
Flash Tools for Developers: 3D Surface and Function
Graphers in ActionScript 3

August 16, 2007

This paper is a companion to the online article at the MathDL Digital Classroom Resources
“Flash Tools for Developers: 3D Surface and Function Graphers in ActionScript 3” by Barbara
Kaskosz and Doug Ensley. We give a short tour of the templates featured in the article in the first
part of this paper. In the second part, we provide complete documentation of the custom classes
in the package bkde.as3.*. We include documentation for the classes used in this article as well
as for those used in our previous ActionScript 3 articles. This way each of our consecutive AS3
articles will contain the latest versions of all the classes in the package. The classes will undergo
modifications based on the readers’ suggestions.

All files, including fla files and class files, are contained in param_surf_as3.zip

The Templates

In this article, you will find five applets which can be viewed as easily customizable templates.
All of them are based on the new GraphingBoard3D class. They also use MathParser and several
other classes from the bkde.as3.* package.

Parametric Surfaces in ActionScript 3 – Rectangular Coordinates

In this applet, surf_graph_rectan.swf, the user enters parametric formulas for the rectangular
coordinates x(t,s), y(t,s), and z(t,s) and for the ranges for t and s. The applet draws the
corresponding surface which then can be rotated dynamically. The user can choose the opacity of
the surface and scaling constrained option. A gallery of ten pre-programmed examples is
provided. In this template, the examples are defined in the fla file. The code in the corresponding
fla file contains detailed comments.

Parametric Surfaces in ActionScript 3 – Cylindrical Coordinates

In the template surf_graph_cylin.swf, the user enters parametric formulas for the cylindrical
coordinates r(t,s), θ(t,s), and z(t,s) and for the ranges for t and s. Other options are the same as in
the previous template. A gallery of ten pre-programmed examples is provided. In this template,
the examples are defined in an external XML file and loaded at runtime. This makes refreshing
the gallery of examples easy without recompiling the fla file. For the runtime loading to work,
the XML file, cylindrical.xml, must reside in the same directory as param_surf_cylin_as3.swf.
In the fla file, we comment only the parts that are different from the first template.

 1

Parametric Surfaces in ActionScript 3 – Spherical Coordinates

In this applet, surf_graph_sphere.swf, the user enters parametric formulas for the spherical
coordinates ρ(t,s), θ(t,s), and φ(t,s) and for the ranges for t and s. Other options are the same as in
the previous templates. Again, we provide a gallery of ten pre-programmed examples contained
in an external XML file, spherical.xml. In the fla file, we comment only the parts that are
specific to this template.

3D Function Grapher in ActionScript 3 – on White

In this template, fun_graph3d_white.swf, we present a grapher for functions of two variables. In
many ways, it is a special case of a parametric grapher although we use a different coloring
method and simplify some parts of the code for that case.

3D Function Grapher in Action Script 3 – on Black

The purpose of this template, fun_graph3d_black.swf, is to illustrate the methods for
customizing appearance of the grapher using the methods of GraphingBoard3D class.

Classes in the Package bkde.as3.*

Note: Classes that are new in this article are GraphingBoard3D, MatrixUtils, and StringUtils. All
other classes have not changed since our last article. Hence, except for the three new classes, all
examples of code below and references to templates concern planar graphers templates from our
previous MathDL Flash Forum article: “Flash Tools for Developers (AS3): Graphing Curves on
the Plane”. Download planar_tools_as3.zip from the latter article if you want to see the code in
context.

bkde.as3.parsers.CompiledObject

Description

CompiledObject is a helper class for MathParser. It creates a convenient datatype to be returned
by doCompile method of MathParser. This datatype is an object with three properties listed
below which comprise the results of compiling a mathematical formula into a form suitable for
evaluation.

Constructor

The constructor is evoked by the keyword “new” and takes no parameters:

 ▪ new CompiledObject();

 2

You shouldn’t encounter the need to use the constructor since the only instances of
CompiledObject that can conceivably be useful are those returned by doCompile method of
MathParser.

Public Methods

None.

Public Properties

CompiledObject has three public instance properties.

▪ instance.PolishArray : Array

When the instance is returned by doCompile method of MathParser, the array represents a
mathematical formula in the Polish notation.

▪ instance.errorStatus : Number

When the instance is returned by doCompile method of MathParser, the property has value 1 if
an error is found and 0 otherwise.

▪ instance.errorMes : String

When the instance is returned by doCompile method of MathParser, the string contains a
message to the user indicating where in the input a mistake was found.

bkde.as3.parsers.MathParser

Description

An instance of MathParser (you create an instance using the class’s constructor described below)
will compile a string that represents a mathematical formula (usually the user’s input) and then
calculate the values of the compiled formula for given values of variables that are recognized by
the instance. “Compiling” consists of rewriting a formula in a form suitable for evaluation; that
is, in the Polish notation. Compiling will be successful if the user obeys by the simple syntax
rules described at the end of this section.

Constructor

The constructor is evoked with the word “new”:

 ▪ new MathParser(parameter1:Array)

 3

The constructor takes one parameter which is an array. For the MathParser’s instance to do what
you want it to do, the parameter has to be an array of strings. The strings represent the names of
variables that the instance will recognize. For example:

var procFun:MathParser = new MathParser([“x”, “y”]);

The instance “procFun” will recognize the variables x and y.

var procFormula:MathParser = new MathParser([“t”]);

The instance “procFormula” will recognize t as a variable. MathParser knows the constants e
and pi. Do not enter them into the constructor.

Note: Variables have to be entered as strings. It is:

procFormula:MathParser = new MathParser([“x”]);

and not:

procFormula:MathParser = new MathParser([x]);

Variables can be comprised of more than one letter, e.g.:

procFormula:MathParser = new MathParser([“tension”]);

It is important to remember the order in which you pass your variables to the constructor since
the evaluator method of the parser will expect values for those variables in the same order.

Public Methods

MathParser has two public instance methods.

▪ instance.doCompile(parameter1:String): CompiledObject

The method takes a string (typically a mathematical formula entered by the user) and returns an
instance of CompiledObject. If no mistakes in syntax are found, the PolishArray property of the
returned CompiledObject instance represents the formula in the Polish notation, errorStatus=0,
errorMes= “ ”. If a mistake is found, errorStatus=1, errorMes contains a message indicating
where the mistake was found, PolishArray=[];

▪ instance.doEval(parameter1:Array,parameter2:Array): Number

The method takes two parameters, both arrays. For the method to be useful, the first array must
be the PolishArray property of a CompiledObject returned by doCompile method. The second
parameter represents an array of numerical values for the variables recognized by the instance of
MathParser. (The same variables that you passed to the constructor of your MathParser instance.)
Under these conditions, doEval will return the value of the formula represented by the
PolishArray for the specified values of the variables.

 4

Public Properties

None.

