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Abstract. In this note, we discuss the problem of the classi�cation of all linear local

operators naturally de�ned on all conformal manifolds with �xed dimension m > 2. In

particular, we present a general de�nition of the natural operators, we analyze the possible

orders of the operators and we try to present a concise summary of some results, both

in the real and complex settings, including also a full discussion on the so called singular

cases. We omit a detailed treatment of the curved conformal manifolds where no complete

classi�cation has been obtained yet, and we focus on the special case of conformally at

manifolds. The results are heavily based on well known facts from the representation

theory of parabolic subalgebras in the Lie algebras of the orthogonal groups, but we try

to make our exposition as elementary as possible.

1. Natural operators

Our approach follows the general de�nition of bundle functors and natural operators

on `geometric categories' as developed in the monograph [Kol�a�r, Michor, Slov�ak, 92].

The general theory can be applied directly to bundles corresponding to representations

of the orthogonal groups (with conformal weights), but we extend it to the spin bundles

as well. There are several other approaches available in the literature, some authors list

directly the objects of their interest, some other ones present de�nitions which apply

to the conformally at manifolds and provide us with concrete constructions for the

general case, some of them deal with the complex manifolds, another ones work in the

real setting, cf. [Baston, 90], [Baston, Eastwood, 90], [Branson, 85], [Jakobsen, 86]. The

advantage of our approach is that we get a precise de�nition for the whole category

which even �ts a more general framework. We believe that this setting, supported by

some general ideas from [Kol�a�r, Michor, Slov�ak, 92], will also lead to some progress

in the classi�cation of the operators on the curved conformal manifolds. Moreover, it

follows that all the above mentioned approaches are equivalent.

In the sequel we shall deal with Riemannian manifolds with an arbitrary �xed signa-

ture (m;n). All mappings are smooth.

On each Riemannian manifold M , there is the canonical orthogonal frame bundle

P

O(m;n)

M , the reduction of the linear frame bundle P

1

M to the (pseudo) orthogonal

group. This means, there is a natural principal bundle P

O(m;n)

on Riemannianmanifolds

with signature (m;n). Each representation � : O(m;n) ! Di�(V ) gives rise to a natural
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bundle F

�

on the category of Riemannian manifolds with locally invertible isometries

de�ned by the construction of the associated bundles.

The same construction works for every category C over m-dimensional manifolds

with a distinguished natural principal bundle P : C ! PB

m

(G) (i.e. the values of P

are in the category of principal �ber bundles with m-dimensional bases and structure

group G). The natural operators are de�ned as the local operators acting on sections of

natural bundles which intertwine the actions of the C-morphisms on the sections. The

Lie derivative of sections of natural bundles is de�ned for all vector �elds with ows

formed by C-morphisms, the so called C-�elds, but the values are in the vertical bundles.

If the bundles themselves are vector bundles, we recover the usual Lie derivative and

it is easy to see that the linear natural operators commute with the Lie derivative and

vice versa. For the proofs see [Kol�a�r, Michor, Slov�ak, 92] or [Cap, Slov�ak, 92] where the

result is proved in the non-linear setting. Each natural bundle F admits the so called

ow operator F , a natural operator which transforms C-�elds on M into vector �elds

on FM . The ow of its value FX is de�ned by the application of the functor F to the

ow of the C-�eld X. If P : C ! PB

m

(G) is a natural principal bundle, then PX is

right invariant for all C-�elds X.

The next lemma is well known. Let us consider a linear representation � of a Lie

group G in a vector space V and the associated bundle F

�

M to the principal bundle

p : PM !M . Let us write fu; vg for the class in F

�

M determined by (u; v) 2 PM �V .

The Lie derivative of the V -valued functions on PM is de�ned as usual.

1.1. Lemma. Let � : G ! GL(V ) be a representation. Then the set of all smooth

section C

1

(F

�

M) is identi�ed with the set of G-equivariant mappings in C

1

(PM;V )

G

,

s 7! ~s, s(p(u)) = fu; ~s(u)g, and for all C-�elds X 2 X (M) and sections s 2 C

1

(F

�

M),

the Lie derivative L

X

s corresponds to L

PX

~s.

Proof. We have only to write down explicitely the de�nition of the Lie derivative and

to compare it with the identi�cation from the lemma. �

1.2. In view of the above discussion, we can de�ne the natural linear operators D as

those systems of operators for which D

M

(L

PX

~s) = L

PX

(D

M

~s) for all sections and

C-�elds. We get exactly the linear natural operators acting on the natural bundles on

categories over manifolds (de�ned separately for each manifold), but with this formu-

lation we are able to involve also some covering fenomena. Let us consider P and G

as in 1.1, a covering

�

G of G and two representations �

1

, �

2

of

�

G in V and W . Then

some of the natural bundles PM can be covered by principal

�

G-bundles

�

PM . Let us

consider the manifolds M together with such coverings

�

PM as distinguished objects.

Now, each

�

PM yields the bundles F

�

i

M and each C-�eld X determines a unique right

invariant lift, denoted by the same symbol PX, on

�

PM . Hence in this setting we can

de�ne natural operators between bundles corresponding to representations of the �nite

dimensional coverings of G. Of course, such operators need not to be de�ned on all

C-objectsM , they are well de�ned only on those ones where the coverings

�

PM do exist.

De�nition. Let �

1

:

�

G! GL(V ), �

2

:

�

G! GL(W ) be �nite dimensional linear repre-

sentations. A local operator D : C

1

(F

�

1

M) ! C

1

(F

�

2

M) is called natural if and only

if D(L

PX

~s) = L

PX

(D~s) for all C-�elds X on M .

