INFINITESIMALLY NATURAL OPERATORS ARE NATURAL
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ABSTRACT. It is well known that linear geometric operations (like the exterior dif-
ferential) commute with the Lie derivative. A detailed analysis of both the concepts
of geometric operations and of Lie differentiation leads to the proof of a converse
implication even in the nonlinear case. So naturality is equivalent to commuting
with Lie differentiation. We also generalize this result to the case of gauge natural
operators.

1. PRELIMINARIES

1.1. Natural bundles. The notion of a (local) geometric operation has got an
explicit and well defined meaning in the concept of the so called natural operators
between natural bundles, cf. [Nijenhuis, 72], [Kola¥, 90].

Let us write M f for the category of manifolds and smooth mappings, M f,, for
the category of m-dimensional manifolds and local diffeomorphisms (i.e. globally
defined maps of maximal rank at each point) and M f; for the category of oriented
m~-dimensional manifolds and orientation preserving local diffeomorphisms. Fur-
ther let F M denote the category of fibered manifolds and fibered morphisms and
B: FM — Mf be the base functor.

A bundle functor (natural bundle) F' on Mfy, is a functor F: Mf,, - FM
such that

(1) Bo F =idpmy,,
(ii) for every inclusion iy : U — M of an open submanifold, FU is the restriction
phl(U) of the value FM = (pyr: FM — M) to U and Fiy is the inclusion
i (U) = FM.
A natural bundle F is said to be of order r if for every # € M and every local
diffeomorphism f: M — M’ the restriction of F f to the fiber F,, M over x depends
only on the jet jI f. Every natural bundle is of finite order, see [Palais, Terng, 77]
and [Koldi-Michor-Slovak, Theorem 22.1].

1.2. Natural operators. Let N — M and N’ — M be fibered manifolds. A
mapping D: C®(N) = C*(N') is called a local regular operator if for each point
z € M and every section s € C°°(N), Ds(x) depends only on the germ of s at # and
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smoothly parameterized families of sections are mapped to smoothly parameterized
families.

Let F', G: Mf,, — FM be bundle functors. A natural operator D: F — G is a
system Dpr, M € ObM f,,, of local regular operators such that for each section s
and each diffeomorphisms f : M — N we have Gfo Dyso f~t = Dy(Ffosof™1),
and for each open submanifold U < M we have (Dars)|v = Dy (s|u).

A natural operator D is said to be of order r < oo if the values of all operators
Dy depend on r-jets only.

1.3. The jet groups. The Lie group GX = invJ§(R™ R™)y, 1 < k < oo, with
multiplication defined by composition of jets is called the k-th jet group in dimension
m. The Lie algebra g¥ of the Lie group G%, is the vector space {j5X ; X €
X (R™), X(0) =0} of k—jets of vector fields on R™ at 0 with the bracket

(1) s X, 35Y] = —js[X,Y)
and exponential mapping
(2) exp( X) = js FIY,  j5X € gy,

where FI* denotes the flow of the vector field X (see [Terng, 78]). The direct limit
of the groups G, is the infinite jet group G2 := invJ§® (R™, R™)q.

The first order jet group G, is identified with GL(m,R) and G, is the semidirect
product G @B}, where Bf is the kernel of the jet projection 7§ : G — G},.

If I is a natural bundle of order r, then there is the induced action of G}, on
the so called standard fiber S = FyR™ of the natural bundle F. The k-th jet
prolongation J* o F' is a natural bundle of order k +r with standard fiber J&(FR™)
identified with 7% S = J5(R™ S).

Consider two r-th order natural bundles F' and G. A k-th order natural operator
D: F — G is completely determined by the so called associated map D: TS — @,
where @ := GoR™ and D(j§s) := Dgns(0) for all s € C*°(FR™). By naturality
D commutes with the induced actions of GEF" on the standard fibers, i.e. D is
GR+7_equivariant.

