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Abstract. It is well known that linear geometric operations (like the exterior dif-

ferential) commute with the Lie derivative. A detailed analysis of both the concepts

of geometric operations and of Lie di�erentiation leads to the proof of a converse

implication even in the nonlinear case. So naturality is equivalent to commuting

with Lie di�erentiation. We also generalize this result to the case of gauge natural

operators.

1. Preliminaries

1.1. Natural bundles. The notion of a (local) geometric operation has got an

explicit and well de�ned meaning in the concept of the so called natural operators

between natural bundles, cf. [Nijenhuis, 72], [Kol�a�r, 90].

Let us write Mf for the category of manifolds and smooth mappings,Mf

m

for

the category of m-dimensional manifolds and local di�eomorphisms (i.e. globally

de�ned maps of maximal rank at each point) andMf

+

m

for the category of oriented

m{dimensional manifolds and orientation preserving local di�eomorphisms. Fur-

ther let FM denote the category of �bered manifolds and �bered morphisms and

B : FM!Mf be the base functor.

A bundle functor (natural bundle) F on Mf

m

is a functor F : Mf

m

! FM

such that

(i) B � F = id

Mf

m

(ii) for every inclusion i

U

: U !M of an open submanifold,FU is the restriction

p

�1

M

(U ) of the value FM = (p

M

: FM !M ) to U and Fi

U

is the inclusion

p

�1

M

(U )! FM .

A natural bundle F is said to be of order r if for every x 2 M and every local

di�eomorphism f : M !M

0

the restriction of Ff to the �ber F

x

M over x depends

only on the jet j

r

x

f . Every natural bundle is of �nite order, see [Palais, Terng, 77]

and [Kol�a�r{Michor{Slov�ak, Theorem 22.1].

1.2. Natural operators. Let N ! M and N

0

! M be �bered manifolds. A

mapping D : C

1

(N )! C

1

(N

0

) is called a local regular operator if for each point

x 2M and every section s 2 C

1

(N ), Ds(x) depends only on the germ of s at x and
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smoothly parameterized families of sections are mapped to smoothly parameterized

families.

Let F , G :Mf

m

! FM be bundle functors. A natural operator D : F ! G is a

system D

M

, M 2 ObMf

m

, of local regular operators such that for each section s

and each di�eomorphisms f :M ! N we have Gf �D

M

s�f

�1

= D

N

(Ff �s�f

�1

),

and for each open submanifold U ,!M we have (D

M

s)j

U

= D

U

(sj

U

).

A natural operator D is said to be of order r � 1 if the values of all operators

D

M

depend on r-jets only.

1.3. The jet groups. The Lie group G

k

m

:= invJ

k

0

(R

m

;R

m

)

0

, 1 � k < 1, with

multiplication de�ned by composition of jets is called the k-th jet group in dimension

m. The Lie algebra g

k

m

of the Lie group G

k

m

is the vector space fj

k

0

X ; X 2

X (R

m

); X(0) = 0g of k{jets of vector �elds on R

m

at 0 with the bracket

(1) [j

k

0

X; j

k

0

Y ] = �j

k

0

[X;Y ]

and exponential mapping

(2) exp(j

k

0

X) = j

k

0

Fl

X

1

; j

k

0

X 2 g

k

m

;

where Fl

X

denotes the ow of the vector �eld X (see [Terng, 78]). The direct limit

of the groups G

k

m

is the in�nite jet group G

1

m

:= invJ

1

0

(R

m

;R

m

)

0

.

The �rst order jet group G

1

m

is identi�ed withGL(m;R) and G

k

m

is the semidirect

product G

1

m

sB

k

1

, where B

k

1

is the kernel of the jet projection �

k

1

: G

k

m

! G

1

m

.

If F is a natural bundle of order r, then there is the induced action of G

r

m

on

the so called standard �ber S = F

0

R

m

of the natural bundle F . The k-th jet

prolongation J

k

�F is a natural bundle of order k+r with standard �ber J

k

0

(FR

m

)

identi�ed with T

k

m

S = J

k

0

(R

m

; S).