1.3. The conformal case. In particular, on conformal Riemannian manifolds with

the signature (m;n) there is the natural principal bundle whose values are reductions of

the second frame bundles P

2

M to a structure group B � O(m+1; n+1). The structure
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group is the �rst prolongation of the conformal linear group CO(m;n) (also called the

Poincar�e conformal group), see [Kobayashi, 72], [Baston, 90]. Thus, each representation

of B (or of the subgroup CO(m;n) trivially extended to B) yields a natural bundle

on conformal manifolds. The linear representations of the double covering of CO(m;n)

give rise to vector bundles on the so called spin manifolds. Our aim is to describe the

linear natural operators which act between bundles corresponding to the irreducible

representations.

For technical reasons, we shall consider only the connected component of the unit

CO

0

(m;n) � CO(m;n). In the de�nite case this means that we shall deal with oriented

manifolds, while for the general signature (m;n) there are four connected components in

CO(m;n). Each representation of CO

0

(m;n) = SO

0

(m;n)�R consists of an irreducible

representation of SO

0

(m;n) and an element from the dual of the center �a 2 R

�

. The

real number a is called the conformal weight of the representation. Similarly, the irre-

ducible representations of the double covering correspond to irreducible representations

of Spin

0

(m;n) with conformal weights. The sign convention of the conformal weights

follows the generally adopted requirement that the Riemannian metrics themselves have

weight two. Then the sections of the bundles corresponding to the above mentioned

representations can be identi�ed by means of a �xed metric from the conformal class

with sections of the bundles on the underlying Riemannian manifolds, which `rescale'

by multiplication by the function f

a

if we replace the �xed metric g by f

2

g.

Unfortunately, the linear representations of the whole Poincar�e conformal group B

need not to be completely reducible, so that we do not cover implicitly all natural vector

bundles on conformal manifolds when dealing with the irreducible representations. On

the other hand, we may consider only the irreducible representations of CO

0

(m;n) since

every irreducible representation of B is a trivial extension of an irreducible representa-

tion of CO

0

(m;n).

1.4. Remark. If f : M ! M is an isometry with respect to an arbitrary metric from

the conformal class on M , then f is a conformal mapping with respect to all other ones

from the class (this is easily seen from the de�nition of the conformal morphisms as

morphisms of CO

0

(m;n)-structures on M). Thus, our natural operators intertwine the

actions of the isometries. This means that they must be natural also in the category

of Riemannian manifolds (and we may add some homogeneity requirement connected

with the conformal weights of the bundles). But the Riemannian case is very well

understood and all such operators are expressed by universal formulas through the co-

variant derivatives of the sections, the curvature, its covariant derivatives and algebraic

O(m;n)-invariant tensor operations, see e.g. [Slov�ak, 92a,b] or [Kol�a�r, Michor, Slov�ak,

92]. Let us underline, that only the locality and naturality requirements are involved in

the cited proofs. In particular, the natural operators on conformal manifolds as de�ned

in 1.2 can be expressed by such universal formulas which cannot depend on our choice

of the metric within the conformal class. So we see that our de�nition is equivalent to

the alternative de�nition of `invariant operators' which is used by several authors, see

e.g. [Branson, 85, 89a, 89b]. In [Eastwood, Rice, 87] and [Baston, 90], the authors use

an equivalent de�nition for the subcategory of the conformally at manifolds and they

discuss possible (highly non-trivial) constructions of natural operators in the general

curved case, without specifying explicitely the de�nition.

1.5. The main idea how to describe all linear natural operators acting between the

above mentioned bundles is rather simple. Each linear local operator has (locally)
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a �nite order and so it factors (locally) through a mapping D : J

k

(F

�

1

M) ! F

�

2

M

de�ned on the k-jets of sections. If we �x a point and switch to the dual mapping, we

get a linear mapping (F

�

2

M)

�

x

! J

k

x

(F

�

1

M)

�

. Now, the domain is identi�ed with the

representation spaceW and, since the representations are irreducible, the latter mapping

must be either zero or an inclusion. Since each �nite dimensional representation of

CO

0

(m;n) is determined by the weight of a highest weight vector in W and the action

of the kernel of the jet projection B ! CO(m;n) acts trivially on W , we have only to

�nd highest weight vectors in J

k

x

(F

�

1

M)

�

with the trivial action of the kernel, the so

called singular highest weight vectors. Indeed, each such vector generates an irreducible

CO

0

(m;n)-subspace and hence an intertwining mapping (F

�

2

M)

�

x

! J

k

x

(F

�

1

M)

�

.

Fortunately, the (complexi�ed) inverse limits of the �nite dimensional duals, i.e. the

spaces J

1

x

(F

�

M)

�

, are well known in the representation theory under the name general-

ized Verma modules and there is a very well developed theory of their homomorphisms.

We shall explain this identi�cation in 2.4.

This solves our problem on the level of individual �bers and so for subcategories

homogeneous in the geometric sense, e.g. for the conformally at Riemannian manifolds.

(By homogeneous we mean that there is a �xed object U in the category such that for

each point of any other object there is a neighborhood isomorphic with U , consult

[Kol�a�r, Michor, Slov�ak, 92] for more precise explanation.)

Let us remark that the same approach is applicable for many other `geometric cat-

egories' like the whole category of m-dimensional manifolds, the manifolds with �xed

volume forms and unimodular smooth mappings or the symplectic manifolds with sym-

plectomorphisms. The duals to the jet spaces correspond to the induced representations

of the Lie algebra of formal vector �elds in the category in question. In the latter cat-

egories, these algebras are in�nite dimensional, but the singular highest weight vectors

were classi�ed in [Rudakov, 74]. Since these categories are homogeneous in the above

sense, we obtain a complete classi�cation of the natural linear operators between �rst

order natural vector bundles in this way. For more details see also [Kol�a�r, Michor,

Slov�ak, 92].

