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The main result of the present paper is that all natural operators transforming

every projectable vector �eld on a �bred manifold Y into a vector �eld on its r-th

jet prolongation J

r

Y are the constant multiples of the ow operator only. We also

deduce a similar result for the natural operators transforming every vector �eld on a

manifoldM into a vector �eld on any bundle of contact elements over M .

All manifolds and maps are assumed to be in�nitely di�erentiable.

1. Formulation of the result.

We shall need an analogy of natural bundles and natural operators de�ned on the

category FM

m;n

of all �bred manifolds with m-dimensional bases and n-dimensional

�bres and their �bred local isomorphisms. Since in this case the general theory di�ers

only slightly from the well known theory of natural bundles, [7], we will mention briey

the basic facts. A general setting of the bundle functors on categories over manifolds

including a detailed exposition of the functors on FM

m;n

will appear in [4]. We write

Mf

m

for the category ofm-dimensional manifolds and local di�eomorphisms. For any

�bred manifold Y !M we denote by C

1

(Y ) the space of all smooth global sections.

Every �bred isomorphism f : Y !

�

Y extends into a map f

�

: C

1

(Y ) ! C

1

(

�

Y ).

Given two �bred manifolds Y ! M and

�

Y ! M over the same base, we denote by

C

1

M

(Y;

�

Y ) the set of all base-preserving morphisms of Y into

�

Y .

Definition 1. Let I : FM

m;n

! Mf

m+n

be the faithful functor forgetting the

�brations. A bundle functor F on the category FM

m;n

consists of a covariant functor

F : FM

m;n

!Mf and of a natural transformation p : F ! I satisfying the following

localization condition. If i : U ! Y is an inclusion of an open �bred submanifold,

then Fi : FU ! FY is an embedding onto p

�1

Y

(U ).

Given a bundle functor F : FM

m;n

! Mf , a system of subsets D

Y

� C

1

(FY ),

(Y !M ) 2 ObFM

m;n

, is said to be natural, if the following conditions hold,

(i) f

�

D

Y

= D

�

Y

for every isomorphism f : Y !

�

Y

(ii) the restriction of every s 2 D

Y

to every open �bred submanifoldU � Y belongs

to D

U

(iii) the subset D

r

Y

= fj

r

x

s; s 2 D

Y

; x 2Mg is a �bred submanifold of J

r

(FY !

Y ) for every positive integer r.

Definition 2. Let F , G

1

, G

2

: FM

m;n

! Mf be bundle functors and D =

fD

Y

� C

1

(FY ); Y 2 ObFM

m;n

g be a natural system. A system of maps A

Y

:

D

Y

! C

1

Y

(G

1

Y;G

2

Y ), Y 2 ObFM

m;n

, is said to be a natural operator A : F *
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(G

1

; G

2

) with domainD if for every f 2 FM

m;n

(Y;

�

Y ), s

1

2 C

1

(FY ), s

2

2 C

1

(F

�

Y )

the commutativity of the left-hand diagram implies the commutativity of the right-

hand one

FY

s

1

 ���� Y

?

?

y

Ff

?

?

y

f

F

�

Y

s

2

 ����

�

Y

G

1

Y

A

Y

s

1

����! G

2

Y

?

?

y

G

1

f

?

?

y

G

2

f

G

1

�

Y

A

�

Y

s

2

����! G

2

�

Y

and if smoothly parametrized families of sections are transformed into smoothly

parametrized ones.

If functor G

2

is a composition G

2

= H � G

1

, where H is a bundle functor de�ned

on a suitable category of �bred manifolds, and if the values of operators in question

are sections of the canonical projections p

H

G

1

M

: H(G

1

M ) ! G

1

M , then we write

A : F

2

*HG

1

.

Proposition 1. For every natural operator F * (G

1

; G

2

) and every s 2 C

1

(FY ),

z 2 G

1

Y , the value A

Y

s(z) depends on the germ of s at p

G

1

Y

(z).

Proof. This follows directly from the locality of bundle functors and naturality of the

domain.

