next up previous
Next: About this document ...

Math examples


$\displaystyle \phi$($\displaystyle \lambda$) = $\displaystyle {\frac{1}{2 \pi i}}$$\displaystyle \int^{c+i\infty}_{c-i\infty}$exp$\displaystyle \left(\vphantom{ u \ln u + \lambda u }\right.$u ln u + $\displaystyle \lambda$u$\displaystyle \left.\vphantom{ u \ln u + \lambda u }\right)$du   for c $\displaystyle \geq$ 0 (1)
$\displaystyle \lambda$ = $\displaystyle {\frac{\epsilon -\bar{\epsilon} }{\xi}}$ - $\displaystyle \gamma{^\prime}$ - $\displaystyle \beta^{2}_{}$ - ln$\displaystyle {\frac{\xi}{E_{\rm max}}}$ (2)
$\displaystyle \gamma$ = 0.577215...   (Euler's constant) (3)
$\displaystyle \gamma{^\prime}$ = 0.422784... = 1 - $\displaystyle \gamma$ (4)
$\displaystyle \epsilon$,$\displaystyle \bar{\epsilon}$ = actual/average energy loss (5)

Since 2 and 6 hold for arbitrary $ \delta$c-vectors, it is clear that $ \mathcal {N}$(A) = $ \mathcal {R}$(B) and that when y = B(x) one has...
...the Pythagorians knew infinitely many solutions in integers to a2 + b2 = c2. That no non-trivial integer solutions exist for an + bn = cn with integers n > 2 has long been suspected (Fermat, c.1637). Only during the current decade has this been proved (Wiles, 1995).


V$\displaystyle \pi$sr = $\displaystyle \left<\vphantom{ \sum_i M_i \mathbf{V}_i \mathbf{V}_i
+ \sum_i \sum_{j>i} \mathbf{R}_{ij} \mathbf{F}_{ij}}\right.$$\displaystyle \sum_{i}^{}$MiViVi + $\displaystyle \sum_{i}^{}$$\displaystyle \sum_{j>i}^{}$RijFij$\displaystyle \left.\vphantom{ \sum_i M_i \mathbf{V}_i \mathbf{V}_i
+ \sum_i \sum_{j>i} \mathbf{R}_{ij} \mathbf{F}_{ij}}\right>$ (6)
  = $\displaystyle \left<\vphantom{ \sum_i M_i \mathbf{V}_i \mathbf{V}_i
+ \sum_{i}\...
...j\beta}
- \sum_i \sum_\alpha \mathbf{p}_{i\alpha} \mathbf{f}_{i\alpha} }\right.$$\displaystyle \sum_{i}^{}$MiViVi + $\displaystyle \sum_{i}^{}$$\displaystyle \sum_{j>i}^{}$$\displaystyle \sum_{\alpha}^{}$$\displaystyle \sum_{\beta}^{}$ri$\scriptstyle \alpha$j$\scriptstyle \beta$fi$\scriptstyle \alpha$j$\scriptstyle \beta$ - $\displaystyle \sum_{i}^{}$$\displaystyle \sum_{\alpha}^{}$pi$\scriptstyle \alpha$fi$\scriptstyle \alpha$$\displaystyle \left.\vphantom{ \sum_i M_i \mathbf{V}_i \mathbf{V}_i
+ \sum_{i}\...
...j\beta}
- \sum_i \sum_\alpha \mathbf{p}_{i\alpha} \mathbf{f}_{i\alpha} }\right>$  



Subsections
next up previous
Next: About this document ...
Roman Plch 2000-11-16