Examples of Use

In our Function Grapher in ActionScript 3.0 – Template 1, we use MathParser as follows:

var procFun:MathParser = new MathParser([“x”]);

We created an instance that will recognize x as a variable. The user enters text into the input text
field, InputBox1, on the Stage. The text entered represents a formula for the first function to be
graphed. Within the function makeGraphs, we retrieve the user’s input and store in a string
variable sFunction1; we declare other variables related to parsing:

var sFunction1:String= “”;
……………………………………………………………………
var compObj1:CompiledObject;
……………………………………………………………………

sFunction1=InputBox1.text;

If the input is not empty, we apply to it doCompile method of the parser and store the result in
the variable compObj1. (The method returns an instance of CompiledObject.)

compObj1=procFun.doCompile(sFunction1);

If compObj1.errorStatus=0, the user entered a formula properly. The formula is now stored in the
form ready for evaluation (that is, rewritten in the Polish notation) in compObj1.PolishArray. To
evaluate the formula for a given value of x, say xmin which represents a number defined
previously in the script, we use doEval method of the parser as follows:

procFun.doEval(compObj1.PolishArray,[xmin]);

In makeGraphs function the latter value as well as the values of the formula for other values of x
between xmin and xmax are stored as elements of an array, f1Array.

Syntax Accepted by MathParser

The parser expects calculator-like syntax: e.g.:

 sin(2*x^2)-e^-x+tan(pi*x)/2

Multiplication must be entered as *. Arguments of functions must be enclosed in parentheses.
The parser is case-insensitive and blind to white spaces. It recognizes the constants e and pi.
Here is the list of functions that the parser knows:

 5

sin(·), cos(·), tan(·), asin(·), acos(·), atan(·), ln(·), sqrt(·), abs(·), ceil(·), floor(·), round(·), max(·,·),
min(·,·).

Addition, multiplication, division and exponentiation are denoted by the usual symbols +,*, /, ^ ,
subtraction and unary minus by - .

bkde.as3.parsers.RangeObject

Description

RangeObject is a helper class for RangeParser. It creates a convenient datatype to be returned by
parseRangeTwo and parseRangeFour methods of RangeParser. This datatype is an object with
three properties listed below which comprise the results of compiling the user’s range input for
two variables, say x and y, or for one variable, say a parameter t. In most of our applets the range
boxes allow for numerical entries as well as for entries containing pi, like pi/4, 2*pi etc.. Such
entries have to be parsed and checked for validity.

Constructor

The constructor is evoked by the keyword “new” and takes no parameters:

▪ new RangeObject();

You shouldn’t encounter the need to use the constructor since the only instances of RangeObject
that can conceivably be useful are those returned by parseRangeTwo or parseRangeFour
methods of RangeParser.

Public Methods

None.

Public Properties

RangeObject has three public instance properties.

▪ instance.Values : Array

When the instance is returned by one of the methods of RangeParser, the array represents four
range values (if ranges for two variables are being parsed) or two range values if the range for
one variable is being parsed.

▪ instance.errorStatus : Number

When the instance is returned by one of the RangeParser methods, the property has value 1 if an
error is found and 0 otherwise.

 6

▪ instance.errorMes : String

When the instance is returned by one of the RangeParser methods, the string contains a message
to the user indicating where in the input a mistake was found.

bkde.as3.parsers.RangeParser

Description

In most of our applets the range boxes for x and y or for a parameter, say t, allow for numerical
entries as well as for entries containing pi, like pi/4, 2*pi etc.. Such entries have to be parsed and
checked for validity.

Constructor

The constructor is evoked with the word “new” and takes no parameters:

▪ new RangeParser();

For example

var procRange:RangeParser = new RangeParser();

Public Methods

RangeParser has two public instance methods.

▪ instance.parseRangeTwo(parameter1:String, parameter2:String):
 RangeObject

The method takes two strings (typically the user’s entries in range boxes for a parameter t, for
example) and returns an instance of RangeObject. If the entries are found to be valid numerical
entries (or valid entries containing pi), and the first entry is less than the second entry, the Values
property of the returned RangeObject contains the two range values. In that case, errorStatus=0,
errorMes= “ ”. If a mistake was found, errorStatus=1, errorMes contains a message indicating
where the mistake was found, Values=[];

▪ instance.parseRangeFour(parameter1:String, parameter2:String,
 parameter3:String, parameter4:String):RangeObject

The method takes four strings (typically the user’s entries for x and y ranges) and returns an
instance of RangeObject. If the entries are found to be valid numerical entries (or valid entries
containing pi), the first entry is less than the second entry, the third entry is less than the fourth
entry, then the Values property of the returned RangeObject contains the corresponding four

 7

range values. In that case, errorStatus=0, errorMes= “ ”. If a mistake was found, errorStatus=1,
errorMes contains a message indicating where the mistake was found, Values=[];

Public Properties

None.

Examples of Use

In our Function Grapher in ActionScript 3.0 – Template 1, we use RangeParser as follows:

 var procRange:RangeParser = new RangeParser();
…………………………………….

Then inside the function makeGraphs:

 sXmin=XminBox.text;

 sXmax=XmaxBox.text;

 sYmin=YminBox.text;

 sYmax=YmaxBox.text;

 oRange=procRange.parseRangeFour(sXmin,sXmax,sYmin,sYmax);

 if(oRange.errorStatus==1){

 board.ErrorBox.visible=true;

 board.ErrorBox.text="Error. "+oRange.errorMes;

 return;

 }

 xmin=oRange.Values[0];

 xmax=oRange.Values[1];

 ymin=oRange.Values[2];

 ymax=oRange.Values[3];

“board” above is an instance of GraphingBoard which controls the error display box
board.ErrorBox.

 8

bkde.as3.boards.GraphingBoard

Description

GraphingBoard is the main visual class for creating customizable planar graphers: function
graphers, parametric curves graphers, etc.. An instance of GraphingBoard draws a rectangular
graphing board (at runtime), the vertical and horizontal coordinate axes as well as graphs of
functions or parametric curves. Any instance of GraphingBoard contains and controls an error
display text field where messages to the user can be displayed. It also contains a coordinate
display text field in which the values of the horizontal and the vertical coordinates are displayed
when the user mouses over the graphing board. An instance of GraphingBoard can enable the
user to draw within the graphing board with the mouse.

The layout, the colors, and the sizes of all elements of an instance of GraphingBoard are all
easily customizable via instance methods of the class.

An instance of GraphingBoard sets x and y ranges in functional terms (usually based on the
user’s input), and provides public methods for translating pixel coordinates of a point into its
functional coordinates and vice versa. For simplicity of this presentation, we will assume most of
the time that the horizontal and vertical variables in your applet are named “x” and “y’ although
you may choose different names using the method “enableCoordsDisp(…,…)” described later.
The pixel coordinates in the Flash’s coordinate system are, however, always x and y.

GraphingBoard extends Sprite. Thus, it inherits from Sprite. In particular, you can control the
position of your instance of GraphingBoard within the main movie with the Sprite methods and
properties:

 instance.x

 instance.y

These properties set the x and the y coordinates in pixels of the upper left corner of your instance
of GraphingBoard with respect to the upper left corner of the parent movie. Recall that in Flash,
the x coordinate increases to the right, the y coordinate increases as you go down.

In our Function Grapher in ActionScript 3.0 – Template 1, we have an instance of
GraphingBoard named “board”, a child of the main movie. We position “board” within the main
movie with:

board.x=20;

board.y=20;

 9

Constructor

The constructor is evoked with the word “new” and takes two numerical parameters. The
parameters are the width and the height, in pixels, of the rectangular graphing board which will
be drawn:

 ▪ new GraphingBoard(w:Number,h:Number);

In our Function Grapher in ActionScript 3.0 – Template 1, we create a 350 by 350 graphing
board as follows:

var board:GraphingBoard = new GraphingBoard(350,350);

We store our instance of GraphingBoard in a variable called “board” whose datatype is
GraphingBoard. We pass to the constructor the size of our graphing board; all other attributes
will be set using the methods of the class.

