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Abstract. The AHS{structures on manifolds are the simplest cases of the so called

parabolic geometries which are modelled on homogeneous spaces corresponding to a

parabolic subgroup in a semisimple Lie group. It covers the cases where the negative

parts of the graded Lie algebras in question are abelian. In the series [

�

Cap, Slov�ak,

Sou�cek, 94, 95], the authors developed a consistent frame bundle approach to the

subject. Here we give explicite descriptions of the obstructions against the atness of

such structures based on the latter approach. In particular we recover the complex

real-analytic results from [Baston] in the real smooth setting.

AMS Classi�cation: 53C10, 53C05

1. Introduction

This note is an addendum to the series of papers [

�

Cap, Slov�ak, Sou�cek, 94, 95]. In

the second paper of this series we have shown how to construct a canonical Cartan

connection on a manifold with an almost Hermitian symmetric structure, and we

observed that the classical theory of prolongations of G{structures implies that such

a structure is locally isomorphic to the homogeneous at model if and only if this

canonical Cartan connection has zero curvature.

The curvature of the canonical Cartan connection naturally splits into three parts

according to the j1j{grading of the Lie algebra under consideration. Using the known

results about the Spencer cohomologies and the calculus for Cartan connections de-

veloped in [

�

Cap, Slov�ak, Sou�cek, 94], it is rather easy to analyze, which of these

parts are true obstructions and which vanish automatically. Moreover, for each of the

structures in question we can compute these obstructions explicitly in terms of any

of the underlying linear connections belonging to the distinguished class.

We will use the notations of [

�

Cap, Slov�ak, Sou�cek, 94, 95], and citations starting

with I or II refer to the corresponding items in parts I and II of this series.

2. j1j{graded Lie algebras and Spencer cohomology

2.1. We start with a semisimple real j1j{graded Lie algebra g = g

�1

� g

0

� g

1

and

consider the Spencer cohomologyH

�

(g

�1

; g), which is just the Lie algebra cohomology
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of the abelian Lie algebra g

�1

with coe�cients in the module g. The standard complex

for computing this cohomology is given by C

k

:= �

k

g

�1

�


 g with the di�erential

@ : C

k

! C

k+1

de�ned by

@'(X

0

; : : : ;X

k

) :=

k

X

i=0

(�1)

i

[X

i

; '(X

0

; : : : ;

c

X

i

; : : : ;X

k

)];

where we view C

k

as the space of k{linear maps g

�1

k

! g.

Now the grading of g clearly induces a grading on each of the spaces C

k

, by

putting C

k;`

:= �

k

g

�1

�


 g

`

for ` = �1; 0; 1. Obviously the di�erential @ satis�es

@(C

k;`

) � C

k+1;`�1

. Thus we get an induced grading on the cohomologyH

�

(g

�1

; g) =

�

`

H

�;`

(g

�1

; g).

Note that g

0

is a Lie subalgebra of g, the adjoint action makes g

�1

and g

1

into

g

0

{modules, and the di�erential @ is actually a homomorphism of g

0

{modules for

the induced structures. In particular, this implies that the cohomology spaces are

g

0

{modules.

2.2. It is well known (see [Ochiai, lemma 3.3]) that for a semisimple j1j{graded Lie

algebra g = g

�1

�g

0

�g

1

, the Cartan Killing form induces an isomorphism g

1

�

=

g

�1

�

of g

0

{modules. Now let f�

i

g be a basis of g

�1

and let f�

i

g be the dual basis of g

1

.

Following [Kostant], we de�ne an operator @

�

: C

k;`

! C

k�1;`+1

by putting

@

�

'(X

1

; : : : ;X

k�1

) :=

X

i

[�

i

; '(�

i

;X

1

; : : :X

k�1

)]

It can be shown, see [Ochiai, proposition 4.1], that the operator @

�

is the adjoint of @

with respect to a certain inner product on the complex C

�

. In particular, this implies

that the kernel of @

�

and the image of @ are complementary subspaces.