By the r-th order distinguished frame bundle of a �bred manifold Y 2 ObFM

m;n

we mean the space of all r-jets of the local �bred manifold isomorphisms from

R

m+n

! R

m

into Y with source 0 2 R

m+n

. This is a principal �bre bundle with

structure group G

r

m;n

of all r-jets of the local isomorphisms of R

m+n

! R

m

into

itself with source and target 0 2 R

m+n

. By the general theory, [4], the �bre S of

F (R

m+n

! R

m

) over 0 2 R

m+n

is a manifold endowed with a canonical action of

G

r

m;n

and every FY is the �bre bundle associated with the r-th order distinguished

frame bundle of Y with standard �bre S. Moreover, there is a bijective correspon-

dence between all natural transformations between two r-th order bundle functors on

FM

m;n

and the set of all G

r

m;n

-equivariant maps between their standard �bres.

Next we restrict our attention to natural operators with domains de�ned on the

projectable vector �elds on �bred manifolds, which form a natural domain. Let G

1

,

G

2

: FM

m;n

!Mf be any bundle functors and T be the tangent functor. Consider

a natural operator A transforming the projectable vector �elds on Y into the elements

in C

1

Y

(G

1

Y;G

2

Y ). We shall write briey A : T

proj

* (G

1

; G

2

). In particular, we

are interested in the case when the values of A

Y

are vector �elds on GY for a bundle

functor G : FM

m;n

!Mf . Then we write A : T

proj

* TG.

There is a canonical natural operator G : T

proj

* TG, called the ow operator,

de�ned as follows. For every projectable vector �eld X on Y 2 ObFM

m;n

its ow

exptX is formed by local FM

m;n

-morphisms. Hence we can apply functor G to get a

one parameter family '

t

= G(exptX), which is smooth by regularity of G. The value

GX is the vector �eld on GY corresponding to the ow '

t

. In particular, for the

bundle functor J

r

: FM

m;n

! Mf of the r-th jet prolongation of �bred manifolds

we have the ow operator J

r

: T

proj

* TJ

r

. The main part of our paper is devoted

to the proof of the following assertion.
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Theorem 1. Every natural operator A : T

proj

* TJ

r

is a constant multiple of

the ow operator J

r

.

2. Finite order natural operators.

Definition 3. A natural operator A : F * (G

1

; G

2

) with domain D is said to

be of order r if for every s

1

, s

2

2 D

Y

and z 2 G

1

Y the condition j

r

s

1

(p

G

1

Y

(z)) =

j

r

s

2

(p

G

1

Y

(z)) implies A

Y

s

1

(z) = A

Y

s

2

(z).

Let A : F * (G

1

; G

2

) be a natural operator of order r with domain D. Then we

have the so called associated maps

A

Y

: D

r

Y

�

Y

G

1

Y ! G

2

Y

A

Y

�

j

r

s(p

G

1

Y

(z)); z

�

= A

Y

s(z)

which are smooth by the regularity of A, [4]. Conversely, having the associated map

A

Y

, the value of the operator A

Y

on a section s 2 D

Y

is given by the left-hand side

of the latter formula.

Proposition 2. The maps A

Y

are determined by the restriction

A = A

(R

m+n

!R

m

)

jS

r

� Z : S

r

� Z ! Q

where S

r

or Z or Q are the �bres of D

r

(R

m+n

!R

m

)

or G

1

(R

m+n

! R

m

) or

G

2

(R

m+n

! R

m

) over 0 2 R

m+n

, respectively.

Proof. The Proposition follows immediately from Proposition 1 and the locality of

bundle functors.

Let us denote

k := maxfr+ order of F; order of G

1

; order of G

2

g:

Then the group G

k

m;n

acts on both S

r

�Z and Q and, by the de�nition of naturality,

the map A : S

r

� Z ! Q is G

k

m;n

-equivariant. On the other hand, given a G

k

m;n

-

equivariant map A : S

r

� Z ! Q, there is a unique natural operator A with A being

the restriction of A

(R

m+n

!R

m

)

to the standard �bres, [2], [4]. Hence we have

Proposition 3. There is a bijective correspondence between G

k

m;n

-equivariant maps

A : S

r

� Z ! Q and natural operators A : F * (G

1

; G

2

) with domain D.

