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Verma modules arise geometrically through the jets of homogeneous vector bundles.

We consider in this article, the modules that arise from the semi-holonomic jets of

a homogeneous vector bundle. We are particularly concerned with the case of a

sphere under Möbius transformations. In this case there are immediate applications

in the theory of conformally invariant di�erential operators.

1 Introduction

The motivation for this article comes from conformal di�erential geometry.

This aspect, however, will be con�ned to an appendix�the main body of the

article will be concerned with purely algebraic results. Suppose G is a Lie

group with Lie subgroup P . It is well-known that the space of formal jets of

sections of a homogeneous vector bundle on G=P is dual to the corresponding

induced module constructed algebraically from the complexi�ed Lie algebras

p � g and the inducing representation of P . The G-invariant linear di�eren-

tial operators between homogeneous vector bundles are then in bijective cor-

respondence with the homomorphisms of these modules (see, e.g. [11, 17, 18]).

In particular, if G is semisimple and P is parabolic, the induced modules in

This research was begun during a visit of the second author to the University of

Adelaide. Some of the writing was undertaken during a visit of the �rst author to the

Erwin Schrödinger Institute. Support from the Australian Research Council, the ESI, and

grant number 201/96/0310 of the GA�R is gratefully acknowledged.



2 semi-holonomic verma modules

question are the (generalized) Verma modules and the structure of their ho-

momorphisms is understood in many cases (see, e.g. [5, 6]). For the moment,

su�ce it to say that the `semi-holonomic' Verma modules of this article arise

using semi-holonomic jets on G=P rather than the usual (holonomic) jets.

Our results and their proofs are partially inspired by Lemma 4.7.1 in [2]

but Baston's proof is rather incomplete and unclear. Our proof closely follows

the `curved translation principle' in [9, 11]. Conversations with Andreas �ap

and Justin Sawon have been extremely useful. We also thank the referee for

some very helpful suggestions.

2 Semi-holonomic modules

Suppose G is a Lie group with Lie subgroup P . We shall denote by g and p

their complexi�edLie algebras and by U(g) and U(p), the universal enveloping

algebras of g and p, respectively. Let E be a �nite-dimensional complex

representation of P . Regarding U(g) as a left U(g)-module and a right U(p)-

module, we may de�ne a (U(g); P )-module V (E) = U(g) 


U(p)

E

�

: In this

generality, V (E) is known as an induced module (see, e.g. [21]) but when G

is semisimple, P is parabolic, and E is irreducible, V (E) is a (generalised)

Verma module (see, e.g. [16]).

Following Baston [2], de�ne an algebra

�

U(g) by

�

U(g) =

N

g=hX 
 Y � Y 
X � [X;Y ] for X 2 p and Y 2 gi:

It di�ers from U(g) in that one is only allowed to commute elements of p

around using the commutation relations of g rather than arbitrary elements.

In particular, U(p) is a subalgebra of

�

U(g). Thus,

�

U(g) is a left

�

U(g)-module

and a right U(p)-module and we may de�ne the semi-holonomic induced

module

�

V (E) =

�

U(g)


U(p)

E

�

:

It is a (

�

U(g); P )-module in the sense that it is both a

�

U(g)-module and a

representation of P such that the two induced actions of U(p), obtained by

restriction or di�erentiation, agree. Like U(g), as a vector space,

�

U(g) may

be �ltered by degree. The modules

�

V (E) are correspondingly �ltered

E

�

=

�

V

0

(E) �

�

V

1

(E) �

�

V

2

(E) � � � � �

�

V

k

(E) � � � � �

�

V (E)
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with exact sequences of P -modules

0!

�

V

k�1

(E) �!

�

V

k

(E) �!

N

k

(g=p)
 E

�

! 0:

The analogous statements for induced modules are well-known. They are re-

lated by a surjection of (

�

U(g); P )-modules

�

V (E) ! V (E) and a commutative

diagram

0 ���!

�

V

k�1

(E) ���!

�

V

k

(E) ���!

N

k

(g=p)
 E

�

���! 0

?

?

y

?

?

y

?

?

y

0 ���! V

k�1

(E) ���! V

k

(E) ���!

J

k

(g=p)
 E

�

���! 0

(1)

where

J

denotes symmetric tensor product.

For any �nite-dimensional representation F of P , there is a canonical

isomorphism

Hom

P

(F

�

; V (E)) = Hom

(U(g);P )

(V (F); V (E))

known as Frobenius reciprocity (see, e.g. [21]). There is an analogous result

for semi-holonomic modules:

Proposition 1 For any �nite-dimensional representation F of P , there is a

canonical isomorphism

Hom

P

(F

�

;

�

V (E)) = Hom

(

�

U(g);P )

(

�

V (F);

�

V (E)):

Proof. Given D 2 Hom

(

�

U(g);P )

(

�

V (F);

�

V (E)), de�ne d : F

�

!

�

V (E) by

restriction. Conversely, the formula

D(x 
 f) = x
 df for x 2

�

U(g) and f 2 F

�

clearly characterises D in terms of d. To complete the proof, notice that

D(X 
 f � 1
Xf) = X 
 df � 1 
 d(Xf) = X 
 df � 1
X df

for X 2 p and f 2 F

�

so D is well-de�ned for any d 2 Hom

P

(F

�

;

�

V (E)). 2

In certain cases (see, e.g. [5, 6]) the spaces Hom

(U(g);P )

(V (F); V (E)) are

well-understood. However, even in the simplest cases,

Hom

(

�

U(g);P )

(

�

V (F);

�

V (E))
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is more mysterious. Instead, we may ask when a given homomorphism

V (F) ! V (E) can be lifted to

�

V (F) !

�

V (E). Speci�c examples show that

such a lifting is generally not unique. Also, there can be homomorphisms

of the semi-holonomic modules even when lifting a holonomic morphism is

impossible (as in Proposition 5). In the light of Frobenius reciprocity and

Proposition 1, the lifting problem is equivalent to the question of completing

the following diagram of P -modules

F

�

V (E)

�

V (E)

?

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

In this article we shall answer this question completely for irreducible E and F

when G = Spin

�

(n+1; 1) acting on the sphere S

n

by Möbius transformations

and P is the stabilizer subgroup of this action.