2.3. The construction of the adjoint operator @

�

and the resulting Hodge theory

for the Spencer cohomology is a crucial step in the computation of this cohomology,

which was �rst done in [Kostant], see also [Ochiai, section 5]. What we will need in

the sequel is just which components of the second cohomology are nontrivial. This is

determined in [Baston] in the complex case, and by [Ochiai, lemma 2.4] the result is

the same in the real case.

3. AHS{structures and the canonical Cartan connection

3.1. Let g be a j1j{graded Lie algebra as above, and let G be a connected Lie group

with Lie algebra g. By B, B

0

and B

1

we denote the Lie subgroups of G corresponding

to b := g

0

� g

1

, g

0

and g

1

, respectively.

Now let P

0

! M be a �rst order B

0

{structure on a smooth manifold M which

has the same dimension as g

�1

. In [

�

Cap, Slov�ak, Sou�cek, 95] we have shown how

to construct from this a principal bundle P ! M with structure group B, which is

called the �rst prolongation of P

0

! M . Moreover the projection P ! M factors

over P

0

and P ! P

0

is a principal B

1

{bundle. Note that in the case of projective

structure this prolongation cannot be constructed from the �rst order part (which

actually contains no information) but it has to be chosen as an ingredient of the

structure.
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3.2. Recall the de�nition of a Cartan connection on P !M . This is a g{valued one

form ! 2 


1

(P; g) such that

(1) !(�

X

) = X for all X 2 b, where �

X

denotes the fundamental vector �eld

corresponding to X.

(2) (r

b

)

�

! = Ad(b

�1

)�! for all b 2 B, where r

b

denotes the right principal action

with b and Ad denotes the adjoint action.

(3) !j

T

u

P

: T

u

P ! g is a bijection for all u 2 P .

The curvature K 2 


2

(P; g) of such a Cartan connection is de�ned by the structure

equation d! = �

1

2

[!;!]+K. In I.2.1 we have shown that the curvature is completely

described by the function � : P ! g

�

�1

^ g

�

�1


 g, which is de�ned by �(u)(X;Y ) =

K(!

�1

(X); !

�1

(Y ))(u).

3.3. In the second section of [

�

Cap, Slov�ak, Sou�cek, 95] it is shown that for all struc-

tures but the one dimensional projective ones, there is a unique Cartan connection !

on the �rst prolongation P !M , such that @

�

(�

�1

(u)) = 0 and @

�

(�

0

(u)) = 0 for all

u 2 P , where we split � = �

�1

+ �

0

+ �

1

according to the grading of g. This is called

the canonical Cartan connection. Since @

�

(�

1

(u)) is automatically zero (the relevant

@

�

has values in the zero space), the canonical Cartan connection is characterized by

the fact that @

�

� � = 0.

For any group G as above, there is a canonical at model of the corresponding

structure. This is the homogeneous space G=B, and the bundle G! G=B is the �rst

prolongation of the at structure. In this case, the canonical Cartan connection is

the Maurer{Cartan form, and the Maurer{Cartan equation says that this has zero

curvature. Moreover, an AHS{manifold is locally at, i.e. locally isomorphic (as a

B

0

{structure) to the at model if and only if its canonical Cartan connection has

zero curvature, see II.2.4.

3.4. Next recall from I.2.4 the Bianchi identity for the curvature of any Cartan con-

nection:

X

cycl

([�(X;Y ); Z]� �(�

�1

(X;Y ); Z) �r

!

Z

�(X;Y )) = 0;

where

P

cycl

denotes the sum over all cyclic permutations and X;Y;Z 2 g

�1

. Now

the �rst term in this equation can be rewritten as

�[Z; �(X;Y )] + [Y; �(X;Z)]� [X;�(Y;Z)] = �(@�)(X;Y;Z):

Splitting the resulting equation for @� according to the grading of g we arrive at the

following four equations (recall that @�

`

has values in g

`�1

):

(@�

�1

)(X;Y;Z) = 0(1)

(@�

0

)(X;Y;Z) = �

X

cycl

�

�

�1

(�

�1

(X;Y ); Z) +r

!

