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Abstrat. This paper demonstrates the power of the alulus developed in the two

previous parts of the series for all real forms of the almost Hermitian symmetri

strutures on smooth manifolds, inluding e.g. onformal Riemannian and almost

quaternioni geometries. Exploiting some �nite dimensional representation theory

of simple Lie algebras, we give expliit formulae for distinguished invariant urved

analogues of the standard operators in terms of the linear onnetions belonging to

the strutures in question, so in partiular we prove their existene. Moreover, we

prove that these formulae for kth order standard operators, k = 1;2; : : : , are universal

for all geometries in question.

1. Introdution

As generally known, several geometries share surprisingly many properties with

the onformal Riemannian strutures and projetive strutures. For example the

almost quaternioni ones. Following the old ideas by Cartan, and some more re-

ent development by Baston, Eastwood, Gindikin, Gonharov, Ohiai, Tanaka, and

others, we have started the projet of building a good alulus for all of them. This

paper presents the �rst major appliation of the tehnique developed so far for the

so alled AHS-strutures in the �rst two parts of this series, [CSS1, CSS2℄.

In [F℄, Fegan desribed all onformally invariant operators of the �rst order on

onformal Riemannian manifolds. We use the invariant di�erentiation with respet

to Cartan onnetions developed in [CSS1℄, together with some representation the-

ory of simple Lie algebras, in order to extend Fegan's methods to operators of all

orders. This new tehnique works for a wide lass of geometries and, using the

expliit omputations of the anonial Cartan onnetions in [CSS2℄, we obtain

formulae for all these invariant operators in terms of ovariant derivatives with re-

spet to the linear onnetions belonging to the strutures and their urvatures.

Moreover, a simple reursive proedure for the omputation of the orretion terms

for standard operators is desribed.

In suh a way, the abstrat indiation of the existene of the standard invariant

linear di�erential operators on manifolds with almost Hermitian symmetri stru-

tures given in [B℄ is replaed by an expliit and transparent onstrution, whih

provides even formulae in losed forms. Surprisingly enough, these universal for-

mulae do not depend on the partiular geometry at all.
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In order to make the paper more self-ontained, we have inluded a brief review

of some bakground from [CSS1℄. This onerns the short setion 2 where we also

�x the notation used in the sequel. The setions 3 through 5 provide the neessary

development in representation theory. In order to address a wider audiene among

di�erential geometers, we try to be quite detailed here. Setion 6 gives the main

existene result (Theorem 6.5) and the expliit formulae are established in setion

7 (Theorems 7.4 and 7.9). Some tehnial points are postponed to two appendies.

2. A alulus for Cartan onnetions

The aim of this setion is to summarize for onveniene of the reader the main

development from [CSS1℄. Full details and proofs an be found there.

2.1 AHS strutures. A basi datum distinguishing a partiular AHS struture

is a real simple Lie group G with the Lie algebra g, whih is j1j-graded, i.e.

g = g

�1

� g

0

� g

1

with [g

i

; g

j

℄ � g

i+j

; g

j

= f0g; j 6= �1; 0; 1: There is a list of all simple real j1j-

graded Lie algebras (see [KN℄). Their omplexi�ation is a semisimple j1j-graded

omplex Lie algebra. The lassi�ation of omplex simple j1j-graded Lie algebras

orresponds to the well known list of Hermitian symmetri spaes. The latter fat

has been the origin of the name A(lmost) H(ermitian) S(ymmetri) we use.

The subalgebras g

�1

are ommutative and dual to eah other with respet to

the Killing form. The algebra g

0

is redutive with one-dimensional enter, whih is

generated by the grading element E; whih is haraterized by the fat that eah

of the subalgebras g

j

, j = �1; 0; 1, ist the eigenspaes for the adjoint ation of E

with eigenvalue j. The semisimple part [g

0

; g

0

℄ of g

0

will be denoted by g

s

0

.