If there is a natural transformation � : G

2

! G

1

over the identical transformation

on FM

m;n

and if we require that the natural operators we are looking for transform

the elements of D

Y

into sections of �

Y

: G

2

Y ! G

1

Y , then in the above correspon-

dence we have to add the condition �

0

� A = pr

2

: S

r

� Z ! Z, where pr

2

is the

projection onto the second factor and �

0

is the restriction of �

R

m+n

!R

m to Q.

3. The �niteness of the order.

Proposition 4. Let G

1

, G

2

: FM

m;n

!Mf be bundle functors of orders less then

or equal to r+1, r � 0. Then every natural operator A : T

proj

* (G

1

; G

2

) is of order

less then or equal to r.

The proof is based on a lemma.
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Lemma 1. Let p : Y ! M be a �bred manifold and �, � be projectable vector

�elds on Y . Let y 2 Y satisfy Tp � �(y) 6= 0, Tp � � 6= 0. Then there is a locally

de�ned �bred isomorphism f of Y on a neighbourhood of y transforming locally �

into �. If moreover j

r

y

� = j

r

y

�, then there exists an isomorphism f with the property

j

r+1

y

f = j

r+1

y

id

Y

.

Proof. Let us �rst assume that in suitable �bred coordinates on Y it holds �

1

(0) 6= 0

and � =

@

@x

1

. We are looking for a �bred map f : R

m+n

! R

m+n

satisfying

�

i

(f

1

(x); : : : ; f

n

(x)) =

@f

i

@x

1

(x) 1 � i � n

�

p

(f

1

(x); : : : ; f

n+m

(x)) =

@f

p

@x

1

(x) n < p � m + n

But the solution f = (f

i

; f

p

) of this system determined by the initial condition

f = id on the hyperplane x

1

= 0 is a local �bred isomorphism at 0 with the required

properties. Further, let � and � be arbitrary. According to our assumptions, we always

can choose local �bred coordinates centred at y with both �

1

(0) 6= 0 and �

1

(0) 6= 0.

By the �rst part of the proof we can �nd a local �bred isomorphism transforming

@

@x

1

into �. Assume j

r

0

� = j

r

0

�. Then we have �

a

(x) = c

a

+ g

a

(x) with c

1

= 1, all other c's

equal to zero and j

r

0

g = 0. Consider the solution of the following system of equations

c

i

+ g

i

(f

1

(x); : : : ; f

n

(x)) =

@f

i

@x

1

(x) 1 � i � n

g

p

(f

1

(x); : : : ; f

n+m

(x)) =

@f

p

@x

1

(x) n < p � m + n

determined by the initial condition f = id on the hyperplane x

1

= 0. We claim that

the k-th order partial derivatives of the above solution f at the origin vanish for all

1 < k � r+ 1. Indeed, if there is no derivative along the �rst axis, all the derivatives

of order higher then one vanish according to the initial condition, and all the other

cases follow directly from the equations. By the same argument we �nd that the �rst

order partial derivatives of f at the origin coincide with the partial derivatives of the

identity map.

Proof of Proposition 4. If j

r

y

� = j

r

y

� and �(y) 6= 0, then there exists an f with f

�

� = �

on a neighbourhood of y and j

r+1

y

f = j

r+1

y

id

Y

. Then Proposition 1 and the naturality

imply for every z 2 G

1

Y with p

G

1

Y

(z) = y

A

Y

�(z) = A

Y

(f

�

�)(z) = G

2

f �A

Y

� �G

1

f

�1

(z) = A

Y

�(z).

