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PRINCIPAL PROLONGATIONS AND GEOMETRIES

MODELED ON HOMOGENEOUS SPACES

Jan Slov

�

ak

To Ivan Kol�a�r, on the occasion of his 60th birthday.

Abstract. We discuss frame bundles and canonical forms for geometries modeled

on homogeneous spaces. Our aim is to introduce a geometric picture based on the

non-holonomic jet bundles and principal prolongations as introduced in [Kol�a�r, 71].

The paper has a partly expository character and we focus on very general aspects

only. In the �nal section, various links to known results on the parabolic geometries

are given briey and some directions for further investigationsare roughly indicated.

Introduction

The classical G-structures are de�ned as reductions of the frame bundles P

r

M

to structure groups G (usually called higher order structures if r > 1). As a

consequence, certain torsions of such structures vanish. These notions generalize

easily to reductions of semi-holonomic frame bundles, and even to reductions of

holonomic, semi-holonomic, or non-holonomic principal prolongations as reviewed

below. Then we can deal with all torsions quite nicely. These ideas can be traced

back up to Cartan and Ehresmann and an explicit treatment of them was given

in [Kol�a�r, 71]). Several authors used similar constructions later.

Here we aim to discuss a very general framework for curved geometries modeled

on a given homogeneous space G=B, viewed as certain deformations of the Maurer-

Cartan form on G. Thus our objects will be principal �ber bundles P with the

structure group B equipped with a B-equivariant absolute parallelism TP ! g

reproducing fundamental �elds on P . Such objects are usually called Cartan

connections of the type G=B. This paper has been inspired by our recent study of

the so called parabolic geometries, i.e. the cases where B is a parabolic subgroup

in a semisimple group, we restrict ourselves to very general aspects however. We

hope to describe a general setting suitable for a wider range of problems after

appropriate re�nements. Actually, the papers [Tanaka, 79], [Morimoto, 93], [

�

Cap,
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Schichl] present essentially complete solutions to our problems in the parabolic

case.

Since dealing with a very general setting, we do not present any deep theorems.

Rather we focus at geometric constructions of objects which we believe to be useful.

Any application to a particular geometrical problem requires further re�nements

of our objects. We try to indicate certain possibilities for such modi�cations in

the �nal section.

Let us illustrate our attempts on most simple but rather typical examples,

the conformal Riemannian and almost Grassmannian geometries. Both can be

de�ned as reductions of the linear frame bundles to the appropriate subgroups in

the general linear group and the above mentioned principal bundles P equipped

with the Cartan connections ! are constructed from these data, see e.g. [Tanaka,

70], [Baston, 91], [

�

Cap, Slov�ak, Sou�cek, 95]. There are two basic options for such

constructions, either we try to construct P and ! as abstract objects without any

auxiliary bundles, or we try to localize them as reductions of certain `universal

bundles' equipped with canonical forms. All the above mentioned papers took the

�rst option, here we discuss a fairly general background for the other approach.

Classically, the higher order (holonomic) frame bundles were considered, which was

applicable under vanishing of certain torsions, see e.g. [Kobayashi, 72]. However,

the existence of a non-vanishing torsion excludes this approach even for the almost

Grasmannian geometries. Moreover, already in the conformal case we cannot

obtain the canonical Cartan connections via reductions of higher order holonomic

frame bundles, in general. On the other hand, the canonical Cartan connections

for both these structures are available via reductions of third order semi-holonomic

frame bundles. In the third section of this paper, we show that each principal �ber

bundle equipped with a Cartan connection ! can be uniquely obtained in a similar

way. Thus the semi-holonomic frame bundles can be considered as the universal

bundles.

The �rst section is preparatory, we discuss the homogeneous spaces as suitable

canonical reductions of (holonomic) frame bundles. Next, we study the canonical

forms on the semi-holonomic frame bundles. Most ideas in Section 2 appeared at

least implicitly in [Kol�a�r, 71a], [Kol�a�r, 71b], [Kol�a�r, 75a], [Kol�a�r, 75b]. The in�nite

semi-holonomic frame bundles are in fact essentially equivalent to a special case

of the universal towers in [Morimoto, 93], but we believe that our categorical

treatment will allow a wider range of re�nements.

The author would like to thank Andreas

�

Cap and Ivan Kol�a�r for helpful discu-

sions.

1. Homogeneous spaces as reductions of frame bundles

1.1. Our �rst goal is to describe homogeneous spaces as canonical reductions of the

frame bundles. Let us �x a �nite dimensional Lie group G and its closed subgroup

B � G, and write m = dimG=B. We also choose a �xed complementary vector

space n

�

� g to the subalgebra b so that exp

jn

�

is a locally de�ned di�eomorphism

n

�

! G=B on a neighborhood of zero. In order to relate the left Maurer-Cartan
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form on G with the canonical forms on the (holonomic) frame bundles, we need

to �x the right identi�cation of B and b with subgroups and subalgebras in the

jet groups and jet algebras G

k

m

and g

k

m

, respectively.

Let us write P

k

M = invJ

k

0

(R

m

;M ) for the kth order (holonomic) frame bundle

on m-dimensional manifolds M . Since P

k

M � J

1

(R

m

; P

k�1

M ) in a canonical

way, there is the canonical form �

(k�1)

2 


1

(P

k

M;R

m

� g

k�1

m

), see the detailed

discussion of more general concepts in Section 2 below.

The left multiplication `

g

by elements in G determines the canonical mappings

�

k

: G! P

k

(G=B)

g 7! j

k

0

(`

g

� exp

jn

�

) 2 J

k

0

(n

�

; G=B)

[g]

�

k

: B ! G

k

m

b 7! j

k

0

�

(exp

jn

�

)

�1

� `

b

� exp

jn

�

�

2 J

k

0

(n

�

; n

�

)

0

:

On a neighborhood of the unit, the mapping �

k

extends by the same formula to a

mapping �

k

: U � G ! J

k

0

(n

�

; n

�

). The tangent mapping to �

k

at the unit in G

provides the canonical mapping g! T

j

k

0

id

(P

k

n

�

)

g 3 X =

@

@t

j0

(exp tX) 7!