Z

�

�1

(X;Y )

�

(2)

(@�

1

)(X;Y;Z) = �

X

cycl

�

�

0

(�

�1

(X;Y ); Z) +r

!

Z

�

0

(X;Y )

�

(3)

0 = �

X

cycl

�

�

1

(�

�1

(X;Y ); Z) +r

!

Z

�

1

(X;Y )

�

(4)
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Here r

!

denotes the absolutely invariant di�erentiation introduced in I.2.3.

Using these formulae it is now fairly easy to discuss, which parts of the curvature

of the canonical Cartan connection are actual obstructions to local atness and which

vanish automatically as follows: First we see that for the component �

�1

we have

@�

�1

= 0, so �

�1

is a Spencer{cocycle in C

2;�1

. On the other hand, @

�

�

�1

= 0 and

the kernel of @

�

is complementary to the image of @. Thus we see that �

�1

vanishes

automatically if H

2;�1

(g

�1

; g) = 0, and is a true obstruction otherwise.

Next, let us assume that �

�1

= 0. Then, according to equation (2), this implies

that �

0

is a cocycle, so as before we conclude that this vanishes automatically if

H

2;0

(g

�1

; g) = 0 and is a true obstruction otherwise.

Finally, if both �

�1

and �

0

vanish then the equation (3) shows that �

1

is a cocycle,

so this vanishes automatically if H

2;1

(g

�1

; g) = 0 and is a true obstruction otherwise.

3.5. We shall give explicit expressions for the obstruction terms in terms of any of

the connections from the so called distinguished class of connections on P

0

! M .

The connections in this class are in bijective correspondence with the space of all

B

0

{equivariant sections of P ! P

0

and they can be parametrized by exterior 1{

forms on M . This bijection is given by mapping a section � to the connection with

connection form �

�

!

0

2 


1

(P

0

; g

0

), where !

0

is the g

0

{component of the canonical

Cartan connection on P !M , see I.3.6 and II.1.7.

There is also an alternative description of the distinguished class of connections in

all cases except the projective structures: Recall that since P

0

! M is a �rst order

B

0

{structure one can assign a torsion to any principal connection on this bundle,

which can be viewed as a smooth function P

0

! g

�1

�

^ g

�

�1


 g

�1

, see II.1.7. The

distinguished connections are then precisely those for which the torsion in each point

is @

�

{closed. Moreover, there is only one possible torsion function in each case, so

all connections in the distinguished class have the same torsion (in fact this torsion

function is the structure function of the B

0

{structure P

0

!M), and the pullback of

this function to P is precisely the component �

�1

of the curvature of the canonical

Cartan connection. For example, in the case of the conformal pseudo{Riemannian

structures the distinguished connections are exactly the Levi-Civit�a connections of

the metrics from the conformal class.

On the other hand, having given a connection  from the distinguished class and

the corresponding section � : P

0

! P , we can form the induced Cartan connection ~

on P !M , see I.3.7. The pullback of the curvature of this induced Cartan connection

to P

0

is just the curvature and torsion of , see I.3.8.

3.6. From the above discussion it is clear that the �rst obstruction to local atness

(corresponding to �

�1

) is the existence of a torsion free principal connection on P

0

!

M .

Now let us assume that this �rst obstruction vanishes, take a torsion free connection

 on P

0

!M corresponding to a section � : P

0

! P and let ~ be the induced Cartan

connection on P ! M . The di�erence between this induced Cartan connection and

the canonical one is described by the deformation tensor � 2 C

1

(P; g

�1

�


g

1

) which

is always a pullback of a tensor on P

0

, see I.3.9. Formulae (4), (5) and (6) of I.3.10

give an explicit description of the e�ect of the deformation tensor on the curvatures
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(�� is the `deformed' curvature):

(�

�1

� ��

�1

)(u)(X;Y ) = 0(5)

(�

0

� ��

0

)(u)(X;Y ) = [X;�(u):Y ] + [�(u):X; Y ](6)

(�

1

� ��

1

)(u)(X;Y ) = r

!