The subgroups P; resp. P

1

of G orrespond to the Lie algebra p = g

0

� g

1

, resp.

g

1

. The group P

1

is a normal subgroup of P and the group G

0

= P=P

1

has the Lie

algebra g

0

. Let us mention that we have used the letter B instead of P in [CSS1℄.

The typial and best understood example of AHS strutures is a onformal stru-

ture on a manifoldM . A standard way to de�ne it is a redution of the frame bundle

of M to the onformal group G

0

= CO(n;R). A lassial theorem going bak to

Cartan gives a onstrution of a P -prinipal bundle G (where P is a semidiret

produt of G

0

and R

n

) over M and a uniquely de�ned Cartan onnetion ! on

G. Suh data were onsidered by Cartan as a urved analogue of the at model

G=P (an example of his `espaes g�en�eralis�es'). The harateristi properties of the

Cartan onnetion ! are a simple generalization of properties of the Maurer-Cartan

form ! on G=P .

Following previous results by Tanaka, Ohiai, and Baston, a simple and transpar-

ent prinipal bundle approah to a anonial onstrution of the prinipal bundle

G with struture group P and of the Cartan onnetion ! on G from the standard

�rst order G

0

-struture on M was desribed in [CSS2℄. We shall not need the on-

strution here and we shall start with G and ! as with a given presribed data,

giving to M the struture of an AHS manifold.

2.2 The Cartan onnetion and the invariant di�erential. So we suppose

that a P -prinipal bundle G on M and the Cartan onnetion ! 2 


1

(G; g) is given

on G (for the de�nition and properties of the Cartan onnetions, see [CSS1℄).
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Any Cartan onnetion de�nes an absolute parallelism of G and for any vetor

spae V, we an de�ne the invariant di�erential

r

!

: C

1

(G;V)! C

1

(G; g

�

�1


V)

by

r

!

s(u)(X) � r

!

X

s(u) := [!

�1

(X)s℄(u)

where !

�1

(X) is the onstant vetor �eld on G given by X 2 g

�1

and !. Notie

also TM = G �

P

g

�1

, T

�

M = G �

P

g

1

in a anonial way.

IfVis a (�nite dimensional) P -module, than the spae C

1

(G;V)

P

of equivariant

maps is a 'frame form' of the spae �(M;V ) of smooth setions of the assoiated

vetor bundle V = G �

P

V. We would like to use r

!

for a onstrution of invari-

ant di�erential operators. Unfortunately, the map r

!

s, s 2 C

1

(G;V)

P

, does not

usually belong to C

1

(G; g

�

�1


V)

P

, it is not the frame form of a setion of a suit-

able assoiated vetor bundle over M . So r

!

does not de�ne diretly a di�erential

operator on M .

A very useful proedure how to improve the situation is to introdue a funtorial

way how to de�ne a struture of a P -module on the spae

J

1

(V) :=V� (g

�

�1


V)

in suh a way that the map

s 2 C

1

(G;V)

P

7! (s;r

!

s) 2 C

1

(G; J

1

(V))

P

has again values in the spae of equivariant maps. The P -module struture on

J

1

(V) an be dedued easily from the orresponding homogeneous ase (where it is

just the representation induing the homogeneous bundle J

1

(V ) of 1-jets of setions

of V ). Moreover, the Cartan onnetion ! introdues the natural identi�ations of

the �rst jet prolongations of the assoiated bundles V = G �

P

Vwith G �

P

J

1

(V).

Consequently, any P -module homomorphism � : J

1

(V) ! V

0

indues a well

de�ned di�erential operator from the spae of setions of the bundle V to the spae

of setions of the bundle V

0

. Due to the fat that the Cartan onnetion is uniquely

de�ned by the AHS struture, the orresponding operator is invariant with respet

to any of the usual de�nitions of invariant operators (details on relations between

various possible de�nitions of invariant operators an be found in [Slo℄).