@

@t

j0

j

k

0

�

(exp

jn

�

)

�1

� `

exp tX

� exp

jn

�

�

which is always injective on n

�

. We shall also write �

k

: g ! R

m

� g

k

m

for this

mapping, as well as for its restriction b ! g

k

m

to the Lie algebra b. Since the

principal �ber bundle automorphisms `

g

: G ! G correspond to right invariant

vector �elds on G on the Lie algebra level, �

k

can be also described as the projection

of these vector �elds onto the k-jets of the underlying vector �elds. The elements

in T

j

k

0

id

(P

k

n

�

) ' R

m

�g

k

m

can be viewed as right invariant vector �elds along the

�ber over 0 2 n

�

. Let us write `

b

for the obvious action of elements b 2 G

k+1

m

on

these vector �elds.

Obviously, �

k

: G ! P

k

(G=B) are homomorphisms of principal �ber bundles

with the corresponding homomorphisms �

k

between the structure groups.

1.2. Lemma. The following diagram commutes for all b 2 B and k � 0:

g w

�

k

u

Ad

b

T

j

k

0

id

(P

k

n

�

) R

m

� g

k

m

u

`

�

k+1

(b)

g w

�

k

T

j

k

0

id

(P

k

n

�

) R

m

� g

k

m
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Proof. Let us compute `

�

k+1

(b)

� �

k

(

@

@t

j0

exp tX).

@

@t

j0

exp tX 7! `

j

k+1

0

(exp

�1

jn

�

�`

b

�exp

jn

�

)

(

@

@t

j0

j

k

0

(exp

�1

jn

�

�`

exp tX

� exp

jn

�

))

= T

j

k

0

id

(P

k

(exp

�1

jn

�

�`

b

� exp

jn

�

))

�

@

@t

j0

j

k

0

(exp

�1

jn

�

�`

exp tX

� exp

jn

�

)

�

=

@

@t

j0

j

k

0

(exp

�1

jn

�

�`

b

� `

exp tX

� exp

jn

�

) 2 T

�

k

(b)

P

k

(n

�

)

' Tr

�

k

(b

�1

)

:

@

@t

j0

j

k

0

(exp

�1

jn

�

�`

b

� `

exp tX

� exp

jn

�

) 2 T

j

k

0

id

P

k

(n

�

)

=

@

@t

j0

j

k

0

(exp

�1

jn

�

�`

b

� `

exp tX

� `

b

�1 � exp

jn

�

)

= �

k

�Ad

b

(X) �

1.3. The trivial �ltrations. The Lie group B and its Lie algebra b carry the

compatible �ltrations B = F

0

B � F

1

B � : : : and b = F

0

b � F

1

b � : : : deter-

mined by the exact sequences

1 w F

k

b y w b w

�

k

g

k

m

w 1

1 w F

k

B y w B w

�

k

G

k

m

w 1

We set F

�1

G = G, F

�1

g = g and F

k

G = F

k

B, F

k

g = F

k

b, k � 0. So G becomes

a �ltered Lie group and F

k

G are normal subgroups in F

0

G with Lie algebras F

k

g

for all k > 0.

We say

1

that the order of the homogeneous space is k, if k is the smallest integer

with F

k

g = f0g. The homogeneous space is said to be in�nitesimally e�ective if

\

1

k=0

F

k

g = f0g. An in�nitesimally e�ective space G=B which does not have any

�nite order is said to have order 1.

By de�nition, if the order of G=B is k then the map �

k

is a reduction of the

frame bundle P

k

(G=B) in the sense that the structure group might be a covering

of a subgroup in G

k

m

(like the spin groups in Riemannian geometries).

1.4. Lemma. Assume the order of G=B is k. Then, under the identi�cation

�

k

: g ' �

k

(g) � R

m

� g

k

m

, the pullback (�

(k+1)

)

�

(�

(k)

) 2 


1

(G; g) is the left

Maurer-Cartan form on G.

Proof. We have to prove that for each X 2 g, g 2 G,

(�

k+1

)

�

(�

(k)

)(

@

@t

j0

g: exp tX) = X:

Let us consider X 2 g and the vector � =

@

@t

j0

g: exp tX 2 T

g

G. By de�nition

(�

k+1

)

�

�

(k)

(�) = T (P

k

exp

�1

jn

�

�P

k

`

�1

g

):

@

@t

j0

�

P

k

(`

g

� `

exp tX

� exp

jn

�

)(j

k

0

id)

�

=

@

@t

j0

P

k

(exp

�1

jn

�

�`

exp tX

� exp

jn

�

)(j

k

0

id)

=

@

@t

j0

j

k

0

(exp

�1

jn

�

�`

exp tX

� exp

jn

�

)

= �

k

(X) 2 R

m

� g

k

m

: �

1

Our de�nition of the order is very closely related to the order of isotropy of the homogeneous

space as de�ned in [Kol�a�r, 71b]. In fact, this is always �nite under the condition that G acts

e�ectively on G=B.
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Let us notice the role of the chosen extension of the Lie algebra homomorphism

�

k

: b ! g

k

m

to the mapping g! R

m

� g

k

m

. Since �

k+1

is a principal �ber bundle

homomorphism over the injective �

k+1

, the image of the left invariant �eld given

by X is �

�

k+1

(X)

on P

k+1

M . Thus obviously (�

k+1

)

�

�

(k)

(X) = �

k

(X) as required

in the formulation of the above lemma. However, the statement for X 2 n

�

relies

heavily on our choice. In particular, the other obvious identi�cation n

�

' R

m

�f0g

does not work, in general.

2. Jet bundles and principal prolongations

2.1. The functors W

r

;

�

W

r

;

~

W

r

. There are two basic functors in our develop-

ment: the functor J

1

associating to each �bered manifold the bundle of 1-jets of

local sections and acting on morphisms of �bered manifolds over locally invertible

morphisms on the bases, and the functor W

1

which maps each principal bundle

P with a �xed structure group into the principal �ber bundle of jets of the local

trivializations of P . The action on morphisms is given by jet composition. The

�ber over 0 2 R

m

in W

1

(R

m

�G) is the Lie group W

1

m

G := (G

1

m

�G)o (R

m


 g)

and jet composition de�nes the structure of a principal �ber bundle with struc-

ture group W

1

m

G on W

1

P . In particular, the group G embeds into the structure

group of W

1

P , the projection p

1

0

: W

1

(R

m

� G) ! R

m

� G restricts to a group

homomorphism, and p

1

0

is a principal �ber bundle homomorphism. Both functors

can be iterated to create the so called non-holonomic rth order jet prolongations

~

J

r

and principal prolongations

~

W

r

of �bered manifolds and principal bundles, re-

spectively. While the jet prolongations are heavily used in modern geometry, the

idea of the principal prolongation introduced in [Kol�a�r, 1971] appears only from

time to time under various names.