Public Methods – Graphing Board Appearance

 ▪ instance.changeBackColor(h:Number): void

The method controls the background color of the graphing board created by the instance. The
numerical parameter should be the desired color in the hexadecimal form.

Default: white.

To continue with examples from Function Grapher in ActionScript 3.0 – Template 1 where the
instance of GraphingBoard is stored in “board”:

board.changeBackColor(0x000000);

We set the background to black.

▪ instance.changeBorderColorAndThick(h:Number,t:Number): void

The method controls the color and the thickness of the border of a graphing board created by the
instance. The first parameter passed to the method should be the hexadecimal form for the
desired color.

Default: black, 1.

In Function Grapher in ActionScript 3.0 – Template 1 where the instance of GraphingBoard is
stored in “board” we use:

board.changeBorderColor(0xFFFFFF,1);

We set the border color to white, its thickness to 1.

 10

Public Methods – Coordinate Axes Appearance

▪ instance.setAxesColorAndThick(h:Number,t:Number): void

The method sets the color and the thickness, in pixels, of the x and y axes. The color should be
passed to the method in its hexadecimal form.

Default: black, 0.

(Thickness set to 0 produces a line 1 pixel wide whose thickness will not change with rescaling.)

In Function Grapher in ActionScript 3.0 – Template 1, we have:

board.setAxesColorAndThick(0xCCCCCC,0);

We set the color of the coordinate axes to light gray, their thickness to 0.

Note: Colors and thickness of graphs of functions or curves are passed directly to the graphing
method of GraphingBoard as shown later in this guide. That way those attributes can vary from
graph to graph.

Public Methods – Drawing by the User

▪ instance.enableUserDraw(h:Number,t:Number): void

The method enables the user to draw on the graphing board with the mouse. It sets the color and
the thickness, in pixels, of the user’s drawing.

Default: enabled in red with thickness 0.

In Function Grapher in ActionScript 3.0 – Template 1, we have:

board.enableUserDraw(0xFFFF00,1);

We enable the user to draw in yellow with thickness 1.

If you want to disable the drawing capability, use the method:

▪ instance.disableUserDraw(): void

Public Methods – Error Display

An instance of GraphingBoard controls the text field for displaying error messages to the user.
You can control the appearance and the position of the error text field with the following
methods.

 11

▪ instance.setErrorBoxSizeAndPos(w:Number,h:Number,xpos:Number,
 ypos:Number): void

The parameters determine: the width, the height (in pixels) of the error text field, and its x and y
position relative to your instance of GraphingBoard.

Default: The text field is positioned over the upper half of the graphing board created by the
instance.

In Function Grapher in ActionScript 3.0 – Template 1, we have:

board.setErrorBoxSizeAndPos(310,120,20,20);

You can set visual attributes of the error box with the method:

▪ instance.setErrorBoxFormat(c1:Number,c1:Number,c3:Number,s:Number):
 void

The parameters determine: the background color, the border color, the text color, and the text
size. All colors should be passed in hex.

Default values: white, white, black, 12.

In Function Grapher in ActionScript 3.0 – Template 1, we have:

board.setErrorBoxFormat(0x000000,0x000000,0xCCCCCC,12);

We chose black background, black border, and gray text of size 12.

Note: The error display text field is a public property of GraphingBoard:

▪ instance.ErrorBox

Hence, you can control its attributes directly through methods of Flash’s TextField class. It is
easier, however, to use the methods of GraphingBoard to set properties of the error box.

We made ErrorBox property public to give you easy control over the visibility of ErrorBox and
the text displayed in it. (The error box is visible when the user made an error; its text is an error
message to the user determined by the kind of error found.)

Note: The initial visibility of the error box is set to false.

In Function Grapher in ActionScript 3.0 – Template 1, we have the following code within
makeGraphs function which displays an error massage to the user if a mistake in range entries is
found:

 sXmin=XminBox.text;

 12

 sXmax=XmaxBox.text;

 sYmin=YminBox.text;

 sYmax=YmaxBox.text;

 oRange=procRange.parseRangeFour(sXmin,sXmax,sYmin,sYmax);

 if(oRange.errorStatus==1){

 board.ErrorBox.visible=true;

 board.ErrorBox.text="Error. "+oRange.errorMes;

 return;

 }

Public Methods – Coordinates Display

An instance of GraphingBoard controls the text field for displaying the values of the horizontal
and vertical variables (in functional terms) when the user mouses over the graphing board. You
can control the appearance and the position of the coordinate text field with the following
methods.

▪ instance.setCoordsBoxSizeAndPos(w:Number,h:Number,xpos:Number,
 ypos:Number):void
The parameters determine: the width, the height (in pixels) of the coordinate text field, and its x
and y position in pixels relative to your instance of GraphingBoard.

Default: The text field is positioned in the lower left corner a graphing board created by the
instance.

In Function Grapher in ActionScript 3.0 – Template 1, you can see:

board.setCoordsBoxSizeAndPos(60,40,20,300);

You can set visual attributes of the coordinate box with the method:

▪ instance.setCoordsBoxFormat(c1:Number,c1:Number,c3:Number,
 s:Number):void

The parameters determine: the background color, the border color, the text color, and the text
size. All colors should be passed in hex.

Default values: white, white, black, 12.

 13

In Function Grapher in ActionScript 3.0 – Template 1, we use the method:

board.setCoordsBoxFormat(0x000000,0x000000,0xCCCCCC,12);

We chose black background, black border, and gray text of size 12.

You can disable the coordinate display box using the method:

▪ instance.disableCoordsDisp(): void

Default: enabled.

You can use the “enableCoordsDisp” method to enable coordinates display and to change the
names of your horizontal and vertical variables displayed in the coordinates display box from the
default “x” and “y” :

▪ instance.enableCoordsDisp(h:String,v:String): void

The coordinates displayed in the box will be named according to the string parameters h and v
that you pass to the method.

Default: enabled with coordinates named “x” and “y”.

We do not use the latter method in our templates. If you want your coordinates to be named, for
example, “t” and “s”, and your instance of GraphingBoard is “board” you call:

board.enableCoordsDisp(“t”,”s”);

Public Methods – Tracing Cursors

GraphingBoard provides methods helpful for building graph-tracing mechanisms into your
applet. The class allows two styles for the tracing cursor: “cross” and “arrow”. The
corresponding method is

▪ instance.setTraceStyle(s:String): void

The string parameter “s” has two values that will produce a cursor: “cross” and “arrow”.

Default value: “cross” .

In our template Parametric Curves in ActionScript 3.0 – Basic, we chose the arrow:

board.setTraceStyle(“arrow”);

For each of the two styles you have much control over the size and the color of the tracing
cursor. Below are the corresponding methods.

▪ instance.setCrossSizeAndThick(s:Number,t:Number): void

 14

The method sets the size and the line thickness for the cross cursor.

Default: 6, 1.

In Function Grapher in ActionScript 3.0 – Template 2, you see:

board.setCrossSizeAndThick(6,2);

We wanted the cursor thicker than the default value.

▪ instance.setCrossColor(c:Number): void

The method sets the color for the cross cursor. The color should be passed in its hex form.

Default: black.

In Function Grapher in ActionScript 3.0 – Template 2, we have:

board.setCrossColor(0x9900FF);

We chose magenta for our cursor.