X

�(u):Y �r

!

Y

�(u):X + �(u)(�

�1

(X;Y ))(7)

Moreover, in the torsion free case the equivariance properties of the curvature com-

ponents derived in I.3.8 are

�

0

(u)(X;Y ) = �

0

(�(p(u)))(X;Y )(8)

�

1

(u)(X;Y ) = [�

0

(�(p(u)))(X;Y ); � (u)](9)

where � (u) 2 g

1

is qiven by the equality u = �(p(u)):exp(� (u)). Thus if the torsion of

the canonical Cartan connection is zero, then it su�ces to compute �

0

on �(P

0

) � P ,

where we already know that the curvature of ~ is just given by the curvature and

torsion of . Furthermore, by the construction of the canonical Cartan connection as

that one with @

�

{closed curvature, the achieved g

0

{part �

0

coincides on �(P

0

) exactly

with the trace{free part of the curvature of the underlying connection , the so called

Weyl curvature tensor.

4. Obstructions against local flatness

In section 3 of [

�

Cap, Slov�ak, Sou�cek, 95] we have computed explicitly the defor-

mation tensor � giving the canonical Cartan connection for several real forms of the

main complex series of the AHS{structures, in terms of the Ricci curvature tensor of

a chosen distinguished connection . In this section we derive the explicit results on

the obstructions for these individual structures. The splitting into the various cases

is dictated by the di�erent second cohomology groups. On the other hand, as men-

tioned above the vanishing of the second cohomologies is independent of our choice

of the real forms, thus the discussion below aplies to all of them, for a classi�cation

list see [Ochiai, section 7]. In particular, the obstruction coming from �

�1

is always

the torsion of the underlying linear connections, while that one corresponding to �

0

is the Weyl curvature (the trace free part) of them. Let us notice, that all the found

obstruction tensors are invariants of the structures in question.

Let us �rst start with the sl(p + q) series, the corresponding structures are called

almost Grassmannian (the at models are the Grassmannian manifolds). We do not

discuss the case of one{dimensional projective structures, since there is no canonical

Cartan connection in this case. As stated before we take the results on the second

cohomology from [Baston, table 2].

4.1. Two{dimensional projective structures. This is the special case p = 1,

q = 2 of an almost Grassmannian structure, see I.3.3, so g = sl(3;R). In this case the

cohomologiesH

2;�1

(g

�1

; g) andH

2;0

(g

�1

; g) are trivial, whileH

2;1

(g

�1

; g) is nonzero.

Thus in this case, there always is a torsion free connection  in the distinguished

class on P

0

! M (in fact P

0

is the whole �rst order frame bundle P

1

M), and the

only obstruction comes from �

1

. Writing ! = ~ � � � �

�1

for the canonical Cartan
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connection, we get from II.3.9 the formula �

jk

= R

l

jlk

+R

l

ljk

for the uniquely de�ned

deformation tensor, where R

i

jkl

means the curvature tensor of . By (9) the g

1

{

component of the curvature of ~ is trivial on �(P

0

), so that (7) gives the curvature

component ��

1

of the canonical Cartan connection:

(10) ��

1

(u)(X;Y ) = r

~

Y

�(u):X �r

~

X

�(u):Y:

Considering � as a a tensor on P

0

(which we actually already did above) we see from

I.3.8.(1) that we may replace the invariant di�erentialsr

~

(still on �(P

0

)) by covariant

derivatives with respect to . Using the Bianchi identity for principal connections

and the Ricci tensor R

jk

= R

l

jlk

of  yields R

l

ljk

= R

jk

� R

kj

, and so we obtain

�

jk

= 2R

jk

�R

kj

. Thus, the coordinate expression for the only obstruction against

the atness of a two{dimensional projective structure is the tensor

(11) t

jkl

= 2R

jk;l

�R

kj;l

+ 2R

jl;k

�R

lj;k

:

Notice that if the choosen connection happens to be a Riemannian one, than the tensor

t

jkl

is the symmetrization of the �rst covariant di�erential of the Ricci curvature.