On the other hand, every G’t*-equivariant map f: TXS — @ gives rise to a
unique natural operator F' — G with associated map f.

The definitions and the theory of natural bundles and operators apply to the
category M ff without any essential change. We only have to replace the jet
groups G”. by their connected components of the units G *.

1.4. The flow operator. For every bundle functor F' on M f,, and every vector
field X on an m-dimensional manifold M we can apply F to the flow of X (cf. the
locality condition for bundle functors). In this way, we obtain a flow of a vector
field FX on the manifold F M. This construction defines the so called flow operator
F which is an example of a more general concept of natural operators which extend

the bases, cf. [Kolaf, 90].

1.5. The Lie derivative. For every smooth map f: M — N and vector fields
X € X(M),Y € X(N) we define the generalized Lie derivative Lix yyf: M — TN
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by EN(ny) =TfoX —Y of,cf [Trautmann, 72] and [KolaF, 82]. One computes
directly }
Lxvyf = %|0 (FIY, o f o FIY).

If N - M is a fibered manifold, s € C*°(N) is a section and Y is a projectable
vector field over X, then E(ny)s is a section of the vertical bundle VN — M. In
particular, if F'is a bundle functor then for every section s € C*°(F M) and every
vector field X € X (M) we define the Lie derivative Lxs = L:N(XV}-X)S, where F is
the flow operator. So

Lxs= %|0 (F(Fl)_(t) 0so Flf()
More generally a short computation shows:

Lx((FIX)*s) = Lx (F(FI2,) o so FIY) = Z(F(FIX,) o s o FI) =

3 - -
®) = T(F(F12,)) o Lxs o FI} = (FI')* (Lxs)
For every natural bundle F the Lie derivative is a natural operator £: T'x F' — V F
defined on the sections of the fibered products TM x3r FM — M.

If F is a natural vector bundle, then V F' is naturally equivalent to ' & F and
the second component of our Lie derivative is just the classical Lie derivative L.

1.6. Consider r-th order natural bundles F' and G with standard fibers S and Q.
Since there are the induced actions of the jet group G7+* on T S and @, we have
the fundamental field mappings (%) : g7tk — X(TES) and (9 : gif* — X(Q).

Lemma. For all jg"'kX € git* and jks € TF .S we have

(b (769) = w8 (£-x5))

where &k is the map induced by the canonical natural equivalence J"V — V J".

Proof. Writing A for the action of the jet group on T S we have:

k . . . )
C](.glkX(JSS) = 2|, Mexptit T X)(j5s) = 2|, 36 (F(FIF) o s 0 FIX,) =

= k(o (5, (F(FIX) 0 s 0 FIX,)) = k(jg (L-x5)). O

1.7. Peetre theorem. Given two natural vector bundles F' and ¢ and a linear
mapping Dyr: C®°(FM) — C®(GM) we can compare the maps Lx o Dy and
Dy o Lx for each vector field X on M. By the classical Peetre theorem, if Dy is a
local regular operator and M is compact, then Dy is of finite order. Consequently,
if Dps comes from a natural operator D, then one easily shows that Lx o Dy =
Dy o Lx even for non compact M.

For the nonlinear case we need a generalization of the Peetre theorem due to
[Slovak, 88]. The general result is rather technical and so we formulate a special
case which we shall need.
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Proposition. Let N — M and N' — M be fibered manifolds and let D: C®(N) —
C*®(N') be a regular local operator. Then for every fixed section s € C*°(N) and
for every compact set K C M, there is an order r € N and a neighborhood V of s
in the compact open C'*°-topology such that for every x € K and sy, s» € V the
condition jhs) = jhso implies Dsy(x) = Dsa(z).

1.8. The vertical prolongation. For two fibered manifolds N — M and N’ —
M and for a local regular operator D: C®°(N) — C*®°(N’) we define the vertical
prolongation VD: C*(VN = M) — C®(VN' — M) of D as follows: Every
section ¢ € C*°(VN — M) is of the form %|0 s¢ for a family s, € C*°(N) and we
set

VD(q) = VD(Z|,s:) = Z|, (Dse) € CX(VN' = M).

s; and

We have to verify that this is a correct definition. So let us fix ¢ = %|0

reM.