As pointed out already by Ehresmann, the non-holonomic prolongations o�er

a general tool to deal with higher order torsions of geometric structures. Since

the general non-holonomic prolongations are too big and redundant for most prac-

tical problems, the so called semi-holonomic prolongations

�

J

r

,

�

W

r

have to be

introduced. We �rst de�ne

�

J

1

= J

1

,

�

W

1

= W

1

and notice that there are canon-

ical natural transformations (��

1

0

)

Y

: J

1

Y ! Y , (�p

1

0

)

P

: W

1

P ! P to the identity

functors. The action of the functor J

1

on the mappings (��

1

0

) de�nes the natural

transformation (J

1

��

1

0

)

Y

: J

1

J

1

! J

1

and

�

J

2

is de�ned as the equalizer of two

natural transformations �

1

0

; J

1

��

1

0

: J

1

J

1

! J

1

. We have de�ned the functor W

1

only on the category of principal �ber bundles with a �xed structure group G,

but we can obviously extend its action to a wider class of morphisms. Indeed,

if ' : P ! P

0

is a homomorphism over a group homomorphism '

0

: G ! G

0

where the structure group G

0

is at the same time a subgroup in G, then we de�ne

W

1

'(j

1

(0;e)

 ) = j

1

(0;e)

(' �  )

j(R

m

�G

0

)

. This action is also functorial for all appro-

priate morphisms. We have seen that p

1

0

: W

1

P ! P satis�es these conditions

and so W

1

p

1

0

is a well de�ned natural transformation W

1

W

1

!W

1

. Now,

�

W

2

is

de�ned as the equalizer of two natural transformations p

1

0

;W

1

p

1

0

: W

1

W

1

!W

1

.

The higher order semi-holonomic jet prolongations are usually de�ned recur-

sively. Assume

�

J

k

comes equipped with the canonical transformation

�

J

k

!

�

J

k�1

,
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so that there are two canonical transformations J

1

�

J

k

! J

1

�

J

k�1

, and de�ne

�

J

k+1

as the equalizer of those two transformations. A simple check shows that this is

equivalent to the de�nition

�

J

k+1

Y =

�

J

2

(

�

J

k�1

Y )\J

1

(

�

J

k

Y ). The latter de�nition

can be modi�ed for the principal prolongations as well, i.e. we de�ne

�

W

k+1

P =

�

W

2

(

�

W

k�1

P )\W

1

(

�

W

k

P ):

In particular, we obtain a sequence of natural transformations

: : : w

�p

r+1

r

�

W

r

w

�p

r

r�1

�

W

r�1

w

�p

r�1

r�2

: : : w

�p

2

1

�

W

1

w

�p

1

0

Id

which are given by the restrictions of the target jet projections. We shall write �p

k

l

for the composition �p

k

k�1

� : : : � �p

l+1

l

for all k > l � 0.

The holonomic rth order principal prolongation W

r

is de�ned exactly as W

1

,

on replacing 1-jets by r-jets. Clearly W

r

P is identi�ed canonically as a subspace

W

r

P �

�

W

r

P �

~

W

r

P .

2.2. Let us also recall the functors T

r

m

= J

r

0

(R

m

; ),

�

T

r

m

,

~

T

r

m

= (T

1

m

)

r

of the holo-

nomic, semi-holonomic, and non-holonomic rth order m-velocities, respectively.

The principal prolongations W

r

P may be viewed as subbundles in the bundles

T

r

m

P where m is the dimension of the base manifolds. Just observe that each

principal bundle morphism (i.e. a local trivialization) ' : R

m

� G ! P is de-

termined by the restriction '

jR

m

�feg

: R

m

! P . As discussed above,

�

T

r

m

M =

�

T

2

m

(

�

T

r�2

m

M ) \ T

1

m

(

�

T

r�1

m

M ) for all manifoldsM and r � 2. Since the action of all

the functors in question is given by the jet compositions, it is easy to see that an

element in

~

W

r

P is semi-holonomic or holonomic if and only if it sits in

�

T

r

m

P or

T

r

m

P , respectively.

If we start with the trivial principal �ber bundle id

M

: M !M with the struc-

ture group feg, we obtain the holonomic rth order frame bundles P

r

M � T

r

m

M

on the manifoldM , and the semi-holonomic frame bundles

2

�

W

r

M �

�

T

r

m

M .

As already mentioned, the holonomic principal prolongation of a trivial principal

bundle R

m

�G has the form (up to the natural identi�cations)

W

r

(R

m

� G) = R

m

� (p

r

0

)

�1

R

m

�G

(0) =: R

m

�W

r

m

G

where W

r

m

G turns out to be the structure group of W

r

P , for all principal �ber

bundles P over m-dimensional manifolds with structure group G. Iterating this

observation, we obtain the structure groups (W

1

m

)

r

(G) of non-holonomic principal

prolongations.

Since the semi-holonomic principal prolongations

�

W

r

P are de�ned by means of

equalizers of natural transformations, they obey principal �ber bundle structures

2

These frame bundles can be also constructed directly, without any reference to the more

general concept of principal prolongation. The notation

�

W

r

M underlines our point of view,

while Ehresmann used

�

H

r

M , and

�

P

r

M would be more compatible with the notation in [Kol�a�r,

Michor, Slov�ak, 93].



GEOMETRIES MODELED ON HOMOGENEOUS SPACES 333

and their structure groups

�

W

r

m

G are again the �bers over zero in

�

W

r

(R

m

�G). By

de�nition, the Lie groups

�

W

r

m

G are equipped with the projections �p

r

r�1

:

�

W

r

m

G!

�

W

r�1

m

G given by the two coinciding projections W

1

�p

1

0

and �p

1

0

.

In particular, starting with the trivial group G = feg, we arrive at the structure

groups of the semi-holonomic frame bundles, the groups

�

G

r

m

of all invertible jets

in

�

J

r

0

(R

m

;R

m

)

0

. This structure groups come equipped with a �ltration obtained

from the exact sequences

(1) 1!

�

N

r;k

m

!

�

G

r

m

!

�

G

k�1

m

! 1; r � k > 1:

The kernel

�

N

r;r

m

= 


r

R

m�


R

m

is an abelian normal subgroup in

�

G

r

m

. We shall

write

�

g

r

m

,

�

n

r;k

m

for the corresponding Lie algebras and we might omit the indices r

and m, if clear from the context.