In the case �(y) = 0 we take a projectable vector �eld � on Y with �(y) 6= 0 and

consider the one-parameter families � + t�, � + t�, t 2 R. For every t 6= 0 we have

A

Y

(� + t�)(z) = A

Y

(� + t�)(z) by the �rst part of the proof. Since A is regular, this

relation holds for t = 0 as well.
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4. Proof of Theorem 1.

By Proposition 4 all natural operators A : T

proj

* TJ

r

are of the order r, so

that we can use the general procedure explained in section 2. First of all we should

describe the action of G

r+1

m;n

on S

r

. But according to Lemma 1, in every local �bred

coordinates x

i

, y

p

on Y , all projectable vector �elds with non-zero projections can

be transformed into the vector �eld

@

@x

1

. Since the r-jets of these �elds form a dense

subset in the space of the r-jets of projectable vector �elds, it su�ces to show that

the value of any natural operator A on

@

@x

1

is a constant multilple of J

r
@

@x

1

. That is

why we shall deal with the restriction of A : S

r

� Z

r

! Q

r

to the subsets S

0

� Z

r

or S

0

� Z

r

, where Z

r

or Q

r

is the �bre of J

r

(R

m+n

! R

m

) over 0 2 R

m+n

or the

�bre TJ

r

(R

m+n

! R

m

) over 0 2 R

m+n

, respectively, S

0

is the subset of all constant

vector �elds and S

0

� S

0

is formed by vector �elds with zero components in R

n

.

Having the canonical coordinates x

i

and y

p

on R

m+n

, let X

i

, Y

p

be the induced

coordinates on S

0

, let y

p

�

, 1 � j�j � r, be the induced coordinates on Z

r

and Q

i

=

dx

i

, Q

p

= dy

p

, Q

p

�

= dy

p

�

be the additional coordinates on Q

r

. The restriction

A : S

0

� Z

r

! Q

r

is given by some functions

Q

i

= f

i

(X

i

; Y

q

; y

s

�

)

Q

p

= f

p

(X

i

; Y

q

; y

s

�

)

Q

p

�

= f

p

�

(X

i

; Y

q

; y

s

�

).

Let us denote by g

i

, g

p

, g

p

�

the restrictions of the corresponding f 's to S

0

� Z

r

.

The ows of constant vector �elds are formed by translations, so that their r-jet

prolongations are the induced translations of J

r

(R

m+n

! R

m

) identical on all �bres.

Therefore J

r
@

@x

1

=

@

@x

1

and it su�ces to prove

(1) g

i

= kX

i

; g

p

= 0; g

p

�

= 0.

Let us remark that the coordinate formula for J

1

� is

J

1

� = �

i

@

@x

i

+ �

p

@

@y

p

+

�

@�

p

@x

i

+

@�

p

@y

q

y

q

i

�

@�

j

@x

i

y

p

j

�

@

@y

p

i

,

provided � = �

i

(x)

@

@x

i

+ �

p

(x; y)

@

@y

p

, and to evaluate J

r

�, we have to iterate this

formula and to use the canonical inclusion J

r

(Y ! M ) ,! J

1

(J

r�1

(Y ! M )), cf.

[5].

We shall prove (1) by induction on the order r. We have an inclusion GL(m;R)�

GL(n;R) ,! G

r+1

m;n

determined by the products of linear isomorphisms of R

m

and

R

n

. It is easy to see that the action of GL(m;R) � GL(n;R) on all quantities is

tensorial. Using the equivariancy with respect to the homotheties in GL(n;R), we

obtain f

i

(X

j

; Y

p

; y

q

l

) = f

i

(X

j

; kY

p

; ky

q

l

), k 2 R, k 6= 0, so that f

i

depends on

X

j

only. Then the equivariancy of f

i

with respect to GL(m;R) implies f

i

= kX

i

,

k 2 R, cf. [2]. The equivariancy of f

p

with respect to the homotheties in GL(n;R)

gives kf

p

(X

i

; Y

q

; y

s

j

) = f

p

(X

i

; kY

q

; ky

s

j

). This kind of homogeneity implies f

p

=
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h

p

q

(X

i

)Y

q

+ h

pj

q

(X

i

)y

q

j

with some smooth functions h

p

q

, h

pj

q

. Using the homotheties

in GL(m;R), we then obtain h

p

q

= const and h

pj

q

(X

i

) = c

pj

qi

X

i

. Then Lemma 3 of

[2] yields f

p

= aY

p

+ by

p

i

X

i

, a, b 2 R. Applying the same procedure to f

p

i

, we �nd

f

p

i

= cy

p

i

, c 2 R.