2. Natural vector bundles on conformal manifolds

Since we restrict ourselves to the connected components of the unit and since we

admit the coverings of the orthogonal groups, we may discuss the whole problem on the

Lie algebra level. We shall need some basic concepts and results from the representation

theory which are available in several standard textbooks.

The semisimple complex algebras are classi�ed by means of the so called Dynkin

diagrams. The diagram corresponding to o(2m; C ) is � � � � � � �

�

�

�

�

with m nodes,

m > 2, while � � � � � � > � with m nodes describes o(2m + 1), m > 1. Each node

corresponds to one simple coroot. Since the weights are linear combinations of the dual

elements to the simple coroots, we can express each weight by inscribing its values on

the simple coroots over the nodes. For technical reasons, we shall increase all these

values by one. In other words, the numbers over the nodes are the coe�cients in the

expression of the weight in question as a linear combination of the so called fundamental

weights, increased by one (in fact we add the sum of the fundamental weights to each

weight, i.e. half the sum of all positive roots).

2.1. Example. If e

i

, i = 1; : : : ;m, is the dual basis of the (real) Cartan algebra

in o(2m; C ), then the fundamental weights are �

i

= e

1

+ � � � + e

i

, 1 � i � m � 2,
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�

m�1

=

1

2

(e

1

+ � � � + e

m�1

� e

m

), �

m

=

1

2

(e

1

+ � � � + e

m�1

+ e

m

). They correspond

to the spaces of (complex) exterior forms of degrees 1 � i � m � 2, the remaining

two representations are the so called spin representations. In our notation for the

representations, the one-forms, i.e. C

2m�

, are denoted by

2

�

1

� � � �

1

�

1

�

�

� 1

�

� 1

, while the

last spin representation corresponds to

1

�

1

� � � �

1

�

1

�

�

� 1

�

� 2

.

Similarly, the (real) Cartan algebra of o(2m + 1; C ) has a dual basis e

i

, 1 � i � m,

and the fundamental weights are �

i

= e

1

+� � �+e

i

, 1 � i � m�1, �

m

=

1

2

(e

1

+� � �+e

m

).

The last one is the weight of the spin representation, the �rst m � 1 weights describe

the exterior forms of degrees less then m.

In dimension six, the Dynkin diagram coincides with that for sl(4; C ): � � � . If we

want to use the above description with this shape of the diagram, we have to renumber

the nodes in such a way that the �rst one is that in the middle. In dimension four

we have o(4; C ) = sl(2; C ) � sl(2; C ) and so its Dynkin diagram � � is not connected.

There are just two fundamental weights in dimension four, the spin representations.

2.2. We can use slightly modi�ed Dynkin diagrams to describe all irreducible represen-

tations of the conformal algebras. The complexi�ed algebra g = o(m + 1; n + 1; C ) =

(m+n+2; C ) has a grading g = g

�1

�g

0

�g

1

and b = g

0

�g

1

is a parabolic subalgebra

in g, the complexi�ed Lie algebra of the Poincar�e conformal group B. The component

of degree zero is just the Lie subalgebra g

0

= co(m + n; C ).

The above decomposition (of the complexi�ed algebra) b = g

0

�g

1

is the Levi decom-

position of the parabolic subalgebra corresponding to a choice of one of the simple roots

(the �rst one) and the nilpotent part g

1

acts trivially in each irreducible representation

of b. Further, g

0

= [g

0

; g

0

] � z where z is the center and we can arrange the things

so that the Cartan algebra h decomposes as h = (h \ [g

0

; g

0

]) � z. So each irreducible

representation can be denoted by a diagram with all coe�cients positive integral except

the chosen node where the value can be quite arbitrary. The (real or complex) repre-

sentations are then viewed as representations of the orthogonal algebras in dimensions

decreased by two (we simply forget the chosen node) and the remaining information is

encoded in the conformal weight. We shall denote this omitted node by a cross. The

conformal weight of the indicated representation is given by the coe�cient of e

1

in the

expression of the weight and it can be calculated easily from the coe�cients inscribed

over the nodes, see 2.1. The weights corresponding to such representations will be called

dominant for b.

For example,

1

�

2

� � � �

1

�

1

�

�

� 1

�

� 1

with m+ 1 nodes is the highest weight of C

2m�

with

conformal weight one while

�1

�

2

� � � �

1

�

1

�

�

� 1

�

� 1

corresponds to C

2m�

with conformal weight

�1, i.e. C

2m

,

1

�

p+1

� � � �

1

�

1

�

�

� 1

�

� 1

has conformal weight p and describes the trace-free part

of S

p

C

2m�

. We have to be careful in dimension four, e.g. C

4

'

2

�

�1

�

2

�.

Let us notice, that the real representations exponentiate to representations of the

(real) Lie groups for arbitrary conformal weights, while in the complex case we have to

be more careful.

2.3. The vector bundles. Let us write � for the sum of all fundamental weights.

We adopt the convention that a vector bundle corresponding to an irreducible represen-

tation which is dual to that one with highest weight � will be denoted by the diagram

corresponding to the values of � + � on the simple coroots. This seems to be a very
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strange notation, but the passing to the duals reects the fact that we are describing

the dual mappings to the operators and the shift by � simpli�es heavily our formulas. In

fact, the dual representations are distinguished only by their opposite conformal weights

(which is, of course, not the same as the inverting of the sign over the crossed node in

general).