Consider two r-th order natural bundles F and G. A k-th order natural operator

D : F ! G is completely determined by the so called associated map D : T

k

m

S ! Q,

where Q := G

0

R

m

and D(j

k

0

s) := D

R

m

s(0) for all s 2 C

1

(FR

m

). By naturality

D commutes with the induced actions of G

k+r

m

on the standard �bers, i.e. D is

G

k+r

m

-equivariant.

On the other hand, every G

r+k

m

-equivariant map f : T

k

m

S ! Q gives rise to a

unique natural operator F ! G with associated map f .

The de�nitions and the theory of natural bundles and operators apply to the

category Mf

+

m

without any essential change. We only have to replace the jet

groups G

r

m

by their connected components of the units G

k

m

+

.

1.4. The ow operator. For every bundle functor F on Mf

m

and every vector

�eld X on an m-dimensional manifoldM we can apply F to the ow of X (cf. the

locality condition for bundle functors). In this way, we obtain a ow of a vector

�eld FX on the manifoldFM . This construction de�nes the so called ow operator

F which is an example of a more general concept of natural operators which extend

the bases, cf. [Kol�a�r, 90].

1.5. The Lie derivative. For every smooth map f : M ! N and vector �elds

X 2 X (M ), Y 2 X (N ) we de�ne the generalized Lie derivative

~

L

(X;Y )

f : M ! TN
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by

~

L

(X;Y )

= Tf �X � Y � f , cf. [Trautmann, 72] and [Kol�a�r, 82]. One computes

directly

~

L

(X;Y )

f =

@

@t

�

�

0

(Fl

Y

�t

� f � Fl

X

t

):

If N ! M is a �bered manifold, s 2 C

1

(N ) is a section and Y is a projectable

vector �eld over X, then

~

L

(X;Y )

s is a section of the vertical bundle V N ! M . In

particular, if F is a bundle functor then for every section s 2 C

1

(FM ) and every

vector �eld X 2 X (M ) we de�ne the Lie derivative

~

L

X

s =

~

L

(X;FX)

s, where F is

the ow operator. So

~

L

X

s =

@

@t

�

�

0

(F (Fl

X

�t

) � s � Fl

X

t

):

More generally a short computation shows:

(3)

~

L

X

((Fl

X

t

)

�

s) =

~

L

X

(F (Fl

X

�t

) � s � Fl

X

t

) =

@

@t

(F (Fl

X

�t

) � s � Fl

X

t

) =

= T (F (Fl

X

�t

)) �

~

L

X

s � Fl

X

t

= (Fl

X

t

)

�

(

~

L

X

s)

For every natural bundle F the Lie derivative is a natural operator

~

L : T �F ! V F

de�ned on the sections of the �bered products TM �

M

FM !M .

If F is a natural vector bundle, then V F is naturally equivalent to F � F and

the second component of our Lie derivative is just the classical Lie derivative L.

1.6. Consider r-th order natural bundles F and G with standard �bers S and Q.

Since there are the induced actions of the jet group G

r+k

m

on T

k

m

S and Q, we have

the fundamental �eld mappings �

(k)

: g

r+k

m

! X (T

k

m

S) and �

Q

: g

r+k

m

! X (Q).

Lemma. For all j

r+k

0

X 2 g

r+k

m

and j

k

0

s 2 T

k

m

S we have

�

(k)

j

r+k

0

X

(j

k

0

s) = �(j

k

0

(

~

L

�X

s))

where � is the map induced by the canonical natural equivalence J

r

V ! V J

r

.

Proof. Writing � for the action of the jet group on T

k

m

S we have:

�

(k)

j

r+k

0

X

(j

k

0

s) =

@

@t

�

�

0

�(exptj

r+k

0

X)(j

k

0

s) =

@

@t

�

�

0

j

k

0

(F (Fl

X

t

) � s � Fl

X

�t

) =

= �(j

k

0

(

@

@t

�

�

0

(F (Fl

X

t

) � s � Fl

X

�t

))) = �(j

k

0

(

~

L

�X

s)): �

1.7. Peetre theorem. Given two natural vector bundles F and G and a linear

mapping D

M

: C

1

(FM ) ! C

1

(GM ) we can compare the maps L

X

� D

M

and

D

M

�L

X

for each vector �eld X on M . By the classical Peetre theorem, if D

M

is a

local regular operator and M is compact, then D

M

is of �nite order. Consequently,

if D

M

comes from a natural operator D, then one easily shows that L

X

�D

M

=

D

M

� L

X

even for non compact M .