3 Statement of results

For the rest of this article, G will denote Spin

�

(n + 1; 1). Acting on RP

n+1

,

it has three orbits according to whether the corresponding vector is time-

like, null, or space-like. Let P be the stabilizer subgroup for some choice of

basepoint on the null orbit. Then G=P may be identi�ed with the sphere S

n

and G with the double cover of its group of conformal motions (see, e.g. [10]

for further discussion). This aspect will be taken up in the appendix where

applications to conformal geometry will be considered. In this context, G is

often referred to as the group of Möbius transformations since when n = 2

we have Spin

�

(3; 1)

�

=

SL(2; C ) and S

2

�

=

CP

1

, the Riemann sphere.

In order to state our results, we �rstly need to state what is known con-

cerning the homomorphisms of Verma modules in this case. They are com-

pletely classi�ed [6, (3.1)] and the answer is as follows. Choose a positive root

system for g compatible with p (the Cartan subalgebra and all the positive

root spaces are contained in p).

3.1 The case n even

Write n = 2m. Let � be a dominant integral weight for g. Then � is

also dominant for p and we shall denote by E

0

the irreducible represen-

tation of P with lowest weight ��. Under the a�ne action of the Weyl
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group of g (namely � 7�! w(� + �) � � where � is half the sum of the

positive roots) we obtain 2m + 2 weights which are dominant for p. We

shall denote the corresponding �nite-dimensional representations of P by

E

0

; E

1

; : : : ; E

m�1

; E

m

�

; E

m

+

; E

m+1

; : : : ; E

2m�1

; E

2m

, where the superscript is the

length of the corresponding Weyl group element. Then, there are non-trivial

Verma module homomorphisms which may be laid out in accordance with

the appropriate Hasse diagram (see, e.g. [4]):

V (E

m

+

)

% &

V (E

2m

)!� � �! V (E

m+1

) V (E

m�1

)!� � �! V (E

1

)! V (E

0

):

& %

V (E

m

�

)

(2)

In fact, writing E

m

= E

m

+

� E

m

�

, this is the (generalised) Bernstein-Gelfand-

Gelfand resolution V (E

�

) of the representation of G with highest weight �

(see, e.g. [4, 16]). We shall refer to these homomorphisms as standard. In

addition, the composition V (E

m+1

)! V (E

m�1

) through V (E

m

�

) is non-trivial

and also standard. There are also non-standard homomorphisms

V (E

m+k

) �! V (E

m�k

) for k = 2; 3; : : : ;m: (3)

The homomorphisms listed so far are known as non-singular.

The singular homomorphisms are obtained by taking � to be an integral

weight so that � is not dominant for g but �+� is. We may still de�ne E

k

as

before when the appropriate weight is dominant for p. However, it is easily

veri�ed (e.g. using the algorithms of [4]) that if � lies on the non-dominant

side of two or more walls, then w(�+�)�� is never dominant for p with one

exception, namely when the two walls correspond to the circled nodes

� � � � � � � �

�

�

�

�

@

@

of the Dynkin diagram. This case is completely degenerate, however, with

equalities V (E

m+1

) = V (E

m

�

) = V (E

m

+

) = V (E

m�1

): The remaining m + 1

cases correspond to the m + 1 walls of the dominant chamber. There are

two standard singular homomorphisms V (E

m+1

)! V (E

m

�

) (or, equivalently,

V (E

m

�

)! V (E

m�1

)), again corresponding to the circled nodes of the Dynkin

diagram, and m� 1 non-standard singular homomorphisms

V (E

m+k+1

) = V (E

m+k

) �! V (E

m�k

) = V (E

m�k�1

) for k = 1; 2; : : : ;m�1:



6 semi-holonomic verma modules

Up to scale, this is a complete list of the non-trivial Verma module homo-

morphisms. (Recall that a Verma module is induced from an irreducible

representation of P .) We may now state the main theorem for n even.

Theorem 1 For n � 4, no non-standard non-singular homomorphism

V (E

n

) �! V (E

0

)

lifts to a homomorphism

�

V (E

n

) !

�

V (E

0

). All other Verma module homo-

morphisms lift to the corresponding semi-holonomic modules.

3.2 The case n odd

Write n = 2m + 1. There are slight but essential di�erences to the even

dimensional case. The orbit of a dominant integral weight � for g under the

a�ne action of the Weyl group involves exactly 2m + 2 weights dominant

for p. Let us denote the corresponding �nite-dimensional representations

of P by E

0

; E

1

; : : : ; E

2m

; E

2m+1

. The generalised Bernstein-Gelfand-Gelfand

resolution V (E

�

) consists of the non-trivial Verma module homomorphisms

V (E

2m+1

)! V (E

m

)!� � �! V (E

1

)! V (E

0

): (4)

These are the standard homomorphisms and there are no other non-trivial

homomorphisms between the modules in the pattern.

If we start with a weight � with � + � sitting on a wall of the dominant

Weyl chamber, then there are still weights dominant for p in its orbit un-

der the a�ne action of the Weyl group; however, there are no non-trivial

homomorphisms between them. In other words, there are no singular homo-

morphisms in the odd dimensional case.

There are, however, some non-standard operators obtained from a half-

integral weight � with �+� in the dominant Weyl chamber. There are m+1

possibilities where the half-integral coe�cients appear only with respect to

one or two walls, as indicated by the circled nodes in the following Dynkin

diagrams:

� � � � � � �

>

� � � � � � � � �

>

� � � � � � �

>

We obtain corresponding homomorphisms

V (E

m+k

)! V (E

m+1�k

); for k = 1; 2; : : : ;m+ 1:
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For n � 5, each pattern of modules with the same central character and some

half-integral coe�cients involves only one such homomorphism. For n = 3 all

four prospective modules exist with two operators between them but these

should be regarded as giving two separate families.

Up to scale, this is a complete list of the non-trivial Verma module ho-

momorphisms and we may now state the main theorem for n odd.

Theorem 2 When n is odd, all Verma module homomorphisms lift to the

corresponding semi-holonomic modules.

4 Proof of results

Firstly, some general remarks. Suppose D : V (F) ! V (E) is a homomor-

phism of induced modules. Since F

�

is �nite-dimensional, its image under D

is contained in V

k

(E) for some k. The least k for which this is the case is

called the order of D.