4.2. Higher dimensional projective structures. Now we deal with the cases

p = 1, q > 2 of almost Grassmannian structures, see I.3.3, so g = sl(q +1;R). In this

case the cohomologies H

2;�1

(g

�1

; g) and H

2;1

(g

�1

; g) are trivial, while H

2;0

(g

�1

; g)

is nonzero in general. Thus in this case, there always is a torsion free connection 

on P

0

! M in the distinguished class, and the only obstruction against the atness

comes from �

0

. Thus the vanishing of the Weyl curvature tensor W

i

jkl

of  (cf. the

end of 3.6) is equivalent to the local atness of the projective structures in dimensions

greater than two.

4.3. Structures related to the quaternionic manifolds. We deal with another

special case of the almost Grasmannian structures where g = sl(2; q;R), q � 2.

First assume q = 2 (so that we consider a real form of so(6; C )). Only the coho-

mology H

2;0

(g

�1

; g) is nonzero. Thus the only obstruction against the local atness

is the Weyl curvature tensor of any of the underlying linear connections on P

0

.

If q > 2, then the cohomology H

2;1

(g

�1

; g) is trivial, while both H

2;�1

(g

�1

; g) and

H

2;0

(g

�1

; g) are nonzero in general. Thus there are two tensors which obstruct the

atness of the structure: the torsion and the Weyl curvature tensor of any of the

underlying linear connections on P

0

.

4.4. Higher dimensional Grassmannian structures. In the cases of g = sl(p+

q;R), 3 � p � q, the only nonzero second cohomology is H

2;�1

(g

�1

; g). Thus the only

obstruction against the atness is the torsion of the underlying connections. This

means that the structure in question is locally at if and only if it admits a torsion

free linear connection.

Now the remaining structures from the main series:

4.5. Conformal Riemannian structures. The Lie algebra in question is g =

so(p + 1; q + 1;R), where p + q = m > 2 is the dimension of the manifolds. In the
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case of three-dimensional conformal pseudo{Riemannian structures the only nonzero

second cohomology is H

2;1

(g

�1

; g), so that we are in a situation analogous to that of

two{dimensional projective structures. Thus the only obstruction comes from �

1

and

it is given by formula (10). However, now the deformation tensor � is the tensor

�

ij

=

�1

m� 2

�

R

ij

�

�

ij

2(m� 1)

R

�

:

Thus we get the well known obstruction against local atness, the Cotton{York tensor

�

ij;k

� �

ik;j

.

If the dimension is bigger than three, then the only nonzero second cohomology is

H

2;0

(g

�1

; g) and so we have recovered the well known fact that a conformal pseudo{

Riemannian manifold of dimension m � 4 is locally (conformally) at if and only if

the Weyl curvature of one (and thus any) Riemannian connection from the conformal

class vanishes.

4.6. Almost Lagrangian structures. The corresponding Lie algebra is g =

sp(2n;R), the manifolds are modelled over S

2

R

n

. The three-dimensional case (i.e.

n = 2) is isomorphic to that one of the three dimensional conformal Riemannian

structures, so the appropriate obstruction is the Cotton-York tensor.

In all higher dimensions, the only nonzero second cohomology is H

2;�1

(g

�1

; g),

thus the only obstruction is the existence of a torsion free linear connection of the

structure.

4.7. Almost spinorial structures. Now g = so(2n;R), n � 5 (the lower di-

mensional cases coincide with some previous ones, e.g. we get the six-dimensional

conformal Riemannian structures for n = 4). Also in this case the only nonzero sec-

ond cohomology is H

2;�1

(g

�1

; g). Thus the almost spinorial structures are locally at

if and only if they admit a torsion free linear connection.

We have not studied in detail the cases of the j1j{graded exceptional Lie algebras,

but the general theory applies as well.
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