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Abstra
t. This paper demonstrates the power of the 
al
ulus developed in the two

previous parts of the series for all real forms of the almost Hermitian symmetri


stru
tures on smooth manifolds, in
luding e.g. 
onformal Riemannian and almost

quaternioni
 geometries. Exploiting some �nite dimensional representation theory

of simple Lie algebras, we give expli
it formulae for distinguished invariant 
urved

analogues of the standard operators in terms of the linear 
onne
tions belonging to

the stru
tures in question, so in parti
ular we prove their existen
e. Moreover, we

prove that these formulae for kth order standard operators, k = 1;2; : : : , are universal

for all geometries in question.

1. Introdu
tion

As generally known, several geometries share surprisingly many properties with

the 
onformal Riemannian stru
tures and proje
tive stru
tures. For example the

almost quaternioni
 ones. Following the old ideas by Cartan, and some more re-


ent development by Baston, Eastwood, Gindikin, Gon
harov, O
hiai, Tanaka, and

others, we have started the proje
t of building a good 
al
ulus for all of them. This

paper presents the �rst major appli
ation of the te
hnique developed so far for the

so 
alled AHS-stru
tures in the �rst two parts of this series, [CSS1, CSS2℄.

In [F℄, Fegan des
ribed all 
onformally invariant operators of the �rst order on


onformal Riemannian manifolds. We use the invariant di�erentiation with respe
t

to Cartan 
onne
tions developed in [CSS1℄, together with some representation the-

ory of simple Lie algebras, in order to extend Fegan's methods to operators of all

orders. This new te
hnique works for a wide 
lass of geometries and, using the

expli
it 
omputations of the 
anoni
al Cartan 
onne
tions in [CSS2℄, we obtain

formulae for all these invariant operators in terms of 
ovariant derivatives with re-

spe
t to the linear 
onne
tions belonging to the stru
tures and their 
urvatures.

Moreover, a simple re
ursive pro
edure for the 
omputation of the 
orre
tion terms

for standard operators is des
ribed.

In su
h a way, the abstra
t indi
ation of the existen
e of the standard invariant

linear di�erential operators on manifolds with almost Hermitian symmetri
 stru
-

tures given in [B℄ is repla
ed by an expli
it and transparent 
onstru
tion, whi
h

provides even formulae in 
losed forms. Surprisingly enough, these universal for-

mulae do not depend on the parti
ular geometry at all.
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In order to make the paper more self-
ontained, we have in
luded a brief review

of some ba
kground from [CSS1℄. This 
on
erns the short se
tion 2 where we also

�x the notation used in the sequel. The se
tions 3 through 5 provide the ne
essary

development in representation theory. In order to address a wider audien
e among

di�erential geometers, we try to be quite detailed here. Se
tion 6 gives the main

existen
e result (Theorem 6.5) and the expli
it formulae are established in se
tion

7 (Theorems 7.4 and 7.9). Some te
hni
al points are postponed to two appendi
es.

2. A 
al
ulus for Cartan 
onne
tions

The aim of this se
tion is to summarize for 
onvenien
e of the reader the main

development from [CSS1℄. Full details and proofs 
an be found there.

2.1 AHS stru
tures. A basi
 datum distinguishing a parti
ular AHS stru
ture

is a real simple Lie group G with the Lie algebra g, whi
h is j1j-graded, i.e.

g = g

�1

� g

0

� g

1

with [g

i

; g

j

℄ � g

i+j

; g

j

= f0g; j 6= �1; 0; 1: There is a list of all simple real j1j-

graded Lie algebras (see [KN℄). Their 
omplexi�
ation is a semisimple j1j-graded


omplex Lie algebra. The 
lassi�
ation of 
omplex simple j1j-graded Lie algebras


orresponds to the well known list of Hermitian symmetri
 spa
es. The latter fa
t

has been the origin of the name A(lmost) H(ermitian) S(ymmetri
) we use.

The subalgebras g

�1

are 
ommutative and dual to ea
h other with respe
t to

the Killing form. The algebra g

0

is redu
tive with one-dimensional 
enter, whi
h is

generated by the grading element E; whi
h is 
hara
terized by the fa
t that ea
h

of the subalgebras g

j

, j = �1; 0; 1, ist the eigenspa
es for the adjoint a
tion of E

with eigenvalue j. The semisimple part [g

0

; g

0

℄ of g

0

will be denoted by g

s

0

.

The subgroups P; resp. P

1

of G 
orrespond to the Lie algebra p = g

0

� g

1

, resp.

g

1

. The group P

1

is a normal subgroup of P and the group G

0

= P=P

1

has the Lie

algebra g

0

. Let us mention that we have used the letter B instead of P in [CSS1℄.

The typi
al and best understood example of AHS stru
tures is a 
onformal stru
-

ture on a manifoldM . A standard way to de�ne it is a redu
tion of the frame bundle

of M to the 
onformal group G

0

= CO(n;R). A 
lassi
al theorem going ba
k to

Cartan gives a 
onstru
tion of a P -prin
ipal bundle G (where P is a semidire
t

produ
t of G

0

and R

n

) over M and a uniquely de�ned Cartan 
onne
tion ! on

G. Su
h data were 
onsidered by Cartan as a 
urved analogue of the 
at model

G=P (an example of his `espa
es g�en�eralis�es'). The 
hara
teristi
 properties of the

Cartan 
onne
tion ! are a simple generalization of properties of the Maurer-Cartan

form ! on G=P .

Following previous results by Tanaka, O
hiai, and Baston, a simple and transpar-

ent prin
ipal bundle approa
h to a 
anoni
al 
onstru
tion of the prin
ipal bundle

G with stru
ture group P and of the Cartan 
onne
tion ! on G from the standard

�rst order G

0

-stru
ture on M was des
ribed in [CSS2℄. We shall not need the 
on-

stru
tion here and we shall start with G and ! as with a given pres
ribed data,

giving to M the stru
ture of an AHS manifold.

2.2 The Cartan 
onne
tion and the invariant di�erential. So we suppose

that a P -prin
ipal bundle G on M and the Cartan 
onne
tion ! 2 


1

(G; g) is given

on G (for the de�nition and properties of the Cartan 
onne
tions, see [CSS1℄).
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Any Cartan 
onne
tion de�nes an absolute parallelism of G and for any ve
tor

spa
e V, we 
an de�ne the invariant di�erential

r

!

: C

1

(G;V)! C

1

(G; g

�

�1


V)

by

r

!

s(u)(X) � r

!

X

s(u) := [!

�1

(X)s℄(u)

where !

�1

(X) is the 
onstant ve
tor �eld on G given by X 2 g

�1

and !. Noti
e

also TM = G �

P

g

�1

, T

�

M = G �

P

g

1

in a 
anoni
al way.

IfVis a (�nite dimensional) P -module, than the spa
e C

1

(G;V)

P

of equivariant

maps is a 'frame form' of the spa
e �(M;V ) of smooth se
tions of the asso
iated

ve
tor bundle V = G �

P

V. We would like to use r

!

for a 
onstru
tion of invari-

ant di�erential operators. Unfortunately, the map r

!

s, s 2 C

1

(G;V)

P

, does not

usually belong to C

1

(G; g

�

�1


V)

P

, it is not the frame form of a se
tion of a suit-

able asso
iated ve
tor bundle over M . So r

!

does not de�ne dire
tly a di�erential

operator on M .

A very useful pro
edure how to improve the situation is to introdu
e a fun
torial

way how to de�ne a stru
ture of a P -module on the spa
e

J

1

(V) :=V� (g

�

�1


V)

in su
h a way that the map

s 2 C

1

(G;V)

P

7! (s;r

!

s) 2 C

1

(G; J

1

(V))

P

has again values in the spa
e of equivariant maps. The P -module stru
ture on

J

1

(V) 
an be dedu
ed easily from the 
orresponding homogeneous 
ase (where it is

just the representation indu
ing the homogeneous bundle J

1

(V ) of 1-jets of se
tions

of V ). Moreover, the Cartan 
onne
tion ! introdu
es the natural identi�
ations of

the �rst jet prolongations of the asso
iated bundles V = G �

P

Vwith G �

P

J

1

(V).

Consequently, any P -module homomorphism � : J

1

(V) ! V

0

indu
es a well

de�ned di�erential operator from the spa
e of se
tions of the bundle V to the spa
e

of se
tions of the bundle V

0

. Due to the fa
t that the Cartan 
onne
tion is uniquely

de�ned by the AHS stru
ture, the 
orresponding operator is invariant with respe
t

to any of the usual de�nitions of invariant operators (details on relations between

various possible de�nitions of invariant operators 
an be found in [Slo℄).

The situation most 
ommonly 
onsidered is the 
ase when V and V

0

are irre-

du
ible P -modules. It means that V (resp. V

0

) are irredu
ible G

0

-modules with

the trivial a
tion of the nilpotent part of P . In su
h a 
ase, natural 
andidates

for P -homomorphisms � are proje
tions from the spa
e g

�

�1


 V (
onsidered as

an g

s

0

-module) onto its irredu
ible fa
tors, extended by zero on the Vpart of the

module J

1

(V). We shall see below that for any su
h proje
tion, there is just one

spe
i�
 value for the a
tion of the grading element E for whi
h the 
orresponding

proje
tion is a P -homomorphism and that any invariant �rst order di�erential op-

erator on a manifold with a given AHS stru
ture is obtained by this 
onstru
tion.

For 
onformal stru
tures, this was exa
tly the 
ontent of the 
lassi�
ation theorem

obtained by Fegan in [F℄ (see 7.2 below).
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2.3 Iterated di�erentiation, semiholonomi
 jets. Iteratively, we 
an de�ne

the fun
tor

�

J

k

(�) (the k-th semi-holonomi
 prolongation) mapping any P -module

Vto a submodule

�

J

k

(V) of the P -module J

1

(

�

J

k�1

(V)). Considered as aG

0

-module,

it looks like

�

J

k

(V) = V� (g

�

�1


V)� :::� (


k

(g

�

�1

) 
V):

As in the �rst order 
ase, the iterated invariant di�erential (r

!

)

k

de�nes the map

j

k

!

: s 2 C

1

(G;V)

P

7! (s;r

!

s; : : : ; (r

!

)

k

s) 2 C

1

(G;

�

J

k

(V))

P

:

Moreover, if V = G�

P

Vis the bundle asso
iated toV, then its kth semi-holonomi


jet prolongation

�

J

k

(V ) is the bundle asso
iated to the representation

�

J

k

(V). Thus


onstru
tion of a large 
lass of higher order invariant di�erential operators is now

possible as it was in the �rst order 
ase: It is suÆ
ient to take any P -homomorphism

from

�

J

k

(V) to a P -moduleV

0

and to 
ompose it with the map j

k

!

.

The question to be answered is how to 
onstru
t su
h P -module homomorphisms.

If V is an irredu
ible P -module, then it is easy to �nd all G

0

{module homomor-

phisms between the 
orresponding modules using representation theory. An expli
it


riterion showing when su
h a G

0

{homomorphisms is a
tually a P{module homo-

morphism, was proved in [CSS1℄ and will be used below to prove existen
e results

for invariant operators (see 5.2 for more details).

2.4 Distinguished 
onne
tions, the deformation tensor. Invariant operators

are given as a 
omposition of a suitable P -homomorphism and the Cartan 
onne
-

tion. To express the result in standard terms (
ovariant derivatives, 
urvature

terms) and to �nd expli
it formulas for it, we need more information.

Let us re
all �rst the relation between the original �rst order stru
ture G

0

on

M (e.g. a 
onformal one in the best known example) and the P -prin
ipal bundle

G 
onstru
ted from it. If P

1

is the Lie group 
orresponding to the Lie algebra g

1

;

then G

0

' G=P

1

. The value of the Cartan 
onne
tion ! 
an be split with respe
t to

the grading of g as ! = !

�1

+ !

0

+ !

1

. For any G

0

-equivariant se
tion � : G

0

! G

(whi
h always exists), the pullba
k �

�

!

0

is a prin
ipal 
onne
tion on G

0

: The spa
e

of all su
h 
onne
tions is an aÆne spa
e modeled on the spa
e of 1-forms on M .

We have got in su
h a way a distinguished 
lass of 
onne
tions on M whi
h are


ompletely 
hara
terized by the requirements that they have to belong to G

0

, and

their torsion has to 
oin
ide with the g

�1

-
omponent of the 
urvature of !. In the


onformal 
ase, for example, this 
lass 
onsists of all Weyl geometries (thus 
ontains

all Levi-Civita 
onne
tions 
orresponding to any Riemannian metri
 
hosen inside

the given 
onformal 
lass, in parti
ular). The asso
iated 
ovariant derivatives are

standard tools used for des
ription of di�erential operators.

If ! and ~! are two Cartan 
onne
tions whi
h di�er only in the g

1

-
omponent,

there exists an equivariant map � 2 C

1

(G; g

�

�1


g

1

) su
h that ~! = !��Æ!

�1

: The

map � is the P -equivariant representation on G of a tensor on M; whi
h is 
alled

the deformation tensor. In parti
ular, on
e we �x the Cartan 
onne
tion ! and the

G

0

-equivariant se
tion � : G

0

! G, there is the unique Cartan 
onne
tion ~! whi
h

is �-related to the pullba
k �

�

(!

�1

+ !

0

). This is the Cartan 
onne
tion whose

invariant derivativer

~!

is as 
lose to the 
ovariant derivativer

�

�

!