Proposition 2 A homomorphism V (F) ! V (E) of order 2 or less always

lifts to a homomorphism of the corresponding semi-holonomic modules.

Proof. By Frobenius reciprocity and Proposition 1, it su�ces to show

that the surjection of P -modules

�

V

2

(E) �! V

2

(E) admits a P -equivariant

splitting. Such a splitting may be de�ned as the identity on V

1

(E) =

�

V

1

(E)

and further characterised by

V

2

(E) 3 XY e 7�!

1

2

(XY + Y X + [X;Y ])e 2

�

V

2

(E)

for X;Y 2 g and e 2 E

�

. It is elementary to check that this is well-de�ned

and P -equivariant. 2

Generally, the symbol of a k

th

order homomorphism D : V (F) ! V (E) is

the P -module homomorphism

�(D) : F

�

�! V

k

(E)=V

k�1

(E) =

J

k

(g=p)
 E

�

:

In our case (for G and P as �xed at the beginning of Section 3), this is

especially simple as follows. Choose a Levi decomposition p = l � u

+

and

write g = u

�

� l � u

+

, as usual. (See, e.g. [10] for an explicit description.)

The algebras u

�

are Abelian and irreducible as representations of l. Using
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the Poincaré-Birkho�-Witt procedure to put elements of U(g) into standard

order, we may identify

V (E) = U(u

�

)
 E

�

=

J

u

�


 E

�

as an l-module.

Proposition 3 When F is irreducible, a homomorphism of induced modules

V (F) ! V (E) is determined by its symbol.

Proof. The centre of l is one-dimensional and acts non-trivially on u

�

. (We

shall be more explicit about this in Proposition 7.) Therefore, the image of

F

�

lies in

J

k

u

�


 E

�

. 2

Similar considerations apply to the non-holonomic case. There is a symbol

F

�

�!

�

V

k

(E)=

�

V

k�1

(E) =

N

k

(g=p) 
 E

�

=

N

k

u

�


 E

�

which determines a given homomorphism of semi-holonomic induced modules

when F is irreducible.

Proposition 4 A k

th

order homomorphism of Verma modules V (F)!V (E)

lifts to the corresponding semi-holonomic modules if and only if the diagram

of P -modules

F

�

V

k

(E)

�

V

k

(E)

?

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

may be completed as shown.

Proof. For general induced modules, it is conceivable that one would be

able to lift a P -module homomorphismwith image in V

k

(E) to

�

V

l

(E) for some

l > k without being able to lift to

�

V

k

(E). Proposition 3 and the corresponding

result for semi-holonomic Verma modules, prevent this in our case. 2
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As a further equivalent formulation of the lifting problem, observe that, by

Frobenius reciprocity, a homomorphism of induced modules V (F) ! V (E),

when F is irreducible, is equivalent to a maximal weight vector in V (E),

namely the image of a highest weight vector of F

�

. By Proposition 1, the same

remark applies to the semi-holonomic case. Our lifting problem, therefore,

in the case when F is irreducible, is the problem of trying to lift a given

maximalweight vector in V (E) to a maximal vector in

�

V (E). This is the point

of view adopted by Baston [2]. As already observed, the particular weight

corresponding to the centre of l forces the maximal weight into

J

k

u

�


 E

�

and a prospective lift into

N

k

u

�


 E

�

. This is only rarely achieved by the

tautological embedding

J

k

u

�

,!

N

k

u

�

.

Now we can prove the following special case of Theorem 1. (It is the case

� = 0 in the discussion of �3.1.) Let �

1

denote u

�

�

as a representation of P

and let �

k

denote its k

th

exterior power.

Proposition 5 For n � 4, the homomorphism V (�

n

)! V (�

0

) does not lift

to the corresponding semi-holonomic modules.

Proof. We need a formula for the action of u

+

on

N

k

u

�


 E

�

regarded as

an l-submodule of

�

V (E). Elements of

N

k

u

�


 E

�

may be written as linear

combinations of simple ones:

y

1


 y

2


 � � � 
 y

k


 e for y

1

; y

2

; : : : ; y

k

2 u

�

and e 2 E

�

:

By using the Poincaré-Birkho�-Witt procedure, the action of x 2 u

+

on such

an element is given by

X

1�p<q�k

y

1


 � � � 
 ŷ

p


 � � � 
 [[x; y

p

]; y

q

]ŷ

q


 � � � 
 y

k


 e

+

X

1�p�k

y

1


 � � � 
 ŷ

p


 � � � 
 y

k


 [x; y

p

]e

2

N

k�1

u

�


 E

�

:

(5)

Following [10], elements of g = so(n+ 1; 1) may be written

8

>

>

>

>

>

:

� x

a

0

y

b

m

a

b

�x

b

0 �y

a

��

9

>

>

>

>

>

;

(6)
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wherem

a

b

2 so(n). With these conventions (5) gives rise to a tensor equation

(x(y 
 e))

a

1

a

2

���a

k�1

=

X

1�p<q�k

2

4

x

a

q�1

y

a

1

���a

p�1

b

a

p

���a

q�2

ba

q

���a

k�1

�x

b

y

a

1

���a

p�1

ba

p

���a

q�2

a

q�1

a

q

���a

k�1

�x

b

y

a

1

���a

p�1

a

q�1

a

p

���a

q�2

ba

q

���a

k�1

3

5


 e

+

X

1�p�k

�

x

c

y

a

1

���a

p�1

da

p

���a

k�1

� x

d

y

a

1

���a

p�1

ca

p

���a

k�1

+x

b

y

a

1

���a

p�1

ba

p

���a

k�1

�

e

for y

a

1

a

2

���a

k


 e 2

N

k

u

�


 E

�

, where [m

cd

+ �]e is action of l = so(n) � C

on E

�

, indices are raised and lowered with the standard metric g

ab

on R

n

,

and repeated indices are summed, following Einstein's convention for tensors.