The situation most ommonly onsidered is the ase when V and V

0

are irre-

duible P -modules. It means that V (resp. V

0

) are irreduible G

0

-modules with

the trivial ation of the nilpotent part of P . In suh a ase, natural andidates

for P -homomorphisms � are projetions from the spae g

�

�1


 V (onsidered as

an g

s

0

-module) onto its irreduible fators, extended by zero on the Vpart of the

module J

1

(V). We shall see below that for any suh projetion, there is just one

spei� value for the ation of the grading element E for whih the orresponding

projetion is a P -homomorphism and that any invariant �rst order di�erential op-

erator on a manifold with a given AHS struture is obtained by this onstrution.

For onformal strutures, this was exatly the ontent of the lassi�ation theorem

obtained by Fegan in [F℄ (see 7.2 below).
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2.3 Iterated di�erentiation, semiholonomi jets. Iteratively, we an de�ne

the funtor

�

J

k

(�) (the k-th semi-holonomi prolongation) mapping any P -module

Vto a submodule

�

J

k

(V) of the P -module J

1

(

�

J

k�1

(V)). Considered as aG

0

-module,

it looks like

�

J

k

(V) = V� (g

�

�1


V)� :::� (


k

(g

�

�1

) 
V):

As in the �rst order ase, the iterated invariant di�erential (r

!

)

k

de�nes the map

j

k

!

: s 2 C

1

(G;V)

P

7! (s;r

!

s; : : : ; (r

!

)

k

s) 2 C

1

(G;

�

J

k

(V))

P

:

Moreover, if V = G�

P

Vis the bundle assoiated toV, then its kth semi-holonomi

jet prolongation

�

J

k

(V ) is the bundle assoiated to the representation

�

J

k

(V). Thus

onstrution of a large lass of higher order invariant di�erential operators is now

possible as it was in the �rst order ase: It is suÆient to take any P -homomorphism

from

�

J

k

(V) to a P -moduleV

0

and to ompose it with the map j

k

!

.

The question to be answered is how to onstrut suh P -module homomorphisms.

If V is an irreduible P -module, then it is easy to �nd all G

0

{module homomor-

phisms between the orresponding modules using representation theory. An expliit

riterion showing when suh a G

0

{homomorphisms is atually a P{module homo-

morphism, was proved in [CSS1℄ and will be used below to prove existene results

for invariant operators (see 5.2 for more details).

2.4 Distinguished onnetions, the deformation tensor. Invariant operators

are given as a omposition of a suitable P -homomorphism and the Cartan onne-

tion. To express the result in standard terms (ovariant derivatives, urvature

terms) and to �nd expliit formulas for it, we need more information.

Let us reall �rst the relation between the original �rst order struture G

0

on

M (e.g. a onformal one in the best known example) and the P -prinipal bundle

G onstruted from it. If P

1

is the Lie group orresponding to the Lie algebra g

1

;

then G

0

' G=P

1

. The value of the Cartan onnetion ! an be split with respet to

the grading of g as ! = !

�1

+ !

0

+ !

1

. For any G

0

-equivariant setion � : G

0

! G

(whih always exists), the pullbak �

�

!

0

is a prinipal onnetion on G

0

: The spae

of all suh onnetions is an aÆne spae modeled on the spae of 1-forms on M .

We have got in suh a way a distinguished lass of onnetions on M whih are

ompletely haraterized by the requirements that they have to belong to G

0

, and

their torsion has to oinide with the g

�1

-omponent of the urvature of !. In the

onformal ase, for example, this lass onsists of all Weyl geometries (thus ontains

all Levi-Civita onnetions orresponding to any Riemannian metri hosen inside

the given onformal lass, in partiular). The assoiated ovariant derivatives are

standard tools used for desription of di�erential operators.

If ! and ~! are two Cartan onnetions whih di�er only in the g

1

-omponent,

there exists an equivariant map � 2 C

1

(G; g

�

�1


g

1

) suh that ~! = !��Æ!