0

as possible. The


orresponding deformation tensor � then gives the full remaining 
omparison. For
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onformal stru
tures, this is just the well known `rho{tensor' having the following

expression in terms of the Ri

i 
urvature:

�

ij

=

�1

m� 2

�

R

ij

�

Æ

ij

2(m � 1)

R

�

;

where R

ij

and R are the P -equivariant pull-ba
ks of the Ri

i tensor and the

s
alar 
urvature to G and m is the dimension of the manifold M . Thus � is a

generalization of the `rho{tensor' to all AHS stru
tures. Similar expli
it formulae

for these rho-tensors for most AHS stru
tures have been 
omputed in [CSS2℄.

Now, the value r

!

s of the invariant di�erential on a se
tion s 
an be des
ribed

in more familiar terms, using r




and the deformation tensor � as follows. The


hoi
e of � de�nes the trivialization of the bundle p : G ! G

0

expressed by the

se
ond 
oordinate � : G ! g

1

, whi
h 
an be 
hara
terized by the formula u =

�(p(u)) �exp(� (u)). Let Vbe an irredu
ible P -module, V = G�

P

V' G

0

�

G

0

Vthe


orresponding asso
iated ve
tor bundle. Se
tions s 2 �(V ) will be represented by

means of equivariant maps s 2 C

1

(G

0

;V)

G

0

or equivalently as p

�

s 2 C

1

(G;V)

P

.

Then we have for all u 2 P , X 2 g

�1

(r

!

(p

�

s)(u)) (X) = (p

�

(r




s))(u)(X) + [X; � (u)℄ � ((p

�

s)(u))

where the bra
ket [X; � (u)℄ 2 g

0

a
ts on the element of the g

0

-module V.

All terms in the formula are G

0

-equivariant, but only the �rst one is also P

1

-

equivariant (i.e. 
onstant along �bers of p). It is the map � in the se
ond term,

whi
h is not P

1

-equivariant (it varies when u 2 G 
hanges its position in the �ber).

This shows again that the invariant di�erential r

!

s is not P -equivariant even if s

itself is. In many 
ases we 
an �nd a homomorphism� in su
h a way that the term


ontaining � is killed by � and the resulting 
omposition is an invariant operator.

2.5 Corre
tion terms and obstru
tion terms. To 
onstru
t higher order in-

variant operators, we have to use higher order iterations of the invariant di�erential.

To understand what is happening in higher orders, the se
ond order 
ase is a rep-

resentative example. It is possible again to express (r

!

)

2

s using r




and �. For

any se
tion s 2 C

1

(G

0

;V)

G

0

; we have

�

(r

!

)

2

(p

�

s)

�

= p

�

((r




)

2

s) +D

0

(
;�) +D

1

(
;�; � ) +D

2

(
;�; � )

where

D

0

(
;�)(u)(X;Y ) = [X;�(u):Y ℄ � (p

�

s(u));

D

1

(
;�; � )(u)(X;Y ) = [X; � (u)℄ � (p

�

(r




Y

s))(u) + ([Y; � (u)℄ � (p

�

r




s)(u)) (X);

D

2

(
;�; � )(u)(X;Y ) = ([Y; � (u)℄ � ([ ; � (u)℄ � (p

�

s)(u))) (X)

�

1

2

[X; [� (u); [� (u); Y ℄℄℄ � (p

�

s)(u);

and � denotes the appropriate a
tion of an element from g

0

on the spa
e in question

(either Vor g

�

�1


V). The term D

0

is 
alled the 
orre
tion term and the terms D

i

,

i = 1; 2, whi
h are homogeneous of degree i in � , are 
alled obstru
tion terms.

As for the �rst order 
ase, the map (r

!

)

2

(p

�

s) is only G

0

-equivariant and, in

general, not P -equivariant. To de�ne an invariant se
ond order operator, it is

ne
essary to kill all obstru
tion terms by a suitable G

0

-homomorphism. If it is

possible, then the leading term together with the 
orre
tion term gives an expli
it

formula for the 
orresponding invariant operator (expressed already in standard

language).
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2.6 The algorithm for higher orders. In fa
t, it 
an be shown (see [CSS1℄) that

vanishing of D

1

(
;�; � ) implies vanishing of all higher order obstru
tion terms, so

that existen
e proofs 
an be simpli�ed. The algebrai
 
ondition dis
ussed above is

equivalent to vanishing of the sum of 
ertain terms linear in � , so that it is even

more simple 
ondition, but it is only suÆ
ient 
ondition, not ne
essary one.

To have an expli
it algorithm for 
omputation of the form of the 
orre
tion

terms, we need to take into a

ount during the indu
tive pro
edure all obstru
tion

terms, not only the linear ones. For that, we 
an use the algorithm for re
urrent


omputation of the 
orre
tion and obstru
tion terms, whi
h was proved in [CSS1℄

(for more details see 7.4). Using MAPLE, it was easy to implement this algorithm

and to 
ompute expli
itly the 
orre
tion and obstru
tion terms for low orders. The

number of terms is growing enormously. For the 6th order, the full formula has

7184 terms and the 
orre
tion part itself has 328 terms. We shall see later on that

for standard operators studied below, further essential simpli�
ation is possible and

the �nal formula will have only 10 summands. To write down on paper an expli
it

form of invariant operators of higher orders is too awkward. Nevertheless, we shall

see that for a broad 
lass of operators, the algorithm for the expli
it form of the

operator 
an be simpli�ed substantially and that the form of 
orre
tion terms for

standard operators is remarkably stable and universal, independently of the type

of AHS stru
ture and the representation V
onsidered (see se
tion 7).

In the next se
tions, we shall use representation theory to show how the theory

explained above 
an be used for better understanding of properties of standard

invariant operators.

3. G

0

-homomorphisms

To 
onstru
t invariant operators, we have to learn how to 
onstru
t P -homomor-

phisms from

�

J

k

(V) to a P -moduleV

0

. The �rst thing to do is to understand what

are the possibilities for G

0

-homomorphisms. We shall 
on
entrate on the situation

whenVis an irredu
ible P -module. This implies thatVis an irredu
ible G

0

-module

and the nilpotent part a
ts trivially. Representation theory o�ers enough tools to


lassify all G

0

-homomorphisms in this 
ase. Any su
h homomorphism is equivalent

to a proje
tion of

�

J

k

(V) onto one of its irredu
ible 
omponents and a de
omposition

of the tensor produ
t

�

J

k

(V) = (


i

g

�

�1

)
Vto irredu
ible 
omponents is a standard

problem studied in representation theory of semi-simple Lie groups. In this se
tion,

we shall prove some additional fa
ts needed for a 
onstru
tion of P -homomorphisms

and we shall deal with a general 
omplex semi-simple Lie algebra g. Later on we

shall use it for the semisimple part g

s

0

= [g

0

; g

0

℄ of g

0

.

3.1 Notation. Let us 
onsider a 
omplex semi-simple Lie algebra g with a Cartan

subalgebra h, a set �

+

of positive roots and its subset S = f�

1

; : : : ; �

n

g of simple

roots. Using the Killing form (:; :), fundamental weights �

1

; : : : ; �

n

are de�ned by

(�

_

i

; �

j

) = Æ

ij

, where �

_

i

= 2�

i

=(�

i

; �

i

).

The (
losed) dominantWeyl 
hamber C is given by linear 
ombinations of funda-

mental weights with nonnegative 
oeÆ
ients, let C denote its interior. Finite dimen-

sional 
omplex irredu
ible representations of g are 
hara
terized by their highest

weights �, whi
h lie in the weight latti
e �

+

= f

P

�

i

�

i

; �

i

� 0; �

i

2Zg. The 
or-

responding representation will be denoted by (�;V

�

) but the a
tion �(X)v, X 2 g,
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v 2V

�

will be often written simply as X � v, if the representation is 
lear from the


ontext. The set of all weights of Vwill be denoted by �(V):

Any weight � 2 h

�


an be 
hara
terized by its 
oeÆ
ients �

j

= (�; �

_

j

). In

parti
ular, the simple roots �

i

have 
oeÆ
ients a

ij

= (�

i

; �

_

j

), where a

ij

is the

Cartan matrix of the Lie algebra g, whi
h is en
oded into its Dynkin diagram.

Consequently, the re
e
tion �

i

(�) = �� (�; �

_

i

)�

i

with respe
t to a simple root �

i


hanges 
oeÆ
ients �

j

of � into 
oeÆ
ients �

j

� �

i

a

ij

. Due to properties of the

Cartan matrix, the 
oeÆ
ient �

i


hanges to ��

i

and (if no multiple edges of the

Dynkin diagram are involved), the 
oeÆ
ient �

i

adds to neighboring 
oeÆ
ients �

j

(for whi
h a

ij

= �1).

The re
e
tions �

i

generate the Weyl group W . For � =

P

i

�

i

, we shall denote

by � the aÆne a
tion of W on weights de�ned by w � � = w(� + �) � �.

In our appli
ations of the theory, we shall mostly need the 
ase of a simple Lie

algebra g. The only ex
eption will be the Grassmannian 
ase, where our Lie algebra

g will have two simple parts g

1

� g

2

. Note that in this 
ase, the Cartan subalgebra

h splits also into h

1

� h

2

, all weights 
an be written as 
ouples � = (�

1

; �

2

) and the

representation V

�

is the tensor produ
t V

�

1

V

�

2
. The Killing form splits as well:

(�; �) = (�

1

; �

1

) + (�

2

; �

2

). The Weyl group W is the dire
t produ
t W

1

�W

2

of

the Weyl groups of g

1

and g

2

.

3.2 Klimyk's algorithm. There is a useful and expli
it algorithm for the de-


omposition of the tensor produ
t of two irredu
ible representations of a simple

Lie algebra g into irredu
ible 
omponents, based on the Klimyk formula (see [H℄,

Se
.24, Ex.9).

For any weight � 2 h

�

; let f�g denote the dominant weight lying on the orbit

of � under the Weyl group. If f�g 2 C; then there is the unique w 2 W su
h that

f�g = w�. Let t(�) be equal to the sign of w in this 
ase and zero otherwise.

Suppose moreover that we know the list �(�) of all weights of the irredu
ible

representation V

�

with the highest weight �, in
luding their multipli
ities m

�

(�),

for � 2 �(�). Let V

�

denote the irredu
ible representation of g with the highest

weight �. Then the Klimyk formula implies that it is suÆ
ient to go through the

list �(�), write a formal sum

X

�2�(�)

m

�

(�)t(�+ � + �)V

f�+�+�g��

of irredu
ible representations and to add together 
oeÆ
ients at representations

with the same highest weight. The resulting 
oeÆ
ients are always non-negative

and give the multipli
ity of the 
orresponding representation in the de
omposition.

Note that some 
an
elations happen often.

3.3 The de
omposition of a tensor produ
t of representations. There are


ertain fa
ts known for a general 
ase of a tensor produ
t of two irredu
ible rep-

resentations V

�

and V

�

with highest weights � and �. For example, the highest

weight � of an irredu
ible pie
e in the de
omposition of the produ
t V

�


V

�

has

always form � = �+�; � 2 �(�) (see [FH℄, p.425). But in general, we know nothing

about its multipli
ity, it 
an be zero, one or bigger.
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In the produ
t V

�


V

�

; there is always an irredu
ible pie
e with the highest

weight �+ � and it appears with multipli
ity one. This spe
ial irredu
ible 
ompo-

nent is standardly denoted by V

�

�V

�

, and 
alled the Cartan produ
t of V

�

and

V

�

. If e

�

, resp. e

�

, are weight ve
tors for highest weights �, resp. �, then e

�


 e

�

is a weight ve
tor with the weight �+ �: Consequently, �

k

V� �

k

V:

The following general fa
t is mu
h more diÆ
ult to verify. The Parthasarathy{

Rao{Varadarajan (PRV) 
onje
ture proved re
ently (see [Ku℄) 
laims that for any

w 2 W , the module V

f�+w�g

with the extremal weight � + w� o

urs in V

�


V

�

with multipli
ity at least one.

In the 
ase that one representation in a tensor produ
t is in a suitable sense

small, we 
an say more about the de
omposition. In parti
ular, there will be no

multipli
ities in the produ
t for su
h 
ases. This is a substantial information needed

in appli
ations below. The simplest 
ase is the following theorem.

Theorem. Let � be su
h that all weights � 2 �(�) have multipli
ity one. Let

us suppose moreover that the 
oeÆ
ients of all weights � 2 �(�) with respe
t to

fundamental weights are � �1. Then for any � 2 �

+

, we have

V

�


V

�

=

X

�2A

V

�

where A is the set of all weights of the form � = � + �; � 2 �(�), whi
h belong to

the dominant Weyl 
hamber C. There are no multipli
ities in the de
omposition.

Proof. The 
oeÆ
ients in the de
omposition of any weight � 2 �

+

into fundamental

weights are, by de�nition, all nonnegative. The weight � has all 
oeÆ
ients equal

to 1. Our assumptions above imply that for all weights � 2 �(�), the sum � + �

belongs to C, hen
e �+�+� 2 C as well. So no a
tion of elements w 2W is needed,

f� + � + �g � � = � + � for all � 2 �(V

�

) and no 
an
elations or multipli
ities in

the de
omposition of the tensor produ
t 
an o

ur. The weight � + � appears in

the de
omposition (with nonzero 
oeÆ
ient) if and only if �+ �+ � belongs to the

interior C i.e. if and only if �+ � 2 C. �

The theorem just proved will be suÆ
ient in most 
ases needed below. In two

of them, we shall however need a 
ase when some of 
omponents of weights will be

equal to �2. We are going to prove the multipli
ity one result for this 
ase under a

suitable additional assumption. In some parti
ular 
ases (e.g. in two 
ases needed

below, see Appendix A), it is possible to des
ribe the set A in the de
omposition

more pre
isely, but we shall not need to formulate su
h results in general.

Theorem'. Suppose that � is su
h that all weights � 2 �(�) have multipli
ity one.