When E is trivial, as it is for

�

V (�

0

), the second sum drops out. Of course,

the action of u

+

on ! 2

J

k

u

�

� V (�

0

) is obtained by symmetrizing:

(x!)

a

1

a

2

���a

k�1

=

k(k�1)

2

�

x

(a

1

!

a

2

���a

k�1

)

b

b

� 2x

b

!

ba

1

a

2

���a

k�1

�

(7)

where parentheses on indices take the symmetric part. Up to scale, this is

the formula (4.11) of [10] with w = 0, where it is also observed that

!

a

1

a

2

a

3

a

4

���a

n�1

a

n

= g

(a

1

a

2

g

a

3

a

4

� � � g

a

n�1

a

n

)

is the highest weight corresponding to the homomorphism V (�

n

) ! V (�

0

).

Indeed, with this choice of !,

!

a

2

���a

n�1

b

b

= 2g

(a

2

a

3

� � � g

a

n�2

a

n�1

)

whence substitution in (7) gives zero. By Weyl's classical invariant theory,

the general lift of this to an l-invariant vector in

N

n

u

�

has the form

!

a

1

a

2

���a

n

=

X

�2S

n

c

�

g

a

�(1)

a

�(2)

g

a

�(3)

a

�(4)

� � � g

a

�(n�1)

a

�(n)

where

X

�

c

�

= 1:

Thus, to complete the proof, we need to show that for no such ! can we have

N

n�1

u

�

3

X

1�p<q�n

2

4

x

a

q�1

!

a

1

���a

p�1

b

a

p

���a

q�2

ba

q

���a

n�1

�x

b

!

a

1

���a

p�1

ba

p

���a

q�2

a

q�1

a

q

���a

n�1

�x

b

!

a

1

���a

p�1

a

q�1

a

p

���a

q�2

ba

q

���a

n�1

3

5

= 0
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for all x 2 u

+

. If we symmetrize this expression over its �rst n � 2 indices

a

1

a

2

� � � a

n�2

, then we obtain terms of the following two types

g

(a

1

a

2

� � � g

a

n�3

a

n�2

)

x

a

n�1

x

(a

1

g

a

2

a

3

� � � g

a

n�2

)a

n�1

and it is straightforward to check

]

that, for every term in !, there are n� 2

of the former type, independent of �. Bearing in mind that

P

c

�

= 1, it

follows that

(x!)

(a

1

a

2

���a

n�2

)a

n�1

=

(n� 2)g

(a

1

a

2

� � � g

a

n�3

a

n�2

)

x

a

n�1

+ (2 � n)x

(a

1

g

a

2

a

3

� � � g

a

n�2

)a

n�1

which is non-zero for n � 4. 2

The key technique in our proofs is the translation principle of Zuck-

erman [22] and others. The idea is as follows. Suppose W is a �nite-

dimensional representation of G. Use the same symbol for the restriction

of this representation to P .

Proposition 6 There is a canonical isomorphism of (U(g); P )-modules

V (E 
W) = V (E) 
W

�

:

Proof. We may view U(g)
 E

�


W

�

as a g-module in two di�erent ways:

1. X(x
 e
 w) = Xx 
 e
 w

2. X(x
 e
 w) = Xx 
 e
 w + x
 e
Xw.

There is a g-homomorphism between these two modules characterised as the

identity on elements of the form 1 
 e 
 w for e 2 E

�

and w 2 W

�

. This

descends to the required isomorphism of induced modules. 2

A non-trivial �nite-dimensional irreducible representation of G is never irre-

ducible as a representation of P but enjoys a composition series

W = W

�`

+W

1�`

+ � � � +W

`�1

+W

`

(8)

]

These computations are easily done using Penrose's bug notation [19, Appendix].
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with composition factors W

i

each of which decomposes as a direct sum of P -

irreducibles. The notation here means that there is a �ltration of P -modules

W

`

=W

`

�W

`�1

� � � � �W

1�`

�W

�`

=W

with W

i

=W

i

=W

i+1

. The grading is labelled in accordance with the action

of the centre of l. More speci�cally, let Z 2 so(n+1; 1) denote the matrix (6)

with � = 1 and all other entries zero. ThenW

i

is the i-eigenspace of Z. Since

Z acts on u

�

as multiplication by �1, the action of u

+

onW takes one from

W

i

to W

i+1

and u

�

conversely. In general, Z acts by scalar multiplication

on any irreducible representation of p and we shall write `(E) for this scalar.

For example, with the notation of [4],

�
� �

�

�

a b c

d

e

�

�

@

@

`

7! �a� b� c�

1

2

(d+ e) and �
� � �

a b c d

>

`

7! �a� b� c�

1

2

d:

Proposition 7 The order of a non-zero homomorphism V (F) ! V (E) or

�

V (F) !

�

V (E) is given by `(F) � `(E).

Proof. For the holonomic case, F

�

,!

J

k

u

�


 E

�

(as in the proof of

Proposition 3) and for the semi-holonomic case, F

�

,!

N

k

u

�


E

�

. Applying

Z gives the required equality. 2

As typical examples of (8),

� � �

�

�

1 0 0

0

0

�

�

@

@

= �
� �

�

�

1 0 0

0

0

�

�

@

@

+ �
� �

�

�

�1 1 0

0

0

�

�

@

@

+ �
� �

�

�

�1 0 0

0

0

�

�

@

@

; (9a)

� � �

�

�

0 0 0

1

0

�

�

@

@

= �
� �

�

�

0 0 0

1

0

�

�

@

@

+ �
� �

�

�

�1 0 0

0

1

�

�

@

@

; (9b)

and

� � �

�

�

0 1 0

0

0

�

�

@

@

= �
� �

�

�

0 1 0

0

0

�

�

@

@

+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�
� �

�

�

�1 0 1

0

0

�

�

@

@

�

�
� �

�

�

0 0 0

0

0

�

�

@

@

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

+ �
� �

�

�

�2 1 0

0

0

�

�

@

@

: (9c)

Now, if E is an irreducible representation of P , then

E 
W = E 
W

�`

+ E 
W

1�`

+ � � �+ E 
W

`�1

+ E 
W

`
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and each E 
W

i

splits as a direct sum of irreducibles, say E

i;j

. Thus, we

obtain

V (E 
W) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

V (E

`;1

)

�

V (E

`;2

)

�

.

.

.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

V (E

`�1;1

)

�

V (E

`�1;2

)

�

.