By 1.7 the operator D is of order < oo and thus is induced by a map D :
J®N — N’. Moreover each infinite jet has a neighborhood in the inverse limit
topology on J* N on which D only depends on r—jets for some finite . Thus there
is neighborhood U of # in M and a locally defined smooth map D" J'N = N’
such that Ds;(y) = Dr (jyst) for y € U and for ¢ sufficiently small. So we get

(VD)) = 5l (D" (igse) = TD" (o dzse) = (TD7 0 &) (jzq)
and thus the definition does not depend on the choice of the family s;.

2. INFINITESIMALLY NATURAL OPERATORS

2.1. Definition. A local regular operator D: C®°(FM) — C*(GM) is called
infinitesimally natural if Lx(Ds) = VD(Lxs) for all X € X(M) and all s €
Co(FM).

2.2. Theorem. Every natural operator D : F — (G between two bundle functors
on M [} consists of infinitesimally natural operators Dyy.

Proof.
(VDy)(Exs) = (VDur) (&, (FFIE) 050 FIY)) =
%|0 Dy (F(Flj_(t) oso Flf()
%|0 (G(Flj_(t) oDyrso Flf() = EX(DMs) O

Since every natural operator D between bundle functors defined on Mf,, is
uniquely determined by Dg= the corresponding theorem for the category Mf,, is
a trivial consequence.

2.3. Theorem. Let F and G be two bundle functors on MfL, M be an m-
dimensional manifold and let Dyr: C*(FM) — C*®(GM) be an infinitesimally
natural operator. Then Dy; extends to a unique natural operator D: F — (.

The proof will require several steps. Let us fix an infinitesimally natural operator
D: FR™ — GR™ and let us write S and ) for the standard fibers FyR™ and GoR™.
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As it was noticed in 1.1 we may assume that both natural bundles 7' and G are of
some finite order, say k. Thus we have actions of G7t* on 7" S and, via the jet
projections, also on @ for all r. Since each local operator is locally of finite order
by 1.7, there is the induced map D: T2°S — Q). Moreover, at each j3°s € T,2°S
the application of 1.7 (with K = {0}) yields a smallest possible order r = x(j§5°s)
such that for every section ¢ with jiq = jis we have Ds(0) = Dq(0). Let us define
vV, C TS as the subset of all jets with x(j5°s) < r. Let V. be the interior of v,
in the inverse limit topology and put U, := 7 (V,.) C T, S.

By virtue of the nonlinear Peetre theorem 7,°°5 = U, V, and so the sets V, form
an open filtration of 7.5°S. On each V., the map D factors to a map D, : U, — Q.

—Q
T~
| N ~

1 D1 \\D\2 \\\DC”
| ~

Uy Us Us

I
Vl (‘/}/VS(

L7108

2.4. Lemma. For allr € N and X € g/F* we have T'D" o C;“) = C}? oD" on U,.

Proof. Recall from 1.8 that (V D)q(0) = (TD" o )(j5q) for all jiq € x=1(TU,).
Using 1.6 and the infinitesimal naturality of D we compute (identifying X with a
polynomial vector field on R™):

(D, o () (ihs) = TP, (k(§5(£-x5))) = VD(L_xs)(0) =
= L_x(Ds)(0) = ¢Z(Ds(0)) = CE(D, (j3s)). O

2.5. Lemma. The map D: TXS — Q is G2t -equivariant.

Proof. Given a = ji°f € G2t and y = ji°s € T°.S we have to show D(a - y) =
a-D(y). Each a is a composition of a jet of a linear map and of a jet from the
kernel Bf® of the jet projection m{° : Go°F — GLY(m,R). If f is linear, then
there are linear maps ¢;, ¢ = 1,2, ...,1, lying in the image of the exponential map
of G}n such that f = g1 0...0g¢;. Since T>’S = U, V, there must be an » € N
such that y and all elements (jg%¢gp © ... 0 j5%¢) - y are in V. for all p <. Thus
Dia-y) = Dr(GLf - dbs) = jof - Dr(hs) = a-D(y), since from 2.4 and the fact
that the flows of f-related vector fields are f-related one easily concludes that
D" commutes with the actions of elements of (G], which are in the image of the
exponential map.