2.4. Generalized Vermamodules. In general, given a representation of a subalgebra

b � g in GL(V ), we de�ne the so called induced representation Ind(g; V ) = U(g)


U(b)

V .

If g is complex semisimple and b is a Borel subalgebra, then we get the classical Verma

modules. Then the irreducible representations of b are the one-dimensional characters

� and the induced representation M(�) is generated (as a U(g)-module) by the highest

weight vector 1 
 1. More generally, if b is a parabolic subalgebra and � is a weight

dominant for b corresponding to a �nite dimensional representation in V with highest

weight vector v 2 V , then the U(g)-module Ind(g; V ) is generated by 1
 v. The letter

module is called the generalized Verma module M

b

(�). We shall also use the notation

M

b

(V ) if we emphasize the representation space. In our case g = g

�1

� b and by virtue

of the Birkho�-Witt theorem we have M

b

(�) = U(g

�1

) 


C

V = S(g

�1

) 


C

V as vector

spaces. The elements from the real enveloping algebra can be viewed as conformal �elds

on the (pseudo) sphere and the action on the duals to the jet spaces is exactly that one

determined by the Lie derivative. In this way we get the identi�cation of the Verma

modules with the inverse limit of the duals to the jet spaces mentioned in 1.5. For more

details on this procedure see [Kol�a�r, Michor, Slov�ak, 92], Section 34, where the same

problem is discussed for some other categories over manifolds.

The grading of the symmetric algebra induces the grading on M

b

(�) which coincides

with the natural grading of the duals of the jet spaces.

If we start with complex representations and complex Riemannian manifolds, we get

an analogous identi�cation, cf. [Baston, 90].

3. The classi�cation

3.1. Lemma. There is a bijective correspondence between the natural linear operators

acting on sections of complex natural vector bundles over complex conformal manifolds

which are determined by the highest weights � dominant for b, and the homomorphisms

of the complex generalized Verma modules M

b

(�).

Proof. As discussed in 1.5, the operators correspond to highest weight vectors in the

generalized Verma module S(g

�1

) 


C

V with trivial action of g

1

. Once we �nd such

a singular highest weight vector w 2 M

b

(�) with weight � dominant for b, the corre-

sponding homomorphism is induced by the inclusion of the generating highest weight

vector in M

b

(�) onto w. On the other hand, each inclusion of M

b

(�) into M

b

(�) yields

such a singular highest weight vector w 2 M

b

(�). �

3.2. The in�nitesimal character. For each (complex) U(g)-module A which is gen-

erated by a highest weight vector, the elements from the center Z(g) of the envelop-

ing algebra act by scalars. This action can be viewed as an algebra homomorphism

� : Z(g) ! C which is called the in�nitesimal character of A. In particular, for each

weight � dominant for b there is the U(g)-module M

b

(�) and we shall denote its in�ni-

tesimal character by �

�

. If D : M

b

(�) !M

b

(�) is a U(g)-module homomorphism, then

obviously �

�

= �

�

. A classical theorem by Harish-Chandra states that �

�

= �

�

if and

only if �+� and �+� are conjugate under the action of the Weyl groupW . This means
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that s:� = � for some element s 2 W where the dot denotes the so called a�ne action

of W , s:� = s(� + �) � �. The elements from the Weyl group W are generated by the

reections with respect to the hyperplanes orthogonal to the simple roots. There is at

most one weight dominant for the whole g in each orbit of the a�ne action of W. On

the other hand, the elements which map at least some of the weights dominant for b

into weights dominant for b form the so called parabolic subgraph W

b

of W . In the

even dimensions m = 2n, we can describe W

b

symbolically by

id w s

1

w s

1

s

2

w : : :

s

1

s

2

: : : s

n�1

s

n





�

w s

1

s

2

: : : s

n�1

4

4

46

�

�

��

s

1

s

2

: : : s

n�1

s

n

s

n+1

w

s

1

s

2

: : : s

n�1

s

n+1

A

A

AC

w s

1

s

2

: : : s

n�1

s

n

s

n+1

s

n�1

w : : : w s

1

s

2

: : : s

2

s

1

where the symbols s

i

denote the reections corresponding to the simple roots indicated

in the diagram

s

1

�

s

2

� � � � � s

n�1

�

� s

n

�

� s

n+1

. If m = 2n + 1 we order the simple roots as indicated

in the diagram

s

1

�

s

2

� � � �

s

n

� >

s

n+1

� and we get

id w s

1

w : : : w s

1

: : : s

n+1

w

w s

1

: : : s

n+1

s

n

w : : : w s

1

s

2

: : : s

2

s

1

The arrows describe the so called Bruhat order on W

b

, for a more detailed description

see e.g. [Boe, Collingwood, 85].

De�nition. If � is a weight dominant for b such that �+ � does not lie on a wall of a

Weyl chamber, then the in�nitesimal character �

�

is said to be regular. The in�nitesimal

characters of the weights � with � + � lying on some wall are called singular. The

in�nitesimal characters of weights � and � with the same cardinality of the stabilizer of

�+ � and �+ � in the Weyl group W are called equisingular.

In particular, all regular in�nitesimal characters are equisingular. If a weight has

all coe�cients over the nodes integral then its in�nitesimal character is regular if and

only if there is a weight � with the same in�nitesimal character, which is dominant for

the whole g. For such weights with regular in�nitesimal characters, the meaning of the

above patterns is easy to explain: We take the only weight � dominant for g with the

in�nitesimal character �

�

and we let the elements from W

b

act on �+ � as indicated in

the diagrams. In this way we get just all weights �+ � with � dominant for b and with

the same in�nitesimal character �

�

.