�1

: The

map � is the P -equivariant representation on G of a tensor on M; whih is alled

the deformation tensor. In partiular, one we �x the Cartan onnetion ! and the

G

0

-equivariant setion � : G

0

! G, there is the unique Cartan onnetion ~! whih

is �-related to the pullbak �

�

(!

�1

+ !

0

). This is the Cartan onnetion whose

invariant derivativer

~!

is as lose to the ovariant derivativer

�

�

!

0

as possible. The

orresponding deformation tensor � then gives the full remaining omparison. For
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onformal strutures, this is just the well known `rho{tensor' having the following

expression in terms of the Rii urvature:

�

ij

=

�1

m� 2

�

R

ij

�

Æ

ij

2(m � 1)

R

�

;

where R

ij

and R are the P -equivariant pull-baks of the Rii tensor and the

salar urvature to G and m is the dimension of the manifold M . Thus � is a

generalization of the `rho{tensor' to all AHS strutures. Similar expliit formulae

for these rho-tensors for most AHS strutures have been omputed in [CSS2℄.

Now, the value r

!

s of the invariant di�erential on a setion s an be desribed

in more familiar terms, using r



and the deformation tensor � as follows. The

hoie of � de�nes the trivialization of the bundle p : G ! G

0

expressed by the

seond oordinate � : G ! g

1

, whih an be haraterized by the formula u =

�(p(u)) �exp(� (u)). Let Vbe an irreduible P -module, V = G�

P

V' G

0

�

G

0

Vthe

orresponding assoiated vetor bundle. Setions s 2 �(V ) will be represented by

means of equivariant maps s 2 C

1

(G

0

;V)

G

0

or equivalently as p

�

s 2 C

1

(G;V)

P

.

Then we have for all u 2 P , X 2 g

�1

(r

!

(p

�

s)(u)) (X) = (p

�

(r



s))(u)(X) + [X; � (u)℄ � ((p

�

s)(u))

where the braket [X; � (u)℄ 2 g

0

ats on the element of the g

0

-module V.

All terms in the formula are G

0

-equivariant, but only the �rst one is also P

1

-

equivariant (i.e. onstant along �bers of p). It is the map � in the seond term,

whih is not P

1

-equivariant (it varies when u 2 G hanges its position in the �ber).

This shows again that the invariant di�erential r

!

s is not P -equivariant even if s

itself is. In many ases we an �nd a homomorphism� in suh a way that the term

ontaining � is killed by � and the resulting omposition is an invariant operator.

2.5 Corretion terms and obstrution terms. To onstrut higher order in-

variant operators, we have to use higher order iterations of the invariant di�erential.

To understand what is happening in higher orders, the seond order ase is a rep-

resentative example. It is possible again to express (r

!

)

2

s using r



and �. For

any setion s 2 C

1

(G

0

;V)

G

0

; we have

�

(r

!

)

2

(p

�

s)

�

= p

�

((r



)

2

s) +D

0

(;�) +D

1

(;�; � ) +D

2

(;�; � )

where

D

0

(;�)(u)(X;Y ) = [X;�(u):Y ℄ � (p

�

s(u));

D

1

(;�; � )(u)(X;Y ) = [X; � (u)℄ � (p

�

(r



Y

s))(u) + ([Y; � (u)℄ � (p

�

r



s)(u)) (X);

D

2

(;�; � )(u)(X;Y ) = ([Y; � (u)℄ � ([ ; � (u)℄ � (p

�

s)(u))) (X)

�

1

2

[X; [� (u); [� (u); Y ℄℄℄ � (p

�

s)(u);

and � denotes the appropriate ation of an element from g

0

on the spae in question

(either Vor g

�

�1


V). The term D

0

is alled the orretion term and the terms D

i

,

i = 1; 2, whih are homogeneous of degree i in � , are alled obstrution terms.

As for the �rst order ase, the map (r

!