Since the kernel BY is nilpotent it lies in the image of the exponential map for
each r < oo and thus an analogous consideration for ji°f € B{® concludes the
proof of the lemma. O
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2.6. Lemma. The natural operator D on M ff which is determined by the G2 -
equivariant map D coincides on R™ with the operator D.

Proof. 'There is the associated map D: J®FR™ — GR™ to the operator D .
Let us write Dy for its restriction (J®F)gR™ — GoR™ to the standard fibers
and similarly for the map D corresponding to the original operator D. Now let
ty : R™ — R™ be the translation by #. Then the map D (and thus the operator
D) is uniquely determined by Dy and the fact that by naturality of D we have
(t_y)* 0o Dgmo (tz)* = Dgm, since then
Dan(s)(@) = (G(ts) o Glt-2) o Din(s) o L)(0) =
G(te)((ta)" (Drm($))(0)) = G(te) (Drn((t:)*5)(0)) =
= G(t)(Po(jo" (t)"s))

But ¢, is the flow at time 1 of the constant vector field # and for any complete
vector field X we compute using (3) and infinitesimal naturality:

5 ((FI2,)* (D(F1})*s)) =
= —(FI12)"Lx (D(FIF)"s) + (FIX,)" (VD) ((FIF)* £xs)) =
= (FIZ)" (=Lx (D(FI)*s) + (VD)(Lx ((FIF)"s))) = 0.
Thus (t_z)* o Do (t;)* = D and since Dy = Do this concludes the proof. O

Lemmas 2.5 and 2.6 imply the assertion of Theorem 2.3. Indeed, if M = R™ we
get the result immediately and it follows for general M by locality of the operators
in question.

2.7. Remarks. In general the situation changes if we consider the naturality over
the whole category M f,,. For example, the vector product is a natural operator
on /\/lf;' which transforms Riemannian metrics into sections of the values of T'®
T* @ T*. Clearly the vector product is not natural on M fs.

Our general result covers an earlier result on natural transformations between
natural bundles deduced in [Krupka, Janyska, 90]. The latter authors also discuss
how to test whether a natural operator on M f is natural on M f,,. The obvious
necessary and sufficient condition is that the associated G t-equivariant map also
commutes with the action of one element from the other connected component of

( 100
m *
3. THE MULTILINEAR CASE

As we already remarked for a natural vector bundle F' the vertical bundle V' F'
i1s naturally equivalent to F' @ F and the second component of our general Lie
derivative is just the usual Lie derivative. Thus if D: C®°(FM) — C®(GM) is
linear we get the usual condition D o Lx = Lx o D for infinitesimal naturality.

More generally, if F' is a sum of & natural vector bundles, (G is a natural vector
bundle and D is k-linear, then we have:

(prao VD)(Lx (s1,...,s6)) = 2|, D(F(FIX,) 0 (s1,...,s5) o FI¥) =

k
:ZD(51,~~~,£X5i,~~~,5k)~
i=1
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Hence for the k-linear operators theorem 2.2 implies

3.1. Corollary. Let Ey,..., Ey and I be vector bundle functors on M f}. Every
natural k-linear operator D : Ey & --- @ B, — I satisfies

(4) Lx(Dar(si, - 58) = S0 Dar(s1, - Lx8is- .o %)

for all sy € C®°(E1M),... 55, € C®°(EyM) and all X € X (M).