▪ instance.setCrossPos(s:Number,t:Number): void

The method sets the position of the cross cursor, in pixels, relative to the instance’s upper left
corner.

Default: The upper left corner.

▪ instance.crossVisible(b:Boolean): void

The method sets the visibility of the cross cursor to “false” or “true” as in:

board.crossVisible(true);

Default: false.

The two last methods are used to move the cursor along a given graph and make it visible or
invisible depending on the user’s actions. You will find tracing functionality in Function
Grapher in ActionScript 3.0 – Template 2.

▪ instance.getCrossSize(): Number

The method returns cross’ size in case you need it for positioning purposes. We have similar
methods for the arrow cursor.

 15

▪ instance.setArrowSize(s:Number): void

The method sets the size for the arrow cursor.

Default: 10.

▪ instance.setArrowColor(c:Number): void

The method sets the color for the arrow cursor. The color should be passed in its hex form.

Default: black.

▪ instance.setArrowPos(s:Number,t:Number,r:Number): void

The method sets the x and y coordinates, in pixels, of the arrow cursor relative to the upper left
corner an instance, x=s, y=t. The last parameter represents the rotation of the arrow,
counterclockwise, in degrees. The rotation parameter allows the arrow to move along a curve and
rotate accordingly.

Default: The upper left corner, pointing upwards.

The last method is used to build a tracing mechanism in which an arrow traces a parametric
curve when the user slides a slider. You will find an example of such mechanism in Parametric
Curves in ActionScript 3.0 – Basic.

▪ instance.arrowVisible(b:Boolean): void

The method sets the visibility of the arrow cursor to “false” or “true”.

Default: false.

▪ instance.getArrowSize(): Number

The method returns arrow’s size in case you need it for positioning purposes.

Public Methods – Graphing

For every instance of GraphingBoard the maximum number of graphs that can be displayed
simultaneously should be set via the method:

▪ instance.setMaxNumGraphs(a:int): void

Default: 5.

For example, in Function Grapher in ActionScript 3.0 – Template 1, we do want to graph three
functions so we don’t have to call the method. If you want to display more than five graphs at a
time, you should call the method with an appropriate parameter.

 16

Before you can make any of the graphing methods work, you have to set x and y ranges (or, in
general, the ranges for your horizontal and vertical variables), in order for your instance of
GraphingBoard to know how to translate functional values to pixel values and vice versa. Once
you decided on the ranges for x and y (based on the user’s input or your own assignment), you
have to call the method:

▪ instance.setVarsRanges(a:Number,b:Number,c:Number,d:Number): void

Default: no range is set until you call the method.

In Function Grapher in ActionScript 3.0 – Template 1, we want to open with the standard range
 -10, 10, -10, 10. Hence, we call for our instance of GraphingBoard named “board”:

board.setVarsRanges(-10,10,-10,10);

Later, within the function makeGraphs after we parse the user’s input for x and y ranges and
assign values to the range variables xmin, xmax, ymin, ymax, we call:

board.setVarsRanges(xmin,xmax,ymin,ymax);

Once the variables ranges are set, we can draw the horizontal and the vertical axes via the
method:

▪ instance.drawAxes(): void

For example in any of the templates we use:

board.drawAxes();

Graphs of functions or curves are drawn using the method:

▪ instance.drawGraph(num:int,thick:Number,aVals:Array,c:Number):Array

The method takes four parameters. The first, an integer, is the number of the graph being drawn.
This integer must not exceed the maximum number of graphs to be displayed at one time (set by
instance.setMaxNumGraphs(..) method. The integer will also determine the depth of the graph
being drawn in the internal stacking order of your instance of GraphingBoard. (A graph with a
higher number will appear in front of a graph with lower number.) The second parameter will
determine the thickness of your graph, in pixels. The third parameter should be an array whose
elements are two-element arrays. Each of the two-element arrays represents the x and y
coordinates of a point within (or outside) the graphing board. These coordinates are in functional
terms; they will be translated to pixel values by the method. For the method to work properly,
this array, denoted above by aVals, should consist of consecutive points along a graph or a curve
which will be joined by lineal elements to form the actual graph. (Although, the method will join
the consecutive points in the array by lineal elements regardless what the points represent.) The
last parameter is responsible for the color of the graph. The value for a color should be passed in
hex.

 17

Below we illustrate how the method is used in Function Grapher in ActionScript 3.0 – Template
1. The portion of the script below comes from within makeGraphs function. Earlier within the
function, the x and y ranges, xmin, xmax, ymin, ymax, have been already determined by parsing
the user’s input. A string variable, sFunction1, and a CompiledObject variable, compObj1, have
been declared already.

 board.setVarsRanges(xmin,xmax,ymin,ymax);

 board.drawAxes();

 /*
 Determing the value of xstep used later for creating an array
 of points to be plotted.
 */

 xstep=(xmax-xmin)/points;

 /*
 We are retrieving the formulas that our user
 entered for the first function to be graphed.
 */

 sFunction1=InputBox1.text;
 ……………………………………………

 /*
 We will compile the formula using MathParser,
 if the user entered it.
 */

 if(sFunction1.length>0){

 /*
 Evoking our MathParser "doCompile" method
 to compile the first formula entered by the user.
 Recall that the instance of MathParser created above is called
 procFun. If an error is found during compiling,
 a message is sent to board.ErrorBox and the function quits.
 */

 compObj1=procFun.doCompile(sFunction1);

 if(compObj1.errorStatus==1){

 board.ErrorBox.visible=true;

 board.ErrorBox.text="Error in f1(x). "+compObj1.errorMes;

 return;

 }

 /*
 If no error is found we create an array of points, f1Array, to be

 18

 plotted. Each entry of the array consists of a pair of [x,y] values.
 x values are determined by starting from xmin and adding step-by-step
 the value which brings us to the next point on the x axis.
 This value is xstep and depends on the number of points chosen above.
 To obtain to corresponding values of y, we evoke the procFun.doEval
 method.
 */

 for(i=0;i<=points;i++){

f1Array[i]=[xmin+i*xstep,procFun.doEval(compObj1.PolishArray,[xmin+xstep*i]);

 }

 /*
 Observe, that the array of points created above contains
 functional values. Those values will be converted to pixel values
 by "board". board.drawGraph method evoked below will do it for
 us.
 */

 board.drawGraph(1,1,f1Array,0xFF0000);

 }

The drawGraph method returns an array. If the tracing cursor is “cross” (the default), the
returned array is the original aVals array which was passed to the method with all x and y
coordinates of all points translated to their pixel equivalents. Being able to retrieve this translated
array in your applet is valuable for tracing purposes. The returned array gives you the
consecutive positions for the cross cursor when tracing the graph. If you do not have a tracing
mechanism in your applet, you can ignore the array returned by the method. In Function
Grapher in ActionScript 3.0 – Template 2, we use the returned array to login positions for
tracing. Note the following lines within makeGraphs function:

f1PixArray=board.drawGraph(1,1,f1FunArray,0xFF0000);

f2PixArray=board.drawGraph(2,1,f2FunArray,0x0000FF);

If the cursor is “arrow”, drawGraph returns an array of three-element arrays. Each of the three-
element arrays gives you a position of the tracing arrow along the curve as well as the arrow’s
rotation. Again, the returned array serves a possible tracing mechanism. In our template
Parametric Curves in ActionScript 3.0 – Basic, we used the returned array. Note the line in
drawCurve function:

arrowPos=board.drawGraph(1,1,fArray,0xFF0000);

“arrowPos” is a global array variable used later to trace a curve with the arrow cursor.