Since the element j

1

(0;e)

' 2 W

1

P , ' : R

m

� G ! P is determined equivalently

by any jet j

1

(0;b)

', b 2 G we shall often use the `�ber jet' notation j

1

0

' for the

elements in W

1

P .

2.3. The canonical forms. Let us review �rst the canonical forms on the general

principal prolongations. Let P ! M be a principal �ber bundle with structure

group G, dimM = m, p

1

0

: W

1

P ! P be the target jet projection. The vector

space R

m

� g can be identi�ed with the space of right invariant vector �elds on

R

m

� G along the �ber over zero, let us write ` for the canonical action of W

1

m

G

on these vector �elds. The form � = �

R

m

� �

g

2 


1

(W

1

P;R

m

� g) is de�ned for

each � 2 T

j

1

(0;e)

'

(W

1

P ) by �(�) = (T

(0;e)

')

�1

(Tp

1

0

(�)) 2 T

(0;e)

(R

m

� G). So we

can view � as a one-form with values in the right-invariant vector �elds mentioned

above.

A straightforward computation shows nice properties of these canonical forms

see e.g. [Kol�a�r, Michor, Slov�ak, 93, p. 155] for details.

(1) �

R

m

(�) = 0 if and only if � is a vertical vector

(2) for each element X + Y + Z 2 w

1

m

(g) ' g

1

m

+ g + (R

m�


 g) we have

�

g

(�

X+Y+Z

) = Y

(3) � is equivariant with respect to ` i.e. (r

a

)

�

(�) = `

a

�1
� � for all a 2 G.

The canonical forms on

�

W

r+1

M are de�ned as restrictions of the forms � on

W

1

(

�

W

r

M ) to the tangent spaces T

�

W

r+1

M . As a corollary we get quite detailed

information on the canonical forms on the semi-holonomic frame bundles:

2.4. Proposition. The semi-holonomic frame bundles

�

W

r+1

M , r � 0 come

equipped with the canonical forms �

(r)

= �

�

� �

�
g

r

m

2 


1

(

�

W

r+1

M;R

m

�

�

g

r

m

) with

the following properties

(1) �

�

(�) = 0 if and only if � is a vertical vector

(2) for each element Y 2

�

g

r+1

m

, �

�
g

r

m

(�

Y

) = �p

r+1

r

(Y ) 2

�

g

r

m

(3) �

(r)

is equivariant with respect to the action ` of

�

G

r+1

m

on R

m

�

�

g

r

m

, i.e.

(r

b

)

�

�

(r)

= `

b

�1 � �

(r)

for all b 2

�

G

r+1

m
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(4) for each k � r we have the commutative diagram

T

�

W

k+1

M w

�

(k)

u

T �p

k+1

r+1

R

m

�

�

g

k

m

u

�p

k

r

T

�

W

r+1

M w

�

(r)

R

m

�

�

g

r

m

Proof. Remember �

(r)

is the restriction of the canonical form � onW

1

(

�

W

r

M ) to

the tangent space of

�

W

r+1

M . Thus (1) and (3) are obvious and (2) follows from

2.3.(2) and 2.2.(1).

In order to prove (4), it su�ces to deal with the case r = k� 1. Moreover, �

(r)

is the restriction of the canonical form � on

�

W

2

(

�

W

r�1

M ), so we can discuss the

case r = 2 with a general bundle P instead of the frame bundles. Let G be its

structure group. Any vector � 2 T

�

W

2

P is of the form

@

@t

j0

j

1

0

'

t

with '

t

: u 7! j

1

0

 

t

u

such that

W

1

(R

m

� G) w

'

t

u

�p

1

0

u

W

1

P

u

�p

1

0

R

m

� G w

 

t

(0;e)

P

commutes (the dashed arrow is the canonical embedding). The de�nition of the

canonical form says we have to take the projection of � toW

1

P , i.e.

@

@t

j0

'

t

(j

1

0

id) =

@

@t

j0

j

1

0

(�p

1

0

�'

t

) 2 TW

1

P and then to interpret this as an element in T

j

1

0

id

W

1

(R

m

�

G) via the tangent mapping to '

0

. Similarly for the projection T �p

1

0

(�). The

situation is described in the following diagram

T

j

1

0

id

W

1

(R

m

� G) w

T'

0

u

T �p

1

0

u

TW

1

P 3

@

@t

j0

�p

1

0

j

1

0

'

t

u

T �p

1

0

T

(0;e)

(R

m

�G) w

T 

0

(0;e)

TP 3 T �p

1

0

(

@

@t

j0

�p

1

0

j

1

0

'

t

)

The choice of '

t

and  

t

guarantees the required commutativity. �

2.5. The in�nite semi-holonomic prolongation. The semi-holonomic frame

bundles with the canonical projections build a sequence of principal �ber bundles

(1)

: : : w

�p

r+1

r

�

W

r

M w

�p

r

r�1

�

W

r�1

M w

�p

r�1

r�2

: : : w

�p

2

1

�

W

1

M w

�p

1

0

M:

and by restriction we obtain the sequence

(2)

: : : w

�p

r+1

r

�

G

r

m

w

�p

r

r�1

�

G

r�1

m

w

�p

r�1

r�2

: : : w

�p

2

1

�

G

1

m

w

�p

1

0

1:
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By de�nition, if j

1

0

 2

�

W

k

M , j

1

0

' 2

�

G

k

m

then

�p

k

k�1

(j

1

0

 � j

1

0

') = j

1

0

(p

1

0

�  � ')

j(R

m

�

�

G

k�2

m

)

= j

1

0

((p

1

0

�  )

j(R

m

�

�

G

k�2

m

)

� (p

1

0

� ')

j(R

m

�

�

G

k�2

m

)

)

= (�p

k

k�1

j

1

0

 ) � (�p

k

k�1

j

1

0

'):

Thus, also the principal actions are compatible and so the inverse limit

�

W

1

m

of

sequence (1) is a principal �ber bundle with structure group

�

G

1

m

, the inverse limit

of sequence (2) of Lie groups. Let us denote the canonical projections

�

W

1

M !

�

W

k

M by �p

1

k

, and the same for

�

G

1

m

!

�

G

k

m

. So in particular, for all g 2

�

G

1

m

,

u 2

�

W

1

M we have �p

1

k

(u:g) = �p

1

k

(u):�p

1

k

(g).