Let us suppose moreover that for all weights � 2 �(�), � =

P

i

�

i

�

i

; the following


onditions are satis�ed:

(1) �

i

� �2 for all i;

(2) there exists at most one index i su
h that �

i

= �2 and if it happens, we

suppose moreover that for all j 6= i, �

j

� 0 and a

ij

� �1 (the last 
ondition

means that the ith node of the 
orresponding Dynkin diagram is not at the

foot point of a double arrow).
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Then for any � 2 �

+

; we have

V

�


V

�

=

X

�2A

V

�

where A � (f�+ �j� 2 �(�)g)\ C is some subset and there are no multipli
ities in

the de
omposition.

Proof. For all weights � with the property �

j

� �1 for all j we get as above that

�+ �+ � 2 C, hen
e no re
e
tions are needed and V

�+�

appears in the formal sum


oming from the Klimyk formula if and only if � + � 2 C.

Let us 
onsider a weight � with the property that �

i

= �2. The assumptions of

the theorem imply that (�+� +�)

j

� 1, j 6= i, and (�+� +�)

i

= �

i

�1. If �

i

> 0;

then again � + � + � 2 C and no re
e
tion is needed.

If, however, �

i

= 0 then the weight � + � + � is not in C. Let w 2 W is

the simple re
e
tion with respe
t to ith simple root, then (� + � + �)

i

= �1 and

(w (�+ � + �))

i

= 1. For j 6= i su
h that a

ij

= 0; the 
oeÆ
ient (�+ � + �)

j

is not


hanged under the re
e
tion, hen
e is nonnegative. If j 6= i su
h that a

ij

= �1,

then (w (�+ � + �))

j

= (�+ � + �)

j

� 1 � �

j

� 1 = 0, hen
e also these 
oeÆ
ients

are nonnegative. Consequently, w (�+�+�) 2 C and the irredu
ible representation

V

w(�+�+�)��

will appear in Klimyk's formal sum with 
oeÆ
ient �1.

All terms in the formal sum 
oming from the weights � with the property � +

� + � 2 C are distin
t and with multipli
ity one. All others are 
oming with the


oeÆ
ients �1, hen
e they are ne
essarily 
an
eled by some of previous ones. Hen
e

all terms in the result have multipli
ity one and their highest weights are 
ontained

in f� = �+ �; � 2 �(�)g \ C. �

3.4 Multiplede
ompositions. We shall also have to understand irredu
ible 
om-

ponents of a more 
ompli
ated tensor produ
t (


k

V

�

) 
V

�

. For k > 1, there is

no hope to get a multipli
ity one result as before. As a 
onsequen
e, only isotypi



omponents of the produ
t will be unambiguously de�ned and the 
omplete split-

ting into irredu
ible 
omponents will depend on arbitrary 
hoi
es. We shall show

now that the results of the previous paragraph 
an be used for a 
lassi�
ation of the

pie
es in the de
omposition and for a 
onstru
tion of a distinguished de
omposition

useful for more detailed 
omputations in following se
tions.

Let g is a semi-simple Lie algebra and V

�

its irredu
ible representation having

the following property: For all � 2 �

+

, there exists a set A

�

su
h that V

�


V

�

=

P

�

1

2A

�

V

�

1

and there are no multipli
ities in the de
omposition.

Then the de
omposition 
an be iterated as follows. The produ
t 


2

(V

�

)
V

�

=

V

�


 (

P

�

1

2A

�

V

�

1

) 
an be again de
omposed in the same way as

X

�

1

2A

�

X

�

2

2A

�

1

V

�

2

;�

1

;

where the double index of V

�

2

;�

1

indi
ates how this parti
ular 
omponent was ob-

tained in the de
omposition. By repeating this pro
ess, it is 
lear that the produ
t




k

(V

�

)
V

�


an be 
ompletely de
omposed into irredu
ible 
omponents, ea
h one

being labeled by a sequen
e � = (�

k

; �

k�1

; : : : ; �

1

; �) whi
h re
ords the way how
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this 
omponent was obtained through the pro
ess of su

essive de
ompositions.

The �nal highest weight �

k

may appear many times and its pre
ise position in the

isotypi
 
omponent is �xed by the whole sequen
e re
ording its history. Hen
e for

a �xed �; we shall de�ne the set A

k

(�) of all su
h sequen
es, i.e.

A

k

(�) = f� = (�

k

; �

k�1

; : : : ; �

1

; �

0

) j�

0

= �; �

j

2 A

�

j�1

; j = 1; : : : ; kg:

Then




k

(V

�

) 
V

�

=

X

�2A

k

(�)

V

�

:

Together with the �nal irredu
ible 
omponent V

�

, we shall use also for 
omputa-

tions all intermediate 
omponents given by V

�

j

; �

j

= (�

j

; : : : ; �

0

) in 


j

(V

�

)
V

�

,

together with the 
orresponding invariant proje
tions �

�

j

.

There is one important question 
onne
ted with su
h a de
omposition, namely

to �nd a position of the above mentioned 
omponents with respe
t to the splitting

of 


j

(V

�

) 
V

�

into a dire
t sum of �

j

(V

�

) 
V

�

and its invariant 
omplement.

Su
h a knowledge would help to de
ide whether invariant operators obtained by

the proje
tion to the 
orresponding 
omponents in the de
omposition will have

nontrivial symbol or not. We shall answer this question in the 
ase we need in the

next paragraph.

3.5 Multipli
ity one 
omponents. There are spe
ial pie
es in the de
omposition

of 


j

(V

�

) 
V

�

whi
h always appear with multipli
ity one. Even more, we shall

be able to show that they must be in
luded in �

j

(V

�

) 
V

�

; where � denotes the

Cartan produ
t of irredu
ible representations (
f. 3.3), hen
e their symbol will be

nontrivial.

Theorem. Let �; � 2 �

+

. Let � be an extremal weight of V

�

(i.e. it belongs to the

Weyl orbit of the highest weight �). Let k be a positive integer su
h that �+ k� is

dominant.

Then there is a unique irredu
ible 
omponent in 


k

(V

�

)
V

�

with highest weight

� = � + k�. Moreover, the 
omponent V

�

is 
ontained in �

k

(V

�

) 
V

�

.

Proof. The produ
t 


k

(V

�

) 
 V

�


an be de
omposed into the sum of V

�

as de-

s
ribed above. All these 
hains � 
an be 
onsidered as pie
ewise linear paths in

the dominant Weyl 
hamber 
omposed from the straight segment with dire
tions

given by weights of V

�

: If we are going straight on k times in the same dire
-

tion given by an extremal weight of V

�

; no other path 
an rea
h the same point

� = � + k� (extremal weights have extremal lengths). This implies the uni
ity of

the 
omponent.

To prove the existen
e, note that the weight k� is an extremal weight of �

k

(V

�

):

Hen
e we 
an use the PRV 
onje
ture to show thatV

�

appears in the de
omposition

of �

k

(V

�

)
V

�

: �

3.6 Partial proje
tions. Let us re
all that we always have �

k

(V)� �

k

(V) and

that �

k

(V) 
oin
ides with

[�

2

(V)℄� [�

k�2

(V)℄� [�

2

(V)℄
 [�

k�2

(V)℄:

As a 
orollary we get
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Lemma. Denote by � the proje
tion of 


k

(V) onto �

k

(V): Suppose that A is the

invariant 
omplement of �

2

(V) in 


2

(V) and �

A

is the 
orresponding proje
tion.

Then

�

A
 (


k�2

(V)

�

\

�

�

k

(V)

�

= ;, or equivalently

� Æ (�

A


 Id

k�2

) = 0:

3.7. The results above will be applied below in the following spe
ial 
ase. Let

g = g

�1

� g � g

1

be a 
omplex j1j-graded Lie algebra, 
f. 2.1. The spa
e g

1

is an

irredu
ible g

s

0

-module whi
h is `small' enough, i.e. it satis�es assumptions of one of

the Theorems in 3.3. To 
he
k it, it is ne
essary to inspe
t algebras g 
ase by 
ase.

The list of them together with details needed for the veri�
ation are 
olle
ted in

Appendix A.

Consequently, for any irredu
ible g

0

-module V; the tensor produ
t g

1


V de-


omposes into irredu
ible 
omponents without multipli
ities and results of 3.5 and

3.6 
an be used for de
ompositions of the produ
t 


k

(g

1

)
V:

4. Casimir 
omputations

4.1 Notation. For this se
tion, we shall suppose that g = g

�1

� g

0

� g

1

is a


omplex j1j-graded simple Lie algebra. In general, a 
hoi
e of jkj-graded stru
ture

on a 
omplex simple Lie algebra g is the same as a 
hoi
e of its paraboli
 subalgebra.

Any paraboli
 subalgebra is 
onjugated to a standard one (i.e. one 
ontaining a


hosen Borel subalgebra b � g). There is one to one 
orresponden
e between

standard paraboli
 subalgebras of g and subsets of the set S of simple roots of g.

The j1j-graded stru
tures on g exist only for four 
lassi
al series and for E

6

and

E

7


ases and they are given by 
ertain one-point subsets of S (Dynkin diagrams

with the 
orresponding simple root 
rossed are often used to denote the 
hosen

paraboli
 subalgebra). We shall 
hoose numbering of the set S of simple roots so

that the �rst simple root �

0

is the 
rossed one (for more information on jkj-graded

Lie algebras see [BasE, Y℄).

There is a unique grading element E 2 g

0

satisfying [E;X℄ = `X for X 2 g

`

; ` =

�1; 0; 1: A Cartan subalgebra h � g 
an be 
hosen in su
h a way that E 2 h; then

h � g

0

: The set �

+

of positive roots for g 
an be 
hosen so that all root spa
es for

positive roots are in
luded in g

0

� g

1

.

It is often useful to normalize an invariant form (:; :) on g by the requirement

(E;E) = 1 (see e.g. [BOO℄). For the Killing form, we have B(E;E) = 2 dimg

1

,

hen
e (X;Y ) = (2 dimg

1

)

�1

B(X;Y ). This normalized form (:; :) indu
es nonde-

generate invariant bilinear forms on g

0

and g

�1

� g

1

, and it identi�es g

1

and g

�1

as dual spa
es. Orthonormal bases and Casimir operators for g

0

will be 
omputed

using this normalized form.

The algebra g

0

splits into 1-dimensional 
enter a and a semisimple part g

s

0

=

[g

0

; g

0

℄ whi
h has h

s

= h\ g

s

0

as a Cartan subalgebra. Then h = a� h

s

. Irredu
ible

representations of p = g

0

�g

1

are trivial on g

1

. Every su
h representation is a tensor

produ
t of a one-dimensional representation of a and an irredu
ible representation

of g

s

0

, whi
h 
an be 
hara
terized by its highest weight � 2 (h

s

)

�

. For 
onvenien
e,

we shall 
onsider (h

s

)

�

as a subset of h

�

of all elements, whi
h restri
t to zero on

a. Representations of a 
an be 
hara
terized by a (generalized) 
onformal weight
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w 2 C : We shall say that a representation U of g

0

has a (generalized) 
onformal

weight w, if E �v = wv; v 2U. The 
otangent spa
es of our manifolds are asso
iated

to the adjoint representation of g

0

on g

1

, hen
e 1-forms will have (generalized)


onformal weight 1. An irredu
ible representation of g

0

with a 
onformal weight w

and highest weight � 2 (h

s

)

�

will be denoted by V

�

(w).

Let fY

a

g, a = 0; 1; : : : , be an orthonormal basis of g

0

with respe
t to the form

(:; :). We may 
hoose it in su
h a way that Y

0

= E 2 a and fY

a

0

g, a

0

> 0 is an

orthonormal basis for g

s

0

. For any representation V of g

s

0

, the Casimir operator

C(V) is de�ned by C(V) =

P

a

0

>0

Y

a

0

Æ Y

a

0

. It is well known (see [H℄) that if V is

an irredu
ible representation with a highest weight �, then

C(V) = (�; �+ 2�); � = 1=2

X

�2�

+

(g

s

0

)

�:

As we have noti
ed already, our algebras g

s

0

are irredu
ible in all 
ases ex
ept

the sl(n; C ) series, but even then the formula C(V

�

) = (�; � + 2�); � = (�

1

; �

2

) is

still valid, see 3.1 for the reasons.

4.2 Casimir 
omputations. Suppose now that X 2 g

�1

, Z 2 g

1

and let us


onsider an irredu
ible g

0

-module V

�

(w); where � 2 h

�

is an integral dominant

weight for g

s

0

and w 2 C . In the des
ription of iterated invariant di�erentials, terms

of type [Z;X℄ � s, s 2V

�

(w), have appeared very often (the � means here the a
tion

of an element of g

0

under the representation 
hara
terized by � and w), (see 2.4).

It is hen
e important to understand them better.