Each weight with regular in�nitesimal character appears just in one pattern and in

a �xed position, cf. 3.4. It is surprisingly easy to write down the patterns for concrete

weights since the action of the simple reections s

i

on the weights admits a very simple

description, cf. [Baston, Eastwood, 89]:

Let a be the coe�cient at the i-th fundamental weight in the expression of the

weight �. In order to get the coe�cients of the weight s

i

(�), add a to the coe�cients
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corresponding to the adjacent nodes in the Dynkin diagram, with multiplicity if there

is a multiple edge directed towards the adjacent node, and replace a by �a.

Since we inscribe the coe�cients of � + � over the nodes, the a�ne action of the

Weyl group on the weights is described exactly by the above procedure applied to the

coe�cients inscribed over the nodes of the Dynkin diagram.

3.3. Let us perform this explicitly for o(m+ n+ 2; C ). We have to perform the action

of the elements fromW as indicated in 3.2. Let us �x �rst a weight

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

with

all coe�cients non-negative (but not necessarily integral).

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

w

�b

�

b+d

1

�

d

2

� � � � � d

n�2

�

� a

�

� c

w

�b�d

1

�

b

�

d

2

+d

1

� � � � � d

n�2

�

� a

�

� c

w � � �

�b�d�a

�

b

� � � � � d

n�3

�

� d

n�2

�

� a+c+d

n�2

w

�b�d

�

b

�

d

1

� � � � � d

n�3

�

� a+d

n�2

�

� c+d

n�2

N

NP

�

��

�b�d�a�c

�

b

�

d

1

� � � � � d

n�3

�

� d

n�2

+c

�

� d

n�2

+a

��

�

PN

N

w

�b�d�c

�

b

� � � � � d

n�3

�

� a+c+d

n�2

�

� d

n�2

w

�b�d�d

n�2

�a�c

�

b

�

d

1

� � � � � d

n�3

+d

n�2

�

� c

�

� a

w : : : w

�b�2d�a�c

�

d

1

� � � � � d

n�2

�

� c

�

� a

where d = d

1

+ � � �+ d

n�2

.

Similarly we get the pattern for manifolds of dimension 2n+1 starting with a weight

b

�

d

1

� � � �

d

n�1

� >

a

�:

b

�

d

1

� � � �

d

n�1

� >

a

� w

�b

�

d

1

+b

� � � �

d

n�1

� >

a

� w : : : w

�b�d

�

b

�

d

1

� � � �

d

n�2

� >

a+2d

n�1

� w

�b�d�a

�

b

� � � �

d

n�2

� >

a+2d

n�1

�

w

�b�d�d

n�1

�a

�

b

�

d

1

� � � �

d

n�2

+d

n�1

� >

a

� w : : : w

�b�2d�a

�

b+d

1

�

d

2

� � � �

d

n�1

� >

a

� w

�b�2d�a

�

d

1

� � � �

d

n�1

� >

a

�

where d = d

1

+ � � �+ d

n�1

.

In particular, the patterns in the small dimensions three and four are listed in 3.9

below.

3.4. Each position in the pattern corresponds to just one Weyl chamber and the weights

� which determine representations with regular in�nitesimal character are those with

� + � not lying on a wall of a Weyl chamber. Thus, the unique position of every

representation with regular in�nitesimal character can be read o� the coe�cients over

the nodes. Let us call the non-negative coe�cients a; b; : : : over the left-most weight in

the pattern the coe�cients of the pattern.

If some of the coe�cients of the pattern are not integral, then a lot of the listed weights

are not dominant for b. If the stabilizer of a weight � under the a�ne action of the Weyl

group is not trivial, then its elements belong toW

b

and the pattern degenerates in such

a way that some of the weights are not dominant for b and the number of occurrences of

the remaining weights appearing in the pattern equals to the cardinality of the stabilizer

of each of them.
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Lemma. The number of occurences of the b-dominant weights in the pattern equals

to the number of the zeros among its coe�cients increased by one.

Proof. This follows from the explicite description of the patterns in 3.3. �

3.5. The order. The conformal weights are easily computed by means of the coef-

�cients in the Dynkin diagrams as described in 2.2. The conformal weight ! of the

representation with the highest weight

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

is

! = b + d

1

+ � � �+ d

n�2

+

1

2

(a + c)� n

while that of

b

�

d

1

� � � �

d

n�1

� >

a

� is

! = b+ d

1

+ � � �+ d

n�1

+

1

2

a�

1

2

(2n+ 1):

If there is an operator D : C

1

((F

�

M)

�

) ! C

1

((F

�

M)

�

) between the complex bun-

dles over complex manifolds, then its order is described easily be means of the conformal

weights of � and �. Let us remind that D corresponds to the inclusion of the repre-

sentation space V

�

into the Verma module M

b

(�) (remember our convention with the

duals). Since each homogeneous component in the grading of the Verma module is a

g

0

-submodule, the image of the inclusion must be contained in one homogeneous com-

ponent. But the degree of this component is exactly the order of the operator D. If !

1

is the conformal weight of �, then the conformal weight of all irreducible representations

in the i-th homogeneous component in M

b

(�) is !

1

� i. Thus, the operator D has the

order r = !

1

� !

2

where !

2

is the conformal weight of �.

