	 and	 cumulative	 hazard	 rate	 associated	with	 .	 Show	 that	 for

13.6	Brownian	scaling	says	that	for	any	 ,	the	Wiener	process	 	on	
has	 the	 same	 distribution	 as	 the	 process	 ;	 see	 also	 (3.41).	 In	 the
context	of	Section	13.2,	write

a)	Use	Brownian	scaling	to	show	that	the	processes

have	the	same	distributions	whenever	 	and	 .

b)	Verify	(13.25)	by	substituting	 	and	 	in	the	equations	derived	in	(a).

13.7	Verify	(13.26)	and	(13.27),	using	(13.25).
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characterization	LS	estimator,	98	

consistency	of	LS	estimator,	100	

least	squares	estimator,	95,	117	

maximum	likelihood	estimator,	117	

as	mixture	model,	178	

convex	minorant,	55	

max	min	formula,	56	

convex	regression,	91	

support	reduction	algorithm,	181	

cumulative	sum	diagram,	20	

self-induced,	360	

current	status	model,	4,	28	

Andersen-Rønn	test,	258	

asymptotic	distribution	ML	estimator	of	smooth	functional,	288	

asymptotic	distribution	MLE,	68	

asymptotic	distribution	MSLE,	214	

asymptotic	distribution	of	MLE	for	the	mean,	287	

asymptotic	distribution	SMLE	for	 ,	334	

asymptotic	distribution	SMLE	for	 ,	336	

asymptotic	equivalence	MSLE	and	naive	estimator,	212	

bivariate,	127	

characterization	ML	estimator,	29	

confidence	intervals,	266	

EM	algorithm,	194	

estimating	smooth	functionals,	286	

maximum	likelihood	(ML)	estimator,	5,	29	

maximum	smoothed	likelihood	estimator	(MSLE),	211	



minimax	risk,	151	

monotonic	rearrangement,	224	

observation	density,	43	

relation	uniform	deconvolution,	285	

SMLE-based	confidence	interval,	268	

smoothed	maximum	likelihood	estimator	(SMLE),	198	

two-sample	test,	250	

with	competing	risks,	121,	363	

with	continuous	marks,	132	

cusum	diagram,	2	

damping,	159,	172,	193	

data	

Bangkok	cohort	study,	10,	367	

Canadian	income,	91	

CMV	from	Betensky	and	Finkelstein,	132,	185,	215	

current	durations	of	pregnancy	in	France,	25	

height	of	school	girls,	19	

hepatitis	A,	8,	276	

Lake	Mendota,	1	

Lake	Monona,	20,	46	

luminescence	dating,	34	

lung	tumor,	4	

rubella,	28,	199	

temperature	and	heart	rate,	135	

Wicksell,	202	

deconvolution	problem,	14,	108	

characterization	ML	estimator,	110	

EM	algorithm,	194	

estimating	mean,	284	

exponential,	32	

Gaussian,	109	

Hellinger	consistency	ML	density	estimator,	111	



moment	estimator	for	mean,	284	

moment	estimator	for	variance,	285	

normal,	177	

pointwise	consistency	ML	estimator,	112	

uniform,	44,	168	

with	jump	kernel,	31	

decreasing	density	

-sample	test,	238	

asymptotics	 -statistic,	240,	241	

maximum	smoothed	likelihood	estimator,	201	

descent	function,	157	

direct	problem,	89	

Doob	inequality,	67,	70,	322,	380	

efficient	influence	function,	287,	330	

EM	algorithm,	159,	162,	265,	345	

competing	risks	model,	188	

current	status	model,	194	

deconvolution	problem,	194	

exponential	model	in	uniform	deconvolution,	168	

heuristics,	165	

interval	censoring	case	2,	162,	299	

monotonicity,	166	

truncated	exponentials,	159	

empirical	cumulative	hazard,	228	

empirical	process,	385	

empirical	process	theory,	57	

entropy,	random,	302	

entropy	with	bracketing,	58	

functions	of	bounded	variation,	58	

monotone	functions,	58	

envelope,	59,	62	

estimation	procedure,	140	



Euler	differential	equation,	207	

expectation	maximization	algorithm,	see	EM	algorithm	

exponential	centering,	322	

exponential	deconvolution	

asymptotic	distribution,	60	