For the nonlinear case we need a generalization of the Peetre theorem due to

[Slov�ak, 88]. The general result is rather technical and so we formulate a special

case which we shall need.
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Proposition. Let N ! M andN

0

!M be �bered manifolds and letD : C

1

(N )!

C

1

(N

0

) be a regular local operator. Then for every �xed section s 2 C

1

(N ) and

for every compact set K � M , there is an order r 2 N and a neighborhood V of s

in the compact open C

1

-topology such that for every x 2 K and s

1

, s

2

2 V the

condition j

r

x

s

1

= j

r

x

s

2

implies Ds

1

(x) = Ds

2

(x).

1.8. The vertical prolongation. For two �bered manifolds N ! M and N

0

!

M and for a local regular operator D : C

1

(N ) ! C

1

(N

0

) we de�ne the vertical

prolongation V D : C

1

(V N ! M ) ! C

1

(V N

0

! M ) of D as follows: Every

section q 2 C

1

(V N ! M ) is of the form

@

@t

�

�

0

s

t

for a family s

t

2 C

1

(N ) and we

set

V D(q) = V D(

@

@t

�

�

0

s

t

) =

@

@t

�

�

0

(Ds

t

) 2 C

1

(V N

0

!M ):

We have to verify that this is a correct de�nition. So let us �x q =

@

@t

�

�

0

s

t

and

x 2M .

By 1.7 the operator D is of order � 1 and thus is induced by a map

~

D :

J

1

N ! N

0

. Moreover each in�nite jet has a neighborhood in the inverse limit

topology on J

1

N on which

~

D only depends on r{jets for some �nite r. Thus there

is neighborhood U of x in M and a locally de�ned smooth map

~

D

r

: J

r

N ! N

0

such that Ds

t

(y) =

~

D

r

(j

r

y

s

t

) for y 2 U and for t su�ciently small. So we get

(V D)q(x) =

@

@t

�

�

0

(

~

D

r

(j

r

x

s

t

)) = T

~

D

r

(

@

@t

�

�

0

j

r

x

s

t

) = (T

~

D

r

� �)(j

r

x

q)

and thus the de�nition does not depend on the choice of the family s

t

.

2. Infinitesimally natural operators

2.1. De�nition. A local regular operator D : C

1

(FM ) ! C

1

(GM ) is called

in�nitesimally natural if

~

L

X

(Ds) = V D(

~

L

X

s) for all X 2 X (M ) and all s 2

C

1

(FM ).

2.2. Theorem. Every natural operator D : F ! G between two bundle functors

on Mf

+

m

consists of in�nitesimally natural operators D

M

.

Proof.

(V D

M

)(

~

L

X

s) = (V D

M

)

�

@

@t

�

�

0

(F (Fl

X

�t

) � s � Fl

X

t

)

�

=

=

@

@t

�

�

0

D

M

�

F (Fl

X

�t

) � s � Fl

X

t

�

=

@

@t

�

�

0

�

G(Fl

X

�t

) �D

M

s � Fl

X

t

�

=

~

L

X

(D

M

s) �

Since every natural operator D between bundle functors de�ned on Mf

m

is

uniquely determined by D

R

m

the corresponding theorem for the category Mf

m

is

a trivial consequence.

2.3. Theorem. Let F and G be two bundle functors on Mf

+

m

, M be an m-

dimensional manifold and let D

M

: C

1

(FM ) ! C

1

(GM ) be an in�nitesimally

natural operator. Then D

M

extends to a unique natural operator D : F ! G.