Re
all that we identify g

1

and (g

�1

)

�

using the s
alar produ
t (:; :). The term

[Z;X℄ �s de�nes a map from g

1


g

�1


V

�

(w) intoV

�

(w); whi
h 
an be interpreted

also as a map �: g

1


V

�

(w)! g

1


V

�

(w); de�ned by

�(Z 
 v)(X) := �([Z;X℄)v; Z 2 g

1

; s 2V

�

(w); X 2 g

�1

:

Let us 
hoose bases f�

�

g, resp. f�

�

g of g

�1

, resp. g

1

, whi
h are dual with respe
t

to the s
alar produ
t (:; :). Due to

[Z;X℄ � s =

X

�

[Z; (�

�

; X)�

�

℄ � s =

�

X

�

�

�


 [Z; �

�

℄ � s

�

(X);

we get

�(Z 
 s) =

X

�

�

�


 [Z; �

�

℄ � s:

The map � is a g

0

-homomorphism (by dire
t 
omputation or by the lemma

below). Let g

1


 V

�

(w) =

P

�

V

�

(w + 1) be a de
omposition of the produ
t of

g

0

-modules into irredu
ible 
omponents and let �

��

: g

1


V

�

(w) !V

�

(w + 1) be

the 
orresponding proje
tions. The g

0

-homomorphism � a
ts as a multiple of the

identity on ea
h irredu
ible 
omponent, i.e. there are 
onstants ~


��

2 R su
h that

� =

P

�

~


��

�

��

and we are going to des
ribe a formula expressing these 
onstants

in terms of the weights � and �.
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4.3 Lemma. Let V

�

(w) be an irredu
ible representation of g

0

and let g

1


V

�

=

P

�

V

�

be a de
omposition of the produ
t into irredu
ible g

s

0

-modules. Let � be the

highest weight of g

1

and let � be the half sum of positive roots for g

s

0

. Then for all

s 2V

�

(w),

�(Z 
 s)(X) = [Z;X℄ � s =

X

�

(w � 


��

)�

��

(Z 
 s)(X);

where 


��

= �

1

2

[(�; �+ 2�) � (�; � + 2�) � (�; �+ 2�)℄:

Proof. Let f�

�

g; resp. f�

�

g be dual bases of g

�1

, resp. g

1

. The invarian
e of the

s
alar produ
t implies

[Z; �

�

℄ =

X

a

(Y

a

; [Z; �

�

℄)Y

a

=

X

a

([Y

a

; Z℄; �

�

)Y

a

�(Z
s) =

X

�

�

�


 [Z; �

�

℄ �s =

X

�

�

�




�

X

a

([Y

a

; Z℄; �

�

)Y

a

�

�s =

X

a

[Y

a

; Z℄
Y

a

�s:

Sin
e Y

0

= E, the �rst term in the sum is [Y

0

; Z℄
 Y

0

� s = wZ 
 s and for the rest

we 
an use the de�nition of the Casimir operator and its 
omputation by means of

highest weights, together with

X

a

0

Y

a

0

Y

a

0

�(Z
s) =

X

a

0

(Y

a

0

Y

a

0

�Z)
s+

X

a

0

Z
(Y

a

0

Y

a

0

�s)+2

X

a

0

(Y

a

0

�Z)
(Y

a

0

�s)

(noti
e � means the a
tions on di�erent modules used in the formula) �

4.4 Example. Let us 
ompute now a simple 
ase of the formula above whi
h will

be needed below. The spe
ial double 
ommutator terms [[X; � ℄; � ℄ from 2.5 are

appearing often in the algorithm mentioned in 2.6. We want to de
ompose them

into irredu
ible pie
es.

Againk, let � be the highest weight of g

1


onsidered as g

s

0

-module. By our 
on-

ventions, it has the 
onformal weight 1. The tensor square g

1


 g

1

de
omposes

always into symmetri
 and antisymmetri
 parts. But the symmetri
 square de
om-

poses in all but one 
ases into two 
omponents (an ex
eptional 
ase being proje
tive

stru
tures, where is does not de
ompose). For our purposes, it is suÆ
ient to know

that there is always a pie
e in the de
omposition with the highest weight 2� (the

Cartan produ
t of g

1

with itself), denoted by g

1

� g

1

.

Lemma. Let g

1


 g

1

= �

3

i=1

V

�

i

be the de
omposition into irredu
ible 
omponents

with V

�

1

' �

2

(g

1

) and V

�

3

' �

2

(g

1

) (V

�

2

is trivial in the proje
tive 
ase). Hen
e

�

1

= 2�. Then there exist real numbers A

i

; i = 1; 2; 3; su
h that

�

1

2

[[X; � ℄; � ℄(Y ) =

3

X

i=1

A

i

�

i

[� 
 � ℄(X;Y );

where X;Y 2 g

�1

; � 2 g

1

, and �

i

is the proje
tion onto V

�

i

. For A

1

, we have

A

1

=

1

2

(j�j

2

+ 1).

Proof. This is the 
ase V

�

= g

1

of lemma 4.3, so the numbers A

i

are given by

A

i

= �

1

2

[


��

i

� 1℄; i = 1; 2; 3:
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In parti
ular, 


�;2�

= �

1

2

[(2�; 2�+ 2�)� 2(�; �+ 2�)℄ = �j�j

2

. �

In 
omputations below, we shall use often the 
onstant A

1

but we shall see

that its a
tual value does not in
uen
e the expli
it formula for standard operators,

be
ause the 
onstant A

1

will be absorbed by a renormalization of the deformation

tensor �.

5. P -module homomorphisms

Let us suppose, as in the previous se
tion, that g is a 
omplex j1j-graded Lie

algebra, p = g

0

� g

1

and V is a (
omplex) irredu
ible p-module. The algebra g

0

splits into the sum of the 
ommutative 1-dimensional ideal a and the semisimple

part g

s

0

.

Using results obtained in the last two se
tions, it is possible to 
onstru
t a broad


lass of p-homomorphisms � from

�

J

k

V to a P -module V

0

, where V

0

is a suitable

irredu
ible 
omponent of the g

0

-module 


k

(g

1

) 
V. Let us re
all that there is a

unique grading element E 2 a for g and an invariant s
alar produ
t (:; :) on g is

normalized by the 
ondition (E;E) = 1.

Before stating the 
orresponding result, we shall prove a simple auxiliary Lemma.

A surprising and important fa
t 
oming from it is the independen
e of the 
onstants




j+1

� 


j

of the 
hosen representations.

5.1 Lemma. Let � be the highest weight of the g

s

0

-module g

1

and � one of its

extremal weights. For any weight �, let us de�ne weights �

j

= � + j�, j 2 N, and

numbers




j

= 


�

j

�

j+1

= �

1

2

�

(�

j+1

; �

j+1

+ 2�) � (�

j

; �

j

+ 2�) � (�; �+ 2�)

�

:

Then we have

(1) 


0

= (�; �) � (�; � + �);

(2) 


j

� 


j�1

= �j�j

2

;

(3)

P

k�1

j=0




j

= k [(�; �)� (�; � + �) �

k�1

2

j�j

2

℄.

Proof. By de�nition




0

= �

1

2

�

(� + �; � + � + 2�) � (�; �+ 2�) � (�; �+ 2�)

�

=

= (�; �)� (�; �+ �) �

1

2

(j�j

2

� j�j

2

):

The weight � lies in the W -orbit of �, so they have the same norm, and (1) follows.

Substituting �

j

instead of �, we get




j

= (�; �)� (�; � + �) � jj�j

2

as well as the formula (2). Using 


j

= 


0

� jj�j

2

; we get

k�1

X

j=0




j

=

k�1

X

j=0

(


0

� jj�j

2

) = k 


0

�

k(k � 1)

2

j�j

2

: �
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5.2 The algebrai
 
riterion. We want now to prove that 
ertain G

0

-homomor-

phisms are in fa
t P -homomorphisms. In [CSS1℄, the following algebrai
 
ondition

for it was proved, but in the 
ase when the invariant s
alar produ
t (:; :) was equal

to the Killing form B(:; :). If the normalization of (:; :) is di�erent and if � is a

number su
h that B(:; :) = �(:; :), then it is easy to 
he
k that all terms in the

Lemma below are s
aled uniformly by the 
onstant �

k

, hen
e the 
ondition does

not 
hange.

Lemma. Let V and V

0

be irredu
ible P -modules and �:

�

J

k

(V) ! V

0

be a g

0

-

module homomorphism whose restri
tion to 


k

(g

�

�1

)
V�

�

J

k

(V) does not vanish.

Let us 
hoose any invariant s
alar produ
t (:; :) on g and let us use it to identify g

1

with g

�

�1

: Then � is a P -module homomorphism if and only if:

(1) It fa
tors through the proje
tion � :

�

J

k

(V)!


k

(g

�

�1

) 
V;

(2) � vanishes on the image of 


k�1

(g

�

�1

)
V in

�

J

k

(V) under the a
tion of g

1

,

i.e. for all Z; Y

1

; : : : ; Y

k�1

2 g

1

, v 2Vwe have

�

�

k�1

X

i=0

(

X

�

Y

1


 � � � 
 Y

i


 �

�




�

[Z; �

�

℄:(Y

i+1


 � � � 
 Y

k�1


 v)

�

�

= 0;

where �

�

and �

�

are dual bases of g

1

and g

�1

with respe
t to the s
alar produ
t (:; :)

and the dot means the standard a
tion of an element in g

0

on the argument.

This 
riterion looks quite 
ompli
ated. Using results of Se
tion 4, we 
an use it

to prove easily the existen
e of a broad 
lass of P -modules homomorphisms.

5.3 Corollary. Let V

�

be an irredu
ible g

s

0

-module and let � be the highest weight

of the irredu
ible g

s

0

-module g

1

.

Let us suppose that an extremal weight � of g

1

and an positive integer k is


hosen in su
h a way that � = �+ k� is dominant. Let � : 


k

g

1


V

�

!V

�

be the

proje
tion on the unique irredu
ible 
omponent of the produ
t with highest weight �

(see Theorem 3.5).

Then there is a unique value for the generalized 
onformal weight w su
h that

� de�nes a P -homomorphism from

�

J

k

(V

�

(w)) to V

�

(w + k): The value of that


onformal weight is given by

w = (�� �; �) �

k � 1

2

(j�j

2

+ 1)� (�; �);

where � is half the sum of positive roots for g

s

0

.

Proof. Let us �rst re
all the 
onstru
tion of the proje
tion �. If �

k

0

= � + k

0

�,

k

0

= 0; : : : ; k, the proje
tions �

k

0

, k

0

= 1; : : : ; k, are de�ned indu
tively as the

proje
tions from g

1


 V

�

k

0

�1

onto the unique irredu
ible 
omponent V

�

k

0

with

highest weight �

k

0

. The proje
tion � is given by the formula

�(Z

1


 � � � 
 Z

k


 v) = �

k

(Z

1


 �

k�1

(Z

2


 : : : �

1

(Z

k


 v) : : : ));

where Z

1

; : : : ; Z

k

2 g

1

, v 2V

�

.
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To prove the theorem, we have to verify that with the 
hoi
e of the weight w

above, the 
ondition in Lemma 5.2 is satis�ed. So we want to �nd w in su
h a way

that for all Z;Z

1

; : : :Z

k�1

2 g

1

, v 2V

�

,

�

�

k�1

X

i=0

X

�

Z

1


 � � � 
 Z

i


 �

�




�

[Z; �

�

℄:(Z

i+1


 � � � 
 Z

k�1


 v)

�

�

= 0;

where �

�

and �

�

are dual bases of g

1

and g

�1

with respe
t to the produ
t (:; :). Let

us re
all the notation 


j

= 


�

j

;�

j+1

from Lemma 5.1.

By Lemma 4.3, applied to elements fromV

�

k�1�i

(w + k � 1� i), we have

�

k�i

�

X

�

�

�


 �

k�i�1

�

[Z; �

�

℄:(Z

i+1


 �

k�i�2

(: : :
 �

1

(Z

k�1


 v) : : : ))

�

�

=

�

k�i

�

X

�

�

�




�

[Z; �

�

℄:(�

k�i�1

(Z

i+1


 �

k�i�2

(: : :
 �

1

(Z

k�1


 v) : : : )))

�

�

=

(w + k � 1� i� 


k�1�i

)�

k�i

�

Z 
 �

k�i�1

(Z

i+1

(: : :
 �

1

(Z

k�1


 v) : : : ))

�

:

Due to the fa
t that all images of �

j

belong to �

j

g

1


V

�

, j = 1; : : : ; k, all elements

�(Z

1


 : : :
 Z

i


 Z 
 Z

i+1


 � � � 
 Z

k�1


 v)); i = 0; : : : ; k � 1


oin
ide. It is hen
e suÆ
ient to �nd w so that

kw +

k(k � 1)

2

�

k�1

X

j=0




k�1�j

= 0:

To get the value for w, it is suÆ
ient to use Lemma 5.1 (note that j�j = j�j). �

6. Standard operators

6.1 A 
onstru
tion of invariant operators. As des
ribed in Se
tion 2, the P -

module homomorphisms 
onstru
ted in the last Se
tion de�ne invariant di�erential

operators. We 
an now summarize the whole 
onstru
tion and the data needed for

it. Let us return to the situation of Se
tion 2 with a given j1j-graded (real) simple

Lie algebra g; the 
orresponding groups P � G; G

0

, and a prin
ipal �ber bundle G

over M with a given Cartan 
onne
tion !.

The 
omplexi�
ation g

C

is a 
omplex semisimple j1j-graded Lie algebra and

g

j

= g \ g

C

j

; j = �1; 0; 1. Any (
omplex) irredu
ible P -module V is an irredu
ible

g

0

-module as well as g

C

0

-module. They are 
hara
terized by an integral dominant

weight for (g

s

0

)

C

and the (generalized) 
onformal weight w. The tensor produ
t

g

1




R

V is isomorphi
 to g

C

1




C

V, the same is true for iterated tensor produ
ts.

The spa
e g

C

1

is an irredu
ible module for g

s

0

with a highest weight �.

Suppose that we have 
hosen the following data: An irredu
ible module V

�

for

g

s

0

, a 'dire
tion' �, whi
h is an extremal weight of the g

s

0

-module g

C

1

, and a positive

integer k, su
h that � = �+ k� 2 �

+

.
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Let � the proje
tion to the unique irredu
ible 
omponent of the g

s

0

-module




k

g

1


 V

�

with the highest weight � = � + k� (
f. Theorem 3.5), and let w

be the 
orresponding (generalized) 
onformal weight from Corollary 5.3. Then the

operator

D � D(�; �; k) = � Æ (r

!