Let G

r

m

denote the group of all invertible r-jets of R

m

into R

m

with source and

target 0. Consider further the injection G

2

n

,! G

2

m;n

determined by the products with

the identities on R

m

. The action of an element (a

p

q

; a

p

qr

) of the latter subgroup is

given by

�y

p

i

=a

p

q

y

q

i

(2)

�

Q

p

i

=a

p

qt

y

q

i

Q

t

+ a

p

q

Q

q

i

(3)

and S

0

is an invariant subspace. In particular, (3) with a

p

q

= �

p

q

gives an equivariancy

condition

cy

p

i

= ba

p

qt

y

q

i

y

t

j

X

j

+ cy

p

i

.

This yields b = 0, so that g

p

= 0. Further, the subspace S

0

is invariant with respect

to the inclusion of G

1

m;n

into G

2

m;n

determined by the 2-jets of linear transformations.

The equivariancy of f

p

i

with respect to an element (�

i

j

; �

p

q

; a

p

i

) 2 G

1

m;n

means cy

p

i

=

c(y

p

i

+ a

p

i

). Hence c = 0, which completes the proof for r = 1.

For r � 2 it su�ces to discuss the g's only. Using the homotheties in GL(n;R) we

�nd that g

p

i

1

���i

s

(X

j

; y

q

�

), 1 � j�j � r, is linear in y

q

�

. The homotheties in GL(m;R)

and Lemma 3 from [2] then yield

(4) g

p

i

1

���i

s

=W

p

i

1

���i

s

+ c

s

y

p

i

1

���i

s

i

s+1

���i

r

X

i

s+1

: : :X

i

r

where W

p

i

1

���i

s

do not depend on y

p

i

1

���i

r

, s = 1; : : : ; r� 1, and

g

p

i

1

���i

r

=c

r

y

p

i

1

���i

r

(5)

g

p

=b

1

y

p

i

X

i

+ � � �+ b

r

y

p

i

1

���i

r

X

i

1

: : :X

i

r

.(6)

Similarly to the �rst order case, we have an inclusion G

r+1

n

,! G

r+1

m;n

determined by

the products of di�eomorphisms on R

n

with the identity of R

m

. One �nds easily the

following transformation law

(7) �y

p

i

1

���i

s

= a

p

q

y

q

i

1

���i

s

+ F

p

i

1

���i

s

+ a

p

q

1

���q

s

y

q

1

i

1

: : : y

q

s

i

s

where F

p

i

1

���i

s

is a polynomial expression linear in a

p

�

with 2 � j�j � s � 1 and

independent on y

p

i

1

���i

s

. This implies

(8)

�

Q

p

i

1

���i

s

= a

p

q

Q

q

i

1

���i

s

+ G

p

i

1

���i

s

+ a

p

q

1

���q

s

q

s+1

y

q

1

i

1

: : : y

q

s

i

s

Q

q

s+1

where G

p

i

1

���i

s

is a polynomial expression linear in a

p

�

with 2 � j�j � s and linear in

Q

p

�

, 0 � j�j � s � 1.
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We deduce that every g