Similarly, the tangent mappings to the projections T �p

k+1

k

de�ne the inverse

limit structure on the tangent bundle T

�

W

1

M and we also get such structures on

the trivial principal �ber bundle R

m

�

�

G

1

m

and the space R

m

�

�

g

1

m

' T

id

�

W

1

R

m

of

constant right invariant vector �elds on the latter bundle (i.e. right invariant �elds

along the �ber over zero). Let us check that the actions ` of

�

G

k+1

m

on R

m

�

�

g

k

m

are compatible with the projections �p

k

k�1

and so they de�ne the action ` of

�

G

1

m

on the space R

m

�

�

g

1

m

. Indeed, choose  : W

1

(R

m

�

�

G

k

m

)!W

1

(R

m

�

�

G

k

m

) with

j

1

0

 2

�

G

k+1

m

and

@

@t

j0

j

1

0

'

t

2 T

j

1

0

id

�

W

k

R

m

. Then p

1

0

(`

j

1

0

 

@

@t

j0

j

1

0

'

t

) =

@

@t

j0

p

1

0

�  (j

1

0

'

t

)

while `

p

1

0

j

1

0

 

(Tp

1

0

(

@

@t

j0

j

1

0

'

t

)) =

@

@t

j0

�

p

1

0

�  

j

�

W

k

R

m
(j

1

0

(p

1

0

� '

t

)

jR

m

�

�

G

k�1

m

)

�

. Since the

principal �ber bundle morphisms are determined by values on a section, we really

obtain the required equality `

�p

k+1

k

g

(T �p

k

k�1

(X)) = T �p

k

k�1

(`

g

(X)) for all g 2

�

G

k+1

m

,

X 2 R

m

�

�

g

k

m

.

Now, the compatible inverse limit structures on T

�

W

1

M and R

m

�

�

g

1

m

, and

2.4.(4) yield the canonical form �

(1)

= �

�

� �

�
g

1

m

2 


1

(

�

W

1

M;R

m

�

�

g

1

m

)

�p

1

k

(�

(1)

(X)) = �

(k)

(T �p

1

k+1

(X)):

We shall not go into details on the smooth manifold structure of these projective

limits of �nite dimensional manifolds, all important aspects can be found in the

forthcoming book [Kriegl, Michor, 97]. Let us mention just that smooth curves

are exactly those mappings which project to smooth curves by all �p

1

k

and smooth

mappings are those which prolong smoothly the smooth curves. In particular the

canonical form �

(1)

is smooth.

2.6. Proposition. The canonical form �

(1)

satis�es

(1) �

�

is the pullback of the canonical soldering form on P

1

M =

�

W

1

M , in

particular �

�

(�) = 0 if and only if � is a vertical vector

(2) �

(1)

reproduces fundamental vector �elds, i.e. for each element Y 2

�

g

1

m

,

�

�
g

1

m

(�

Y

) = Y

(3) �

(1)

is equivariant with respect to the induced action ` of

�

G

1

m

onR

m

�

�

g

1

m

,

the space of right invariant vector �elds on the �ber of R

m

�

�

G

1

m

over 0.

(4) �

(1)

de�nes an absolute parallelism on

�

W

1

M .
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Proof. By de�nition, �

�

(X) = 0 if and only if �

(k)

�

= 0 for all k. Now (1) follows

from 2.4.(4) with r = 0. In order to see (2) notice

�p

1

k

(�

(1)

(�

Y

)) = �

(k)

(�p

1

k+1

�

Y

) = �

(k)

(�

�p

1

k+1

Y

) = �p

1

k

Y:

Further we have

�p

1

k

(�

(1)

(u:g)(Tr

g

:Y )) = �

(k)

(�p

1

k+1

(u:g))(Tr

�p

1

k+1

g

:T �p

1

k+1

Y )

= `

�p

1

k+1

g

�1 � �

(k)

(�p

1

k+1

(u))(T �p

1

k+1

Y )

so that �

(1)

(u:g)(Tr

g

:Y ) = `

g

�1
� �

(1)

(u)(Y ) as required in (3).

The last item is obvious. �

One-forms on a manifold P equipped with a Lie group action, which are repro-

ducing the fundamental vector �elds of the action and de�ne an absolute paral-

lelism on TP are usually called Cartan connections, see e.g. [Alekseevsky, Michor,

95] or [Kobayashi, 72]. Thus we call �

(1)

2

�

W

1

M the canonical Cartan connec-

tion on the semi-holonomic in�nite order frame bundle of M . Let us notice we

should view R

m

�

�

g

1

m

as a

�

G

1

m

-module, rather than the Lie algebra of constant

vector �elds since the bracket in the latter algebra is not completely compatible

with the action `. This is clearly reected in the structure equations below.

2.7. The structure equation. Each absolute parallelism � 2 


1

(P; V ) on

a manifold de�nes the structure equation d� = �(�; �) with a unique function

� 2 C

1

(P;�

2

V

�


 V ). In our case, �

(1)

is right invariant and it reproduces fun-

damental vector �elds, which implies that the corresponding function �

(1)

is also

right invariant and for Y 2 �g

1

m

we obtain i

Y

� �

(1)

= �`

0

Y

� �

(1)

, i.e. it restricts

to the action of Y on R

m

� �g

1

m

via the tangent mapping to the action `. Now we

can split the values �

(1)

(X;Y ) on vectors X = X

�

+X

�
g

1

m

, Y = Y

�

+ Y

�
g

1

m

into

�

(1)

(X;Y ) = � `

0

(X

�
g

1

m

)(Y

�

) + `

0

(Y

�
g

1

m

)(X

�

)

� [X

�
g

1

m

; Y

�
g

1

m

]

R

m

�
�
g

1

m

+ �

(1)

(X

�

; Y

�

)

in order to obtain the non-trivial horizontal part of the exterior di�erential of �

(1)

.

