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Abstract. The almost Hermitian symmetric structures include several important

geometries, e.g. the conformal, projective, quaternionic or almostGrassmannianones.

The conformal case is known best and several e�cient techniques have been worked

out in the last 90 years. The present note provides links of the development presented

in [CSS1, CSS2, CSS3, CSS4] to several other approaches and it suggests extensions

of some techniques to all geometries in question.

Since the aim of this paper is to present explicit links between the development in

[CSS1, CSS2, CSS3, CSS4] to other approaches established in the literature mostly

for the special case of the conformal structures, we have �rst to review the main

concepts and results. Then we extend some of the known techniques to all AHS

structures, in particular we discuss the most classical method of the `variation' of

the Riemannian metric in the conformal class and the `conformal calculus' due to

W�unsch and G�unther.

1. The AHS structures

The study of the conformal and projective structures on manifolds has a long

history and the techniques leading to tensorial invariants and invariantly de�ned

di�erential operators belonged always to the main aims. These two particular

structures were known to allow a common development of the basic theory in the

terms of the so called j1j-graded Lie algebras, see e.g. [Kob]. A general discussion on

geometries associated to such Lie algebras was worked out in [Och]. The algebras

in question are semisimple Lie algebras g equipped with a grading

g = g

�1

� g

0

� g

1

:

Let us �x such an algebra g, a connected Lie group G with the Lie algebra g, its

subgroup B with the Lie algebra b = g

0

�g

1

, the normal subgroup B

1

corresponding

to g

1

and the group B

0

= B=B

1

with the Lie algebra g

0

. The associated geometric

structures on manifoldsM are reductions of the linear frame bundles P

1

M to the

structure group B

0

, except the projective structures where B

0

= GL(m;R) and we

have to consider the reductions of P

2

M to the structure group B. The at models

for such geometries are the Hermitian symmetric spaces G=B and we shall call such

structures the almost Hermitian symmetric structures, following [Bas2], briey the
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AHS structures. The main idea behind Ochiai's development was to construct a

principal �ber bundle with structure group B, in a functorial way, and to discuss

whether there are distinguished connections on this bundle which should then play

the role of the Levi-Civit�a connections on the Riemannian linear frame bundles.

It follows from the semisimplicity of g that g

1

is the classical �rst prolongation

of g

0

and the next prolongation is already trivial. Thus, the group B encodes

the information about all derivatives of morphisms of the �rst order B

0

-structures

and the bundle P should be a `higher order frame bundle' for the structures in

question. Ochiai applied the classical prolongation theory of �rst order structures

and he looked for the reduction of the second order frame bundle P

2

M to the

structure group B. Thus he had to preassume that his B

0

-structures admit a

connection without torsion, which led to a vaste simpli�cation of the whole theory.

He used the standard Lie algebra cohomology of the abelian g

�1

with coe�cients in

g (the Spencer cohomology) to discuss the obstructions against the constructions of

P and the so called Cartan connection on P , and to normalize the chosen Cartan

connection.

In the study of the conformal and projective structures, the bundle P and the

Cartan connection ! turn out to be unique. This fact was heavily used by Kobayashi

in his study of the transformation groups. The �rst very explicit use of the existence

of an analogy to the Riemannian connections appeared probably in [Bas1], however

his arguments and even some formulations of the new results are very unprecise.

Baston discusses the conformal structures only, but he remarks, that in fact the

approach should be extendable to other AHS structures as well. He comes back to

this point in two papers [Bas2, Bas3]. Since the torsion of the linear connections

compatible with the structures is quite often the only obstruction against the local

atness, the Ochiai's assumption was too much restrictive. Baston developed a

quite di�erent approach to the canonical connection which mimics the local twistor

transport in the conformal case. This means that he constructs an intrinsic con-

nection on an auxiliary vector bundle with structure group G de�ned canonically

by the B

0

-structure in question. Thus he avoids the explicit construction of the

principal B-bundle P and his connection is equivalent to the canonical one on the

extension of P to the structure group G, whenever the Ochiai's P and ! exist.

The other possibility of extending the Ochiai's work to all AHS structures was

to construct the canonical bundles PM without referring to the second order frame

bundle P

2

M . This was solved completely in [CSS2] and the key observation was

that it was not the cohomology but simple linear algebra arguments (equivalent to

the harmonicity requirements used by Ochiai in the torsion-free cases, but di�erent

in general) which led to the construction of P , equipped with a canonical form,

via the standard classical prolongation of the B

0

-structure. Moreover, the next

prolongation leads to the same P (since the next prolongation of the algebra is

trivial), but the next canonical form is just the required Cartan connection !. This

construction enables us to use ! to di�erentiate sections of bundles induced from

representations of B in a very straightforward way (as roughly indicated already

in [Bas1]). Of course, this is essentially possible in the Baston's approach as well,

however we have �rst to embed our representation of B into a composition series

of a representation of G and to control also the behavior of the other components.