 19

Public Methods – Clearing the Graphing Board

To clear the graphs you use the method:

▪ instance.cleanBoard(): void

The method erases all graphs, the x and y axes, and resets the x and y ranges to undefined. The
method does not erase the user’s drawing. The latter is accomplished by

▪ instance.eraseUserDraw(): void

We separated these two methods since, typically, you want the GRAPH button to clean the
graphing board but not to erase the user’s drawing. (The user may possibly be experimenting
with drawing functions.)

Public Methods – Other

Here are some other possibly useful methods of GraphingBoard class.

▪ instance.getMaxNumGraphs(): int

Use this method if you are not sure what the maximum number of graphs is set to. Similarly:

▪ instance.getBoardWidth(): Number

▪ instance.getBoardHeight(): Number

▪ instance.getVarsRanges(): Array

The next four methods allow you to convert functional coordinates to their pixel equivalents and
vice versa. Note: these methods will work only if the ranges for your horizontal and vertical
variables are set. They will work correctly regardless what names you gave your horizontal and
vertical variables.

▪ instance.xtoPix(a:Number): Number

▪ instance.ytoPix(a:Number): Number

▪ instance.xtoFun(a:Number): Number

▪ instance.ytoFun(a:Number): Number

A couple of testing methods:

▪ instance.isLegal(a:*): Boolean

The method returns “true” if “a” is of the numerical datatype and it is a finite number.
Otherwise, the method returns “false”.

 20

▪ instance.isDrawable(a:*): Boolean

The method returns “true” if “a” is of the numerical datatype and it is a finite number, and its
absolute value does not exceed 5000. Otherwise, the method returns “false”. The reason you may
want to have a test of such kind is that an attempt to draw an object, a portion of a graph or a
cursor, located very far away from the graphing board (in pixels), you may encounter unexpected
results. In our templates, you can draw outside the graphing board as the board is masked. But
you shouldn’t draw objects which are too far away.

Finally, if you want to remove an instance of GraphingBoard at runtime, you should call

▪ instance.destroy(): void

The method removes all listeners set by your instance of GraphingBoard, clears all drawings, and
sets all the Sprites created by the instance to null.

Public Properties

The only public property of GraphingBoard (except for those inherited from Sprite) is

 ▪ instance.ErrorBox

It is a dynamic text field in which error messages to the user can be displayed. As we described
above, you can set the size, the position, and the formatting for the text field by using
GraphingBoard methods. You can also apply Flash’s TextField class properties and methods to
ErrorBox, e.g.:

board.ErrorBox.visible=true;

board.ErrorBox.text="Error in f1(x). "+compObj1.errorMes;

bkde.as3.boards.GraphingBoard3D

Description

GraphingBoard3D is the main visual class for creating customizable surface graphers: 3D
function graphers, parametric surface graphers in rectangular, cylindrical and spherical
coordinates. An instance of GraphingBoard3D draws a square graphing board (at runtime), the
boxed-style coordinate axes as well as graphs of functions or parametric surfaces. Any instance
of GraphingBoard3D contains and controls an error display text field in which messages to the
user are displayed. It also contains display text fields in which the ranges of x, y and z can be
displayed.

 21

The layout, the colors, and the sizes of all elements in an instance of GraphingBoard3D are
easily customizable via instance methods of the class.

GraphingBoard3D extends Sprite. Thus, it inherits from Sprite. In particular, you can control the
position of your instance of GraphingBoard3D within the main movie with the Sprite properties:

 instance.x

 instance.y

These properties set the x and the y coordinates in pixels of the upper left corner of your instance
of GraphingBoard3D with respect to the upper left corner of the parent movie. Recall that in
Flash, the x coordinate increases to the right, the y coordinate increases as you go down.

In ParametricSurfaces in ActionScript 3.0 – Rectangular Coordinates, we have an instance of
GraphingBoard3D named “board”, a child of the main movie. We position “board” within the
main movie with:

board.x=15;

board.y=55;

Constructor

The constructor is evoked with the word “new” and takes one numerical parameter. The
parameter is the size, in pixels, of the square graphing board which will be drawn:

 ▪ new GraphingBoard3D(s:Number);

In Parametric Surfaces in ActionScript 3.0 – Rectangular Coordinates, we create a 330 by 330
graphing board as follows:

var board:GraphingBoard3D = new GraphingBoard(330);

We store our instance of GraphingBoard3D in a variable called “board” whose datatype is
GraphingBoard3D. We pass to the constructor the size of our square graphing board; all other
attributes will be set using the methods of the class.

Public Methods – Graphing Board Appearance

 ▪ instance.setBackground(b:Boolean,c:Number=0xFFFFFF): void

The method controls the existence and the color of the background of the graphing board created
by an instance. The numerical parameter should be the desired color in the hexadecimal form.

Default: true, white. The default value for the second parameter is supplied in the definition of
the method. Thus, you can simply use:

instance.setBackground(false);

 22

to have no background and create a transparent board. In 3D Function Grapher in ActionScript
3.0 – on Black, where the instance of GraphingBoard3D is stored in “board”, we have:

board.setBackground(true,0x000000);

We set the background to black.

▪ instance.setBorder(b:Boolean,c:Number=0x000000,t:Number=1):void

The method controls the existence, the color, and the thickness of the border of the graphing
board created by an instance. The color parameter passed to the method should be the
hexadecimal form for the desired color.

Default (the default values for the last two parameters are supplied in the definition): true, black,
1.

In 3D Function Grapher in ActionScript 3.0 – on Black, we use:

board.setBorder(true,0xFFFFFF,3);

We set the border color to white, its thickness to 3. If you want no border you can type:

instance.setBorder(false);

Public Methods – Coordinate Axes Appearance

▪ instance.setFrontAxesColor(c:Number): void

The method sets the color of the axes that will appear in front of a surface. The color should be
passed to the method in its hexadecimal form.

Default: black. The default is set by the constructor but it is not supplied in the method’s
definition. Hence, when you call the method, you need to supply a value for the parameter.

▪ instance.setBackAxesColor(c:Number): void

The method sets the color of the axes that will appear in the back of a surface.

Default: gray.

In 3D Function Grapher in ActionScript 3.0 – on Black, we have:

board.setFrontAxesColor(0xFFFFFF);

board.setBackAxesColor(0x666666);

We set the colors to white and gray, respectively.

 23

Public Methods – Error Display Text Field

An instance of GraphingBoard3D controls the text field for displaying error messages to the
user. You can enable, disable, and control the appearance, the position, and the format of the
error text field with the following methods.

▪ instance.enableErrorBox(): void

The method adds the error display field to the Display List.

▪ instance.disableErrorBox(): void

The method removes the error display field from the Display List.

Default: enabled.

▪ instance.setErrorBoxSizeAndPos(w:Number,h:Number,xpos:Number,
 ypos:Number): void

The parameters determine: the width, the height (in pixels) of the error text field, and its x and y
position relative to your instance of GraphingBoard3D; that is, relative to the upper left corner of
the square graphing board.

Default: The text field is positioned over the upper half of the graphing board created by an
instance.

Note: The error field does not have to be placed on top of the square serving as our graphing
board. The field can be placed anywhere in the main movie although it will remain a child of the
GraphingBoard3D instance.