Let us denote the summands on the �rst line by ��

(1)

(X;Y ). Our observations

lead to the structure equation of the canonical Cartan connection

(1)

d�

(1)

= �(�

(1)

; �

(1)

)

= �

1

2

[�

(1)

; �

(1)

]

R

m

�
�
g

1

m

� �

(1)

(�

(1)

; �

(1)

) + �

(1)

(�

(1)

�

; �

(1)

�

)

where the bracket is given by the bracket of the corresponding vector �elds (i.e.

the bracket of the vertical components), � expresses the interaction of the vertical

and horizontal parts of the arguments via the `

0

-action, and the curvature � is a

(�

2

R

m�


 (R

m

�

�

g

1

m

))-valued function on

�

W

(1)

M which is

�

G

1

m

equivariant with

respect to `.
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2.8. Let us now inspect how much of the curvature �

(1)

is visible already on

�

W

k

M . Its equivariance and horizontality yield

�

(1)

(u:g)(X;Y ) = `

g

�1
�

(1)

(u)(�p

1

0

(`

g

X); �p

1

0

(`

g

Y ))

= `

g

�1�

(1)

(u)(`

�p

1

1

g

X; `

�p

1

1

g

Y )

where `

�p

1

1

g

X means the standard action of G

1

m

onR

m

and the result is interpreted

as a horizontal vector in R

m

�

�

g

1

m

.

Since g 2

�

N

1;k+1

implies �p

1

k

� `

g

= �p

1

k

, the projections �p

1

k

�

(1)

(u:g)(X;Y ) do

not depend on the choice of g 2

�

N

1;k+1

m

for any k � 1. In particular, for all k � 1

we can de�ne the function

�

(k)

2 C

1

(

�

W

k+1

M;�

2

R

m�


 (R

m

�

�

g

k

m

))

�

(k)

(�p

1

k+1

u)(X;Y ) = �p

1

k

�

(1)

(u)(X;Y ):

Further notice that �

(k)

(�p

1

k+1

Y; �p

1

k+1

X) := �p

1

k

�

(1)

(X;Y ) is well de�ned.

Now, applying the projection �p

1

k

to structure equation 2.7 (1), we obtain

Proposition. The structure equation at u 2

�

W

k+1

M is

d�

(k)

(u) '

0

@

�

1

2

[�

(k)

(u); �

(k)

(u)]

R

m

�
�
g

k

m

� �

(k�1)

(�

(k)

(u); �

(k)

(u))

+ �

(k)

(u)(�

�

; �

�

)

1

A

(mod �n

k;k

m

)

2.9. Remark. Each semi-holonomic jet j

1

0

f 2

�

T

2

m

M determines the so called

di�erence tensor �j

1

0

f 2 �

2

R

m�


 T

f(0)

M which is the obstruction to the holo-

nomicity of j

1

0

f , see [Kol�a�r, 71]. Now, each element u 2

�

W

k+1

M , u = j

1

0

' is also

viewed as j

1

0

('

j(R

m

�feg)

) 2

�

T

2

m

(

�

W

k�1

M ) and, moreover, it determines the identi-

�cation T

(0;e)

' : R

m

�

�

g

k

m

' T

�p

k+1

k

(u)

�

W

k

M . In particular, there is the `horizontal

subspace' u(R

m

) � T

�p

k+1

k

(u)

�

W

k

M identi�ed with u(R

m

) := T

(0;e)

'(R

m

� f0g). A

direct computation shows that the restriction of d�

(k�1)

to u(R

m

) is given by the

di�erence tensor �(u) 2 �

2

R

m�


 (R

m

�

�

g

k�1

m

), where u is viewed as an element

in

�

W

2

(

�

W

k�1

M ), see [Kol�a�r, 75a] for details.

3. Geometries modeled on homogeneous spaces

Let G=B be of order k, k �1, together with the �xed complementary subspace

n

�

� g to b. The principal �ber bundle homomorphisms �

r

: G ! P

r

(G=B) �

�

W

r

(G=B) over the group homomorphisms �

r

: B ! G

r

m

�

�

G

r

m

are compatible

with the projections �p

r+1

r

, so we always obtain the reduction �

1

of

�

W

1

(G=B) to

the structure group B and in fact all �

r

, r � k are reductions.

We intend to discuss geometries described by suitable reductions ' : P !

�

W

1

M of the semi-holonomic frame bundles which should mimic basic features
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of homogeneous spaces G=B. So not only they should be reductions to the sub-

group B over the �xed embeddings �

k

: B !

�

G

k

m

but additionally the pullbacks of

the canonical forms on the semi-holonomic frame bundles should equip P with a

Cartan connection of the type G=B. We have seen that this is the case on the ho-

mogeneous space itself, where the left-invariant Maurer-Cartan form is restored in

this way. Obviously, if the images of the pullbacks of the canonical forms happen

to be in �

k

(g), then the latter requirement will be achieved.

We shall start with the somewhat inverse question: Given a principal �ber

bundle p : P ! M with structure group B and a Cartan connection ! on P , is

there a `canonical' reduction P !

�

W

1

M with the above required properties?

As shown in the proof below, the answer is given by a simple construction which

is essentially complete after getting the reduction '

k+1

: P !

�

W

k+1

M , where k is

the order of G=B.

3.1. Proposition. Let G=B be of order k � 1, P ! M be a principal �ber

bundle with structure group B, and let ! 2 


1

(P; g) be a Cartan connection of

type G=B. Then there is a unique reduction ' : P !

�

W

1

M such that '

�

�

(1)

=

�

(1)

� !. Moreover for all r � k, '

r+1

= �p

1

r+1

�' : P !

�

W

r+1

M are reductions to

B and '

�

r+1

�

(r)

= �

(r)

� !.

Proof. Let us �rst consider the quotient projection � �! : TP ! g! g=b. Since

! reproduces fundamental vector �elds, we obtain the induced linear isomorphism

!

0

(u) : T

p(u)

M ' T

u

P=V

u

P ! g=b at each point u 2 P .

T

u

P

u

p

w

!

g

u

T

p(u)

M w

'

T

u

P=V

u

P w

!

0

g=b w

'

n

�

Thus we have de�ned the mapping

'

1

: P !

�

W

1

M = P

1

M; u 7! !

0

(u)

�1

2 n

�

�


 T

p(u)

M = P

1

p(u)

M:

A change of the point u to u:b, b 2 B results in !

0

(u:b) = Ad

0

(b

�1

) � !

0

(u) where

Ad

0

means the induced adjoint action on the quotient. According to Lemma

1.2, Ad

0

(b

�1

) corresponds to the action `

�

1

(b

�1

)

under the identi�cation n

�

�

R

m

� g

0

m

' R

m

given by �

0

. Thus '

1

is a principal �ber bundle homomorphism

over the group homomorphism �

1

and we have got a reduction of the standard �rst

order frame bundle to the structure group B=F

1

B. Notice that �p

1

0

� '

1

= p and

so for each � 2 T

u

P , �

(0)

(T'

1

:�) = !