The obstructions against the local atness are always certain components of the
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curvature of the canonical connection and one can get very explicit descriptions of

them, see [Bas2] and [CS].

Another construction of the bundles P , which works even in more general cases

than the AHS structures, uses the general technique of the principal prolongations

of principal bundles, see [Slo].

2. The underlying connections of an AHS structure

and natural operators

On each manifold with conformal Riemannian structure, the linear connections

which preserve the metrics in the conformal class up to a multiple form an a�ne

space modeled on one-forms (the di�erence of the Levi-Civit�a connections deter-

mined by two metrics in the class is expressed by the derivatives of the rescaling

functions). This has a complete analogy in general as discussed in details in [Bas2].

The way how one-forms and torsions appear is very transparent in the frame

bundle approach: Whenever P ! M is a principal B-bundle, then there is also

the principal B

0

-bundle P

0

:= P=B

1

over M , the space of all global B

0

-equivariant

sections � : P

0

! P is non-empty and it is an a�ne space modeled on the space

of all one-forms on M . Moreover, if P is equipped with a Cartan connection !

compatible with the soldering form on P

0

, then for each such �, the pullback of

the g

0

-component of ! is a linear connection on M and the pullback of the g

�1

-

component is the torsion of this connection. In particular, all such connections have

the same torsion, see [CSS1, Lemma 3.6] for the details.

Thus a choice of an equivariant section P

0

! P is equivalent to the choice of a

connection from the distinguished class for all AHS structures, generalizing in this

way the well known correspondence for the frame bundles P

2

M ! P

1

M !M .

In general, it is not evident what should be a good de�nition for the `invariant

operators'. The general notion of the natural operators as those di�erential oper-

ators on sections of bundles induced by representations of B which commute with

the induced actions of morphisms of the geometric structures in question is not

satisfactory since there are no morphisms except identities (even locally) on `nearly

all' manifolds with the AHS structures. Thus the standard naturality approach

covers just the locally at AHS-structures, cf. [KMS]. The standard trick used in

the discussion of the Riemannian manifolds, namely to include the structure itself

as another argument for the operators and to apply the naturality with respect to

all locally invertible smooth mappings excludes many representations of B and so

we loose most of the operators.

Another possibility is to deal with the class consisting of those di�erential oper-

ators expressed exclusively by means of a connection from the distinguished class

and independent on its choice. In particular, this is the setting generally accepted

in the conformal case, where most authors work with polynomial expressions in the

covariant derivatives and curvatures with respect to any metric from the conformal

class.

3. Admissible Cartan connections and the invariant di�erential

Let us �x a principal �ber bundle P ! M with structure group B � G and

denote by �

X

the fundamental vector �eld corresponding to X 2 b. A g-valued one
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form ! 2 


1

(P; g) with the properties

(1) !(�

X

) = X for all X 2 b

(2) (r

b

)

�

! = Ad(b

�1

) � ! for all b 2 B

(3) !j

T

u

P

: T

u

P ! g is a bijection for all u 2 P

is called a Cartan connection. Thus the Cartan connections are absolute paral-

lelizms with the proper invariance properties.

In particular, for each vector X 2 g there is the vector �eld !

�1

(X) on P .

The standard di�erentiation of smooth functions on P in direction of these parallel

vector �elds can be viewed as a mapping C

1

(P; V ) ! C

1

(P; g

�


 V ). If V is

a representation space of B and if we di�erentiate a section s : P ! V of the

induced associated bundle (i.e. s obeys the proper equivariance properties), then

the di�erentiation with X 2 g

0

�g

1

expresses the equivariance of s, while we obtain

an analogy of the covariant derivative in the direction of a vector �eld for X 2 g

�1

.

In the particular case of an a�ne connection on the linear frame bundle (which is

an example of a Cartan connection) we recover the standard covariant derivative.

Thus we use the notation r

!

s(X) or r

!

X

s for such derivatives. By the de�nition,

this procedure can be iterated and we obtain the kth invariant di�erential

(r

!

)

k

: C

1

(P; V )! C

1

(P;


k

g

�

�1


 V ):

The curvature K 2 


2

(P; g) of a Cartan connection ! is de�ned by the structure

equation d! = �

1

2

[!; !] + K. A direct computation using property (2) of Cartan

connections shows that the curvature is always a horizontal 2-form, i.e. it vanishes

if one of the vectors is vertical. Thus it is fully described by the function � 2

C

1

(P; g

�

�1


 g

�

�1


 g), �(u)(X;Y ) = K(!

�1

(X); !

�1

(Y ))(u). In particular for

X;Y 2 g

�1

, we obtain �(u)(X;Y ) = �!(u)([!

�1

(X); !

�1

(Y )]), so the components

of � with values in g

0

�g

1

are the obstructions against integrability of the horizontal

distribution de�ned by !.