p

i

1

���i

s

, 0 � s � r � 1, is independent on y

p

i

1

���i

r

. On the

kernel of the jet projection G

r+1

n

! G

r

n

, (8) for r = s gives

0 = a

p

q

1

���q

r

q

r+1

y

q

1

i

1

: : : y

q

r

i

r

g

q

r+1

Hence g

p

= 0. On the kernel of the jet projection G

r

n

! G

r�1

n

, (8) with s = 1; : : : ; r�

1, implies

0 = c

s

a

p

q

1

���q

r

y

q

1

i

1

: : : y

q

r

i

r

X

i

s+1

: : :X

i

r

i.e. c

s

= 0. By projectability, g

i

and g

p

�

, 0 � j�j � r � 1, correspond to a G

r

m;n

-

equivariant map S

0

� Z

r�1

! Q

r�1

. By the induction hypothesis, g

p

�

= 0 for all

0 � j�j � r � 1. Then on the kernel of the jet projection G

r+1

n

! G

r�1

n

(8) gives

0 = c

r

a

p

q

1

���q

r

y

q

1

i

1

: : : y

q

r

i

r

i.e. g

p

i

1

���i

r

= 0.

5. Prolongation of vector �elds to the bundles of contact elements.

In this section we describe a class of the classical natural bundles with the property

that the only natural operators (in the classical sense, [2]) transforming every vector

�eld on the base manifold into a vector �eld on the total space of the bundle are the

constant multiples of the ow operator only.

We recall that the bundle T

r

n

M ! M of all n-dimensional velocities of order r on

a manifoldM is the space J

r

0

(R

n

;M ) of all r-jets of R

n

into M with source 0 2 R

n

.

For n � m, a velocity A 2 T

r

n

M at x 2 M is called regular, if its underlying 1-jet

corresponds to a linear map T

0

R

n

! T

x

M of the maximal rank. There is a canonical

right action of the jet group G

r

n

on T

r

n

M given by the jet composition. The equivalence

class A �G

r

n

of a regular velocity A 2 T

r

n

M is called a contact element of dimension

n and order r on M , cf. [1]. The space K

r

n

M of all such elements has a canonical

structure of a �bred manifold over M . (The elements of K

r

n

M can be viewed as

the equivalence classes of n-dimensional submanifolds having r-th order contact at a

common point, [1].) Using the jet composition, we extend every local di�eomorphism

f : M !

�

M into a map K

r

n

f : K

r

n

M ! K

r

n

�

M . Thus, K

r

n

is a bundle functor on the

category Mf

m

of all m-dimensional manifolds and their local di�eomorphisms, or,

which is the same, a classical natural bundle over m-manifolds, [7]. For M = R

m

, the

elements of K

r

n

R

m

transversal to the canonical �bration R

m

= R

n

�R

m�n

! R

n

,

which form an open dense subset in K

r

n

R

m

, coincide with the elements of the r-th

jet prolongation J

r

(R

m

! R

n

) of this �bred manifold.

Denote by K

r

n

the ow operator corresponding to the functor K

r

n

in the classical

sense, [3]. We remark that for a vector �eld � = �

p

(x)

@

@x

p

+�

u

(x)

@

@x

u

, p, q = 1; : : : ; n,

u, v = n+ 1; : : : ;m the coordinate expression of K

1

n

� is

�

p

@

@x

p

+ �

u

@

@x

u

+

�

@�

u

@x

p

+

@�

u

@x

v

x

v

p

�

@�

q

@x

p

x

u

q

�

@�

q

@x

v

x

v

p

x

u

q

�

@

@x

u

p

where x

u

p

are the induced local coordinates on K

1

n

R

m

, see [6].
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Theorem 2. Every natural operator A : T * TK

r

n

is a constant multiple of the ow

operator K

r

n

.

Proof. It su�ces to discuss the case M = R

m

. The above mentioned �bration R

m

!

R

n

identi�es an open dense subset in K

r

n

R

m

with J

r

(R

m

! R

n

). By de�nition,

on this open dense subset it holds J

r

� = K

r

n

� for every projectable vector �eld �

on R

m

! R

n

. Since operator A commutes with the action of all di�eomorphisms

preserving �bration R

m

! R

n

, the restriction of A to

@

@x

1

is a constant multiple of

K

r

n

�

@

@x

1

�

by Theorem 1. But every vector �eld on R

m

can be locally transformed into

@

@x

1

in a neighbourhood of any non-zero point. This proves Theorem 2.
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