.

.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

+ � � �+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

V (E

1�`;1

)

�

V (E

1�`;2

)

�

.

.

.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

V (E

�`;1

)

�

V (E

�`;2

)

�

.

.

.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(10)

as (U(g); P )-modules. Fix attention on one particular factor V (E

0

) occurring

on the right hand side. Under suitable circumstances, we may split o� this

Verma module as a direct summand. Since a Verma module is a highest

weight module, elements in the centre Z(U(g)) of the universal enveloping

algebra U(g) act by scalar multiplication. The resulting algebra homomor-

phism Z(U(g))! C is called the central character of this Verma module.

Proposition 8 Suppose that V (E

0

) has distinct central character from all the

other V (E

ij

) occurring on the right hand side of (10). Then V (E

0

) canonically

splits o� from V (E 
W) as a direct summand.

Proof. The inclusion V (E

0

) ,! V (E
W) is de�ned by mapping to the joint

eigenspace of the central character of V (E

0

). The complementary subspace

is the direct sum of the generalised eigenspaces for the remaining central

characters. 2

This proposition may be used in conjunction with:

Theorem 3 (Harish-Chandra) Two Verma modules V (E) and V (F) have

the same central character if and only if their highest weights are related

under the a�ne action of the Weyl group of g.

Proof. See, for example, [15]. 2

Speci�cally, we may take the highest weight � of E

�

and use the Weyl group

to bring �+� into the dominant chamber. If we do the same to �, the highest

weight of F

�

, then the resulting dominant weights coincide if and only if V (E)

and V (F) have the same central character.
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For a non-trivial homomorphism of Verma modules V (F) ! V (E), it

is evident that V (E) and V (F) must have the same central character. By

construction, the modules (2) or (4) all have the same central character and

there are no others. The translation principle aims to relate such a pattern

of Verma modules and their homomorphisms to the corresponding pattern

with di�erent central character. So, suppose V (F) ! V (E) is a non-trivial

homomorphism. Let W be a �nite-dimensional irreducible representation

of G. By Proposition 6, we obtain a homomorphism

V (F 
W) = V (F) 
W

�

! V (E) 
W

�

= V (E 
W):

Now suppose that V (F

0

) occurs as a composition factor of V (F
W) with dis-

tinct central character from all other factors. Suppose, moreover, that V (E

0

)

has the same central character as V (F

0

) and occurs as a composition factor

of V (E 
W) but that no other factor has this particular central character.

Then, by Proposition 8, we obtain V (F

0

)! V (E

0

) as the composition

V (F

0

)! V (F 
W)! V (E 
W)! V (E

0

):

The result of this process, namely

Hom

(U(g);P )

(V (F); V (E)) �! Hom

(U(g);P )

(V (F

0

); V (E

0

))

is called translation. In the best cases, it is an isomorphism:

Proposition 9 Suppose that V (E) and V (F) have the same central charac-

ter. Suppose that V (E

0

) and V (F

0

) have the same central character. Let W

be a �nite-dimensional irreducible representation of G and suppose that

� V (F

0

) occurs in the composition series for V (F 
W) and has distinct

central character from all other factors;

� V (E

0

) occurs in the composition series for V (E 
W) and has distinct

central character from all other factors.

It follows that V (F) occurs in the composition series for V (F

0


W

�

) and that

V (E) occurs in the composition series for V (E

0


W

�

). We suppose further

that

� all other composition factors of V (F

0


W

�

) have central character dis-

tinct from V (F);
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� all other composition factors of V (E

0


W

�

) have central character

distinct from V (E).

Then translation gives an isomorphism

Hom

(U(g);P )

(V (F); V (E))

�

=

�! Hom

(U(g);P )

(V (F

0

); V (E

0

))

(whose inverse is given by translation using W

�

.)

Proof. Straightforward, using the tautological isomorphisms

Hom

(U(g);P )

(V (F) 
W

�

; V (E

0

)) = Hom

(U(g);P )

(V (F); V (E

0

)
W) (11)

and

Hom

(U(g);P )

(V (F

0

)
W; V (E)) = Hom

(U(g);P )

(V (F

0

); V (E) 
W

�

):

See [21] for details. Essentially the same reasoning but in a more subtle

situation is employed towards the end of �4.1. 2

The classi�cation of Verma module homomorphisms described in Section 3

may be achieved using this proposition. We shall come back to this shortly.

We have described translation in detail in order that we may follow the

same procedure, as far as is possible, in the semi-holonomic case. Since

�

U(g)

has only trivial centre, we may expect much less power from a semi-holonomic

translation principle. In particular, there is no hope for a classi�cation of

homomorphisms. Nevertheless, some elements remain. As usual, suppose

E is a �nite-dimensional representation of P and W is a �nite-dimensional

representation of G.

Proposition 10 There is a canonical isomorphism of (

�

U(g); P )-modules

�

V (E 
W) =

�

V (E) 
W

�

:

Proof. The proof of Proposition 6 easily extends. 2

For any �nite-dimensional irreducible representationW of G, we shall refer

to the integer 2` which occurs in (8) as the length ofW.

Proposition 11 Suppose that E is an irreducible representation of P and

that V (E

0

) splits from V (E 
W) as in Proposition 8. Then, the orders of

the splitting homomorphisms V (E

0

)� V (E 
W) are bounded by the length

ofW.
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Proof. Since E

0

is a composition factor of E 
W,

`(E) � ` � `(E

0

) � `(E) + `:

A non-zero symbol E

0�

!

J

k

u

�


 E

�


W

�

forces �`(E

0

) � �k � `(E) + `.

Combining these inequalities,

k + `(E) � ` � `(E

0

) � `(E) + `

and k � 2`, as required. Similarly, a non-zero symbol E

�


W

�

!

J

k

u

�


E

0�

implies that �`(E) � ` � �k � `(E

0

) and, again, k � 2`. 2

Corollary 1 If W has length less than or equal to 2, then these splittings

lift to the semi-holonomic modules:

�

V (E

0

)�

�

V (E 
W).

Proof. Immediate from Proposition 2. 2

We shall refer to as fundamental those �nite-dimensional irreducible repre-

sentations of G corresponding to the fundamental dominant weights of g. In

the notation of [4], this entails having a 1 over some node of the Dynkin

diagram and 0's over the others.