The proof will require several steps. Let us �x an in�nitesimally natural operator

D : FR

m

! GR

m

and let us write S and Q for the standard �bers F

0

R

m

and G

0

R

m

.
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As it was noticed in 1.1 we may assume that both natural bundles F and G are of

some �nite order, say k. Thus we have actions of G

r+k

m

on T

r

m

S and, via the jet

projections, also on Q for all r. Since each local operator is locally of �nite order

by 1.7, there is the induced map D : T

1

m

S ! Q. Moreover, at each j

1

0

s 2 T

1

m

S

the application of 1.7 (with K = f0g) yields a smallest possible order r = �(j

1

0

s)

such that for every section q with j

r

0

q = j

r

0

s we have Ds(0) = Dq(0). Let us de�ne

~

V

r

� T

1

m

S as the subset of all jets with �(j

1

0

s) � r. Let V

r

be the interior of

~

V

r

in the inverse limit topology and put U

r

:= �

1

r

(V

r

) � T

r

m

S.

By virtue of the nonlinear Peetre theorem T

1

m

S = [

r

V

r

and so the sets V

r

form

an open �ltration of T

1

m

S. On each V

r

, the map D factors to a map D

r

: U

r

! Q.

w Q

U

1

u

D

1

U

2

�

�

�

�

�

��

D

2

U

3

\

\

\

\

\

\

\

\

\

\

\

\̂

D

3

V

1

u

�

1

1

y w

y

u

V

2

u

�

1

2

y w

XN

N

N

N

NQ

V

3

u

�

1

3

y w

1'

'

'

'

'

'

'

'

'*

� � �

D

T

1

m

S

2.4. Lemma. For all r 2 N and X 2 g

r+k

m

we have TD

r

� �

(r)

X

= �

Q

X

� D

r

on U

r

.

Proof. Recall from 1.8 that (V D)q(0) = (TD

r

� �)(j

r

0

q) for all j

r

0

q 2 �

�1

(TU

r

).

Using 1.6 and the in�nitesimal naturality of D we compute (identifying X with a

polynomial vector �eld on R

m

):

(TD

r

� �

(r)

X

)(j

r

0

s) = TD

r

(�(j

r

0

(

~

L

�X

s))) = V D(

~

L

�X

s)(0) =

=

~

L

�X

(Ds)(0) = �

Q

X

(Ds(0)) = �

Q

X

(D

r

(j

r

0

s)): �

2.5. Lemma. The map D : T

1

m

S ! Q is G

1

m

+

-equivariant.

Proof. Given a = j

1

0

f 2 G

1

m

+

and y = j

1

0

s 2 T

1

m

S we have to show D(a � y) =

a � D(y). Each a is a composition of a jet of a linear map and of a jet from the

kernel B

1

1

of the jet projection �

1

1

: G

1

m

+

! GL

+

(m;R). If f is linear, then

there are linear maps g

i

, i = 1; 2; : : : ; l, lying in the image of the exponential map

of G

1

m

such that f = g

1

� : : : � g

l

. Since T

1

m

S = [

r

V

r

there must be an r 2 N

such that y and all elements (j

1

0

g

p

� : : : � j

1

0

g

l

) � y are in V

r

for all p � l. Thus

D(a � y) = D

r

(j

r

0

f � j

r

0

s) = j

r

0

f � D

r

(j

r

0

s) = a � D(y), since from 2.4 and the fact

that the ows of f{related vector �elds are f{related one easily concludes that

D

r

commutes with the actions of elements of G

r

m

which are in the image of the

exponential map.

Since the kernel B

r

1

is nilpotent it lies in the image of the exponential map for

each r < 1 and thus an analogous consideration for j

1

0

f 2 B

1

1

concludes the

proof of the lemma. �



6 ANDREAS

�

CAP JAN SLOV

�

AK

2.6. Lemma. The natural operator

~

D onMf

+

m

which is determined by the G

1

m

+

-

equivariant map D coincides on R

m

with the operator D.

Proof. There is the associated map

~

D : J

1

FR

m

! GR

m

to the operator

~

D

R

m

.