3.6. Translation functors. There is a general construction which allows to translate

the results on homomorphisms of Verma modules from one pattern to another one, the

so called Jantzen-Zuckerman functors, see e.g. [Zuckerman, 77]. As before, let us write

V

�

for the �nite dimensional irreducible representation with highest weight � dominant

for b. Further, write V

�

�

for the module contragradient to V

�

, i.e. V

�

�

has the lowest

weight ��. Each U(g)-module decomposes completely into submodules with di�erent

in�nitesimal characters, see e.g. [Zuckerman, 77]. Let us write p

�

for the projections

onto the modules with in�nitesimal character �

�

. Hence given a weight � dominant for

b and a weight � dominant for g, we can de�ne two functors

'

�

�+�

= p

�+�

� (( ) 
 V

�

) � p

�

 

�+�

�

= p

�

� (( )
 V

�

�

) � p

�+�

where the action on the morphisms is de�ned by the tensor product with the identity.

These functors are de�ned on a large class of U(g)-modules involving the generalized

Verma modules. For technical reasons, we shall also allow � to be an arbitrary weight

with s:� dominant for b for some s 2 W

b

(then the projections p

�

and p

�+�

are well

de�ned), but we shall always assume that �+� belongs to the fundamentalWeyl chamber

which contains the weights corresponding to the representations appearing in the most

left position in the patterns. In particular, this means that � is dominant for g if �

�

is

regular and � is integral.
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Lemma.

(1) The functor  

�+�

�

is left adjoint to '

�

�+�

.

(2) If the weights � and �+� are equisingular, then  

�+�

�

(M

b

(s:(�+�))) =M

b

(s:�)

and '

�

�+�

(M

b

(s:�)) =M

b

(s:(� + �)) whenever s:� is dominant for b.

Proof. Since V

�

is �nite dimensional, the space of homomorphismsHom(M

b

(s:(�+�))


V

�

�

;M

b

(s

0

:�)) is naturally isomorphic to Hom(M

b

(s:(� + �));M

b

(s

0

:�) 
 V

�

). In view

of 3.2, only the summand p

�

(M

b

(s:(� + �)) 
 V

�

�

) can contribute to Hom(M

b

(s:(� +

�)) 
 V

�

�

;M

b

(s

0

:�)) and similarly only p

�+�

(M

b

(s

0

:�) 
 V

�

)) contributes to the other

homomorphisms. This shows the required natural equivalence

Hom( 

�+�

�

(M

b

(s:(� + �)));M

b

(s

0

:�)) ' Hom(M

b

(s:(� + �)); '

�

�+�

(M

b

(s

0

:�))):

The other assertion is more di�cult to prove. A general theorem reads that if the

weights � and �+� are equisingular, then the functors  

�+�

�

and '

�

�+�

are the mutually

inverse natural equivalences on their de�nition domains, see [Zuckerman, 77]. If we �x

such weights � and �+�, then for each s 2W

b

the weights s:� and s:(�+�) determine

representations appearing at the same position in the patterns starting with � and

�+ �. The in�nitesimal characters are the same ones for the whole pattern and so the

projection p

�

is the identity on M

b

(s:�). Further

M

b

(V

s:�

) 
 V

�

=

1

M

i=0

(S

i

(g

�1

) 
 (V

s:�


 V

�

))

=

1

M

i=0

(S

i

(g

�1

) 
 (�

k

j=1

V

�

j

)) =

k

M

j=1

M

b

(V

�

j

)

The weights �

j

appearing in the tensor product and their multiplicities can be deter-

mined using one of the consequences of the Weyl character formula, e.g. the well known

Brower's formula or Klimyk's formula. Finally, the projection p

�+�

selects just those

�

j

which lead to the prescribed in�nitesimal character �

�+�

.

So we see that the value of '

�

�+�

on a generalized Verma module must be a sum

of generalized Verma modules. If we replace V

�

and � by V

�

�

and � + �, we get the

same result for the functor  

�+�

�

. But since  

�+�

�

� '

�

�+�

is naturally equivalent to the

identity, the values can always consist of only one generalized Verma module. But there

is certainly the weight � = s:(� + �) involved among the weights �

j

and this appears

with multiplicity one. Thus for all s 2 W

b

we have '

�

�+�

(M

b

(s:�)) = M

b

(s:(� + �)) if

s:� is dominant for b.

Similarly we can analyze the functor  

�+�

�

with � and � replaced by �� and �+ �

and we get  

�+�

�

(M

b

(s:(� + �))) =M

b

(s:�). �

As a consequence of the lemma, we can pass from one pattern to another one by

adding integral weights with regular in�nitesimal character. In particular, once we de-

scribe all operators between the representations in one pattern, we can get all operators

in many other patterns by applying the above translations.

3.7. The operators on exterior forms. All linear natural operators on (pseudo)

Riemannian manifolds which do not disappear on at manifolds and which behave well
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with respect to constant rescaling of the metric were described in [Slov�ak, 92b]. They

are indicated in the following two diagrams. In the even dimensionm = 2n they are all

composed from the exterior di�erential d and the Hodge star operator �.




n

+

h

hhj

d

)'

'
'

d

+




0

w

d




1

w

d

� � � w

d




n�1




n+1

w

d

� � � w

d




2n�1

w

d




2n




p

�

CA

A

A

d

�

�

�

��

d

D

p�1

=d�d=d�d

+

�d�d

�

u

D

1

=d�(�d)

m�3

u

D

0

=d�(�d)

m�1

u

The odd-dimensional case (m = 2n+ 1) coincides with the de Rham resolvent:




0

w

d




1

w

d

� � � w

d




m�1

w

d




m

All of them are natural on at conformal manifolds and there are no other natural

linear operators there. In view of the translation procedure and the form of our patterns,

this solves the existence problem for operators which act between bundles determined

by integral weights with regular in�nitesimal character. In particular, there is at most

one operator between any two such bundles.