The de�ning bundle P ! M of an AHS structure comes always equipped with

the canonical form (�

�1

� �

0

) 2 


1

(P; g

�1

� g

0

). The component �

�1

is always the

pullback p

�

(�) of the canonical soldering form on P

0

with respect to the standard

projection p : P ! P

0

. This canonical form has exactly the equivariance properties

of the �rst two components of a Cartan connection on P . The Cartan connections

! = �

�1

� �

0

� !

1

with !

1

arbitrary are called the admissible Cartan connections.

In particular, each linear connection  = �

�

(�

0

) in the distinguished class on P

0

induces a unique admissible Cartan connection ~ = �

�1

� �

0

� !

1

on P with !

1

vanishing on T�(TP

0

) � TP . The pullback �

�

�

�1

of the g

�1

-part of the curvature

of ~ is the torsion of , while �

�

�

0

is the curvature of  (in fact � �  is a Cartan

connection on P

0

�-related to ~).

Since any two admissible Cartan connections !, �! on P di�er only in the g

1

-

component, there must always be a function � 2 C

1

(P; g

�

�1


 g

1

) such that �! =

! � � � �

�1

. Since � turns out to be a pullback of a tensor on P

0

, we call it the

deformation tensor (deforming ! into �!).

It is quite easy to express the relations of the di�erentials and curvatures of �!
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and ! evaluated in elements in g

�1

, see [CSS1, Lemma 3.10] for details:

�!

�1

(X)(u) = !

�1

(X)(u) + �

�(u):X

(u)(4)

(��

�1

� �

�1

)(u)(X;Y ) = 0(5)

(��

0

� �

0

)(u)(X;Y ) = �[X;�(u):Y ]� [�(u):X; Y ](6)

(��

1

� �

1

)(u)(X;Y ) = r

!

Y

�(u):X �r

!

X

�(u):Y � �(u)(�

�1

(X;Y ))(7)

In particular, the formulae (5){(7) enable us to compute the explicit values of �

deforming a given distinguished connection  = �

�

(�

0

) into the canonical Cartan

connection (which is normalized by a vanishing trace condition on the curvature).

These computations are explicitly done in [CSS2]. For the conformal structures we

obtain exactly the well known tensor �

ij

which is expressed in terms of the Ricci

curvature of  by

(8) �

ij

=

�1

m � 2

�

R

ij

�

�

ij

2(m � 1)

R

�

and which was used by many authors `because of its nice transformation properties'.

Let us �x, for a moment, an admissible Cartan connection ! on P and a linear

connection  = �

�

(�

0

) on P

0

. For each B

0

representation space V corresponding

to a g

0

-representation � : g

0

! gl(V ) we can easily compare the iterated covariant

di�erential of a section s 2 C

1

(P

0

; V ) and the iterated invariant di�erential of

the expression p

�

s 2 C

1

(P; V ) of the same section, in the terms of the tensor �

deforming ~ into !. The �rst derivative evaluated at u 2 P and X 2 g

�1

is

(9) r

!

(p

�

s)(u)(X) = r



s(p(u))(X) + �([X; � (u)])(s(p(u)))

where � : P ! g

1

is determined by the section � : P

0

! P and is given by the

formula u = �(p(u)):exp(� (u)).

By induction, we can iterate such comparison for higher order derivatives. The

main technical point is the Lemma 4.4 in [CSS1]:

Lemma 1. Let V and � be as before and let f : P ! V be a mapping de�ned by

f(u) =

~

f (p(u))(� (u); : : : ; � (u));

where

~

f : P

0

! 


k

g

�

1


 V is g

0

-equivariant with respect to the canonical action

~

�

on the tensor product. Then

r

!

Y

f(u) = �([Y; � (u)])(f(u))�

1

2

k

X

i=1

(p

�

~

f )(u)(� (u); : : : ; [� (u); [� (u); Y ]]; : : : ; � (u))+

(p

�

(r



Y

~

f ))(u)(� (u); : : : ; � (u))+

k

X

i=1

(p

�

~

f )(u)(� (u); : : : ;�(u):Y; : : : ; � (u)):
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Moreover, all the terms in the above expression for r

!

f : P ! g

�

�1


 V

�

satisfy

the assumptions of this lemma with the corresponding canonical representation on




t

g

�

1


 g

�

�1


 V

�

, where t is the number of � 's entering the term in question.

For example, a direct application of this lemma yields the full expansion of the

second invariant di�erential:

(10)

(r

!

)

2

(p

�

s)(u)(X;Y ) = p

�

((r



)

2

s)(u)(X;Y ) + �([X;�(u):Y ])(p

�

s(u))+

�([X; � (u)])(p

�

(r



Y

s))(u) + (�

(1)

([Y; � (u)])(p

�

(r



)s)(u))(X)+

�

(1)

([Y; � (u)])(�([ ; � (u)])(p

�

s)(u))(X) �

1

2

�([X; [� (u); [� (u); Y ]]])(p

�

s)(u)

where �

(k)

means the induced representation on the tensor product 


k

g

�

�1


 V .