)

k

: C

1

(P; V

�

(w))

P

! C

1

(P; V

�

(w + k))

P

;

is an invariant di�erential operator of order k.

6.2 Standard operators. We have de�ned above a 
ertain 
lass of operators

whi
h were proved to be invariant. There is a traditional division of invariant

operators into two 
lasses | standard and nonstandard ones. We would like to

show now that the operators 
onstru
ted above in
lude almost the whole 
lass of

so 
alled standard operators.

(Fundamental) standard operators were originally de�ned in the homogeneous

situation (on generalized 
ag manifolds G=P; with G 
omplex simple and P par-

aboli
). In the Borel 
ase, the 
lassi�
ation of all invariant di�erential operators

was given (in the dual language of homomorphism between Verma modules) by

Bernstein, Gelfand and Gelfand, see [BGG℄. They are all de�ned uniquely by their

sour
e and target (up to a 
onstant multiple) and they are pre
isely all operators

forming the so 
alled BGG resolutions. For a general paraboli
, the BGG reso-

lutions are also well known but the 
lass of invariant operators 
orresponding to

individual arrows in them | they are 
alled (fundamental) standard operators |

is no more the 
omplete set of invariant operators. There exist also the so 
alled

non-standard operators. To show a relation of our invariant operators D(�; �; k) to

the standard operators, we need just their following simple property (more details


an be found e.g. in [BasE℄).

Suppose that a Cartan subalgebra h in g

C

and the set of simple roots is 
hosen

in su
h a way that E 2 h and that all positive spa
es are 
ontained in g

C

0

\ g

C

1

:

Irredu
ible representations of g

C

0


an be 
hara
terized by their highest weight, 
on-

sidered as an element in h

�

; su
h that its restri
tion to (h)

s

= h\(g

C

0

)

s

is dominant.

This 
arries information both on the highest weight for (g

C

0

)

s

and on a generalized


onformal weight. For any su
h � 2 h

�

; the symbol V

�

denotes a homogeneous

bundle given by the irredu
ible representation of g

C

0

; 
orresponding to this highest

weight. The Weyl group W of g

C

has a stru
ture of a dire
ted graph whi
h is

dire
tly related to existen
e of invariant operators.

The property we need is the following. If D : �(V

�

) ! �(V

�

0

) is a standard

invariant operator, then there is a positive root � for g

C

su
h that �

�

(� + �) =

�

0

+�, where �

�

is the re
e
tion with respe
t to � and � is a half-sum of positive

roots for g

C

. Consequently, we have also j�+�j

2

= j�

0

+�j

2

. Before going further,

we need two simple auxiliary lemmas.

6.3 Lemma. Let g be a 
omplex j1j-graded Lie algebra, S = f�

i

g

m

i=0

the set of its

simple roots with its numbering 
hosen in su
h a way that �

0

is the 
rossed simple

root. Let f�

i

g be the 
orresponding set of fundamental weights.

Then we have

(1) If � is the highest weight of an irredu
ible g

0

-module V, then its 
onformal

weight is equal to w = �(E).
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(2) The root spa
e g

�

belongs to g

j

, j = �1; 0; 1, if and only if a

0

= j, where

a

i

are 
oeÆ
ients in the de
omposition � =

P

m

i=0

a

i

�

i

.

(3) For any weight � 2 h

�

, we have (�

0

;�) =

j�

0

j

2

2

�(E); where E is the grading

element.

(4) Let us 
onsider two weights �, �

0

and a number a su
h that j�j

2

= j�

0

j

2

,

j�+ a�

0

j

2

= j�

0

+ a�

0

j

2

and (�� �

0

; �

0

) 6= 0. Then a = 0.

Proof. (1) If v is a highest weight ve
tor forV; then E �v = �(E)v; but by de�nition

E � v = w v:

(2) This is a spe
ial 
ase of a simple general statement valid for all jkj-graded Lie

algebras. The reason is that all simple roots but �

0

are in g

0

, while �

0

generates

g

1

.

(3) There is an element H 2 h su
h that (�

0

;�) = �(H) for all � 2 h

�

. Then for

all j = 1; : : : ;m, we have 0 = (�

0

; �

_

j

) = �

_

j

(H), where �

_

j

=

2�

j

j�

j

j

2

. The element

H is orthogonal to all roots of g

0

, hen
e it is a multiple of E (whi
h has the same

property). To 
he
k the multiple, it is suÆ
ient to note that �

0

(E) = 1; be
ause

the 
onformal weight for g

1

is 1:

4) The last property follows from

j�+ a�

0

j

2

� j�

0

+ a�

0

j

2

= 2a(�� �

0

; �

0

): �

As a 
onsequen
e, we get the following interesting fa
t.

6.4 Lemma. In the setting of 6.1, let �; �

0

be two dominant integral weights for

g

s

0

: Suppose that there are two nontrivial standard invariant di�erential operators

D;

~

D of order k > 0 su
h that

D : �(V

�

(w))! �(V

�

0

(w + k));

~

D : �(V

�

( ~w))! �(V

�

0

( ~w + k)):

Then w = ~w:

Proof. Let �, �

0

,

~

�,

~

�

0

be in turn highest weights from h

�

for irredu
ible represen-

tations

V

�

(w);V

�

0

(w + k);V

�

( ~w);V

�

0

( ~w + k):

If � is the half-sum of positive roots for g; then existen
e of D;

~

D implies (see 6.2)

that

j�+ �j

2

= j�

0

+�j

2

; j

~

� + �j

2

= j

~

�

0

+�j

2

:

The di�eren
es

~

� � �,

~

�

0

� �

0

annihilate h

s

, hen
e there are numbers a, a

0

su
h

that

~

�� � = a�

0

;

~

�

0

� �

0

= a

0

�

0

. But

a�

0

(E) = (

~

� � �)(E) = ~w �w = (

~

�

0

� �

0

)(E) = a

0

�

0

(E);

hen
e a = a

0

. Moreover, (���

0

)(E) = k > 0, hen
e (���

0

; �

0

) 6= 0. Now, Lemma

6.3 implies that a = 0. �
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6.5 Theorem. Let D be a standard invariant di�erential operator a
ting between

se
tions of V

�

and V

~

�

: Let � 2 h

�

be a positive root of g su
h that

~

� + � =

�

�

(� + �): Denote by � the restri
tion of � to h

s

and by � the restri
tion of �:

Then � is a weight of g

s

0

-module g

1

and the number k = 2(�+�;�)=(�;�) is a

positive integer.

If moreover the weight � is an extremal weight of g

1

; then the operator D(�; �; k)

de�ned in 6.1 
oin
ides (up to a multiple) with the operator D on se
tions of the

homogeneous bundle V

�

.

Proof. The root � is a positive root of g: Consequently, the value of �(E) is either

0 or 1. By the properties of standard operators (see 6.2), we have

~

�� � = k�;

where k = 2(�+�;�)=(�;�) must be an integer. Be
ause any di�erential operator

must in
rease (generalized) 
onformal weight (whi
h is given by evaluation of the

highest weight on E), the value �(E) 
annot vanish. Hen
e �(E) = 1 and k > 0:

If we denote by �, resp.

~

�, the restri
tions of �, resp.

~

� to h

s

, then we have also

the relation

~

� = �+ k�:

Hen
e the operators D and D(�; �; k) a
t between the same g

s

0

bundles and they

are both invariant. By Lemma 6.4, their 
onformal weights 
oin
ide as well. Now,

the standard operators are 
ompletely de�ned by their domains and targets up to

multiples, see [BC℄, and D and D(�; �; k) di�er at most by a 
onstant multiple. �

6.6 Remark. We have just seen that our 
onstru
tion gives all standard invariant

operators for those AHS stru
tures, for whi
h the set of weights of g

C

1

is just one

orbit of the Weyl group. This is true for all 
ases with two ex
eptions | the odd

dimensional 
onformal 
ase and the spinorial 
ase.

There is indeed an ex
eptional set of standard operators for AHS stru
tures

whi
h do not have a simple des
ription of the form D(�; �; k) 
onstru
ted above.

A typi
al example is the 
ase of odd 
onformal stru
tures and the operators in

the middle of the BGG resolution. These are operators a
ting between se
tions

�(V

�

(w)) and �(V

�

(w

0

)). The representation V

�

of the semi-simple part of G

0

is

the same for the sour
e and the target, they di�er only by their 
onformal weights.

They 
orrespond to the 
ase of operators (�; �; k), where � is the zero weight of

g

1

. In this 
ase, however, the isotypi
 
omponent V

�

appears in 


k

(g

1

)
V

�

with

higher multipli
ities.

In general, the BGG sequen
e of a representationVof g 
an be realized using the

twisted (V-valued) de Rham sequen
e. In the parti
ular 
ase of the BGG sequen
e

of the basi
 spinor representation Sof g = Spin(2n + 2; C ), the middle operator


orresponds to a se
ond order operator D between �(V

�

(n� 1=2)), and �(V

�

(n+

3=2)), where � = (3=2; : : : ; 3=2). There are 3 pie
es in the de
omposition of the

tensor produ
t 


2

(g

1

)
�(V

�

), 
orresponding to sequen
es of weights (�; �; �) with

�

1

= (5=2; 3=2; : : : ; 3=2); �

2

= (3=2; : : : ; 3=2); �

3

= (3=2; : : : ; 3=2; 1=2). It 
an be

shown by methods des
ribed in [CSS4℄, [B℄, (see also [Sev℄) that the 
orresponding

standard operator is given by � Æ (r




)

2

, where the proje
tion � is equal to � =
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�

2

+ 1=4�

3

, where �

j

are de�ned as proje
tions to irredu
ible pie
es 
orresponding

to the sequen
es with �

j

. The form of the operator D is hen
e more 
ompli
ated,

it has the form

D t = �

2

[(r




)

2

t� (1=2)�
 t℄ + 1=4�

3

[(r




)

2

t� 2�
 t℄:

So it is 
lear that its formula has no more the simple universal formD t = �((r




)

2

t+

�
 t℄) of the se
ond order standard operators dedu
ed below, see 7.11.

7. Expli
it formulae for standard operators

7.1 Obstru
tionand 
orre
tion terms. An algorithm for 
omputation of (r

!

)

k

in terms of the prin
ipal 
onne
tion r




and its deformation tensor � was given in

[CSS1℄, Se
. 4. The formulae for obstru
tion terms (important for existen
e proofs)

as well as for 
orre
tion terms (important for expli
it des
ription of operators) be-


ome qui
kly very 
ompli
ated. Using expli
it des
ription of the homomorphism

� in Se
tion 4 by means of Casimir operators, it is possible to simplify the algo-

rithm substantially and to get quite expli
it formulae for the 
oeÆ
ients in general


orre
tion terms for the invariant operators 
onstru
ted in the previous se
tion. It

is quite remarkable that 
oeÆ
ients in the �nal formula for 
urvature 
orre
tion

terms do not depend on a 
hoi
e of a representation V

�

as well as on a 
hoi
e of a

parti
ular AHS stru
ture! They depend only on the order of the operator.

Let us �rst simplify the algorithmgiven in [CSS1℄. Let k be a �xed integer and let

us 
onsider an operator D = � Æ (r

!

)

k

, where the proje
tion � of 


k

(g

C

1

)
V

�

onto

one of its irredu
ible 
omponents is determined by a 
hain of dominant weights,

as des
ribed in Se
tion 3. Knowing highest weights of all intermediate irredu
ible


omponents in the 
hain of proje
tions, Lemma 4.3 
an be used to 
ompute the

values of the homomorphism � on all terms in the algorithm. The same is true for

the a
tion of the double 
ommutator term [[X; � ℄; � ℄ (see Example 4.4). This makes

it possible to evaluate, in prin
iple, all terms in the expansion. But the result is

still quite 
ompli
ated.

A 
onsiderable simpli�
ation in the algorithm 
an be a
hieved, if we restri
t

ourselves to the symmetri
 
ase, i.e. if the image of � is a subspa
e of �

k

(g

C

1

)
V

�

.

Then many multiple tensor produ
ts 
ontained in various terms of the formula

may be reordered and 
ombined together. Any term of the formula is then just

a symmetri
 tensor produ
t of a power of � , suitable powers of �; its 
ovariant

derivatives and a 
ovariant derivative of the se
tion s: A problem to be solved is

whether there is a way how to 
ompute e�e
tively 
oeÆ
ients in the 
orresponding

linear 
ombination of su
h terms.

An additional simpli�
ation 
an be a
hieved in the 
ase, when we know whi
h

summand in the des
ription of the a
tion of the double 
ommutator (Lemma 4.4)

is really appearing in various terms. Su
h information is available in the 
ase of

the operators D(�; �; k) 
onstru
ted above. In this 
ase, we may use properties of

the de
omposition of the tensor produ
t 


k

(g

C

1

)
V

�

proved in Se
tion 3 to get an

expli
it form of the operator. Before ta
kling the main Theorems 7.4 and 7.9, we

dis
uss the low order 
ases.

7.2 The �rst order operators. Using results from [CSS1℄, see 2.4, and Lemma

4.3, we get immediately the existen
e and an expli
it form of the 1st order operators.
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Corollary. Let V

�

be an irredu
ible representation of (g

C

0

)

s

and V

�

be an irre-

du
ible 
omponent of the produ
t g

1


V

�

. Let � = �

��

be the 
orresponding pro-

je
tion. Then

�(r

!

(p

�

t)) = �[p

�

(r




t) + (


0

� w)� 
 t℄

where 


0

= 


��

are the 
onstants from 4.3.