)

2

(p

�

s) is only G

0

-equivariant and, in

general, not P -equivariant. To de�ne an invariant seond order operator, it is

neessary to kill all obstrution terms by a suitable G

0

-homomorphism. If it is

possible, then the leading term together with the orretion term gives an expliit

formula for the orresponding invariant operator (expressed already in standard

language).
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2.6 The algorithm for higher orders. In fat, it an be shown (see [CSS1℄) that

vanishing of D

1

(;�; � ) implies vanishing of all higher order obstrution terms, so

that existene proofs an be simpli�ed. The algebrai ondition disussed above is

equivalent to vanishing of the sum of ertain terms linear in � , so that it is even

more simple ondition, but it is only suÆient ondition, not neessary one.

To have an expliit algorithm for omputation of the form of the orretion

terms, we need to take into aount during the indutive proedure all obstrution

terms, not only the linear ones. For that, we an use the algorithm for reurrent

omputation of the orretion and obstrution terms, whih was proved in [CSS1℄

(for more details see 7.4). Using MAPLE, it was easy to implement this algorithm

and to ompute expliitly the orretion and obstrution terms for low orders. The

number of terms is growing enormously. For the 6th order, the full formula has

7184 terms and the orretion part itself has 328 terms. We shall see later on that

for standard operators studied below, further essential simpli�ation is possible and

the �nal formula will have only 10 summands. To write down on paper an expliit

form of invariant operators of higher orders is too awkward. Nevertheless, we shall

see that for a broad lass of operators, the algorithm for the expliit form of the

operator an be simpli�ed substantially and that the form of orretion terms for

standard operators is remarkably stable and universal, independently of the type

of AHS struture and the representation Vonsidered (see setion 7).

In the next setions, we shall use representation theory to show how the theory

explained above an be used for better understanding of properties of standard

invariant operators.

3. G

0

-homomorphisms

To onstrut invariant operators, we have to learn how to onstrut P -homomor-

phisms from

�

J

k

(V) to a P -moduleV

0

. The �rst thing to do is to understand what

are the possibilities for G

0

-homomorphisms. We shall onentrate on the situation

whenVis an irreduible P -module. This implies thatVis an irreduible G

0

-module

and the nilpotent part ats trivially. Representation theory o�ers enough tools to

lassify all G

0

-homomorphisms in this ase. Any suh homomorphism is equivalent

to a projetion of

�

J

k

(V) onto one of its irreduible omponents and a deomposition

of the tensor produt

�

J

k

(V) = (


i

g

�

�1

)
Vto irreduible omponents is a standard

problem studied in representation theory of semi-simple Lie groups. In this setion,

we shall prove some additional fats needed for a onstrution of P -homomorphisms

and we shall deal with a general omplex semi-simple Lie algebra g. Later on we

shall use it for the semisimple part g

s

0

= [g

0

; g

0

℄ of g

0

.

3.1 Notation. Let us onsider a omplex semi-simple Lie algebra g with a Cartan

subalgebra h, a set �

+

of positive roots and its subset S = f�

1

; : : : ; �

n

g of simple

roots. Using the Killing form (:; :), fundamental weights �

1

; : : : ; �

n

are de�ned by

(�

_

i

; �

j

) = Æ

ij

, where �

_

i

= 2�

i

=(�

i

; �

i

).

The (losed) dominantWeyl hamber C is given by linear ombinations of funda-

mental weights with nonnegative oeÆients, let C denote its interior. Finite dimen-

sional omplex irreduible representations of g are haraterized by their highest

weights �, whih lie in the weight lattie �

+

= f

P

�

i

�

i

; �

i

� 0; �

i

2Zg. The or-

responding representation will be denoted by (�;V

�

) but the ation �(X)v, X 2 g,
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v 2V

�

will be often written simply as X � v, if the representation is lear from the

ontext. The set of all weights of Vwill be denoted by �(V):

Any weight � 2 h

�

an be haraterized by its oeÆients �

j

= (�; �

_

j

). In

partiular, the simple roots �

i

have oeÆients a

ij

= (�

i

; �

_

j

), where a

ij

is the

Cartan matrix of the Lie algebra g, whih is enoded into its Dynkin diagram.