4. The jets and the obstruction method

Let us consider a representation � of B on V and write E

�

! M for the asso-

ciated bundles to the de�ning principal B-bundles P ! M of the AHS structure.

It is remarkable that there is no natural identi�cation of higher order jet prolon-

gations J

k

E

�

, k > 1, with the induced associated bundles from a representation

constructed in the homogeneous case. However, there are natural semi-holonomic

jet prolongations of each bundle E

�

!M which are closely related to the invariant

di�erentials with respect to Cartan connections, �rst discussed in [CSS1].

For any �xed Cartan connection ! on P , the mappingC

1

(P; V )

B

, s 7! (s;r

!

s),

identi�es the �rst jet prolongation J

1

E

�

with the associated bundle induced by a

B-representation (the latter representation is understood easily in the at homo-

geneous case G ! G=B with the standard Maurer{Cartan form ! | it corre-

sponds to the standard functorial jet prolongation). Since the above identi�cation

of one-jets works for all B-representations, we can consider these identi�cations for

the iterated applications of the functor J

1

. Moreover, there are always subbun-

dles of the so called semi-holonomic jets

�

J

k

E

�

� (J

1

: : :J

1

)E

�

and the mappings

s 7! (s;r

!

s; : : : ; (r

!

)

k

s) are sections of these bundles. We write also

�

J

k

V for the

corresponding B-modules. See [CSS1, Section 5] for the details on the algebraic

construction of the semi-holonomic jet prolongation

�

J

k

V of the representation space

V and the relation to the invariant derivative.

For another B-representation W inducing the associated bundles E

�

, each B-

module homomorphism �:

�

J

k

V ! W yields the zero order operator

�

JE

�

! E

�

and its composition with the standard inclusion J

k

E �

�

J

k

E provides us then

with a natural di�erential operator. The composition of such a homomorphism

with the iterated invariant di�erential viewed as an operator with values in the

semi-holonomic jets yields always a natural operator which transforms sections

into sections. On the other hand, whenever we �nd such a B{homomorphism �,

then the canonical Cartan connection ! yields a natural operator.

In particular, the problem gets easier if � and � are irreducible B-representations.

Then there is a bijective correspondence between the B-module homomorphisms

on the jets and the B

0

-homomorphisms

�:

�

J

k

V � 


k

g

�

�1


 V

�

! V

�
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vanishing on the image of the B

1

-action on

�

J

k

V .

Unfortunately, not all natural operators arise in such a simple algebraic way. The

best known example is the conformally invariant extension of the at second power

of the Laplacian on four-dimensional conformal Riemannian manifolds, see [ESi]

and [ESl]. The existence of such operators is related to the fact, that the values

of iterated invariant di�erentials do not �ll the whole space of non-holonomic jets

and one should try to re�ne the jets to submodules with more symmetries. The

background for doing that is to be found in [CSS1], but a general `algebraic' theory

of such exceptional operators is not available yet. One could believe that such

examples are rather rare in the even dimensional conformal geometry and we do

not know any in the other geometries.

On the other hand, the calculus of the comparison of the invariant di�erentials

with the covariant ones suggests an obvious method for searching for invariants

which seems to be discussed �rst in [CSS1, CSS2]. As before, let us consider B

0

-

representation spaces V , W corresponding to the representations � and � of g

0

,

and write E

�

!M and E

�

!M for the induced associated bundles.

Everything constructed by means of the canonical Cartan connection ! on P !

P

0

! M should lead to natural operators (in any of the de�nitions), but the

invariant derivatives of the sections of the natural bundles E

�

are no more sections

in general, i.e. our procedure of taking the invariant derivatives is not `covariant'.

This is equivalent to the statement that the resulting expression is not g

1

-invariant,

in general. On the other hand, once we expand the invariant di�erentials in terms

of the covariant derivatives with respect to an underlying connections , we obtain

an expression built of covariant terms, except the � entries which concentrate the

failure of being g

1

-invariant. Thus the idea is to consider operators of the general

form

(11) D =

k

X

`=0

A

`

� (r

!

)

`

where the `coe�cients' A

`

are operators of order zero (which have to be chosen

carefully from a suitable class), to expand the iterated di�erentials in the terms

of the underlying connections and the � 's (and the same with the coe�cients if

necessary), and to discuss under which conditions all the terms involving � 's vanish

in the expansion of D. For the sake of simplicity, let us consider now that all A

`

are B

0

-homomorphisms with values in W , as above (we shall come back to a more

general case in Section 6 below). After the expansion, the operator D splits into

a sum of terms D

j

, j-linear in � and depending on the choice of the underlying

connection 

(12) Ds(u) = D

0

s(;�)s(u) +D

1

(;�; � )s(u) + : : : :

We call D

0

the covariant part of D, while D

j

is called the obstruction part of order

j. An important observation is that if the term D

1

vanishes identically for all 

and � , then the other D

j

, j > 1, vanish as well. See [CSS1, Section 4] for details.