In parti
ular, there is the unique value w = 


0

of the 
onformal weight for whi
h

the proje
tion de�nes a �rst order invariant operator D t = �[p

�

(r




)t℄.

Operators of this type were introdu
ed in 
onformal 
ase in paper [SW℄ and

are now standardly 
alled generalized gradients or Stein{Weiss operators (see e.g.

[Bra℄). The result above was proved in the 
onformal 
ase by Fegan (see [F℄). He

gave the �rst systemati
 
lassi�
ation of su
h operators. The theorem above treats


ompletely all �rst order operators for all AHS stru
tures (note that in odd 
on-

formal 
ase, the 
lass of them in
ludes also 
ertain ex
eptional standard operators

of �rst order not 
overed by the 
lass of operators D(�; �; k), e.g. the one in the

middle in the de Rham resolution).

7.3 The se
ond order operators. In a similar way, we 
an use the �rst order

formula, the algorithm leading in [CSS1℄ to the formula in 2.5, and Lemma 4.2,

in order to 
ompute expli
itly the form of the se
ond order invariant di�erential

proje
ted to an irredu
ible 
omponent given by a sequen
e of dominant weights

� = (�

0

; �

1

; �

2

). Let � be the 
orresponding proje
tion.

Corollary. Using notation of Example 4.4 and Lemma 5.1, we have

�

��

(r

!

)

2

(p

�

t)

�

℄ = �[p

�

((r




)

2

t) + (


0

� w)�
 p

�

t+

(


0

�w)� 
 p

�

(r




t) + (


1

�w � 1)p

�

(r




t)
 �+

(


0

�w)(


1

� w � 1)� 
 � 
 t�

3

X

i=1

A

i

�

i

(� 
 � 
 t)

�

:

The most 
ompli
ated term to 
ompute is 
learly the last one 
oming from the

double 
ommutator term. To understand that term, one has to understand well the

relation among the 
hosen proje
tion � de�ned by the 
hain of weights � and the

proje
tions �

i


oming from the splitting g

1


 g

1

into symmetri
 and antisymmetri


parts. We shall see that for operators D(�; �; k), this relation 
an be understood

and the formula above 
an be simpli�ed further.

The operators D(�; �; 2) are invariant for a unique value for the (generalized)


onformal weight, 
f. 6.1. It is immediate to 
he
k that it is just given by the

requirement that the sum of 
oeÆ
ients at terms linear in � vanishes. It is also

possible to verify dire
tly that then the 
oeÆ
ient at the term of se
ond order in �

vanishes as well.

We shall now follow line of reasoning suggested in 7.1 and we shall develop an

e�e
tive pro
edure for expli
it des
ription of all operators D(�; �; k).

7.4 Theorem. Let A

1

be the number de�ned in Example 4.4. The value of the

operator D(�; �; k)t(u) = �

k

Æ ((r

!

)

k

(p

�

t))(u) 
onstru
ted in 6.1 expands into a

sum of the form

X

a

k;j

s

0

;::: ;s

m

�

k

[�

j

� �

s

0

� (r�)

s

1

� : : :� (r

m

�)

s

m

�r

i

t℄(u);
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where the summation goes over

j; s

i

2 f0; 1; 2; : : :g su
h that j +

m

X

i

0

=0

s

i

0

(i

0

+ 2) + i = k;

a

k;j

s

0

;::: ;s

m

2 R, � (u) 2 g

C

1

, and

�

j

= �

j

�; [r

i

t℄(X

1

; : : : ; X

i

) = p

�

r




X

i

: : :r




X

1

t;

[r

`

�℄(X;Y;X

1

; : : : ; X

`

) = [p

�

Æ r




X

`

: : :r




X

1

(�)℄(X;Y ):

The expressions

F

k

t(u) := �

k

[(r

!

)

k

(p

�

t)℄(u) 2 �

k

(g

C

1

)
 V

�

are given by re
ursive formulae

F

0

t(u) = p

�

t(u)

F

k+1

t(u) = [S

�+�

℄(F

k

t(u)) + [S

r

℄(F

k

t(u)) + [S

�

℄(F

k

t(u)):

The individual transformations S

�+�

; S

r

and S

�

a
t as follows:

S

�+�

[�

k

(�

j�1

� !

k�j+1

)℄ = (


k

� k + (j � 1)A

1

� w)�

k+1

(�

j

� !

k�j+1


 t);

where !

k�j+1

2 �

k�j+1

(g

C

1

) 
 V

�

; 


k

= 


�

k

;�

k+1

; �

k

= �+ k�; j > 1.

S

r

[�

k

(�

j

� �

s

0

� (r�)

s

1

� : : :� (r

m

�)

s

m

�r

i

t)℄ =

= s

0

[�

k+1

(�

j

� �

s

0

�1

� (r�)

s

1

+1

� : : :� (r

m

�)

s

m

�r

i

t)℄+

+ : : :+

s

m

[�

k+1

(�

j

� �

s

0

� : : :� (r

m

�)

s

m

�1

� (r

m+1

�)
r

i

t℄+

[�

k+1

(�

j

� �

s

0

� (r�)

s

1

� : : :� (r

m

�)

s

m

�r

i+1

t)℄:

S

�

[�

k

(�

j+1

� !

k�j�1

)℄ = (j + 1)�

k+1

(�

j

� �� !

k�j�1

);

where !

k�j�1

2 �

k�j�1

(g

C

1

)
 V

�

.

Proof. In [CSS1, 4.9℄, we have des
ribed an algorithm to indu
tively 
ompute the

di�eren
e (r

!

)

k

(p

�

t) � p

�

((r




)

k

t) as a sum of 
orre
tion and obstru
tion terms.

Computing instead of that di�eren
e the value of F

k

t(u) := (r

!

)

k

(p

�

t) indu
tively,

the results of [CSS1, 4.9℄ read as follows: The expression F

k

t(u), evaluated at k

arguments from g

�1

, expands into a sum of terms of the form

a�

(t

1

)

(�

1

) : : :�

(t

i

)

(�

i

)p

�

(r




)

j

t

where a is a s
alar 
oeÆ
ient, the �

`

are iterated bra
kets involving some arguments

X

`

2 g

�1

, the iterated 
ovariant di�erentials (r




)

r

� evaluated on some X's, and

� 's. Exa
tly the �rst t

j

arguments X

1

; : : : ; X

t

j

are evaluated after the a
tion of
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�

(t

j

)

(�

j

), the other ones appearing on the right are evaluated before. For k = 1,

we have

F

1

t(u)(X

1

) = p

�

((r




)t)(u)(X

1

) + [X

1

; � ℄(p

�

t)(u):

Indu
tively,

F

k

t(u)(X

1

; : : : ; X

k

) =

�

�

(k�1)

([X

k

; � (u)℄)F

k�1

t(u)

�

(X

1

; : : : ; X

k�1

)+

~

S

�

(F

k�1

t(u))(X

1

; : : : ; X

k

)+

~

S

r

(F

k�1

t(u))(X

1

; : : : ; X

k

)+

~

S

�

(F

k�1

t(u))(X

1

; : : : ; X

k

):

where �

(k�1)

is the obvious tensor produ
t representation on 


k�1

g 
 V

�

and the

individual transformations

~

S

�

,

~

S

r

, and

~

S

�

a
t as follows.

(1) The a
tion of

~

S

�

repla
es ea
h summand a�

(t

1

)

(�

1

) : : :�

(t

i

)

(�

i

)p

�

(r




)

j

t by

a sum with just one term for ea
h o

urren
e of � where this � is repla
ed

by [�; [�;X

k

℄℄ and the 
oeÆ
ient a is multiplied by �1=2.

(2)

~

S

r

repla
es ea
h summand in F

k�1

by a sum with just one term for ea
h

o

urren
e of � and its di�erentials, where these arguments are repla
ed by

their 
ovariant derivatives r




X

k

, and with one additional term where (r




)

j

t

is repla
ed by r




X

k

((r




)

j

t).

(3)

~

S

�

repla
es ea
h summand by a sum with just one term for ea
h o

urren
e

of � where this � is repla
ed by �(u):X

k

.

Now we are going to spe
ialize these results to the 
ase we are interested in here:

Under the assumptions of the theorem, whi
h we want to prove, the image of the

proje
tion � is in
luded in �

k

(g

C

1

)
V

�

hen
e order of fa
tors in the multiple tensor

produ
t does not matter. Consequently all � 's 
an be shifted to the front of the

produ
t, derivatives of � 
an be reordered as indi
ated above, and all derivatives

of t 
an be put to the end of the expression. Terms r

l

� 
an be hen
e interpreted

as elements of �

l+2

(g

C

1

)
 V

�

and r

i

t 
an be substituted by its symmetrization in

�

i

(g

C

1

) 
 V

�

. We have already seen that the expression F

1

t has the required form

(see 7.2). Using Casimir operators, we 
an now express the algorithm des
ribed

above in the following way.

Suppose (by indu
tion) that the term F

k

has already been written in the form

given in the theorem. The a
tion of an element [X

k+1

; � (u)℄ on F

k

t(u) 
an be


omputed by Lemma 4.3, be
ause we know that F

k

t(u) belongs to the image of �

k

,

whi
h is, by assumption, an irredu
ible representation with the highest weight �

k

.

The result is (


k

� w � k)F

k

t(u).

The a
tion of

~

S

�

was a repla
ement of � at all j � 1 pla
es in the expression

by �1=2[�; [�;X

k

℄℄ Applying the proje
tion � and using the result of Example 4.4

and 3.6, only the �rst part in the de
omposition of � 
 � survives and the result

is the same term 
ontaining one more � multiplied by (j � 1)A

1

. Adding both


ontributions, we get the a
tion of S

�+�

.

The a
tion of

~

S

r

is just a derivation and a
tion of

~

S

�

is a substitution of �

instead of � , so we arrive dire
tly at the des
ription of S

r

and S

�

in the theorem.

The fa
t that F

k

has the required form follows from the above des
ription of the

operators S

�+�

, S

r

, S

�

by indu
tion. �
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Looking at the a
tion of the individual transformations and at the form of the

expansion, we get immediately the following algorithm for the unknown 
oeÆ
ients.

7.5 An algorithm for expansion 
oeÆ
ients. The 
oeÆ
ients a

k+1;j

s

0

;::: ;s

m

in the-

orem 7.4 satisfy the following re
ursive relations.

a

k+1;j

s

0

;::: ;s

m

= (1� Æ

j;0

)a

k;j�1

s

0

;::: ;s

m

(


k

� k + (j � 1)A

1

� w)

+ a

k;j

s

0

;::: ;s

m

+ (1� Æ

s

0

;0

)(j + 1)a

k;j+1

s

0

�1;s

1

;::: ;s

m

+

+ (1� Æ

s

1

;0

)(s

0

+ 1)a

k;j

s

0

+1;s

1

�1;::: ;s

m

+

+ : : :+

+ (1� Æ

s

m

;0

)(s

m�1

+ 1)a

k;j

s

0

;::: ;s

m�2

;s

m�1

+1;s

m

�1

:

7.6 Constants ~


k

. In the algorithmabove, the value 


k

�k+jA

1

�w has frequently

appeared. It will be 
onvenient to 
hange the de�nition of 
onstants 


j

and to de�ne

new shifted 
onstants ~


j

instead. Let us de�ne them by

~


j

= 


0

� j A

1

:

Then 


k

� k + j A

1

�w = 


0

� kA

1

� (k � j)A

1

� w = ~


k

� (k � j)A

1

�w.

Note for future use that the di�eren
es ~


j

� ~


k

= (k� j)A

1

are always multiples

of A

1

.

7.7 Constants B

m

(s

0

;::: ;s

m

)

. As the last item in the preparation of an expli
it


omputation of the 
oeÆ
ients in the expansion, we are going to de�ne indu
-

tively the following parametri
 system of 
onstants B

n

s

; where n � 0 is an integer,

s = (s

0

; s

1

; s

2

; : : : ) is a sequen
e of non-negative integers with a �nite number of

nonvanishing elements. We shall often write s = (s

0

: : : s

m

) by 
utting the sequen
e

at the last nontrivial entry; (0) will denote the sequen
e (0; 0; : : :). For any �nite

sequen
e of integers s ,we shall use two integers jsj, [s℄ asso
iated with s, de�ned

by

jsj =

1

X

0

s

i

and [s℄ =

1

X

0

s

i

(i+ 1):

Symbols �

i

; i = 0; 1; : : : , will be used for spe
ial sequen
es of integers de�ned by

�

0

= (1; 0; : : :); �

1

= (�1; 1; 0; : : :); �

2

= (0;�1; 1; 0; : : :); : : :

De�nition. Let ~


0

, A

1

, and w, be any �xed real numbers and de�ne ~


j

, j 2 N, by

~


j

= ~


0

� j A

1

.

A system of real numbers B

n

s

, where n is a non-negative integer and s is a

sequen
e of non-negative integers with �nite number of nonzero terms, is de�ned

by indu
tion with respe
t to n+ [s℄ as follows

B

0

0

= 1;

B

n

s

= (1� Æ

s

0

;0

)(n + jsj � 1)(~


n+jsj�2

�w)

"

n�1

X

l=0

B

l

s��

0

#

+

1

X

i=1

(1� Æ

s

i

;0

)(s

i�1

+ 1)

n�1

X

l=0

B

l

s��

i

:
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In the formula above, we use the 
onvention that any sum

P

b

a

::: vanishes whenever

a > b.

In the sequel, we shall use the B's with the numbers A

1

and ~


0

= 


0


hosen as

in 4.4 and 5.1, respe
tively. Note that then the numbers B

n

s

still depend impli
itly

on the value of the variable w whi
h plays the role of the 
onformal weight.