In 3D Function Grapher in ActionScript 3.0 – on Black, we have:

board.setErrorBoxSizeAndPos(290,100,20,30);

You can set visual attributes of the error box:

▪ instance.setErrorBoxBorder(b:Boolean,c:Number=0x000000): void

The method sets the existence and the color of the border.

Default: true, black. The default value of the second parameter is supplied in the definition of the
method.

In 3D Function Grapher in ActionScript 3.0 – on Black , we have:

board.setErrorBoxBorder(false);

 24

We opted for no border.

▪ instance.setErrorBoxBackground(b:Boolean,c:Number=0xFFFFFF):
 void

The method sets the existence and the color of the background.

Default: true, white. The default for the latter is supplied in the definition of the method.

In 3D Function Grapher in ActionScript 3.0 – on Black, we have:

board.setErrorBoxBackground(true,0x000000);

We chose black background.

▪ instance.setErrorBoxFormat(c:Number,s:Number):void

The parameters determine: the font color and the font size. (For all display fields the font family
is Arial.)

Default values: black, 12.

In 3D Function Grapher in ActionScript 3.0 – on Black, we have:

board.setErrorBoxFormat(0xCCCCCC,12);

We chose light gray text of size 12.

▪ instance.setErrorBoxVisible(b:Boolean):void

The method controls the visibility of the error box. The initial visibility of the error box is set to
false. Subsequently, the box is made visible by showError method and invisible by resetBoard
method. Thus, the method is rarely used.

▪ instance.showError(mes:String):void

The method will make the error box visible and display the message “mes”.

In 3D Function Grapher in ActionScript 3.0 – on Black, we have the following code within
prepGraph function (procFun is an instance of MathParser):

 compObj=procFun.doCompile(inpString);

 if(compObj.errorStatus==1){

 board.showError(compObj.errorMes);

 bIsError=true;

 return;}

 25

The code evokes the showError method if a mistake in the user’s input is found and the function
prepGraph quits.

Public Methods – Other Display Boxes

Besides the error display box, an instance of GraphingBoard3D controls the text fields for
displaying the current ranges of x, y, and z variables, the labels for the boxed x, y, and z axes,
and the box with a message to the user to wait while input is being processed. Neither of the
boxes has a border or a background. Otherwise, they can be controlled with similar methods as
the error box.

Here are the methods for the axes’ label boxes. (The labels read “x”, “y”, “z”, and “xmin”,
“xmax”, “ymin”, “ymax”, “zmin”, “zmax”.)

▪ instance.enableAxesLabels():void

▪ instance.disableAxesLabels():void

Default: enabled.

▪ instance.setLabelsFormat(c:Number,s:Number,b:String=“bold”):void

The first two parameters determine the color and the size of the text. The last which can be
“bold” or “normal” determines if the text is in bold. The supplied default is “bold”. Default
values for the first two are: black, 11. You have to provide values for these two parameters when
evoking the method.

In 3D Function Grapher in ActionScript 3.0 – on Black, you can see:

board.setLabelsFormat(0xCCCCCC,11,"normal");

The labels are moving dynamically as the surface is rotated so their positions are set by an
instance of GraphingBoard3D. Also, their sizes adjust automatically to accommodate the font.

The x, y, and z range display boxes are disabled by default. In a function grapher, for example,
you don’t need them as the x, y ranges, and possibly the z range, are entered by the user. You
enable or disable them by:

▪ instance.enableRangeBoxes():void

▪ instance.disableRangeBoxes():void

Default: disabled.

The methods add or remove the range boxes from the Display List.

 26

The range display boxes, xRangeBox, yRangeBox, zRangeBox are public properties of an
instance of GraphingBoard3D, so you can send text to them as the ranges are determined
dynamically based on the user’s input. You can set their format via:

▪ instance.setRangeBoxesFormat(c:Number,s:Number):void

The method sets the color and the font size for the range boxes.

Default: black, 11.

The range boxes are positioned by default at the bottom corners and at the left upper corner of
the graphing board as you see them in Parametric Surfaces in ActionScript 3 – Rectangular
Coordinates (and other templates for parametric surfaces). If you want to reposition and resize
them you can use the following methods that set the boxes positions (relative to the upper left
corner of the graphing board), their width and height:

▪ instance.setXRangeBoxPosAndSize(a:Number,b:Number,w:Number,
 h:Number):void

▪ instance.setYRangeBoxPosAndSize(a:Number,b:Number,w:Number,
 h:Number):void

▪ instance.setZRangeBoxPosAndSize(a:Number,b:Number,w:Number,
 h:Number):void

In all parametric surface templates, we use the default positions of the range boxes.

The last of the display text fields controlled by GraphingBoard3D is the box displaying a
message to the user to wait while the applet is busy processing input. You can set the text, the
position, the format of the box as well as enable or disable it via the following self-explanatory
methods.

▪ instance.enableWaitBox():void

▪ instance.disableWaitBox():void

The methods add or remove the box from the Display List.

Default: enabled.

▪ instance.setWaitBoxFormat(c:Number,s:Number,mes:String):void

The method sets the color of the text, the size of the font, and the specific message.

Default: magenta, 12, “Processing…”.

 27

In 3D Function Grapher in ActionScript 3.0 – on Black you find:

board.setWaitBoxFormat(0xFFFF00,12,"Please wait...");

▪ instance.setWaitBoxVisible(b:Boolean):void

Default: false.

▪ instance.setWaitBoxPos(a:Number,b:Number):void

Default: upper right corner.

The size of the box adjusts to the font and message chosen.

Methods and Properties Used for Graphing

GraphingBoard3D has two public graphing methods: drawAxes and drawSurface.

▪ instance.drawAxes(M:Array): void

The parameter M has to be an array of three-elements arrays; that is, a 3 by 3 matrix which
represents a rotation matrix. drawGraph will then draw boxed-style coordinate axes centered
within the square graphing board. The method will also control the positions and the visibility of
axes’ labels. The method can be evoked right after an instance of GraphingBoard3D is created
and added to the Display List. The drawAxes method erases a previous view of the axes before
drawing a new view.

The size of the cube composed of the boxed axes is calculated by an instance of
GraphingBoard3D and is roughly equal to one third of the graphing board size passed to the
constructor. You can retrieve the size of the cube via:

▪ instance.getCubeSize(): Number

The second method, drawSurface, will draw a surface only after you decided on a grid or a mesh
for your graph and supplied your instance of GraphingBoard3D with pixel coordinates of the
surface’s nodes. To illustrate the process, we use fragments of code from Parametric Surfaces in
ActionScript 3 – Rectangular Coordinates. We create there an instance of GraphingBoard3D and
store it in a variable “board”:

var board:GraphingBoard3D=new GraphingBoard3D(330);

this.addChild(board);
…………………………………
var size:Number;
……………………………………
size=board.getCubeSize();
……………………………………
board.nMesh=30;

 28

To draw a surface, we begin with an imaginary rectangle whose sides represent the ranges for the
parameters t and s. We subdivide the rectangle into a grid of sub-rectangles. The fineness of the
grid is determined by the public property

▪ instance.nMesh: uint

Default: 20.

In our templates, the mesh is initially set to 30. At each vertex of the grid we will calculate the
corresponding functional values x(t,s), y(t,s), z(t,s) (based on the compiled input by the user) and
check if all three of them are legal numbers.