Thus, D yields a natural operator if and only if the whole obstruction part of

D vanishes. In the special case of (11) where D involves just one power (r

!

)

k

,
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there is the part of the operator D

1

in the expansion, all terms of which contain

(k � 1)st derivatives of s. The algebraic vanishing of this part is the obstruction

against the fact that A

k

(r

!

)

k

comes from a B-module homomorphism in the way

indicated above. At the same time, this is the most simple part of the expansion

(12) and it can be written down explicitly without any recurrence procedure, see

[CSS1, Section 5]. We call this the algebraic obstruction term. The full discussion

of the obstruction terms in (12) yields also operators like the second power of the

Laplacian mentioned above, however we have to use the special symmetries of the

invariant di�erentials in order to combine the (algebraically di�erent) obstruction

terms together.

The direct approach to the obstruction method using the �nite-dimensional rep-

resentation theory has been worked out in the forthcoming paper [CSS3]. This is

very e�cient for the couples of representations � and � such that � appears as

a component in

�

J

k

V without multiplicities and it yields the existence and closed

formulae of a large class of operators of all orders in these cases. For operators of

low orders (at least the �rst and second order operators) we can also obtain full

classi�cation lists in this way.

The method also does not restrict to the B

0

-representations, on the contrary,

for a general representation � of B we can consider its composition series. Then

the equivariance properties of the sections can be written down in a form which

satis�es the assumptions of Lemma 1 and so the same recursion procedure for the

expansions applies. In particular, one can involve the curvature of the canonical

connection ! in this way and there should be an explicit link to the invariance

theory developed in [BEGr]. However, these ideas have not been worked out in

details yet.

On the other hand, the obstruction method doesn't seem to be e�cient for non-

existence proofs, in general.

5. The translation procedure

It is well known that on manifolds with the locally at AHS structures, there

is the bijective correspondence between the natural linear di�erential operators

and the homomorphisms of the generalized Verma modules (which are the dual

spaces to the in�nite jets of the bundles in question). These homomorphisms have

been classi�ed by means of the so called Jantzen-Zuckerman translation principle,

see [BC]. The main point is, that the description of the natural operators is done

explicitly for a few concrete examples (the exterior di�erential, the Dirac operator

and low powers of Laplacian in the conformal geometries) and then these partial

results are `exported' to the whole category by a class of nice functors. At the �rst

look, this procedure fails completely for the general curved spaces because of the

lack of the canonical associated bundle structure on the jet prolongations, cf. the

discussion above.

But still there are several possibilities to try but, of course, we can hardly hope

to cover operators which do not arise from b-module homomorphisms in this way.

In particular, we can switch back to the jet level (instead of their duals) and try

to understand better the at case in this setting, i.e. to understand the di�erential

operators which realize the translations. The �rst attempt to do this can be found in
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[ERi] in the conformal case and we refer to this approach as the Eastwood's curved

translation principle. These ideas were further extended and reformulated in [Bas1]

and another related approach using in fact the canonical Cartan connection on an

auxiliary vector bundle is worked out in [BEGo]. A very intricate extension of

this approach in the general setting of the AHS structures is published in [Bas3].

(However, the author of the present paper has not met anybody who understands

the arguments there in detail.) The original ideas of the Eastwood's approach are

worked out in full generality in the framework of the algebraical structure of the

semi-holonomic jets in [CSS4].

Another `translation' idea can be found in [Gov], see the survey paper [BE] on

conformal invariants for further details.

The other possibility to extend the translations to the curved case is to stick to

the duals of jets, but to replace the standard jets by the non-holonomic ones and to

study their algebraical structure in a similar way to that of the generalized Verma

modules. The �rst steps in this direction are done in [ESl].

The construction of the operators essential for the translations is usually related

to the various generalizations of the local twistor transport known from the confor-

mal geometry. In fact we have to extend the canonical Cartan connection on P to

its extension

~

P to the structure group G. We get a classical principal connection

~! in this way and we can use its covariant derivative on all bundles induced from

a representation of the whole group G. The formula is very simple:

r

~!

s(u)(X) = r

!

s(u)(X) +

~

�

X

:s(u) = r

!

s(u) � �(X) � s(u)

for all u 2 P �

~

P , X 2 g

�1

. This approach is also a very e�cient tool for

construction of invariant operators, see e.g. [BE], [BEGo], [Bas3].