0

(Tp:�). Thus the pullback of the canonical

form �

(0)

coincides with !

0

under the chosen identi�cation.

In particular � 2 T

u

P is vertical if and only if T'

1

:� is vertical and conse-

quently the horizontal subspaces H(u) := !

�1

(u)(n

�

) � T

u

P have horizontal

images H

1

(u) = T'

1

�

�

W

1

M .
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Now, for every principal �ber bundle Q!M with any structure group G, any

horizontal subspace H � T

u

W

1

Q determines an element U

H

2

�

W

2

Q as follows:

H y w T

u

W

1

Q

u

Tp

1

0

T

j

1

0

id

W

1

(R

m

�G)u

~

U

H

Tp

1

0

(H) y w T

p

1

0

(u)

Q R

m

� g

u

u

~u

~u

�1

(Tp

1

0

(H))u {

e\

\

\̂

Tp

1

0

(H) is horizontal in T

p

1

0

(u)

Q and u provides the mapping ~u

�1

: Tp

1

0

Q! R

m

�g

which identi�es H with a horizontal subspace

~

U

�1

(H) in R

m

�g � T

j

1

0

id

W

1

(R

m

�

G). This determines

~

U

H

uniquely since it has to respect the fundamental �elds.

By the construction, this mapping de�nes a point in

�

W

2

Q. Let us also notice

how an element b 2 W

1

m

G acts on U

H

. By de�nition, r

b

(U

H

) is given by the

composition Tr

p

1

0

b

�

~

U

H

� `

b

.

Now, our construction will proceed by induction. Assume we already have a

principal �ber bundle homomorphism '

k

: P !

�

W

k

M over the Lie group ho-

momorphism �

k

: B !

�

G

k

m

and let us write H

k

(u) := '

k

(!(u)

�1

(n

�

)). Then

these horizontal subspaces de�ne the mapping '

k+1

: P !

�

W

k+1

M . Let us

further assume that '

k

(u) is given by the embedding T'

k�1

(u) � �

k�1

: n

�

!

T

'

k�1

(u)

�

W

k�1

M . Notice this is the case for k = 1. The properties of '

k+1

can be

read quite easily from the following diagram

n

�

y w g

u

Ad

b

y w

�

k

T

j

1

0

id

W

1

(

�

W

k�1

R

m

)

u

`

�

k+1

(b)

n

�

y w g

u

!(u)

�1

y w

�

k

T

j

1

0

id

W

1

(

�

W

k�1

R

m

)

u

'

k+1

(u)

w T

j

1

0

id

�

W

k�1

R

m

u

'

k

(u)

!(u)

�1

(n

�

) y w T

u

P

u

Tr

b

w

T'

k

T

'

k

(u)

W

1

(

�

W

k�1

M )

u

Tr

�

k

(b)

w T

'

k�1

(u)

�

W

k�1

M

!(u:b)

�1

(n

�

) y w T

u:b

P w

T'

k

T

'

k

(u:b)

W

1

(

�

W

k�1

M )

First, the composition in the second column is !(u:b)

�1

while the composition in

the third one is the action of �

k+1

(b) on '

k+1

(u). Thus '

k+1

is a principal �ber

bundle homomorphismover �

k+1

. Further, �

(k)

('

k+1

(u))(T'

k+1

:�) = '

k+1

(u)

�1

�

T (p

1

0

� '

k+1

):� = '

k+1

(u)

�1

(T'

k

:�) = �

k

� !(�). Altogether, we have constructed

a sequence of principal �ber bundle homomorphisms '

k

: P !

�

W

k

M .

: : : w

�

W

k+1

M w : : : w

�

W

r+1

M w

�

W

r

M w : : : w M

P

[

[

[

[

[

[

[

[

[

[

[

[

[

[̂

'

k+1

4

4

4

47

'

r+1

h

h

h

hj

'

r

'

'

'

'

'

'

'

'

'

'

')

p
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If k is the order of G=B, then for all r > k the homomorphisms '

r

are reductions

to structure group B and '

�

r+1

�

(r)

= �

r

� !.

Let us notice that '

1

was completely determined by the quotient mappings

!

0

which had to coincide with the pullback of �

(0)

. Moreover, the rest of the

construction was uniquely determined by the horizontal subspaces given by !.

Thus, the whole construction was determined by our requirements uniquely. �

3.2. De�nition. Let G=B be of order k. A geometric structure of type G=B is

a reduction of ' : P !

�

W

k+1

M to the structure group B such that the values

of �

(k)

jT'(TP )

are in �

k

(g). An in�nitesimal structure of type G=B is a reduction of

P

1

M to the structure group B=F

1

B, i.e. to the e�ective structure group of the

tangent bundle T (G=B).

3.3 Remark. The situation is most simple if the order of the homogeneous space

is k = 1 and the chosen n

�

is an ideal, for example in the Riemannian geometries.

Then the structures of type G=B coincide with the in�nitesimal structures of type

G=B and the Cartan connection ! happens to be the canonical linear connection

on M .

Let us illustrate the di�erence between the two de�nitions on our simplest

examples of higher order homogeneous spaces. For both conformal and almost

Grassmannian geometries, B=F

1

B is exactly the subgroup of the general linear

group which is used for the de�nition of the corresponding reductions. Thus, the

in�nitesimal structure is just what we are used to. The standard geometrical

constructions (well known already to Cartan) then provide a structure of the type

G=B for each in�nitesimal structure in our sence. However, there are more general

structures available, e.g. in the conformal case we might consider `weak conformal

structures' where the distinguished connections share a �xed non-vanishing tor-

sion. Of course, the general calculus developed for such geometries in [

�

Cap, Slov�ak,

Sou�cek, 94] still applies.

If we pass to more general parabolic geometries with reducible tangent bundles,

then the data necessary for the reconstruction of the bundles P and the Cartan

connection ! are weaker than our in�nitesimal structure. We shall provide some

more comments on this problem in the next section.

The properties of the canonical forms on

�

W

k

M and our De�nition 3.2 imply

immediately the following

3.4. Corollary. Let P !M be a structure of type G=B given by the reduction

' : P !

�

W

k+1

M . The pullback !

P

= '

�

�

(k)

of the canonical form on

�

W

k+1

M is

a Cartan connection on P .

4. Examples, Remarks, and Outlook

Up to now, we discussed a very general setting covering all possible homogeneous

spaces. Let us conclude with a few remarks towards more subtle (and interesting)

questions. Of course, to deal with them we always have to restrict ourselves to

a suitable class of homogeneous spaces. We refer to the parabolic geometries as
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our basic example, but we do not touch any details, the interested reader should

probably consult the original papers.