These calculations are done by the prepGraph function in the main script. The function parses the
user’s input and then calculates and logs in with “board” (via board.setPixArray method) the
array of nodes for the surface that was entered by the user. After a surface is known to “board”,
drawSurface method can render different views of the surface and combined with drawAxes will
render synchronized views of the whole assembly.

Within the prepGraph function, the local variable “mesh” is set equal to board.nMesh. We see
the following code there:

 function prepGraph():void {

 …………………………………………………
 var mesh:Number=board.nMesh;
 ………………………………………

 board.resetBoard();

 //…………………………Compiling the user’s input.

 /*
 If no mistake was found when compiling the user’s input, we use doEval
 method of MathParser to calculate the functional coordinates of the
 nodes. The functional coordinates of the nodes are stored in
 fArray.
 ………………………………………………
 */

 for(j=0; j<=mesh;j++){

 fArray[j]=[];

 curt=tmin+j*(tmax-tmin)/mesh;

 for(i=0; i<=mesh; i++){

 curs=smin+i*(smax-smin)/mesh;

 cury=procFun.doEval(compObj3.PolishArray,[curt,curs]);
 curz=procFun.doEval(compObj1.PolishArray,[curt,curs]);
 curx=procFun.doEval(compObj2.PolishArray,[curt,curs]);

 29

 fArray[j][i]=[curx,cury,curz];
 ………………………………………

 }

 }
 ………………………………………………

/*

We calculated functional coordinates of the nodes. Now we are going to
compute the pixel coordinates of the nodes and store them in pArray. We will
also check which nodes have coordinates which are all legal numbers.
This information -- 0 for yes, 1 for no -- will also be stored in
pArray as the fourth coordinate of each node.
The pArray will be then passed to "board" via board.setPixArray.

(The conversion formulas, xtoPix, ytoPix, ztoPix, that you can see later in
the script depend, of course, on the size of the cube; that is, on the value
of our variable “size”.)
*/

 for(j=0; j<=mesh;j++){

 pArray[j]=[];

 for(i=0; i<=mesh;i++){

 pArray[j][i]=[];

 pArray[j][i][0]=xtoPix(fArray[j][i][0]);

 pArray[j][i][1]=ytoPix(fArray[j][i][1]);

 pArray[j][i][2]=ztoPix(fArray[j][i][2]);

 if(isLegal(fArray[j][i][0]) && isLegal(fArray[j][i][1]) &&
 isLegal(fArray[j][i][2])){

 pArray[j][i][3]=0;

 } else { pArray[j][i][3]=1;}

 }

 }

 fArray=[];

 }

 board.setPixArray(pArray);

 …………………………………………………………………

 }

 30

In the last line of this code fragment, we used the method of GraphingBoard3D, setPixArray, and
passed to board an array of nodes in their pixel values as well as the information which node has
all three coordinates that are legal numbers. This information is necessary for the drawSurface
method to render the surface that you want and then different views of the surface while rotating
it.

▪ instance.setPixArray(A:Array): void

“A” should be an array of nMesh+1 arrays, each of those nMesh+1 long. Each element of the
latter array is a four element array. The first three elements represent coordinates of a node in
pixels; the fourth element is 0 or 1 depending if the node’s coordinates are legal or not.

Once the setPixArray method has run, we can successfully call:

▪ instance.drawSurface(M:Array): void

The parameter M represents a 3 by 3 rotation matrix. In order for the rotation of a surface and the
boxed axes to be synchronized, drawAxes and drawSurface should be called together with the
same rotation matrix. The drawSurface method erases a previous view of the current surface
before drawing a new view.

In procInput function, we see:

function procInput():void {

 prepGraph();

 if(bIsError){return;}

 drawGraph(iniMatrix);

}

where drawGraph is:

 function drawGraph(M:Array):void {

 board.drawSurface(M);

 board.drawAxes(M);

 ……………………………………

}

To clear the graphs you use the method:

▪ instance.resetBoard(): void

 31

The method erases all graphs, makes all display boxes invisible, and resets all arrays to empty.
You should call the method before drawing a new surface entered by the user. You shouldn’t use
it before rendering new views of a previously compiled surface as the method will erase the array
of nodes. In our templates, the method resetBoard is called by RESET button and by prepGraph
function.

A few important public properties and methods related to graphing:

▪ instance.nOpacity: Number

A number between 0 and 1 which determines the opacity of the surface rendered. In our
templates, the value is initially set to 1 (the default). The opacity buttons change the value of the
property and redraw a surface.

▪ instance.setFrameColor(c:Number): void

The method sets the color of the wireframe on your surface.

Default: dark gray.

▪ instance.bShowFrame: Boolean

The property determines if the wireframe is shown or not.

Default: true.

It is an easy exercise to augment one of the templates by adding a button which toggles the
visibility of the wireframe.

▪ instance.setColorType(t:String,c:Number=0xFFFF00): void

The method determines the coloring type for your graphs. Available choices are: “parametric”
(default) where tiles are colored based on their position in the 3D space; “function” appropriate
for graphs of functions – coloring is based on the x and y position of the tile in the rectangular
domain of a function, unrelated to the value of the function; “solid” – all tiles are of the same
color. If you choose “solid” as your first parameter, the second parameter sets the solid color of
your choice. (Default: yellow.) In 3D Function Grapher in ActionScript 3.0 – on Black, we
have:

board.setColorType("function");

▪ instance.fLength: Number

The distance of the camera from the surface.

Default: 2000. The higher the value the less distortion for perspective.

 32

Other Public Methods

▪ instance.getBoardSize(): Number

The method returns the size of the square graphing board, the same number that was passed to
the constructor.

▪ instance.combineRGB(red:Number,green:Number,blue:Number): Number

This method eventually will be moved to an upcoming class ColorUtils as a static method. For
now, it resides in GraphingBoard3D as an instance method. You pass three values between 0 and
255 to the method which then returns the number representing the corresponding color that Flash
understands.

Finally, if you want to remove an instance of GraphingBoard3D at runtime, you should call

▪ instance.destroy(): void

The method removes all drawings in children of your instance of GraphingBoard3D, and sets all
the objects created by the instance to null.

Public Properties

We have discussed all the public properties above. Let’s just list them for the record. They are:

 ▪ instance.xRangeBox

 ▪ instance.yRangeBox

 ▪ instance.zRangeBox

These text fields are public so you can easily send text to them. In Parametric Surfaces in
AcctionScript 3 – Rectangular Coordinates, within prepGraph function, we send current values
of the x, y, and z ranges to be displayed in the boxes (It should be pointed out that x, y and z
coordinates for the user translate into z, x, and y coordinates internally to make them consistent
with Flash’s coordinate names.)

board.yRangeBox.text="ymin="+String(Math.round(xmin*100)/100)+
 "\n"+"ymax="+String(Math.round(xmax*100)/100);

board.xRangeBox.text="xmin="+String(Math.round(zmin*100)/100)+
 "\n"+"xmax="+String(Math.round(zmax*100)/100);

board.zRangeBox.text="zmin="+String(Math.round(ymin*100)/100)+
 "\n"+"zmax="+String(Math.round(ymax*100)/100);

You can format, position and size the range display boxes using the GraphingBoard3D methods
discussed above or directly, using TextField class methods.

 33

▪ instance.nMesh: uint

Default: 20.

▪ instance.bShowFrame: Boolean

The property determines if the wireframe is shown or not.

Default: true.

▪ instance.nOpacity: Number

A number between 0 and 1 which determines the opacity of the surface rendered. In our
templates the value is initially set to 1 (the default). The opacity buttons change the value of the
property and redraw a surface.