6. The variation of the underlying connections

Consider now two B

0

-representation spaces V , W with B

0

-representations � and

�. The classical method how to construct the `invariant operators' is to consider a

general (usually polynomial) expression in the covariant derivatives and curvatures

of one of the connections in the distinguished class with unknown coe�cients and to

discuss under which conditions the resulting operator does not change if the chosen

connection is replaced by another one. This simple idea turns into a quite powerful

method once we observe, that it is enough to compute the change up to the �rst

derivatives only. Moreover, we can identify P

0

with the trivial bundle over its factor

P

0

0

by the action of the one-dimensional center of B

0

, with the �ber R. Then the

representations �, � correspond to representations �

0

and �

0

of the semisimple part

of B

0

together with the given scalar actions w

�

, w

�

of the center. The choice of the

underlying connection  is then equivalent to the choice of the linear connection

 on P

0

0

and the sections of E

�

and E

�

can be then considered as sections of the

bundles E

�

0

and E

�

0

which rescale upon the change of  according to the weights

w

�

and w

�

. This is the classical point of view in the conformal geometry.

There are many deep papers on conformally invariant objects using various mod-

i�cations of this approach, see e.g. [Bra1, Bra2, Bra3], [Feg], [Jak], [�rs], [W�un].

Let us now discuss how this approach �ts into our scheme. Obviously it is natural

to vary the chosen equivariant section � and to study the e�ect of this change
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on the distinguished linear connections. It turns out that if we use the calculus

for the admissible Cartan connections to compare the two induced connections ~

1

and ~

2

corresponding to equivariant sections �

1

, �

2

, we get a complete analogy

of the transformation rules describing the rescaling of a Riemannian metric in the

conformal geometry. In the sequel, the j1j-graded algebra g will be �xed, but

arbitrary, ! will be the canonical Cartan connection on the bundle in question and

� will be the standard deformation tensor transforming ~ into ! for an underlying

connection .

Theorem 1. Let �

1

and �

2

be equivariant sections P

0

! P .

(i) For all u 2 P

0

, �

2

(u) = �

1

(u):exp(�(u)) where �: P

0

! g

1

is the frame

form of a di�erential one-form which describes the di�erence of the corre-

sponding connections 

1

, 

2

.

(ii) For each section s 2 C

1

(P

0

; V )

B

0

, the covariant derivatives with respect

to the induced underlying connections 

1

and 

2

satisfy for all X 2 g

�1

r



2

s(u)(X) = r



1

s(u)(X) + �([X;�(u)]) � s(u):

(iii) The standard deformation tensors �

1

, �

2

determined by the connections 

1

and 

2

satisfy for all X 2 g

�1

�

2

(u)(X) = �

1

(u)(X) �r



1

�(u)(X) �

1

2

[�(u); [�(u); X]]:

Proof. The �rst assertion is in fact the de�ning formula for �, see [CSS1, Lemma

3.6] for the proof that this really gives a one-form.

To see the next equality we have to observe, that the induced admissible connec-

tions ~

1

and ~

2

di�er only in the g

1

-component. Thus r

~

1

(p

�

s) = r

~

2

(p

�

s). But

according to (9),

r

~

2

(p

�

s)(�

2

(u))(X) = r



2

s(u)(X)

r

~

1

(p

�

s)(�

2

(u))(X) = r



1

s(u)(X) + �([X;�(u)]):

The computation of the di�erence �� = �

2

� �

1

of the deformation tensors is a

little bit more tricky. In view of (4) we have just to compare the g

1

components of

the horizontal �elds ~

�1

1

(X) and ~

�1

2

(X) corresponding to X 2 g

�1

in an arbitrary

point in the �ber of P ! P

0

. Let us choose the point �

2

(u). The already known

di�erence between 

1

and 

2

implies the relation between the horizontal lifts of

X 2 g

�1

T

u

P

0

3 

�1

2

(X)(u) = 

�1

1

(X)(u) � �

[X;�(u)]

(u):

By the de�nition of the induced admissible Cartan connections, ~

�1

2

(X)(�

2

(u)) =

T�

2

(

�1

2

(X)(u)) and �

2

(u) = �

1

(u): exp(�(u)). Thus we can compute using the

equivariance of the parallel vector �elds ~

�1

1

(X) and the standard formula for

Ad(expZ):X, see [CSS1, Section 3] for similar computations. We shall denote
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by r the right principal action.

~

�1

2

(X)(�

2

(u)) = Tr � (�

1

; exp�)(

�1

1

(X)(u) � �

[X;�(u)]

(u))

= �

T��(

�1

1

(X))(u)

(�

2

(u)) + �

[[X;�(u)];�(u)]

(�

2

(u))+

T (r

exp�(u)

) � (~

�1

1

(X) � �

[X;�(u)]

)(�

1

(u))

= �

T��(

�1

1

(X))(u)

(�

2

(u)) + �

[[X;�(u)];�(u)]

(�

2

(u))+

~

�1

1

(X + [X;�(u)] +

1

2

[�(u); [�(u); X]])(�

2

(u))�

�

([X;�(u)]+[�(u);[�(u);X]])

(�

2

(u))

= ~

�1

1

(X)(�

2

(u)) + �

(T��(

�1

1

(X))+

1

2

[�(u);[�(u);X]])

(�

2

(u)):

Now, the canonical Cartan connection ! satis�es

!