Let us write

~

D

0

for its restriction (J

1

F )

0

R

m

! G

0

R

m

to the standard �bers

and similarly for the map D corresponding to the original operator D. Now let

t

x

: R

m

! R

m

be the translation by x. Then the map

~

D (and thus the operator

~

D) is uniquely determined by

~

D

0

and the fact that by naturality of

~

D we have

(t

�x

)

�

�

~

D

R

m

� (t

x

)

�

=

~

D

R

m

, since then

~

D

R

m

(s)(x) = (G(t

x

) �G(t

�x

) �

~

D

R

m

(s) � t

x

)(0) =

= G(t

x

)((t

x

)

�

(

~

D

R

m

(s))(0)) = G(t

x

)(

~

D

R

m

((t

x

)

�

s)(0)) =

= G(t

x

)(

~

D

0

(j

1

0

(t

x

)

�

s))

But t

x

is the ow at time 1 of the constant vector �eld x and for any complete

vector �eld X we compute using (3) and in�nitesimal naturality:

@

@t

�

(Fl

X

�t

)

�

(D(Fl

X

t

)

�

s)

�

=

= �(Fl

X

�t

)

�

~

L

X

(D(Fl

X

t

)

�

s) + (Fl

X

�t

)

�

�

(V D)((Fl

X

t

)

�

~

L

X

s)

�

=

= (Fl

X

�t

)

�

�

�

~

L

X

(D(Fl

X

t

)

�

s) + (V D)(

~

L

X

((Fl

X

t

)

�

s))

�

= 0:

Thus (t

�x

)

�

�D � (t

x

)

�

= D and since D

0

=

~

D

0

this concludes the proof. �

Lemmas 2.5 and 2.6 imply the assertion of Theorem 2.3. Indeed, if M = R

m

we

get the result immediately and it follows for general M by locality of the operators

in question.

2.7. Remarks. In general the situation changes if we consider the naturality over

the whole category Mf

m

. For example, the vector product is a natural operator

on Mf

+

3

which transforms Riemannian metrics into sections of the values of T 


T

�


 T

�

. Clearly the vector product is not natural on Mf

3

.

Our general result covers an earlier result on natural transformations between

natural bundles deduced in [Krupka, Jany�ska, 90]. The latter authors also discuss

how to test whether a natural operator on Mf

+

m

is natural on Mf

m

. The obvious

necessary and su�cient condition is that the associated G

1

m

+

-equivariant map also

commutes with the action of one element from the other connected component of

G

1

m

.

3. The multilinear case

As we already remarked for a natural vector bundle F the vertical bundle V F

is naturally equivalent to F � F and the second component of our general Lie

derivative is just the usual Lie derivative. Thus if D : C

1

(FM ) ! C

1

(GM ) is

linear we get the usual condition D � L

X

= L

X

�D for in�nitesimal naturality.

More generally, if F is a sum of k natural vector bundles, G is a natural vector

bundle and D is k-linear, then we have:

(pr

2

� V D)(

~

L

X

(s

1

; : : : ; s

k

)) =

@

@t

�

�

0

D

�

F (Fl

X

�t

) � (s

1

; : : : ; s

k

) � Fl

X

t

�

=

=

k

X

i=1

D(s

1

; : : : ;L

X

s

i

; : : : ; s

k

):
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Hence for the k-linear operators theorem 2.2 implies

3.1. Corollary. Let E

1

; : : : ; E

k

and F be vector bundle functors onMf

+

m

. Every

natural k-linear operator D : E

1

� � � � �E

k

! F satis�es

(4) L

X

(D

M

(s

1

; : : : ; s

k

)) =

P

k

i=1

D

M

(s

1

; : : : ;L

X

s

i

; : : : ; s

k

)

for all s

1

2 C

1

(E

1

M ),: : : ,s

k

2 C

1

(E

k

M ) and all X 2 X (M ).

Formula (4) covers many well known formulas for Lie derivatives of values of

geometric operations. Let us mention e.g. the commutation with the exterior dif-

ferential or the Jacobi identity for the Lie bracket.

3.2. For an important class of vector bundle functors we can prove a stronger ver-

sion of theorem 2.3:

Let E

1

; : : : ; E

k

be r{th order natural vector bundles corresponding to actions �

i

of

the jet group G

r

m

on standard �bers S

i

, and assume that with the restricted ac-

tions �

i

jG

1

m

the spaces S

i

are invariant subspaces in spaces of the form�

j

(


p

j

R

m







q

j

R

m�

). In particular this applies to all natural vector bundles which are subbun-

dles in tensor bundles. Given any natural vector bundle F we have

Theorem. Every local regular k-linear operator

D

M

: C

1

(E

1

M )� � � � �C

1

(E

k

M )! C

1

(FM );

over anm{dimensional manifoldM which satis�es (4) extends uniquely to a natural

operator

~

D on Mf

m

with

~

D

M

= D

M

.