▪ instance.fLength: Number

The distance of the camera from the surface. Default: 2000.

bkde.as3.utilities.MatrixUtils

The class will be enriched by more methods. For now, it contains a few static methods directly
related to our 3D drawing.

▪ MatrixUtils.MatrixByVector(A:Array,B:Array): Array

The method performs matrix multiplication of a 3 by 3 matrix A and a 3D vector B. That is, A is
an array of three-element arrays (representing rows), B is a three element array. The method
returns a 3D vector; that is, a three-element array.

▪ MatrixUtils.MatrixByMatrix(A:Array,B:Array): Array

The method performs matrix multiplication of a 3 by 3 matrix A and a 3 by 3 matrix B. That is,
A and B are both arrays of three-element arrays (representing rows). The method returns their
matrix product.

▪ MatrixUtils.projectPoint(p:Array,flen:Number): Array

p is a three-element array; that is, a point in xyz-space. The method returns a projection of the
point p onto the xy-plane assuming the camera is located in front of the xy-plane, on the positive
z axis, at the distance flen.

▪ MatrixUtils.rotMatrix(a:Number,b:Number,c:Number,theta:Number):
 Array

 34

The method calculates and returns the rotation matrix about the axis [a,b,c] by the angle theta (in
degrees).

bkde.as3.utilities.StringUtils

Similarly, this class will be enriched by more methods. For now, it contains two static methods
which are helpful for processing the user’s input.

▪ StringUtils.isBlankText(s:String): Boolean

The method returns “true” if the string s is empty or consists of blank spaces only. Otherwise, the
method returns “false”.

▪ StringUtils.removeSpaces(s:String): String

The method removes all blank spaces from s and returns the resulting string.

bkde.as3.utilities.HorizontalSlider

Description

Flash CS3 has a slider component. Our class provides a light-weight, easily customizable
alternative. The class HorizontalSlider extends Sprite. Hence, it inherits from Sprite. Each
instance of HorizontalSlider consists of a track, 3 pixels wide, with four tick marks, and a
draggable knob. You can control the length, the style, the colors, and the appearance of the slider
using the methods listed below.

Constructor

The constructor is evoked with the word “new” and takes two parameters. The first parameter is
the length, in pixels, of the slider to be created. The second, a String parameter, determines the
style of the draggable knob:

 ▪ new HorizontalSlider(len:Number,style:String);

The available styles for the knob are” “triangle” and “rectangle”.

In our template Parametric Curves in ActionScript 3.0 – Basic, we create a slider that is 250
pixels long and has a triangular knob:

var hsSlider:HorizontalSlider=new HorizontalSlider(250,"triangle");

addChild(hsSlider);

hsSlider.x=30;

 35

hsSlider.y=435;

We store our instance of HorizontalSlider in a variable called “hsSlider” whose datatype is
HorizontalSlider. As with all display objects, we have to add our slider to be a child of an object
already on the Display List, in this case to the main movie. We set the position of our slider
using properties inherited from Sprite.

Public Methods

Most methods of the class are meant to give you control over your slider’s visual attributes. The
names of the properties are quite self-explanatory.

▪ instance.changeKnobColor(c:Number): void

Default: dark gray.

The color should be passed in hex, as in Parametric Curves in ActionScript 3.0 – Basic :

hsSlider.changeKnobColor(0xCC0000);

▪ instance.changeKnobSize(c:Number): void

Default: 8 (in pixels).

▪ instance.changeKnobOpacity(n:Number): void

Default: 1.0 – completely opaque.

You may find this method useful with a rectangular knob if you want the tick marks underneath
to show.

▪ instance.changeKnobLeftLine(c:Number): void

▪ instance.changeKnobRightLine(c:Number): void

Default: white, black.

The methods change the colors of the left and the right outline of the knob to create a 3D effect
with your coloring scheme.

▪ instance.changeTrackOutColor(c:Number): void

▪ instance.changeTrackInColor(c:Number): void

Default: dark gray, white.

The methods change the colors of the outline of the track and the line inside to match your
coloring scheme.

 36

▪ instance.setKnobPos(p:Number): void

The method adjusts the x coordinate of the knob along the horizontal track. 0 corresponds to the
left end of the slider. The method is usually used to set the initial position of the knob.

▪ instance.getKnobPos(): Number

This extremely important method allows you to make your applet respond to the changing
horizontal position of the knob as the user drags the knob along the track. Here is an excerpt
from Parametric Curves in ActionScript 3.0 – Basic. (The function KnobPosToFun translates the
horizontal position of the knob in pixels to the equivalent value of the parameter “t”. The
function has been defined earlier in the script. The same is true for the function getArrowPos.
KnobBox is a dynamic text field residing on the Stage in which the current value of “t” is
displayed as the knob moves.) The fragment of code below uses the property of HorizontalSlider,
isPressed discussed in Properties section.

/*
The event listener is assigned to the Stage which listens to the
movement of the mouse and responds to it provided the slider's knob
is pressed. This event listener causes the arrow to move along
a curve.
*/

stage.addEventListener(MouseEvent.MOUSE_MOVE,handleMove);

function handleMove(e:MouseEvent):void {

 if(hsSlider.isPressed){

 var curKnobPos:Number;

 var curArrowPos:Array;

 curKnobPos=KnobPosToFun(hsSlider.getKnobPos());

 if(isTRangeSet){

 if(isGraphToTrace){

 curArrowPos=getArrowPos(curKnobPos);

 board.setArrowPos(curArrowPos[0],curArrowPos[1],curArrowPos[2]);

 board.arrowVisible(true);

 }

 KnobBox.text=String(Math.round(curKnobPos*1000)/1000);

 } else {

 KnobBox.text="";

 37

 }

 e.updateAfterEvent();

 }

}

Here are the last two methods of lesser importance.

▪ instance.getSliderLen(): Number

The method returns the slider’s length.

Finally, if you want to remove an instance of HorizontalSlider at runtime, you should call

▪ instance.destroy(): void

The method removes all listeners set by your instance of HorizontalSlider, clears all drawings,
and sets all the Sprites created by the instance to null.

Public Properties

Each instance of HorizontalSlider has one public property (except for those inherited from
Sprite). This property, “isPressed”, is a read-only property:

▪ instance.isPressed: Boolean

The property is set by the class to “true” if the user presses the mouse button over the knob. The
property is reset to the default – “false” when the user releases the mouse button.

bkde.as3.utilities.VerticalSlider

Description

The class is nearly identical to HorizontalSlider class. It has the same methods and properties.
The only difference is that the track is drawn vertically and all references in the description
above to the x (or horizontal) coordinate should be replaced by references to the y (or vertical)
coordinate. Since HorizontalSlider inherits from Sprite, any instance of HorizontalSlider can be
positioned vertically via Sprite.rotation property. The reason we have a separate class has to do
with slight differences in the way the vertical slider is drawn which give it a more pleasing
appearance.

 38

Constructor

The constructor is evoked with the word “new” and takes two parameters. The first parameter is
the length, in pixels, of the slider to be created. The second, a String parameter, determines the
style of the draggable knob:

 ▪ new VerticalSlider(len:Number,style:String);

The available styles for the knob are” “triangle” and “rectangle”.

Public Methods

Same as for HorizontalSlider.

Public Properties

Same as for HorizontalSlider.

August 16, 2007

 39