Formula (4) covers many well known formulas for Lie derivatives of values of
geometric operations. Let us mention e.g. the commutation with the exterior dif-
ferential or the Jacobi identity for the Lie bracket.

3.2. For an important class of vector bundle functors we can prove a stronger ver-
sion of theorem 2.3:

Let Ey, ..., Ex be r—th order natural vector bundles corresponding to actions A; of
the jet group G, on standard fibers 5;, and assume that with the restricted ac-
tions \; |G}, the spaces S; are invariant subspaces in spaces of the form &; (@ R™®
®@%IR™*). In particular this applies to all natural vector bundles which are subbun-
dles in tensor bundles. Given any natural vector bundle ' we have

Theorem. Every local regular k-linear operator
Dy: C(ELM)® - C(Ex M) — C*(F M),

over an m—dimensional manifold M which satisfies (4) extends uniquely to a natural
operator D on M f,, with Dyr = Dyy.

The theorem follows from the theorem 2.3 and the next lemma

Lemma. Every k-linear natural operator D : Ey @ ---@® Ej, — F on Mf} extends
to a natural operator on M f,.

Proof. By the multilinear version of the Peetre theorem (c.f. 1.7 and [Slovék, 88]) D
is of some finite order ¢. Thus D is determined by the associated k-linear (G7F)*t-
equivariant map D: 7551 x ... x T S, — Q (cf. 1.3). Recall that the jet group
G+t s the semidirect product of GL(m,R) and the kernel B{H, while (G 6+
is the semidirect product of the connected component GL*(m,R) of the unit and
the same kernel B{H. Thus in particular the map D: TS) x ... x TS, —
Q is k-linear and GL*(m,R) equivariant. By the descriptions of (G7+4)* and
G+t above we only have to show that any such map is GL(m,R) equivariant,
too. Using the standard polarization technique we can express the map D by
means of a GL1(m,R) invariant tensor. But looking at the proof of the invariant
tensor theorem (c.f. [Gurevich, 48] and [Koldf-Michor—Slovék, Theorem 24.4]) one
concludes that the spaces of G L (m,R) invariant and of G L(m,R) invariant tensors
coincide, so the map D is GL(m,R) equivariant. O

4. (GENERALIZATIONS

4.1. Categories over manifolds. In geometry we often meet operations de-
pending on some further structures of the underlying manifolds like a fibration, a
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symplectic structure, etc. The original theory of natural bundles and operators has
been modified for these more general situations using the concept of a category over
manifolds, i.e. a category C endowed with a forgetful functor into M f, see [Kolaf,
90] and [Koldaf—Michor-Slovik, Chapter V]. In this case, the flow operator is de-
fined on the so called C-fields, the fields whose flows consist of local C-morphisms.
The concept of Lie differentiation of sections of the values of these more general
bundle functors on C with respect to C-fields is defined in the same way as above.
The jet groups then consist of jets of local C-morphisms and their Lie algebras are
formed by jets of C-fields. Analyzing the above proofs, we get results analogous
to theorems 2.2 and 2.3, e.g. for categories of manifolds with fixed volume form
and volume preserving local diffeomorphisms, symplectic manifolds and symplectic
local diffeomorphisms, fibered manifolds with fixed dimensions of bases and fibers
and local fibered isomorphisms.

4.2. Gauge-naturality. Another geometric situation was reflected in D. Eck’s
definition of gauge-natural bundles, see [Eck, 81].

Let us fix a Lie group G and write PB,, (G) for the category whose objects are
principal G-bundles over m—dimensional manifolds and whose morphisms are the
morphisms of principal G-bundles f: P — P with the base map Bf: BP — BP
lying in M f,,.

A gauge natural bundle is a functor F': PB,,(G) — FM such that:

(i) every PBp(G)-object m: P — BP is transformed into a fibered manifold
gp: FP — BP over BP,
(ii) every PB,,(G)-morphism f: P — P is transformed into an F AM-morphism
Ff: FP — FP over Bf,
(iii) for every open subset U C BP, the inclusion i: #=}(U) — P is transformed
into the inclusion Fi: ql_gl(U) — FP.