Proposition 12 The fundamental representations of G have length less than

or equal to 2.

Proof. Elementary computation. In fact, the fundamental spin represen-

tations have length 1 and the others have length 2. The examples of (9) are

typical. 2

Our main result concerning translation is as follows:

Theorem 4 SupposeW is a �nite-dimensional representation of G of length

less than or equal to 2. Suppose that E, F, E

0

, and F

0

are �nite-dimensional

irreducible representations of P subject to the assumptions of Proposition 9.

Then a homomorphism of Verma modules D : V (F) ! V (E) lifts to a

homomorphism

�

D :

�

V (F) !

�

V (E) of the corresponding semi-holonomic

modules if and only if the same is true of the translated homomorphism

D

0

: V (F

0

)! V (E

0

).

Proof. If

�

D exists, then Propositions 6 and 10, and Corollary 1, give a

commutative diagram
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�

V (F

0

)!

�

V (F 
W)=

�

V (F) 
W

�

�

D
1

��!

�

V (E) 
W

�

=

�

V (E 
W)!

�

V (E

0

)

V (F

0

)!V (F 
W)=V (F) 
W

�

D
1

��! V (E) 
W

�

=V (E 
W)!V (E

0

)

6

D

0

? ?? ?? ?

and composition along the top row lifts D

0

. 2

We now use this semi-holonomic translation to prove the non-existence

part of Theorem 1. Let w

�

denote the longest element of the Weyl group of

g such that w

�

� is dominant for p.

Proposition 13 Let E

0

be the irreducible representation of P with lowest

weight �� for � a dominant integral weight for g. Let E

n

denote the irre-

ducible representation of P with lowest weight �w

�

(�+�)+�. Then the homo-

morphism V (E

n

)! V (E

0

) does not lift to the corresponding semi-holonomic

modules.

Proof. Write �

0

; �

1

; : : : ; �

m

for the fundamental weights of g in accordance

with labelling the Dynkin diagrams thus:

� � � � � � �

�

�

0 1 2 m�2

m�1

m

�

�

@

@

A weight of g dominant and integral with respect to p is of the form

� = a

0

�

0

+ a

1

�

1

+ � � � + a

m

�

m

for non-negative integers a

1

; : : : ; a

m

. We

shall write E

�

for the �nite-dimensional irreducible representation of P with

�� as lowest weight. If a

0

is also a non-negative integer, then � is dominant

integral for g and we shall write W

�

for the �nite-dimensional irreducible

representation of G with lowest weight ��. Suppose � is dominant integral

for g. Then

E

�


W

�

j

=

8

>

>

>

>

>

>

>

:

E

�+�

j

�

.

.

.

9

>

>

>

>

>

>

>

;

+ � � � (12)

and we maintain that E

�+�

j

has distinct central character from all other

P -irreducibles occurring in this composition series. Also,

E

�+�

j


W

�

�

j

= � � �+

8

>

>

>

>

>

>

>

:

.

.

.

�

E

�

9

>

>

>

>

>

>

>

;

(13)
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and we maintain that E

�

has distinct central character. To see the �rst of

these, consider the distance of �+�

j

from the origin in g

�

. Since both � and

�

j

are g-dominant, there are no weights of E

�


W

�

j

of greater distance from

the origin and after translating by � the inequality is strict, i.e. �+ �

j

+ � is

farther from the origin then any other �-translated weight of E

�


W

�

j

. Since

the Weyl group acts by isometries, Theorem 3 completes the argument. To

see that E

�

has distinct central character in (13) notice that `(E

�

) is greater

than or equal to the value of ` on the other irreducibles. However, it is easy

to check that when � is g-dominant, ` is strictly minimized on the a�ne Weyl

group orbit by `(E

�

).

Now consider the representation E

w

�

(�+�)��

for � a dominant integral

weight of g. It has the same central character as E

�

and, indeed, there is

a non-trivial Verma module homomorphism V (E

w

�

(�+�)��

) ! V (E

�

). The

composition series

E

w

�

(�+�)��


W

�

j

= � � � +

8

>

>

>

>

>

>

>

:

E

w

�

(�+�

j

+�)��

�

.

.

.

9

>

>

>

>

>

>

>

;

has irreducible factors related to (12) under the a�ne action of w

�

and hence

with the same central characters. Similarly for

E

w

�

(�+�

j

+�)��


W

�

�

j

=

8

>

>

>

>

>

>

>

:

.

.

.

�

E

w

�

(�+�)��

9

>

>

>

>

>

>

>

;

+ � � �

as compared with (13). Thus, we are in the situation covered by Theorem 4

and we may conclude that for � a dominant integral weight of g and �

j

a

fundamental weight, the homomorphism

V (E

w

�

(�+�)��

)! V (E

�

)

lifts to the corresponding semi-holonomic modules if and only if the same is

true of

V (E

w

�

(�+�

j

+�)��

)! V (E

�+�

j

):

Repeated application of this conclusion reduces to the case � = 0. This is

precisely Proposition 5. 2
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4.1 Completing the proof of Theorem 1

The idea is exactly as in the proof of Proposition 13 and we shall omit many

details. The �rst thing to note is that when E

0

is trivial all the Verma

module homomorphisms of (2) are �rst order. By Proposition 2, these lift to

the corresponding semi-holonomic modules and now it is straightforward to

check that, using the semi-holonomic translation of Theorem 4 by suitably

chosen fundamental representations, we may lift the general diagram (2).

Next consider the following special singular homomorphisms�they are

the most degenerate of the m+ 1 di�erent types listed in �3.1:

V (E

�

m�1

�(m+1)�

0

)! V (E

�

m

�m�

0

); V (E

�

m

�(m+1)�

0

)! V (E

�

m�1

�m�

0

); (14)

and,

V (E

�(m+k)�

0

)! V (E

�(m�k)�

0

) for k = 1; 2; : : : ;m� 1: (15)

The two homomorphisms (14) are �rst order and therefore lift. The homo-

morphism (15) when k = 1 is second order and therefore lifts. (Alternatively,

it may be obtained by translating either of (14) by an appropriate fundamen-

tal spin representation.) Now we may useW

�

0

to move along the series (15)

as follows.