3.8. Theorem. For every two weights �, � dominant for b, the space of the natural

linear operators D : C

1

(F

�

M) ! C

1

(F

�

M) acting on smooth sections of complex

natural vector bundles over complex conformal Riemannian manifolds is at most one

dimensional. All such non-trivial operators, i.e. those di�erent from constant multiples

of the identities, are indicated in the patterns below. The labels over the arrows indicate

their orders.

If dimM = 2n, n > 1, then the non-trivial linear natural operators act between

bundles corresponding to weights with integral coe�cients. The pattern starting with

the weight

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

, b, d

1

; : : : ; d

n�2

, a, c � 0, is

�

� w

b

� w

d

1

� � � w

d

n�2

�

N

N

NP

a

�

�

��

c

�

PN

N

N

a

��

�

�

c

w

d

n�2

� � � w

d

1

� w

b

�

�

a+c

u

2d

1

+���+2d

n�2

+a+c

u

2b+2d

1

+���+2d

n�2

+a+c

u

All arrows in the diagram which join weights dominant for b describe a non-zero linear

natural operator on conformally at manifolds.

If the dimension ofM is 2n+1, n > 0, then the non-zero linear natural operators act

between bundles corresponding to weights with integral and half-integral coe�cients. If

the pattern starts with

b

�

d

1

� � � �

d

n�1

� >

a

� and all the coe�cients are non-negative integers,
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then the operators are exhausted exactly by those which are indicated by the solid

arrows in the diagram

� w

b

� w

d

1

� � � w

d

n�1

� w

a

� w

d

n�1

� � � w

d

1

� w

b

�

a

u

2d

1

+���+2d

n�1

+a

u

2b+2d

1

+:::2d

n�1

+a

u

while if some of the coe�cients are half-integral and the in�nitesimal character is regular,

then we get exactly those operators indicated by the dashed arrows which join weights

dominant for b. If the in�nitesimal character of the pattern is singular, then there are

no non-trivial operators in odd dimensions.

Exactly the same classi�cation applies to natural linear operators acting on smooth

sections of real natural vector bundles over conformal Riemannian manifolds with an

arbitrary signature (m

0

; n

0

), m

0

+ n

0

= 2n � 4 or m

0

+ n

0

= 2n+ 1 � 3.

Proof. The description of the general patterns and the computation of the conformal

weights in 3.3 and 3.4 yield the possible orders of natural operators as indicated on

the labels over the arrows in the diagrams above. Since the order must be a non-

negative integer, the coe�cients of the patterns must be half-integral. Moreover, if

these coe�cients are not integral and the dimension is even, then the only possibility

to �nd a weight dominant for b is either to choose b half-integral or to take two half-

integral coe�cients over the adjacent nodes in the left-most weight or one of the couples

(d

n�2

; a), (d

n�2

; c), (a; c) must be half-integral, while all other coe�cients must be

integral. But then we can choose the half-integral coe�cients

1

2

while the integral can

be set to one. All other choices are then covered by the translation procedure. In the

case (a; c) is hal�ntegral, the only two weights dominant for b are the two weights just

in the middle, which are di�erent but the order should be zero. Thus there is no non-

zero operator available in this case. In all other cases listed above, the operator should

transform complex functions with suitable conformal weights into complex functions

with another conformal weight, but the orders should be odd. However, if we apply

the methods leading to the description of the Riemannian invariants in 3.7, then we see

that there is no such non-zero operator in the even dimensional case. The reason is that

after applying an odd number of covariant derivatives we get into an odd tensor power

of the covectors, but then there is no way how to come to functions using the orthogonal

invariant tensor operations. Hence there are no non-zero linear natural operators acting

between bundles with non-integral coe�cients in the even dimensions.

In order to �nish the description of the even dimensional case, we have now to

discuss case by case the in�nitesimal characters by means of the translations between

the equisingular ones. If the in�nitesimal character of the pattern is regular, then the

assertion of the theorem follows from 3.7. We have seen in 3.4 that the two patterns

have equisingular in�nitesimal characters if and only if they posses the same number

of zeros among their coe�cients. On the other hand, if there should exist a weight

dominant for b in the pattern, then there can appear at most one zero, except the case

a = c = 0, see 3.3.

Assume �rst d

i

= 0 for some 0 < i � n � 2, or b = 0. Then there are only

two weights dominant for b. Let us choose all other coe�cients equal to one. Hence

the operator should be de�ned on complex functions C

1

(

�i

�

1

� � � � � 1

�

� 1

�

� 1

) with values in



NATURAL OPERATORS ON CONFORMAL MANIFOLDS 13

C

1

(

�2n+i+2

�

1

� � � � � 1

�

� 1

�

� 1

) (we set i = 0 if we have chosen b = 0). Such a natural operator

on conformally at manifolds exists and it is unique up to scalar multiples. This is the

so called conformally invariant n�i�1-st power of the Laplacian which is de�ned by the

complete contraction of the suitable iteration of the covariant derivative. Its uniqueness

is clear from the considerations in the category of Riemannian manifolds. In particular,

if d

n�2

= 0 we obtain the usual conformally invariant Laplacian on conformally at

manifolds.

If we choose a = 0 and all other coe�cients equal to one, we have also only two

weights which are dominant for b. The corresponding operator C

1

(

�n+1

�

1

� � � � � 1

�

� 1

�

� 2

)!

C

1

(

�n

�

1

� � � � � 1

�

� 2

�

� 1

) exists and is unique up to constant multiples. It is just the confor-

mally invariant Dirac operator. The choice c = 0 leads to the other Dirac operator on

the basic spin representations. The last choice, a = c = 0 yields four identical weights

and operators of order zero. This �nishes the discussion on the even dimensions.