failure	rate,	37	

filtration,	67	

Fisher	information,	145,	153	

generalized	isotonic	regression,	33	

geometric	extremum	problem,	34,	45	

Glivenko	Cantelli	

function	class,	58	

preservation	theorem,	58	

theorem,	48,	58	

Grenander	estimator,	23	

characterization,	23	

consistency,	49	

heuristic	asymptotics,	51	

inconsistency	at	zero,	43,	83,	85	

	loss,	378	

pointwise	limit	distribution,	64	

Hampel’s	problem,	93	

inverse	relation,	95	

hazard	rate,	37	

Hellinger	affinity,	141,	152	

Hellinger	distance,	50,	141,	143	

hidden	space,	161,	330	

Hungarian	approximation,	65,	385	

ICM	algorithm,	see	iterative	convex	minorant	algorithm	

ill-posed	problem,	140	

in–out	model,	370	

increasing	hazard	



penalized	least	squares	estimator,	206	

SMLE,	347	

inspection	paradox,	22	

interval	censoring,	mixed	case,	114	

interval	censoring	case	2,	112,	162	

asymptotic	distribution	ML	estimator	of	smooth	functional,	304	

asymptotic	distribution	of	the	MSLE,	346	

bivariate	model,	127	

characterization	ML	estimator,	113	

conjectured	asymptotic	distribution	SMLE,	340,	344	

EM	algorithm,	162	

estimating	smooth	functionals,	299	

ICM	algorithm,	174	

maximum	smoothed	likelihood	estimator	(MSLE),	215	

sampling	density,	113	

smoothed	maximum	likelihood	estimator	(SMLE),	215	

two-sample	problem,	263	

uniform	consistency	ML	estimator,	301	

unseparated	case,	115,	264,	265,	338	

intra	simplex	direction	algorithm,	180	

invelope	of	integrated	Brownian	motion	 ,	313,	320	

inverse	problem,	13,	89	

isotonic	estimator,	2	

isotonic	regression,	2,	19	

characterization,	19	

generalized,	33	

monotonic	rearrangement	estimator,	209	

isotonization,	91,	203	

iterative	convex	minorant	algorithm,	45,	170	

competing	risks	model,	188,	367	

convergence,	173	

descent	direction,	171	



interval	censoring	case	2,	174,	299	

Kaplan-Meier	estimator,	4	

kernel	estimator,	12,	198	

boundary	correction,	210	

product,	for	two-dimensional	data,	219	

ratio	of	two,	214	

Kullback-Leibler	distance,	345	

Le	Cam	inequality,	142	

least	concave	majorant,	2	

least	squares	convex	estimator,	convex	regression,	181	

least	squares	cross	validation,	244	

least	squares	estimator	

convex	density,	95	

density,	16,	28,	43,	178	

monotone	hazard,	37	

monotone	regression,	18	

penalized,	206	

Wicksell	problem,	203	

length	biased	distribution,	22	

liberal	test,	236	

likelihood	ratio	test,	 -sample	problem	decreasing	densities,	239	

log	concave	density	

beta,	117	

characterization	univariate	ML	estimator,	103	

Laplace,	117	

logistic,	117	

MLE	of	the	mean,	103	

multivariate,	134	

subexponential	tails,	117	

unimodal,	117	

univariate,	101	

loss	function,	140	



luminescence	dating,	34	

Marshall’s	inequality,	48,	80	

martingale,	67	

max	risk,	140	

maximum	likelihood	estimator	

current	status	model,	29	

decreasing	density,	23	

geometric	extremum	problem,	35	

monotone	hazard,	38	

monotone	hazard	with	right	censoring,	40	

Poisson	extremum	problem,	34,	36	

maximum	smoothed	likelihood	estimator	(MSLE),	201,	215	

current	status	model,	210	

midpoint	convexity,	279	

migrating	birds	problem,	see	Hampel’s	problem	

minimax	lower	bound	

convex	density,	153,	314	

current	status	model,	151	

decreasing	density,	150	

parametric	model,	149	

minimax	risk,	139,	140	

asymptotic	lower	bound,	143,	147	

finite	sample	lower	bound,	142	

local,	140	

mixing	distribution,	14,	17	

mixture	model,	14,	28	