Consequently, the reetion �

i

(�) = �� (�; �

_

i

)�

i

with respet to a simple root �

i

hanges oeÆients �

j

of � into oeÆients �

j

� �

i

a

ij

. Due to properties of the

Cartan matrix, the oeÆient �

i

hanges to ��

i

and (if no multiple edges of the

Dynkin diagram are involved), the oeÆient �

i

adds to neighboring oeÆients �

j

(for whih a

ij

= �1).

The reetions �

i

generate the Weyl group W . For � =

P

i

�

i

, we shall denote

by � the aÆne ation of W on weights de�ned by w � � = w(� + �) � �.

In our appliations of the theory, we shall mostly need the ase of a simple Lie

algebra g. The only exeption will be the Grassmannian ase, where our Lie algebra

g will have two simple parts g

1

� g

2

. Note that in this ase, the Cartan subalgebra

h splits also into h

1

� h

2

, all weights an be written as ouples � = (�

1

; �

2

) and the

representation V

�

is the tensor produt V

�

1

V

�

2
. The Killing form splits as well:

(�; �) = (�

1

; �

1

) + (�

2

; �

2

). The Weyl group W is the diret produt W

1

�W

2

of

the Weyl groups of g

1

and g

2

.

3.2 Klimyk's algorithm. There is a useful and expliit algorithm for the de-

omposition of the tensor produt of two irreduible representations of a simple

Lie algebra g into irreduible omponents, based on the Klimyk formula (see [H℄,

Se.24, Ex.9).

For any weight � 2 h

�

; let f�g denote the dominant weight lying on the orbit

of � under the Weyl group. If f�g 2 C; then there is the unique w 2 W suh that

f�g = w�. Let t(�) be equal to the sign of w in this ase and zero otherwise.

Suppose moreover that we know the list �(�) of all weights of the irreduible

representation V

�

with the highest weight �, inluding their multipliities m

�

(�),

for � 2 �(�). Let V

�

denote the irreduible representation of g with the highest

weight �. Then the Klimyk formula implies that it is suÆient to go through the

list �(�), write a formal sum

X

�2�(�)

m

�

(�)t(�+ � + �)V

f�+�+�g��

of irreduible representations and to add together oeÆients at representations

with the same highest weight. The resulting oeÆients are always non-negative

and give the multipliity of the orresponding representation in the deomposition.

Note that some anelations happen often.

3.3 The deomposition of a tensor produt of representations. There are

ertain fats known for a general ase of a tensor produt of two irreduible rep-

resentations V

�

and V

�

with highest weights � and �. For example, the highest

weight � of an irreduible piee in the deomposition of the produt V

�


V

�

has

always form � = �+�; � 2 �(�) (see [FH℄, p.425). But in general, we know nothing

about its multipliity, it an be zero, one or bigger.
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In the produt V

�


V

�

; there is always an irreduible piee with the highest

weight �+ � and it appears with multipliity one. This speial irreduible ompo-

nent is standardly denoted by V

�

�V

�

, and alled the Cartan produt of V

�

and

V

�

. If e

�

, resp. e

�

, are weight vetors for highest weights �, resp. �, then e

�


 e

�

is a weight vetor with the weight �+ �: Consequently, �

k

V� �

k

V:

The following general fat is muh more diÆult to verify. The Parthasarathy{

Rao{Varadarajan (PRV) onjeture proved reently (see [Ku℄) laims that for any

w 2 W , the module V

f�+w�g

with the extremal weight � + w� ours in V

�


V

�

with multipliity at least one.

In the ase that one representation in a tensor produt is in a suitable sense

small, we an say more about the deomposition. In partiular, there will be no

multipliities in the produt for suh ases. This is a substantial information needed

in appliations below. The simplest ase is the following theorem.