�1

(X) = ~

�1

1

(X) + �

�

1

:X

= ~

�1

2

(X) + �

�

2

:X

and the above computation yields the negative of the required di�erence �

2

��

1

. �

The remarkable fact is, that exactly as in the conformal geometries, the trans-

formation of the tensor � involves the negative of the �rst covariant derivative of

� and the rest is bilinear in �. It was exactly this property which led to classical

procedures for the constructions of invariant operators. Basically, since one has to

compute the deformation up to the terms linear in � only, we can eliminate the

higher derivatives of � in the transformation rules for the constructed operator by

adding terms with the tensor �. But this is exactly what our expansion of the in-

variant di�erentials automatically does, cf. the last line in the formula in Lemma 1,

so that the covariant parts of the iterated invariant derivatives may be considered

as good approximations of invariant operators. The next Lemma clari�es further

this observation.

Lemma 2. Let us consider two underlying connections 

1

, 

2

and the expansion

(12) of the invariant diferential (r

!

)

k

. Then for each section s of E

�

and each

point u 2 P

0

, the di�erence of the covariant parts of the expansion equals

D

0

(�

2

; 

2

)s(u) �D

0

(�

1

; 

1

)s(u) = D

1

(�

1

; 

1

;�)s(u) + � � �+D

k

(�

1

; 

1

;�)s(u):

In particular, the covariant parts of our invariant di�erentials involve no derivatives

of � in their variations under the change of the underlying connections.

Proof. Let �

1

and �

2

be the equivariant sections of P ! P

0

corresponding to 

1

and 

2

. Expanding the iterated di�erential with respect to the Cartan connection

! in the point �

2

(u) in terms of 

1

and 

2

, we obtain

(r

!

)

k

p

�

s(�

2

(u) = D

0

(�

2

; 

2

)s(u) + 0

= D

0

(�

1

; 

1

)s(u) +D

1

(�

1

; 

1

;�)s(u) + � � �+D

k

(�

1

; 

1

;�)s(u)

see Theorem 1 for the relation of the � 's from Section 3 and our �'s. This yields

just the required di�erence and all the obstruction terms involve no derivatives of

the � 's by the recurrence procedure. �



12 JAN SLOV

�

AK

Lemma 3. Let E

�

and E

�

be as above and consider an operator

D() =

k

X

`=0

A

`

() � (r

!

)

`

depending on a choice of the underlying connection . Moreover, let us assume that

the coe�cients A

`

2 C

1

(P;Hom(


`

g

�

�1


 V

�

; V

�

)) are polynomial expressions in

the curvature and covariant derivatives of  and � 's. If the variation of the covariant

part of D() in its expansion (12) under the change of the underlying connection

 involves no derivatives of �, then also the variations of all the coe�cients A

`

()

do not involve the derivatives of �.

Proof. The coe�cient A

k

() appears at the iterated covariant di�erential (r



)

k

and there is no other term of this order. Thus the variation of A

k

() must not

involve any derivative of �. Thus, variation of the covariant part of A

k

()(r

!

)

k

does not involve any derivative of �, according to Lemma 2. Now the covariant

part of the expansion of the di�erence D�A

k

()(r

!

)

k

has the same property and

so the variation of A

k�1

() must not involve any derivative of �. By induction,

the Lemma is proved. �

The curvature �

�1

� �

0

� �

1

2 C

1

(P; g

�

�1

^ g

�

�1


 g) satis�es all assumptions

of Lemma 1 and according to the recurrence procedure for the expansion from

Section 3 all iterated invariant derivatives of the individual parts of the curvature

can be used for building the coe�cients A

`

. The next proposition shows that it is

enough to allow such coe�cients in order to obtain all invariant operators which

are available by means of the variation of the underlying connection. Moreover, we

give strongly restrictive properties of the possible coe�cients A

`

.

Theorem 2. Let F be a polynomial expression in terms of the covariant deriva-

tives and curvatures of the underlying connections on P

0

. If the values of F on

sections of associated bundles E

�

induced from a B

0

representation � do not

depend on the particular choices of the linear connection, then there are coef-

�cients A

`

2 C

1

(P;Hom(


`

g

�

�1


 V

�

; V

�

)) expressed by means of the curva-

ture of the canonical Cartan connection ! and its invariant iterated di�erentials,

` = 1; : : : ; k, such that the covariant part D

0

(;�)s(u) of the expansion of the op-

erator D =

P

k

`=0

A

`

� (r

!

)

`

in the terms of the underlying connections coincides

with F while the obstruction terms vanish identically. In particular, the top degree

coe�cient A

k

must then be an absolutely invariant tensor.