The indu
tion above works �ne, be
ause the smallest possible value of n+ [s℄ is

a
hieved only for n = 0, s = (0) and the value of B

0

0

is �xed as 1 in advan
e. The

indu
tive formula for B

n

s


learly uses only B's with a smaller value of n+ [s℄.

Certain values of B's are immediately 
lear from de�nition: B

n

(0)

= 0 for all

n 6= 0 and B

0

s

= 0 for all s 6= (0). More generally, we get from the de�nition by

indu
tion (with respe
t to n) that B

n

s

= 0 for all n, s su
h that n < [s℄.

7.8 Basi
 properties of B

n

s

. Before treating more 
ompli
ated examples, we

shall introdu
e one more pie
e of notation. For a positive integer n, the symbol

fng will denote the number

fng := n(~


n�1

�w):

Later on, we shall 
onsider values of these fa
tors fng at spe
ial values of 
onformal

weight w = ~


k�1

, k 2 N. Let us note already at this point that for this value of w

the resulting number depends linearly on A

1

(see 7.6).

The 
ase where jsj = 1. Using the shorthands fng, we get immediately from the

de�nition that

B

n

(1)

= fng; for all n � 1,

B

n

(2)

= fn+ 1g

n�1

X

l=1

flg; for n � 2,

while B

1

(2)

= 0.

Similarly (by indu
tion with respe
t to n), we get easily for any n � m + 1

B

n

(m+1)

= fn+mg

n�1

X

l

m

=m

fl

m

+m� 1g

l

m

�1

X

l

m�1

=m�1

fl

m�1

+m � 2g

l

m�1

�1

X

l

m�2

=m�2

: : :

l

2

�1

X

l

1

=1

fl

1

g;

and B

n

(m+1)

= 0 for n = 0; : : : ;m: Clearly, the numbers B

n

(m)

j

w=~


k�1

are homoge-

neous of degree m in A

1

for ea
h k 2 N.

The 
ase where jsj = 2. To understand the de�nition of B

n

s

better, let us also


onsider the numbers B

n

(ij)

: Couples (ij) of non-negative integers 
an be 
onsidered

as verti
es of a graph in the plane. These verti
es will be 
onne
ted with arrows

of length 1 going horizontally right and antidiagonal arrows of length

p

2 going up

and left.

Any vertex in the latti
e 
an be rea
hed from (00) by one or more paths (lying


ompletely in the �rst quadrant). For every path to a vertex (ij), it is possible

to dedu
e a 
ontribution to the value of B

n

(ij)


orresponding to this path from
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the algorithm de�ning B's. The a
tual value of B

n

(ij)

is then the sum of su
h


ontributions over all possible paths from (00) to (ij).

The situation for longer sequen
es s is similar. The numbers B

n

s

play a prin
ipal

role in the evaluation of 
oeÆ
ients for standard operators, so we shall study them

in more details in Appendix B and we shall give an expli
it formula for them there.

Using the very de�nition of B's and the simple relations js � �

0

j = jsj � 1,

js� �

i

j = jsj, for all i > 0, we get immediately by indu
tion with respe
t to values

of n and jsj the following important fa
t:

Lemma. The numbers B

n

s

evaluated at w = ~


k�1

are homogeneous of degree jsj in

A

1

.

7.9 Formulae for expansion 
oeÆ
ients. Let k 2 N be �xed. Suppose that

j 2 N and s = (s

0

; s

1

; : : : ; s

m

) is a �nite sequen
e of non-negative integers su
h

that j + [s℄ = j +

P

m

i=0

s

i

(i+ 2) � k. Let ~


i

be the real numbers de�ned in 7.6 and

B

n

s

the numbers de�ned in 7.7. Then we have the following theorem.

Theorem. The 
oeÆ
ients a

k;j

s

in the expression for D(�; �; k)t in 7.4 are given

by the formulae

a

k;j

s

:=

�

k

j

�

2

4

k�1

Y

i=k�j

(~


i

� w)

3

5

2

4

k�j�jsj

X

l=0

B

l

s

3

5

; for all j � 1(1)

a

k;0

s

:=

k�jsj

X

l=0

B

l

s

:(2)

Proof. The theorem will be proved by indu
tion with respe
t to k, using the re
ur-

sive relations from 7.5.

Let k = 1. Then, a

ording to Corollary 7.2, F

1

= �(rt + (~


0

� w)� 
 t). The

inequality j +

P

m

i=0

s

i

(i + 2) � 1 is satis�ed only for s = (0) and j = 0; 1. The

relations (1) and (2) read as a

1;0

0

= B

0

0

+B

1

0

and a

1;1

0

= (~


0

�w)B

0

0

. The de�nition

of B's yields B

0

0

= 1; B

1

0

= 0 whi
h proves the 
laim in this 
ase.

Suppose now that the theorem holds for some �xed k. Let us �rst prove the

relation (2), i.e. suppose �rst j = 0. By indu
tive assumption and the re
ursive

relations 7.5 for a's, we get

a

k+1;0

s

=

2

4

k�jsj

X

l=0

B

l

s

3

5

+ (1� Æ

s

0

;0

)

�

k

1

�

(~


k�1

� w)

2

4

k�jsj

X

l=0

B

l

s��

0

3

5

+

m

X

i=1

(1� Æ

s

i

;0

)(s

i�1

+ 1)

2

4

k�jsj

X

l=0

B

l

s��

i

3

5

=

k+1�jsj

X

l=0

B

l

s

;
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where we use

B

k+1�jsj

s

= (1� Æ

s

0

;0

)k(~


k�1

� w)

2

4

k�jsj

X

l=0

B

l

s��

0

3

5

+

m

X

i=1

(1� Æ

s

i

;0

)(s

i�1

+ 1)

2

4

k�jsj

X

l=0

B

l

s��

i

3

5

:

For positive j, we get

a

k+1;j

s

=

�

k

j � 1

�

k�1

Y

k�j+1

(~


i

�w)

2

4

k+1�j�jsj

X

l=0

B

l

s

3

5

(~


k

� w � (k � j + 1)A

1

)+

+

�

k

j

�

k�1

Y

k�j

(~


i

� w)

2

4

k�j�jsj

X

l=0

B

l

s

3

5

+

+ (j + 1)(1� Æ

s

0

;0

)

�

k

j + 1

�

k�1

Y

k�j�1

(~


i

� w)

2

4

k�j�jsj

X

l=0

B

l

s��

0

3

5

+

+

m

X

i=1

(1 � Æ

s

i

;0

)(s

i�1

+ 1)

�

k

j

�

k�1

Y

k�j

(~


i

� w)

2

4

k�j�jsj

X

l=0

B

l

s��

i

3

5

=

�

k + 1

j

�

k�1

Y

k�j+1

(~


i

� w)

2

4

k�j�jsj

X

l=0

B

l

s

3

5

�

�

�

j

k + 1

(~


k

�w � (k � j + 1)A

1

) +

k � j + 1

k + 1

(~


k�j

� w)

�

+

+

�

k + 1

j

�

k�1

Y

k�j+1

(~


i

�w)

h

B

k+1�j�jsj

s

i

�

�

�

j

k + 1

(~


k

�w � (k � j + 1)A

1

) +

k � j + 1

k + 1

(~


k�j

� w)

�

=

�

k + 1

j

�

k

Y

k�j+1

(~


i

� w)

2

4

k+1�j�jsj

X

l=0

B

l

s

1

;::: ;s

m

3

5

;

where we have used the relations

B

k+1�j�jsj

s

=(1� Æ

s

0

;0

)(~


k�j�1

�w)

k�j�jsj

X

l=0

B

l

s��

0

(k � j)+

m

X

i=1

(s

i�1

+ 1)(1� Æ

s

i

;0

)

k�j�jsj

X

l=0

B

l

s��

i

: �
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7.10 Formulae for the operators D(�; �; k). Note that the form of the 
oef-

�
ients a

k;j

s

shows immediately that all obstru
tion terms vanish at on
e for the

value w = ~


k�1

of the (generalized) 
onformal weight. It 
on�rms on
e more that

the operators D(�; �; k) are invariant, independently of the algebrai
 proof worked

out in Se
tion 5. Theorem 7.9 gives at the same time the values of 
oeÆ
ients in

the 
orre
tion terms, i.e. the expli
it form of the operators D(�; �; k). It is suÆ
ient

to use 7.9.(2) and to substitute there the 
orresponding value of w.

As a 
onsequen
e of Lemma 7.8 and the de�nition of the 
onstants a

k;0

s

, it is


lear that a

k;0

s

are homogeneous of degree jsj in A

1

. Hen
e the 
onstants A

1


an

be absorbed into the de�nition of the deformation tensor � by introdu
ing news

tensors

~

� := A

1

� and the resulting formula is uniform and universal for all AHS

stru
tures (for 
onformal stru
tures, the 
onstant A

1

is equal to 1).

For pra
ti
al 
al
ulations of 
urvature 
orre
tion terms of standard operators,

it is better to �rst write down formulas for 
oeÆ
ients B

n

s

, be
ause they have the

same form for all k. Having k �xed, it is then easy to evaluate B

n

s

at w = ~


k�1

and

to get the ne
essary 
oeÆ
ients a

k;0

s

. Note, however, that for operators of order

bigger than 10, it is better to implement the algorithm on a 
omputer, sin
e the

list of 
orre
tion terms is going qui
kly to be unmanageable. We have postponed

the exposition of the general formulae for B

n

s

to Appendix B, but let us illustrate

the pro
edure by a few examples now.

In order to make the dependen
e on the order k and the 
orresponding �xed


onformal weight w expli
it, we shall use the notation B

n

s

(k), or fng(k), for the

numbers B

n

s

, or fng, evaluated with w = ~


k�1

, respe
tively. Clearly fng(k) =

n(k � n)A

1

. The numbers B

n

s

(k) are simpli�ed 
onsiderably, be
ause the term

~


j�1

�w redu
es to k � j. Note that after su
h substitution, 'symmetri
' produ
ts

fjg = j(k � j)A

1

are appearing repeatedly in formulas for B

n

s

(k). This leads to

further simpli�
ations of the formulae for some B(k)'s, for example B

n

(n)

(2n) =

[(2n� 1)!!℄

2

.

7.11 Examples in low degrees. Let us re
all that B

n

s

= 0 for all n, s su
h that

n < [s℄ and B

n

(0)

= 0 for all n > 0. We have already seen spe
ial 
ases of the

previous general formulae:

B

n

(1)

= fng; B

n

(2)

= fn+ 1g

n�1

X

`�1

f`g:

The Example in Appendix B provides the 
oeÆ
ients

B

n

(01)

=

n�1

X

l=1

flg; B

n

(001)

=

n�1

X

l

0

=2

l

0

�1

X

l=1

flg

B

n

(11)

= 2

n�1

X

l

0

=2

fl

0

+ 1g

l

0

�1

X

l=1

flg+ fn+ 1g

n�1

X

l

0

=2

l

0

�1

X

l=1

flg:

We denote by

~

� here the 
orre
ted tensor A

1

� and we 
ompute the universal

formula for the operators D(�; �; k) independently of the 
hoi
e of AHS stru
ture
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and the data �; � for low values of k. The proje
tion � denotes as before the

proje
tion onto the unique irredu
ible 
omponentV

�

in 


k

(g

C

1

)
V

�

, the operator

D is written using the 
onventions set up in Theorem 7.4, and we write a

k

s

instead of

a

k;0

s

. Note that by formula (2) of theorem 7.9 we have a

k

(0)

=

P

k

l=0

B

l

(0)

= B

0

(0)

= 1.

The 
ase k = 2. Here we only need the 
oeÆ
ients a

2

(0)

= 1 and

a

2

(1)

= B

1

(1)

= f1g(2) = 1:

Hen
e

D(�; �; 2)t = �[r

2

t+

~

�
 t℄:

The 
ase k = 3. We need the 3 
oeÆ
ients a

3

(0)

= 1,

a

3

(1)

= B

1

(1)

+ B

2

(1)

= f1g+ f2g and a

3

(01)

= B

2

(01)

= f1g:

Using f1g(3) = 2, f2g(3) = 2, we get

D(�; �; 3)t = �[r

3

t + 4

~

�
 (rt) + 2(r

~

�)
 t℄:

The 
ase k = 4. Now, we need 5 
oeÆ
ients: a

4

(0)

= 1, and

a

4

(1)

= B

1

(1)

+B

2

(1)

+B

3

(1)

= f1g+ f2g+ f3g a

4

(2)

= B

2

(2)

= f3gf1g

a

4

(01)

= B

2

(01)

+B

3

(01)

= 2f1g+ f2g a

4

(001)

= B

3

(001)

= f1g:

Hen
e using again fng(k) = n(k � n)A

1

, we get

D(�; �; 4)t = �[r

4

t+ 10

~

�
 (r

2

t) + 10(r

~

�)
 (rt) + 9

~

�


~

�
 t+ 3(r

2

~

�) 
 t℄:

The 
ase k = 5. Here we need 7 
oeÆ
ients: a

5

(0)

= 1, and

a

5

(1)

= B

1

(1)

+ : : :+ B

4

(1)

= f1g+ f2g+ f3g+ f4g

a

5

(2)

= B

2

(2)

+B

3

(2)

= f3gf1g+ f4g(f1g+ f2g)

a

5

(01)

= B

2

(01)

+ B

3

(01)

+ B

4

(01)

= 3f1g+ 2f2g+ f3g

a

5

(001)

= B

3

(001)

+ B

4

(001)

= f1g+ (2f1g+ f2g)

a

5

(0001)

= B

4

(0001)

= f1g

a

5

(11)

= B

3

(11)

= 2f3gf1g+ f4gf1g

Hen
e we get

D(�; �; 5)t = �[r

5

t+ 20

~

�
 (r

3

t) + 30(r

~

�)
 (r

2

t) + 64

~

�


~

�
 (rt)+

18(r

2

~

�)
 (rt) + 4(r

3

~

�) 
 t+ 64

~

�
 (r

~

�)
 t℄:

As a further illustration we in
lude the �nal formula in order seven. Here we use

the 
on
atenation of the symbols instead of the tensor produ
ts and we omit the

proje
tion �

r

7

t+ 56

~

�r

5

t+ 140(r

~

�)r

4

t+ 168(r

2

~

�)r

3

t + 784(

~

�)

2

r

3

t + 2352

~

�(r

~

�)r

2

t+

112(r

3

~

�)r

2

t+ 2304(

~

�)

3

rt+ 1180(r

~

�)

2

rt+ 1408

~

�(r

2

~

�)r

t

+ 40(r

4

~

�)rt+

708(r

~

�)(r

2

~

�)t+ 312

~

�(r

3

~

�)t + 3456(

~

�)

2

(r

~

�)t+ 6(r

5

~

�)t
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Appendix A.