Let F' and E be two gauge-natural bundles on PB,,,(G). A gauge-natural oper-
ator D: F — F is a system of regular operators Dp: C®°(FP) — C*(EP) for all
PB,,(G)-objects m: P — BP such that

(a) Dp(FfosoBf™\ )= FfoDpso Bf~! for every s € C*(F P) and every
P B, (G)-isomorphism f: P — P,

(b) De-1qn(s|U) = (Dps)|U for every s € C°(FP) and every open subset
U C BP.

Note that for the trivial structure group we recover the concepts of natural
bundles and operators.

We define PB;;(G) as the category of principal G-bundles over oriented m—
dimensional manifolds and morphisms over orientation preserving local diffeomor-
phisms.

4.3. If two PB,, (G)-morphisms f, g: P — P satisfy Jyf = jyg at a point y € Py
of the fiber of P over & € BP, then the fact that the right translations of principal
bundles are diffeomorphisms implies j7 f = jlg for every z € P;. In this case we
write Jo f = jhg and say that f and g have the same fiber r—jet at «, cf. [KolaF, 84].
The set of fiber r-jets between P and P is denoted by J"(P, P).

A gauge natural bundle F' is said to be of order r, if j% f = j-g implies F f|F, P =
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Fyg|FyP. Every gauge natural bundle is of finite order (c.f. [Eck, 81] and [Kolai-
Michor-Slovak, Theorem 51.7]).

In the theory of gauge-natural bundles the role of the jet groups is played by
the so called principal prolongations W) G of the Lie group G. We define W G
as the set of invertible fiber jets in JG(R™ x G,R™ x ()g. The group W/} G is the
semidirect product GI &7, G, cf. [Kold¥, 71]. If G is connected, then the theory
of gauge natural bundles and operators on the category PB; (G) is obtained by
replacing the group W G by its connected component of the unit G7, T®T" G.

The Lie algebra W}, g of W G consists of the fiber jets of right invariant vector
fields, and repeating the description of the Lie algebra g;, with jets replaced by
fiber jets, we immediately get the formulas for the bracket and the exponential

mapping:

(5) [i5-X,36Y] = —j§[X, Y]
(6) exp(j X) = jg FIY .

4.4. Infinitesimally gauge-natural operators. For a right invariant vector
field X € X (P) the definition of the Lie derivative Lxs of a section s of a gauge
natural bundle is similar to the one given in 1.5: Lxs := L:N(XJ_-X)S, where X is the
vector field on the base manifold corresponding to X and F is the obvious analog
of the flow operator. Thus we have:

(1) Lx((F1X)*s) = Lx (F(F1X,) 050 FIX) = Z(F(FI%,) 05 0 FIX) =
= T(F(FIX,)) o Lxs 0 FIX = (FIX)*(Lxs)

Consider two gauge natural bundles /' and F, and a principal fiber bundle P
with structure group G.

A local regular operator D: C®(FP) — C*(EP) is called infinitesimally gauge-
natural if we have L:NX(DS) = VD([:XS) for all right invariant vector fields X €
X (P) and for all sections s € C°(FM).

Using formulas (5), (6) and (7) instead of (1), (2) and (3), we can repeat the

procedure leading to theorems 2.2 and 2.3 with some obvious modifications to get:

4.5. Theorem. Every gauge natural operator D: F' — FE between two gauge-
natural bundles on PB,, () consists of infinitesimally gauge-natural operators Djy.

4.6. Theorem. Let F' and E be two gauge natural bundles on PB} (G) where G
is connected, and let P be an object of PBY.(G). If Dp: C*®(FP) — C*®(FEP) is an

infinitesimally gauge-natural operator then Dp extends to a unique gauge-natural
operator D: F' — E on PB} (G).
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