Theorem. Let � be suh that all weights � 2 �(�) have multipliity one. Let

us suppose moreover that the oeÆients of all weights � 2 �(�) with respet to

fundamental weights are � �1. Then for any � 2 �

+

, we have

V

�


V

�

=

X

�2A

V

�

where A is the set of all weights of the form � = � + �; � 2 �(�), whih belong to

the dominant Weyl hamber C. There are no multipliities in the deomposition.

Proof. The oeÆients in the deomposition of any weight � 2 �

+

into fundamental

weights are, by de�nition, all nonnegative. The weight � has all oeÆients equal

to 1. Our assumptions above imply that for all weights � 2 �(�), the sum � + �

belongs to C, hene �+�+� 2 C as well. So no ation of elements w 2W is needed,

f� + � + �g � � = � + � for all � 2 �(V

�

) and no anelations or multipliities in

the deomposition of the tensor produt an our. The weight � + � appears in

the deomposition (with nonzero oeÆient) if and only if �+ �+ � belongs to the

interior C i.e. if and only if �+ � 2 C. �

The theorem just proved will be suÆient in most ases needed below. In two

of them, we shall however need a ase when some of omponents of weights will be

equal to �2. We are going to prove the multipliity one result for this ase under a

suitable additional assumption. In some partiular ases (e.g. in two ases needed

below, see Appendix A), it is possible to desribe the set A in the deomposition

more preisely, but we shall not need to formulate suh results in general.

Theorem'. Suppose that � is suh that all weights � 2 �(�) have multipliity one.

Let us suppose moreover that for all weights � 2 �(�), � =

P

i

�

i

�

i

; the following

onditions are satis�ed:

(1) �

i

� �2 for all i;

(2) there exists at most one index i suh that �

i

= �2 and if it happens, we

suppose moreover that for all j 6= i, �

j

� 0 and a

ij

� �1 (the last ondition

means that the ith node of the orresponding Dynkin diagram is not at the

foot point of a double arrow).
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Then for any � 2 �

+

; we have

V

�


V

�

=

X

�2A

V

�

where A � (f�+ �j� 2 �(�)g)\ C is some subset and there are no multipliities in

the deomposition.

Proof. For all weights � with the property �

j

� �1 for all j we get as above that

�+ �+ � 2 C, hene no reetions are needed and V

�+�

appears in the formal sum

oming from the Klimyk formula if and only if � + � 2 C.

Let us onsider a weight � with the property that �

i

= �2. The assumptions of

the theorem imply that (�+� +�)

j

� 1, j 6= i, and (�+� +�)

i

= �

i

�1. If �

i

> 0;

then again � + � + � 2 C and no reetion is needed.

If, however, �

i

= 0 then the weight � + � + � is not in C. Let w 2 W is

the simple reetion with respet to ith simple root, then (� + � + �)

i

= �1 and

(w (�+ � + �))

i

= 1. For j 6= i suh that a

ij

= 0; the oeÆient (�+ � + �)

j

is not

hanged under the reetion, hene is nonnegative. If j 6= i suh that a

ij

= �1,

then (w (�+ � + �))

j

= (�+ � + �)

j

� 1 � �

j

� 1 = 0, hene also these oeÆients

are nonnegative. Consequently, w (�+�+�) 2 C and the irreduible representation

V

w(�+�+�)��

will appear in Klimyk's formal sum with oeÆient �1.