The theorem follows from the theorem 2.3 and the next lemma

Lemma. Every k-linear natural operator D : E

1

�� � ��E

k

! F onMf

+

m

extends

to a natural operator on Mf

m

.

Proof. By the multilinear version of the Peetre theorem (c.f. 1.7 and [Slov�ak, 88])D

is of some �nite order `. Thus D is determined by the associated k-linear (G

r+`

m

)

+

-

equivariant map D : T

`

m

S

1

� : : :� T

`

m

S

k

! Q (cf. 1.3). Recall that the jet group

G

r+`

m

is the semidirect product of GL(m;R) and the kernel B

r+`

1

, while (G

r+`

m

)

+

is the semidirect product of the connected component GL

+

(m;R) of the unit and

the same kernel B

r+`

1

. Thus in particular the map D : T

`

m

S

1

� : : : � T

`

m

S

k

!

Q is k{linear and GL

+

(m;R) equivariant. By the descriptions of (G

r+`

m

)

+

and

G

r+`

m

above we only have to show that any such map is GL(m;R) equivariant,

too. Using the standard polarization technique we can express the map D by

means of a GL

+

(m;R) invariant tensor. But looking at the proof of the invariant

tensor theorem (c.f. [Gurevich, 48] and [Kol�a�r{Michor{Slov�ak, Theorem 24.4]) one

concludes that the spaces ofGL

+

(m;R) invariant and ofGL(m;R) invariant tensors

coincide, so the map D is GL(m;R) equivariant. �

4. Generalizations

4.1. Categories over manifolds. In geometry we often meet operations de-

pending on some further structures of the underlying manifolds like a �bration, a
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symplectic structure, etc. The original theory of natural bundles and operators has

been modi�ed for these more general situations using the concept of a category over

manifolds, i.e. a category C endowed with a forgetful functor into Mf , see [Kol�a�r,

90] and [Kol�a�r{Michor{Slov�ak, Chapter V]. In this case, the ow operator is de-

�ned on the so called C-�elds, the �elds whose ows consist of local C-morphisms.

The concept of Lie di�erentiation of sections of the values of these more general

bundle functors on C with respect to C-�elds is de�ned in the same way as above.

The jet groups then consist of jets of local C-morphisms and their Lie algebras are

formed by jets of C-�elds. Analyzing the above proofs, we get results analogous

to theorems 2.2 and 2.3, e.g. for categories of manifolds with �xed volume form

and volume preserving local di�eomorphisms, symplectic manifolds and symplectic

local di�eomorphisms, �bered manifolds with �xed dimensions of bases and �bers

and local �bered isomorphisms.

4.2. Gauge-naturality. Another geometric situation was reected in D. Eck's

de�nition of gauge-natural bundles, see [Eck, 81].

Let us �x a Lie group G and write PB

m

(G) for the category whose objects are

principal G-bundles over m{dimensional manifolds and whose morphisms are the

morphisms of principal G-bundles f : P !

�

P with the base map Bf : BP ! B

�

P

lying in Mf

m

.

A gauge natural bundle is a functor F : PB

m

(G)! FM such that:

(i) every PB

m

(G)-object � : P ! BP is transformed into a �bered manifold

q

P

: FP ! BP over BP ,

(ii) every PB

m

(G)-morphism f : P !

�

P is transformed into an FM-morphism

Ff : FP ! F

�

P over Bf ,

(iii) for every open subset U � BP , the inclusion i : �

�1

(U )! P is transformed

into the inclusion Fi : q

�1

P

(U )! FP .

Let F and E be two gauge-natural bundles on PB

m

(G). A gauge-natural oper-

ator D : F ! E is a system of regular operators D

P

: C

1

(FP )! C

1

(EP ) for all

PB

m

(G)-objects � : P ! BP such that

(a) D

�

P

(Ff � s � Bf

�1

) = Ff �D

P

s � Bf

�1

for every s 2 C

1

(FP ) and every

PB

m

(G)-isomorphism f : P !