E

�(m�k)�

0


W

�

0

= E

�(m�k�1)�

0

+ E

�

1

�(m�k+1)�

0

+ E

�(m�k+1)�

0

(16)

and under the Weyl group

�(m� k � 1)�

0

+ � 7!

�

��

m�k�2

+ � for k = 1; : : : ;m� 2

� for k = m� 1

�

1

� (m� k + 1)�

0

+ � 7!

�

�

0

� �

m�k�1

+ � for k = 1; : : : ;m� 2

� for k = m� 1

�(m� k + 1)�

0

+ � 7!

�

��

m�1

� �

m

+ � for k = 1

��

m�k

+ � for k = 2; : : : ;m� 1

with dominant results. Therefore, the three factors on the right hand side

of (16) have mutually distinct central characters for k = 1; : : : ;m� 2 whilst

for k = m � 1 the �rst two factors have equal central character di�ering

from the third. A similar analysis applies to E

�(m+k)�

0

and, observing that

W

�

�

0

�

=

W

�

0

, we are now in a position to apply Theorem 4. It follows that
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all the homomorphisms (15) lift to the corresponding semi-holonomic mod-

ules. (It is interesting to note that, in accordance with Proposition 5, the

process breaks down just when it would lift V (�

n

) ! V (�

0

).) It is now

straightforward to check that semi-holonomic translation with suitably cho-

sen fundamental representations lifts all the singular homomorphisms from

these m + 1 basic examples. Not only that, but the homomorphisms (15)

may also be translated into the non-singular regime as follows.

Consider the homomorphism V (E

�(n�1)�

0

)! V (E

��

0

). This is (15) when

k = m� 1. According to (16),

E

��

0


W

�

0

= E

0

+ E

�

1

�2�

0

+ E

�2�

0

:

Central character does not split V (E

�

1

�2�

0

) o� from V (E

��

0


W

�

0

) but does

provide a surjection

V (E

��

0


W

�

0

) �! V (E

�

1

�2�

0

):

Similarly, there is a homomorphism

V (E

�

1

�n�

0

) �! V (E

�(n�1)�

0


W

�

0

)

= V (E

�

1

�n�

0

+ E

�n�

0

)� V (E

�(n�2)�

0

)

(17)

injecting into the �rst summand and, hence, a well-de�ned composition

V (E

�

1

�n�

0

)! V (E

�(n�1)�

0


W

�

0

)! V (E

��

0


W

�

0

)! V (E

�

1

�2�

0

) (18)

generalising the usual translation principle. We must show that this homo-

morphism is non-zero. To do this, we attempt to invert the translation as in

Proposition 9:

E

�

1

�2�

0


W

�

�

0

= E

�

1

��

0

+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

:

E

2�

1

�3�

0

�

E

�

2

�2�

0

�

E

��

0

9

>

>

>

>

>

>

>

>

>

>

>

>

>

;

+ E

�

1

�3�

0

and these composition factors have mutually distinct central character. In

particular, V (E

��

0

) splits o� from V (E

�

1

�2�

0


W

�

�

0

). Now, consider the

composition

V (E

�(n�1)�

0


W

�

0

)! V (E

��

0


W

�

0

)! V (E

�

1

�2�

0

):
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We claim that it is non-zero. By (11), it is equivalent to see that

V (E

�(n�1)�

0

)! V (E

��

0

)! V (E

�

1

�2�

0


W

�

�

0

)

is non-zero. This follows because, as we have just observed, the second

homomorphism is a splitting. Now consider the full composition (18). If it

were zero, then from (17) we would have a non-zero homomorphism

V (E

�n�

0

) �! V (E

�

1

�2�

0

):

According to the classi�cation of �3.1, there is no such operator and so (18) is

non-zero, as claimed. (It is interesting to note that, in fact, inverse translation

fails�the composition

V (E

�(n�1)�

0

)! V (E

�

1

�n�

0


W

�

�

0

)! V (E

�

1

�2�

0


W

�

�

0

)! V (E

��

0

)

turns out to be zero.)

A similar analysis may be carried out to obtain

V (�

m+k

) = V (E

�

m�k

�(m+k+1)�

0

) �! V (E

�

m�k

�(m�k+1)�

0

) = V (�

m�k

)

for k = 2; : : : ;m� 1 and even V (�

m+1

)! V (�

m�1

) by translating (15) with

W

�

m�k�1

. These are the nonstandard homomorphisms (3) with � = 0 for

k = 2; : : : ;m�1 and also the standard homomorphismV (E

m+1

)! V (E

m�1

).

General dominant integral � can now be obtained by careful translation

with fundamental representations. By repeated application of Propositions 2,

6, and 10, (as in the proof of Theorem 4), bearing in mind Proposition 12, it

follows that all these Verma modules homomorphisms (3) for k = 2; : : : ;m�1

admit semi-holonomic lifts, as claimed in Theorem 1.

4.2 The proof of Theorem 2

In fact, in order to conclude the proof we have just to specify some steps

which have been already discussed. The discussion turns out to be much

simpler than the even dimensional case, since all non-trivial homomorphisms

are non-singular now.

In particular, the basic pattern with E

0

= E

�

0

contains only homomor-

phisms of order one. By Proposition 2, they all lift to the corresponding

semi-holonomic Verma modules. All other standard homomorphisms are
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now achieved from the basic pattern by translationing with the fundamental

representations. By Theorem 4, all of them admit a semi-holonomic lift.

Next consider the non-standard homomorphisms. Once more, suitable

translation with fundamental representations restricts the discussion of lifting

to the cases where E

0

is as close to the fundamental Weyl chamber and the

origin in g

�

as possible. Labelling the fundamental weights as

� � � � � � � �

0 1 2 m�1 m

> ,

we have only to consider the homomorphisms

V (E

�(m+3=2)�

0

+�

m

)! V (E

�(m+1=2)�

0

+�

m

)

V (E

�(m+k�1=2)�

0

)! V (E

�(m�k+3=2)�

0

) for k = 2; 3; : : : ;m;m+ 1:

The homomorphism on the �rst line is of order one, while the second line

with k = 2 yields a homomorphism of order two. By Proposition 2, they

both lift to the semi-holonomic modules.