A quite di�erent situation appears in the odd dimensions. There we must admit

also the half-integral weights. If we combine our knowledge of the possible orders with

the requirement that the arrows which could indicate a natural operator must join

the nodes with weights dominant for b, we see that the only possibility is either to

consider b half-integral or two adjacent coe�cients d

i

, d

i+1

half-integral or d

n�1

half-

integral. But then either the orders indicated over the solid arrows are not integral

or the weights are not dominant for b, so they are all excluded. Now we can discuss

the individual positions of the diagram for functions with suitable half-integral con-

formal weights. The whole discussion is quite similar to the above description of the

sigular patterns in even dimensions. Let us �rst show this procedure on the case of

the longest arrow. We consider the weight

1

2

�

1

� � � �

1

� >

1

� , i.e. the operator should act

on the complex functions with conformal weight

1

2

. The order r = 2n of the operator

is now even and the complete contraction of the r-th iterated covariant derivative is

just the n-th power of the Laplacian which is conformally invariant on at manifolds

as an operator acting on functions with conformal weight

1

2

with values in functions

with conformal weight

1

2

+ 2n. The uniqueness up to constant multiples is proved

easily in the category of Riemnnian manifolds. Similarly we obtain (n � i)-th powers

of the Laplacians C

1

(

�i+

1

2

�

1

� � � �

1

� >

1

� ) ! C

1

(

�2n+i+

1

2

�

1

� � � �

1

� >

1

� ) in the remaining

cases listed above. The last possibility is d

n�1

=

1

2

which leads to the unique opera-

tor C

1

(

�n+

1

2

�

1

� � � �

1

� >

2

� ) ! C

1

(

�n�

1

2

�

1

� � � �

1

� >

2

� ) which is the conformally invariant

Dirac operator on the basic spin representation.

If the dimension is three, the whole patterns of weights starting with the functions

with conformal weight

1

2

survives and the middle arrow corresponds to the conformally

invariant Dirac operator acting on spinors with conformal weight one.

If the pattern has a singular in�nitesimal character, then the weights must be integral.

Indeed, with some half-integral coe�cient, we need the summation to neglect it, but then

we cannot get o� the zero among the coe�ecients. Similarly, there can appear only one

zero among the coe�cients. If all non-zero coe�cients equal one, then independent of

our choice of the zero, we should �nd a non-trivial operator acting on complex functions

with an odd order. This is not possible for the reason discussed above. Thus, there are

no non-trivial operators acting between bundles with singular in�nitesimal character in

the even dimensions.
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If we want to describe the natural operators in the real setting, then we also have to

describe the singular highest weight vectors, but in the real generalized Verma modules,

see 1.5. But if we complexify the duals to the jet spaces, then either we obtain the

same set of highest weight vectors or some of them can be doubled. In any case no new

singular highest weights appear. Since the spaces of the natural operators are always at

most one-dimensional in the complex case, either the highest weight vector generating

the whole Verma module is doubled, or no other one can be doubled. Thus we may

look for the singular highest weight vectors in the complex U(g)-module M

b

(�). This

also implies the pleasant fact that the existence of the operators and some of their

characteristics do not depend on the signature (m

0

; n

0

). �

3.9. Examples. Let us write down the complete patterns with the orders of the

operators inscribed above the arrows, which exhaust all operators in dimensions three

and four. If some weights are not dominant for b they have to be ignored.

b

�

�a�b

�

a+b+c

�

'

')

c

][

[

a

a

�

b

�

c

� w

b

a+b

�

�b

�

b+c

�

b+c

�

�a�b�c

�

a+b

� w

b

c

�

�a�b�c

�

a

�

a+b+c

�

�b�c

�

b

�

�

��

a

][

[

c

a+ c

u

a+ 2b+ c

u

All coe�cients are non-negative integers. All linear natural operators on 4-dimensional

at conformal manifolds are involved.

In dimension three we start with

b

�>

a

� with all coe�cients integral or half-integral

and non-zero. If the order is not integral we have to omit the corresponding arrow.

b

�>

a

� w

b

�b

�>

a+2b

� w

a

�b�a

�>

a+2b

� w

b

�b�a

�>

a

�

a+ 2b

u

Using the general patterns, we can sometimes answer rather general questions. For

example, if we want to �nd all linear natural operators, say of order two, on conformal

manifolds of dimension 2n such that their source and target bundles coincide up to

conformal weights, then they must correspond to the `long' arrows in our pattern and

a = c, cf. [Branson, 89, Theorem 3.14]. Now the exact formulas for the orders yield lists

of possible sources. In particular, we �nd the operators D

2;k

discovered by Branson for

k <

n

2

. The operators D

2;n

appear in the central diamond, e.g. D

2;2

: C

1

(

1

�

�1

�

3

�)!

C

1

(

3

�

�3

�

1

�) in the pattern which should start with � =

0

�

1

�

2

� , cf. [Branson, 89].

4. The curved case

We cannot extend the above results easily for the whole category of conformal man-

ifolds. On the contrary, since the conformal manifolds are highly non-homogeneous in

general, we cannot restrict our considerations to one point in the base manifold. A
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complete general classi�cation has not been obtained yet, but several authors got nice

partial results based on various approaches, see e.g. [Branson, 85], [Baston, 90], or the

survey paper [Baston, Eastwood, 90]. We shall not go into any detail here, let us only

remark, that nearly all of the operators discussed above admit a canonical extension

to the whole category of conformal manifolds which is obtained by adding suitable

lower order correction terms involving Ricci curvature. The only exception among the

patterns with regular in�nitesimal characters is the `longest' arrow from the patterns.

These operators might admit an extension, but they do not in general.
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