For expli
it des
ription of all weights in the representation g

1

in individual 
ases,

we shall use results gathered in [FH℄. The fa
ts whi
h are not proved below 
an be

found there.

A.1 Conformal 
ase, even dimension. Here g

C

= so(2n + 2; C ), (g

C

0

)

s

=

so(2n; C ). Let L

1

; : : : ; L

n

be the standard basis for the dual of the Cartan subal-

gebra. The fundamental weights �

i

; i = 1; : : : ; n are given by relations

�

i

= L

1

+ : : :+L

i

; i = 1; : : : ; n�2; �

n

+�

n�1

= L

1

+ : : :+L

n�1

; �

n

��

n�1

= L

n

:

The dimension of g

1

is 2n and the list of all weights of g

1

(all with multipli
ity one)

is given by f�L

i

; i = 1; : : : ; ng. In terms of fundamental weights, we get

L

1

= �

1

; L

i

= �

i

� �

i�1

; i = 2; : : : ; n� 2;

L

n�1

= �

n

+ �

n�1

� �

n�2

; L

n

= �

n

� �

n�1

:

Hen
e all 
oeÆ
ients in the de
ompositions are in absolute values at most one. All

weights of g

1

belong in this 
ase to the same orbit of the Weyl group.

A.2 Conformal 
ase, odd dimension.

Here g

C

= so(2n+ 3; C ), (g

C

0

)

s

= so(2n+ 1; C ). Let L

1

; : : : ; L

n

be the standard

basis for the dual of the Cartan subalgebra. The fundamental weights �

i

; i =

1; : : : ; n are given by relations

�

i

= L

1

+ : : :+ L

i

; i = 1; : : : ; n� 1; �

n

= (1=2)[L

1

+ : : :+ L

n�1

℄:

The dimension of g

1

is 2n+ 1 and the list of all weights of g

1

(all with multipli
ity

one) is given by f0; �L

i

; i = 1; : : : ; ng. In terms of fundamental weights, we get

L

1

= �

1

; L

i

= �

i

� �

i�1

; i = 2; : : : ; n� 1; L

n

= 2�

n

� �

n�1

:

So it not true in this 
ase that all weights of g

1

have 
oeÆ
ients (with respe
t

to fundamental weights) in absolute value less or equal to 1: There are two orbits

of the Weyl group in the set of all weights of g

1

: All nonzero weights form the �rst

orbit and the zero weight the se
ond one.

A.3 Grassmannian 
ase. Here g

C

= A

p+q+1

, (g

C

0

)

s

= A

p

� A

q

. This is the

only 
ase, where (g

C

0

)

s

is not a simple Lie algebra. Irredu
ible representations

V

�;�

0

of (g

C

0

)

s

are just tensor produ
ts V

�


 V

�

0

of two irredu
ible representations

V

�

, resp. V

�

0

of A

p

, resp. A

q

. To de
ompose the produ
t V

�;�

0


 g

1

means to

de
ompose individual produ
ts V

�


V and V

�

0


V

0

, where V , resp. V

0

are de�ning

representations of both parts of (g

C

0

)

s

and then to multiply both de
ompositions.

So it is suÆ
ient to study just the 
ase A

n

: Let us 
onsider the algebra A

n

=

sl(n + 1; C ): Let L

1

; : : : ; L

n+1

be the 
anoni
al basis for C

n+1

: The dual of the

Cartan subalgebra 
an be identi�ed with the quotient f(L

i

) 2 C

n+1

g=f

P

n+1

i=1

L

i

=

0g: The fundamental weights �

i

; i = 1; : : : ; n are given by relations

�

i

= L

1

+ : : :+ L

i

; i = 1; : : : ; n:
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The dimension of the de�ning representation V of sl(n+ 1; C ) is n+ 1 and the list

of all weights of g

1

(all with multipli
ity 1) is given by f�L

i

; i = 1; : : : ; n+ 1g. In

terms of fundamental weights, we get

L

1

= �

1

; L

i

= �

i

� �

i�1

; i = 2; : : : ; n; L

n+1

= ��

n

:

Hen
e all 
oeÆ
ients in the de
ompositions are in absolute values at most one.

All weights of g

1

belong in this 
ase to the same orbit of the Weyl group.

A.4 Symple
ti
 
ase. Here g

C

= sp(2n; C ); (g

C

0

)

s

= sl(n�1; C ); hen
e the algebra

(g

C

0

)

s

is again of type A

k

: Let L

1

; : : : ; L

n

be the 
anoni
al basis for the de�ning

representation V = C

n

. The dual of the Cartan subalgebra is again identi�ed

with the quotient f(L

i

) 2 C

n

g=f

P

n

i=1

L

i

= 0g. The fundamental weights �

i

; i =

1; : : : ; n� 1 are given by relations

�

i

= L

1

+ : : :+ L

i

; i = 1; : : : ; n� 1:

In this 
ase, the representation g

1

of (g

C

0

)

s

is equivalent to �

2

(V ) and its highest

weight is equal to the se
ond fundamental weight �

2

. The dimension of g

1

is equal

to n(n � 1)=2 and the list of all weights of g

1

(all with multipli
ity 1) is given by

fe

ij

= L

i

+ L

j

; i; j = 1; : : : ; n; i < jg. Using 
onventions �

0

= �

n

= 0; we 
an

express e

ij

using �

j

by

e

ij

= (�

i

� �

i�1

) + (�

j

� �

j+1

):

Hen
e all 
oeÆ
ients in the de
ompositions are in absolute values at most one.

All weights of g

1

belong in this 
ase to the same orbit of the Weyl group.

A.5 Spinorial 
ase. Here g

C

= so(2n; C ); (g

C

0

)

s

= sl(n � 1; C ) and the algebra

(g

C

0

)

s

is again of type A

k

: In this 
ase, the representation g

1

of (g

C

0

)

s

is equivalent

to �

2

(V ) and its highest weight is equal to 2�

1

. The dimension of g

1

is equal to

(n+ 1)n=2 and the list of all weights of g

1

(all with multipli
ity 1) is given by

fe

ij

= L

i

+ L

j

; i; j = 1; : : : ; n; i � jg:

Using the same 
onventions �

0

= �

n

= 0; we 
an express e

ij

using �

j

by

e

ij

= (�

i

� �

i�1

) + (�

j

� �

j+1

); i � j:

Hen
e e

ii

= 2�

i

� 2�

i�1

and the 
orresponding 
oeÆ
ients are �2. There are

two orbits of the Weyl group | fe

ii

g and fe

ij

ji < jg.

A.6 E

6


ase. Here g

C

= E

6

, (g

C

0

)

s

= D

5

and g

1

is one of the basi
 (half)-spinor

representations. Its dimension is 16. All weights form one orbit of the Weyl group

and all their 
oeÆ
ients with respe
t to the fundamental weights are in absolute

value at most one. The stru
ture of the orbit as well as all these 
oeÆ
ients 
an be

found in [Kr℄.

A.7 E

7


ase. Here g

C

= E

7

and (g

C

0

)

s

= E

6

. All weights of g

1

form one orbit

of the Weyl group and all their 
oeÆ
ients are in absolute value at most one (for

details, see [Kr℄).
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Appendix B.

To understand the de�nition of B

n

s

better, we dis
ussed the 
ase of numbers B

n

(ij)

already in 7.8. Couples (ij) of non-negative integers were 
onsidered as verti
es of

a graph in plane and these verti
es were 
onne
ted with arrows of length 1 going

horizontally right and antidiagonal arrows of length

p

2 going up and left.

Any vertex in the latti
e 
an be rea
hed from (00) by one or more paths. For

every path to a vertex (ij), it is possible to dedu
e its 
ontribution to the value of

B

n

(ij)

from the algorithm de�ning B's. The a
tual value of B

n

(ij)

is then the sum

of su
h 
ontributions over all possible paths from (0) to (ij). The situation for

longer sequen
es s is similar. It would be possible to de�ne a similar graph for all

sequen
es s, but it is not possible to draw it in more general 
ases. We shall do the

same in the language of sequen
es, whi
h also makes possible to prove an expli
it

formula for the values of B

n

s

, resp. B

n

s

(k).

Let us �rst introdu
e a few additional notations. Let A denote the set of all �nite

sequen
es (of a variable length) J = (j

1

; j

2

; : : : ; j

�

), where j

1

= 0 and j

2

; : : : ; j

�

are non-negative integers and put jJ j := �. For a positive integer a and J 2 A, let

us de�ne the sequen
es s

J

, s

J

a

by

s

J

:=

jJj

X

a

0

=1

�

j

a

0

; s

J

a

:=

a

X

a

0

=1

�

j

a

0

; a = 1; : : : ; jJ j � 1; s

J

0

:= (0)

where �

i

are the sequen
es from 7.7. The subset A

0

of A is de�ned by

A

0

:= fJ 2 A j (s

J

a

)

i

� 0; a = 1; : : : ; jJ j; i = 0; 1; : : : g:

We have the following simple properties

[�

i

℄ = 1 for all i and [�

i

℄ + [�

j

℄ = [�

i

+ �

j

℄ for all i; j

[s

J

℄ = jJ j:

In order to generalize formulas for B

n

(m)

dedu
ed in Se
tion 7, let us introdu
e

for every sequen
e s of non-negative integers the set

A

0

s

:= fJ 2 A

0

j s

J

= sg:

This set is a generalization of the set of all di�erent paths from (0) to s dis
ussed

above in the 
ase of sequen
es of length two.

We also need a generalization of the numbers fng from 7.8. Let us de�ne the

numbers fs; l; ag, where s is a �nite sequen
e of integers and l, a are positive integers

fs; l; ag :=

�

fl + jsjg if a = 0

s

a�1

if a 6= 0.

Using all this notation we obtain the following expli
it formula for the numbers B

n

s

:
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Theorem. The numbers B

n

s

are given by the formula

X

J2A

0

s

fs

J

��1

; n; j

�

g

n�1

X

l

��1

=��1

fs

J

��2

; l

��1

; j

��1

g

l

��1

�1

X

l

��2

=��2

: : :

l

3

�1

X

l

2

=2

fs

J

1

; l

2

; j

2

g

l

2

�1

X

l

1

=1

fl

1

g

where � = [s℄ = jJ j.

Proof. We 
an use indu
tion with respe
t to �. The 
ase � = 1 means that s = (1).

This 
ase was dis
ussed in 7.8: B

n

(1)

= fng. But s = �

0

; there is just one element

J = (0) in A

0

s

and the theorem holds.

Suppose now that the formula is valid for all s with [s℄ � k � 1 and 
onsider a

sequen
e s with [s℄ = k: The set A

0

s

of sequen
es J 
an be split into a disjoint union

of subsets by an additional 
ondition j

[s℄

= i; i = 0; 1; : : : ; (all but a �nite number

of them being empty). Now, let us have a look at the algorithm de�ning B's.

Using the indu
tion assumption for terms

P

n�1

l=0

B

l

s��

i

; i = 0; 1; : : : and noti
ing

that n+ jsj � 1 = n+ js� �

0

j; s

i�1

+ 1 = (s � �

i

)

i�1

; we get the 
orre
t value for

B

n

s

: �

Examples. Let us use the formula in a few 
ases. If s = (01), then the set A

0

s

is

a one point set. It 
onsists of J = (0; 1), s = �

0

+ �

1

. Hen
e

B

n

(01)

= f(1); n; 1g

n�1

X

l=1

flg =

n�1

X

l=1

flg:

Similarly, for s = (001), we have A

0

s

= f(0; 1; 2)g, s = �

0

+ �

1

+ �

2

. Hen
e

B

n

(001)

= f(01); n; 2g

n�1

X

l

0

=2

f(1); l

0

; 1g

l

0

�1

X

l=1

flg =

n�1

X

l

0

=2

l

0

�1

X

l=1

flg:

If s = (11), there are two elements in the set A

0

s

; namely J = (0; 0; 1); s =

�

0

+ �

0

+ �

1

and J = (0; 1; 0); s = �

0

+ �

1

+ �

0

: So

B

n

(11)

= f(2); n; 1g

n�1

X

l

0

=2

f(1); l

0

; 0g

l

0

�1

X

l=1

flg+ f(01); n; 0g

n�1

X

l

0

=2

f(1); l

0

; 1g

l

0

�1

X

l=1

flg =

= 2

n�1

X

l

0

=2

fl

0

+ 1g

l

0

�1

X

l=1

flg+ fn+ 1g

n�1

X

l

0

=2

l

0

�1

X

l=1

flg:

A similar 
omputation leads to the last 
onstant B

4

(0001)

= f1g whi
h we have

used in 7.11.
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