mixture	of	normal	distributions,	178	

modulus	of	continuity,	152	

local,	143	

monotone	density	estimation,	22	

characterization	MSLE,	201	

minimax	risk,	150	



monotone	hazard,	37	

asymptotic	distribution	 -test,	391	

asymptotic	distribution	SMLE	with	right	censoring,	355	

least	squares	estimator,	37	

maximum	likelihood	estimator,	38	

with	right	censoring,	39	

SMLE,	347	

testing,	227	

monotone	regression,	see	isotonic	regression	

monotonic	rearrangement,	208,	224	

multivariate	log	concave	density,	134	

Nadaraya	Watson	estimator,	224	

Newton	algorithm,	158	

local	minima,	192	

nonconvergence,	193	

nonparametric	statistics,	12	

normal	deconvolution,	177,	284	

as	mixture	model,	178	

ML	estimator	of	first	moment,	309	

observation	space,	161	

parameter	space,	12	

penalization,	204	

boundary,	206	

smoothness,	206	

penalized	least	squares	estimator,	206	

pilot	bandwidth,	199,	200	

plug-in	estimator,	89,	203	

Poisson	extremum	problem,	33,	45	

Proschan-Pyke	test,	227	

quadratic	variation	process,	67	

R-function	

cspl,	91	



R-package	

conreg,	93	

LogConcDEAD,	136	

LogConDens,	105,	120	

MLEcens,	126,	183,	184,	367	

R-software,	16	

random	fraction,	88	

Rebolledo’s	theorem,	68	

resolvent,	32,	44,	109,	112	

right	censoring	model,	4	

asymptotic	distribution	of	SMLE	increasing	hazard,	347	

asymptotic	distribution	SMLE	monotone	hazard,	355	

risk,	140,	141	

scale	family,	17	

scale	mixture,	17	

Schuster	method,	268,	336	

asymmetric,	328,	357	

score	function,	330	

score	operator,	287,	312,	330	

self-consistency	equation,	166,	301,	345	

shape	constraint,	14	

shoulder	condition,	225,	328	

Simar	algorithm,	180	

size	biased	distribution,	88,	95	

slocom,	52	

smooth	functional	

asymptotic	distribution	ML	estimator	interval	censoring	case	2,	304	

asymptotic	distribution	of	ML	estimator	in	current	status	model,	288	

smooth	functional	theory,	283	

local,	329	

smoothed	maximum	likelihood	estimator	(SMLE),	6,	8,	198,	215,	363	

solution	set,	157	



spline	smoother,	12	

square	brackets	process,	see	quadratic	variation	process	

star	shaped	distribution,	105	

inconsistency	of	ML	estimator,	107	

statistical	inverse	problem,	89	

statistical	model,	12	

stereology,	13,	87	

strong	approximation,	385	

submartingale,	67	

support,	180	

support	reduction	algorithm,	180	

bivariate	interval	censoring	case	2,	183	

competing	risks	model,	367	

convex	regression,	181	

survival	analysis,	28	

switch	relation,	56,	69,	78,	321,	352,	353,	379	

testing	for	a	monotone	hazard,	227	

asymptotic	 	loss,	231	

bootstrap	 	loss,	235	

conservative	critical	values,	230	

transmission	potential,	8	

triweight	kernel,	6,	198,	216,	247,	252	

truncated	exponentials,	159	

two-sample	problem	

current	status	model,	250	

interval	censoring	case	2,	263	

likelihood	ratio	test,	251	

smoothed	likelihood	ratio	test,	251	

U-statistics,	393	

uniform	deconvolution,	168,	285	

asymptotic	distribution	MLE,	286	

relation	with	current	status,	286	



Van	Trees	inequality,	145	

vertex,	177	

vertex	direction	algorithm,	177,	179	

competing	risks	model,	190	

finite	mixture	of	normals,	195	

vertex	exchange	algorithm,	180	

viral	distance,	132

wavelets,	12	

Wicksell’s	problem,	87	

inverse	relation,	89	

isotonized	estimator,	91,	116	

maximum	likelihood	estimator,	117	

plug-in	estimator,	116	

smooth	estimation,	202	

Wiener	process,	81	
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