Proof. Let us assume �rst that we are given an expression

P

k

`=0

A

`

� (r

!

)

`

for

which the covariant part D

0

(�; )s of the expansion does not depend on the choice

of the connection . Let us �x such a connection 

1

and compare the expansions for

this one and another connection 

2

. Let us write �

1

and �

2

for the corresponding

equivariant sections P

0

! P . For all u 2 P

0

we have

k

X

`=0

A

`

� (r

!

)

`

s(�

2

(u)) = D

0

(�

1

; 

1

)s(u) +D

1

(�

1

; 

1

;�)s(u) + : : :

= D

0

(�

2

; 

2

)s(u) + 0
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But since both the operator D and its covariant part D

0

are independent of the

choice of , all the obstruction terms in the expansion on the �rst line must vanish.

For �xed 

1

we can achieve each value of � by a proper choice of 

2

, so all the

obstructions vanish identically for the connection 

1

. But 

1

was arbitrary.

So the Theorem will be proved, once we verify that each expression F indepen-

dent of the choice of  is available among the covariant parts of the expansions of

our operators D.

By induction, the covariant part of the expansion of the di�erence (r

!

)

k

(p

�

s)�

p

�

(r



)

k

s is an operator of order at most k� 2. Thus all expressions F built of the

iterated covariant di�erentials (r



)

`

and the covariant parts of the curvatures �

�1

,

�

0

, �

1

of ! and their covariant derivatives are available among the covariant parts

of our operators D. Now we have to recall the explicit formulae (5){(7) for the

deformations of the curvature of the admissible Cartan connections. An obvious

consequence is that �

�1

is the pullback of the common torsion t



of all underlying

connections, the covariant part of �

0

is the trace-free part of the curvature of ,

i.e. the Weyl curvature (its explicite formula C(X;Y ) = R(X;Y ) � [X;�:Y ] �

[�:X; Y ] is visible from (6), see the discussion in Section 3 and [CSS1]), while the

covariant part of the g

1

-part is 2Alt(r



�)��� t



, a generalization of the so called

Cotton-York tensor well known from the conformal Riemannian geometry. The

covariant parts of the iterated invariant di�erentials of the curvature yield then

the covariant derivatives of these expressions. Moreover, each antisymmetrization

in the arguments of the `'s iterated di�erential yields an expression of order ` � 2

involving another curvature term. Thus we can restric ourselves to the symmetrized

invariant di�erentials of the three parts of the curvature only.

Assume for a moment that also the deformation tensor � itself and the full

symmetrizations Sym(r



)

`

� may appear in the coe�cients (more explicitly, the

pullbacks of these quantities). Since the curvature of  can be always recovered from

its trace{free part and the deformation tensor �, and also the antisymmetrization of

r



� is available from �

1

once we admit the tensor �, the above induction argument

shows, that all di�erential operators built polynomially of r



and the curvature of

 are available now among the covariant parts of the expansions of D. So let us

�x a choice of A

`

leading to the given expression F . Now, according to Lemma 3,

the variation of an arbitrary coe�cient A

`

under the change of the connection 

cannot involve derivatives of �.

The torsion is covariant and has variation zero. The trace-free part of  has the

same property. The variation of the alternation of the �rst derivative of � could

be read of formula in (iii) of Theorem 1. However, it turns out to be much easier

to follow the same argument as in Lemma 2, i.e. to express �

1

(�

2

(u))(X;Y ) �rst

in terms of 

2

and then in terms of 

1

. The comparison then yields the required

variation which obviously does not involve any derivative of �. Moreover, we have

seen that all three parts of the curvature satisfy the assumptions of Lemma 1, see

[CSS1, Lemmas 3.8 and 3.10] for more details. Thus also the covariant parts of all

iterated invariant derivatives of them have the same property.

On the contrary, an easy induction shows that the variation of the symmetrized

covariant derivatives Sym((r



)

`

�) involves the term �(r



)

`+1

� and there are no

other linear terms in � there, see (iii) of Theorem 1. Since there are no derivatives of

� among the derivatives of �, the whole contribution of the symmetrized derivatives
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of � vanishes whenever these terms cancel.

Finally, if the linear obstruction term in the expansion of the top degree coe�-

cient A

k

is non{zero, then this term appears as a coe�cient at (r



)

k

and there is

no other term of degree k in r



which could cancel with this one. Thus the linear

obstruction term of A

k

vanishes identically. �

This theorem shows that the obstruction technique recovers exactly the `confor-

mal calculus' developed by W�unsch and G�unther for conformal Riemannian man-

ifolds of dimensions m � 4. This calculus was probably the �nest version of the

method of variations of the Riemannian metric in the conformal class. In our ap-

proach, we have obtained a straightforward extension of this calculus to all struc-

tures in question (in particular for the three{dimensional Riemannian conformal

geometries).
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