�

P ,

(b) D

�

�1

(U)

(sjU ) = (D

P

s)jU for every s 2 C

1

(FP ) and every open subset

U � BP .

Note that for the trivial structure group we recover the concepts of natural

bundles and operators.

We de�ne PB

+

m

(G) as the category of principal G{bundles over oriented m{

dimensional manifolds and morphisms over orientation preserving local di�eomor-

phisms.

4.3. If two PB

m

(G)-morphisms f , g : P !

�

P satisfy j

r

y

f = j

r

y

g at a point y 2 P

x

of the �ber of P over x 2 BP , then the fact that the right translations of principal

bundles are di�eomorphisms implies j

r

z

f = j

r

z

g for every z 2 P

x

. In this case we

write j

r

x

f = j

r

x

g and say that f and g have the same �ber r{jet at x, cf. [Kol�a�r, 84].

The set of �ber r-jets between P and

�

P is denoted by J

r

(P;

�

P ).

A gauge natural bundle F is said to be of order r, if j

r

x

f = j

r

x

g implies Ff jF

x

P =
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FgjF

x

P . Every gauge natural bundle is of �nite order (c.f. [Eck, 81] and [Kol�a�r{

Michor{Slov�ak, Theorem 51.7]).

In the theory of gauge-natural bundles the role of the jet groups is played by

the so called principal prolongations W

r

m

G of the Lie group G. We de�ne W

r

m

G

as the set of invertible �ber jets in J

r

0

(R

m

� G;R

m

�G)

0

. The group W

r

m

G is the

semidirect product G

r

m

sT

r

m

G, cf. [Kol�a�r, 71]. If G is connected, then the theory

of gauge natural bundles and operators on the category PB

+

m

(G) is obtained by

replacing the group W

r

m

G by its connected component of the unit G

r

m

+

sT

r

m

G.

The Lie algebra W

r

m

g of W

r

m

G consists of the �ber jets of right invariant vector

�elds, and repeating the description of the Lie algebra g

r

m

with jets replaced by

�ber jets, we immediately get the formulas for the bracket and the exponential

mapping:

[j

k

0

X; j

k

0

Y ] = �j

k

0

[X;Y ](5)

exp(j

k

0

X) = j

k

0

Fl

X

1

:(6)

4.4. In�nitesimally gauge-natural operators. For a right invariant vector

�eld X 2 X (P ) the de�nition of the Lie derivative

~

L

X

s of a section s of a gauge

natural bundle is similar to the one given in 1.5:

~

L

X

s :=

~

L

(

�

X;FX)

s, where

�

X is the

vector �eld on the base manifold corresponding to X and F is the obvious analog

of the ow operator. Thus we have:

(7)

~

L

X

((Fl

X

t

)

�

s) =

~

L

X

(F (Fl

X

�t

) � s � Fl

�

X

t

) =

@

@t

(F (Fl

X

�t

) � s � Fl

�

X

t

) =

= T (F (Fl

X

�t

)) �

~

L

X

s � Fl

�

X

t

= (Fl

X

t

)

�

(

~

L

X

s)

Consider two gauge natural bundles F and E, and a principal �ber bundle P

with structure group G.

A local regular operator D : C

1

(FP )! C

1

(EP ) is called in�nitesimally gauge-

natural if we have

~

L

X

(Ds) = V D(

~

L

X

s) for all right invariant vector �elds X 2

X (P ) and for all sections s 2 C

1

(FM ).

Using formulas (5), (6) and (7) instead of (1), (2) and (3), we can repeat the

procedure leading to theorems 2.2 and 2.3 with some obvious modi�cations to get:

4.5. Theorem. Every gauge natural operator D : F ! E between two gauge-

natural bundles on PB

m

(G) consists of in�nitesimally gauge-natural operators D

M

.

4.6. Theorem. Let F and E be two gauge natural bundles on PB

+

m

(G) where G

is connected, and let P be an object of PB

+

m

(G). IfD

P

: C

1

(FP )! C

1

(EP ) is an

in�nitesimally gauge-natural operator then D

P

extends to a unique gauge-natural

operator D : F ! E on PB

+

m

(G).
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