Now, the translation

V (E

�(m+k+1=2)�

0

)! V (E

�(m+k�1=2)�

0


W

�

0

)!

! V (E

�(m�k+3=2)�

0


W

�

0

)! V (E

�(m�k+1=2)�

0

)

exists for all k = 2; 3; : : : ;m as discussed in detail in proving Proposition 13.

Hence, semi-holonomic translation produces all the remaining lifts and the

proof of Theorem 2 is complete.

A Applications to conformal geometry

When G is the Möbius group and G=P is the n-sphere, homomorphisms of

Verma modules correspond to Möbius-invariant linear di�erential operators

between conformally weighted spinor-tensor bundles on this sphere. The

statements for Verma modules in Section 3 may, therefore, be interpreted as

a classi�cation of Möbius-invariant di�erential operators on the sphere. For

example, when E

0

is trivial, (2) corresponds to the de Rham sequence and

the splitting �

m

= �

m

+

� �

m

�

is the (conformally invariant) decomposition of

m-forms into self-dual and anti-self-dual types.
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The reason for this correspondence is the duality V

k

(E) = (J

k

E)

�

for

any P -module E. Here, J

k

E is the representation of P inducing the k

th

jet bundle of the vector bundle on G=P induced by E. The association of

the k

th

jet bundle J

k

E to a vector bundle E is something that is naturally

de�ned on any smooth manifold. Sometimes, these jet bundles are called

holonomic to distinguish them from the semi-holonomic jet bundles

�

J

k

E,

generally de�ned by induction as follows (cf. [12]). Start with J

0

E = E and

�

J

1

E = J

1

E. We shall de�ne

�

J

k

E as a sub-bundle of J

1

�

J

k�1

E. It therefore

comes equipped with a natural projection

�

J

k

E !

�

J

k�1

E. Suppose

�

J

k

E is

already de�ned. Then there are two natural mappings J

1

�

J

k

E ! J

1

�

J

k�1

E.

The �rst is obtained by applying J

1

to the projection

�

J

k

E !

�

J

k�1

E. The

second is obtained as the composition J

1

�

J

k

E !

�

J

k

E ,! J

1

�

J

k�1

E. We de�ne

�

J

k+1

E as the sub-bundle on which these two mappings agree:

0!

�

J

k+1

E ! J

1

�

J

k

E � J

1

�

J

k�1

E:

It is easy to check that there is a tautologically de�ned homomorphism

J

k

E !

�

J

k

E, equivalently a di�erential operator of order k. These bundles

�t into the commutative diagram (cf. (1))

0 ���!

J

k

�

1


 E ���! J

k

E ���! J

k�1

E ���! 0

?

?

y

?

?

y

?

?

y

0 ���!

N

k

�

1


 E ���!

�

J

k

E ���!

�

J

k�1

E ���! 0

with exact rows. Notice that the functor E 7!

�

J

k

E is completely determined

by the 1-jet functor F 7! J

1

F . On a homogeneous space G=P , this geomet-

rically de�nes P -modules

�

J

k

E for any P -module E. It is easy to check that

�

V

k

(E) = (

�

J

k

E)

�

.

It is well-known that a Möbius invariant di�erential operator on the

sphere may sometimes admit a curved analogue, namely a di�erential op-

erator invariantly de�ned for any conformal geometry and reducing to the

given operator on the sphere. The best known is perhaps the Yamabe oper-

ator

�+

n� 2

4(n� 1)

R

acting on conformal densities of weight 1 �

n

2

. Here, � is the Laplacian

and R the scalar curvature, both computed with respect to a metric in the

conformal class (see, e.g. [9]).
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Theorem 5 If the homomorphism of induced modules V (F) ! V (E) lifts

to the associated semi-holonomic modules, then the corresponding Möbius-

invariant di�erential operator on the sphere admits a curved analogue.

Proof. E. Cartan's frame bundle (see, e.g. [7]) attaches to each confor-

mal manifold, a principal P -bundle. A representation E of P therefore gives

rise to an associated vector bundle E. If E is irreducible, then E is a con-

formally weighted spinor-tensor bundle (see, e.g. [1, 9]). More generally, E

enjoys a composition series with conformally weighted spinor-tensor bundles

as factors. It is shown in [7] that J

1

E may be canonically identi�ed with

the bundle associated to J

1

E. This amounts to the construction of an in-

variant �rst order di�erential operator from E to the bundle associated to

J

1

E. It is accomplished using the Cartan connection. An equivalent con-

struction may be given using the methods of T.Y. Thomas described in [1].

Since

�

J

k

E is constructed purely in terms of 1-jets, it follows immediately

that it may be identi�ed with the vector bundle associated to the representa-

tion

�

J

k

E. Therefore, a homomorphism of P -modules

�

J

k

E ! F gives rise to

an invariant homomorphism of vector bundles

�

J

k

E ! F . The composition

J

k

E !

�

J

k

E ! F is the required curved analogue. 2

It is interesting to compare this theorem with results from conformal ge-

ometry. The conformal analogues constructed by this theorem are already

known to exist (see [11] in four dimensions and [2] generally) but the ap-

proach via semi-holonomic homomorphisms seems to be cleaner. The homo-

morphism V (�

n

) ! V (�

0

) of Proposition 5 actually has a curved analogue

(i.e. a conformally invariant operator with symbol �

n=2

) but its existence

is quite subtle [14]. It is conjectured that, when n is even, all other ho-

momorphisms V (E

n

) ! V (E

0

) do not have curved analogues but the only

case where this has been veri�ed is for �

3

in four dimensions [13]. It is

possible that the semi-holonomic approach will shed light on this conjecture.

Some di�erential geometric aspects are clearly represented in the algebra�

the holonomic symbol gives rise to the symbol of the invariant operator and

the extra terms involved in a semi-holonomic lift give rise to curvature terms.

The results of this article should generalise to the almost Hermitian sym-

metric geometries of Baston [3]. The relevant invariant derivatives are cer-

tainly present [7, 8]. It remains, therefore, to identify those homomorphisms

of Verma modules which lift to their semi-holonomic counterparts. For the

exceptional geometry based on E

6

partial results have been obtained by

Sawon [20].
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