4.1. Directions of further investigations.

(1) algorithmic procedures constructing the Cartan connections from the in-

�nitesimal data in a `canonical' way

(2) sets of invariants ensuring local equivalence of given in�nitesimal struc-

tures

(3) weaker variants of in�nitesimal structures

(4) `calculus' for the Cartan connections similar to the Ricci calculus in Rie-

mannian geometries, suitable for dealing with the invariant operators for

the geometries in question

4.2. The basic point is to incorporate some further geometric structures on the

homogeneous spaces. Our constructions can be easily modi�ed in order to obtain

analogous structures on the bundles P !M as well. We suggest a simple general

model:

Let C be a category of manifolds which are locally isomorphic to the object M

0

with a �xed point O 2M

0

, i.e. for each object M 2 C and each point x 2M , there

is a neighborhood U � M of x isomorphic to a neighborhood of O 2M

0

. Consider

the category PC of principal �ber bundles over objects in C, with morphisms over

C-morphisms. The modi�ed functorW

1

then associates to each such principal �ber

bundle in PC with structure group B the �ber bundle of all �ber jets at O 2M

0

of

local trivializations M

0

�B ! P in PC. All previous constructions come through

with the modi�ed concepts of semi-holonomic jet groups and algebras. Of course,

some further re�nements could be still necessary.

4.3. Parabolic geometries. Let us illustrate briey the arising problems. As-

sume G is semisimple and b

C

� g

C

a parabolic subalgebra in the complex�cations.

Let us �x the root space decomposition of g

C

so that g = n

�

�g

0

�n

+

with g

0

the

reductive part of b = g

0

� n

+

. Then the powers of n

+

de�ne the �ner B-invariant

�ltration

G = F

��

G � F

��+1

G � � � � � F

0

G = B � F

1

G � � � � � F

�

G

and the compatible grading

g = g

��

� � � � � g

�1

� g

0

� � � � � g

�

:

In particular, there is the induced �ltration on the tangent space of G=B. Thus we

may restrict ourselves to manifolds endowed with such �ltrations and deal with the

local trivializations of our principal �ber bundles respecting these �ltrations. A

powerful general theory for such objects was worked out in [Morimoto, 93]. From

our point of view, he additionally considers the induced �ner �ltrations F

k

on the

jet groups as well, and he always factors out the action of F

k+1

when constructing

the kth bundle. This theory is very well suited for equivalence problems on �ltered

manifolds.
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The algebraic structure of g shows that the order of G=B is always two. Indeed,

we need just to observe that the kernel of the adjoint action of b on g=n

�

is just

g

�

and the action of g

�

on g

��

is e�ective, see [Tanaka, 79] for algebraic details.

Since n

�

is a subalgebra now, the embeddings �

k

: n

�

! n

�

� g

k

m

can be com-

puted explicitly by means of the Baker-Campbell-Hausdor� formula:

�

k

(X) = j

k

0

(Y 7! f(e

adY

)X); where f(z) =

log z

z�1

which is a quite nice polynomial expression in view of the nilpotency of n

�

.

4.4. Let us come back to the indicated directions (1){(4) and discuss briey what

has been already done for the parabolic geometries.

The algorithmic construction of the Cartan connections from the reduction of

the structure group of the tangent bundle is very well known in all cases where

the tangent bundle is irreducible, i.e. exactly if n

�

is abelian, see [Tanaka, 79],

[

�

Cap, Slov�ak, Sou�cek, 95]. Tanaka has also given an essentially complete answer

for all parabolic geometries, however only from the point of view of the associated

equivalence problem for the in�nitesimal structures. A very explicit construction

is given in the forthcoming paper [

�

Cap, Schichl], starting from a G

0

-structure on

the associated graded vector bundle to the tangent space. These constructions

also provide a nice answer to question (3): up to some very rare cohomological

obstructions, the suitable `weak in�nitesimal structure' should be a reduction of

the associated graded vector space to the tangent space to structure group G

0

.

An application of quite general concepts o�ering a similar construction can be

also found in [Morimoto, 93].

In all these approaches, the Lie algebra cohomology on n

�

with values in g is

essential for the normalizations. In terms of the general in�nitesimal structures on

the tangent space from our point of view this imposes some additional conditions

on the torsions, while the general problem has not been solved completely yet from

our point of view. On the other hand, there is the general question: What is the

best general geometrical de�nition of `parabolic geometries'?.

A good answer to problem (1) yields essentially solutions to (2), namely the

Cartan connections describe explicitly all necessary invariants. Much less is known

about (4). As far as we know, only the paper [

�

Cap, Slov�ak, Sou�cek, 94] o�ers a

version of such a calculus for all parabolic geometries with irreducible tangent

bundles.

4.5. Finally, let us comment on the most unpleasant point of our general con-

structions, the extremely bad encoding of the bracket in n

�

. In fact, it was of

no importance in our development and so we can expect really good and simple

behavior of our general objects only in the case when n

�

is abelian. Indeed, in

this case, the trivial �ltration coincides with the �ner one.

In general, there always is the Levi part G

0

� B and B = G

0

oN

+

is a semidi-

rect product of G

0

and the nilpotent radical. Obviously, if G=B is in�nitesimally

e�ective, then �

1

jg

0

is injective since F

1

b is nilpotent. So we might start with a

choice of a reduction P

(0)

of P

1

M to G

0

, choose a connection  on this reduction
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and consider the Ehresmann prolongation 

k

of this connection. The latter will

provide a mapping P

0

!

�

W

k+1

M which will be G

0

-equivariant. Thus the orbit

of its image under the action of �

k+1

(B) will be a principal �ber bundle with the

appropriate structure group. In the case with n

�

abelian, we really get a structure

of type G=B without any further work and we even can use the special algebraic

properties to normalize our choices. At the same time we obtain a class of connec-

tions yielding the same bundle on the last but one level, an analogy to the class of

linear connections compatible with a conformal Riemannian structure. Since these

constructions are given in a much more explicit way for the parabolic geometries

with irreducible tangent bundles in [

�

Cap, Slov�ak, Sou�cek, 95], we shall not go

into any details here. We believe that a better understanding of the embeddings

�

k

: g! R

m

� g

k

m

will enable us to use a similar construction in many other cases

as well.
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