All terms in the formal sum oming from the weights � with the property � +

� + � 2 C are distint and with multipliity one. All others are oming with the

oeÆients �1, hene they are neessarily aneled by some of previous ones. Hene

all terms in the result have multipliity one and their highest weights are ontained

in f� = �+ �; � 2 �(�)g \ C. �

3.4 Multipledeompositions. We shall also have to understand irreduible om-

ponents of a more ompliated tensor produt (


k

V

�

) 
V

�

. For k > 1, there is

no hope to get a multipliity one result as before. As a onsequene, only isotypi

omponents of the produt will be unambiguously de�ned and the omplete split-

ting into irreduible omponents will depend on arbitrary hoies. We shall show

now that the results of the previous paragraph an be used for a lassi�ation of the

piees in the deomposition and for a onstrution of a distinguished deomposition

useful for more detailed omputations in following setions.

Let g is a semi-simple Lie algebra and V

�

its irreduible representation having

the following property: For all � 2 �

+

, there exists a set A

�

suh that V

�


V

�

=

P

�

1

2A

�

V

�

1

and there are no multipliities in the deomposition.

Then the deomposition an be iterated as follows. The produt 


2

(V

�

)
V

�

=

V

�


 (

P

�

1

2A

�

V

�

1

) an be again deomposed in the same way as

X

�

1

2A

�

X

�

2

2A

�

1

V

�

2

;�

1

;

where the double index of V

�

2

;�

1

indiates how this partiular omponent was ob-

tained in the deomposition. By repeating this proess, it is lear that the produt




k

(V

�

)
V

�

an be ompletely deomposed into irreduible omponents, eah one

being labeled by a sequene � = (�

k

; �

k�1

; : : : ; �

1

; �) whih reords the way how
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this omponent was obtained through the proess of suessive deompositions.

The �nal highest weight �

k

may appear many times and its preise position in the

isotypi omponent is �xed by the whole sequene reording its history. Hene for

a �xed �; we shall de�ne the set A

k

(�) of all suh sequenes, i.e.

A

k

(�) = f� = (�

k

; �

k�1

; : : : ; �

1

; �

0

) j�

0

= �; �

j

2 A

�

j�1

; j = 1; : : : ; kg:

Then




k

(V

�

) 
V

�

=

X

�2A

k

(�)

V

�

:

Together with the �nal irreduible omponent V

�

, we shall use also for omputa-

tions all intermediate omponents given by V

�

j

; �

j

= (�

j

; : : : ; �

0

) in 


j

(V

�

)
V

�

,

together with the orresponding invariant projetions �

�

j

.

There is one important question onneted with suh a deomposition, namely

to �nd a position of the above mentioned omponents with respet to the splitting

of 


j

(V

�

) 
V

�

into a diret sum of �

j

(V

�

) 
V

�

and its invariant omplement.

Suh a knowledge would help to deide whether invariant operators obtained by

the projetion to the orresponding omponents in the deomposition will have

nontrivial symbol or not. We shall answer this question in the ase we need in the

next paragraph.

3.5 Multipliity one omponents. There are speial piees in the deomposition

of 


j

(V

�

) 
V

�

whih always appear with multipliity one. Even more, we shall

be able to show that they must be inluded in �

j

(V

�

) 
V

�

; where � denotes the

Cartan produt of irreduible representations (f. 3.3), hene their symbol will be

nontrivial.

Theorem. Let �; � 2 �

+

. Let � be an extremal weight of V

�

(i.e. it belongs to the

Weyl orbit of the highest weight �). Let k be a positive integer suh that �+ k� is

dominant.

Then there is a unique irreduible omponent in 


k

(V

�

)
V

�

with highest weight

� = � + k�. Moreover, the omponent V

�

is ontained in �

k

(V

�

) 
V

�

.

Proof. The produt 


k

(V

�

) 
 V

�

an be deomposed into the sum of V

�

as de-

sribed above. All these hains � an be onsidered as pieewise linear paths in

the dominant Weyl hamber omposed from the straight segment with diretions

given by weights of V

�

: If we are going straight on k times in the same dire-

tion given by an extremal weight of V

�

; no other path an reah the same point

� = � + k� (extremal weights have extremal lengths). This implies the uniity of

the omponent.

To prove the existene, note that the weight k� is an extremal weight of �

k

(V

�

):

Hene we an use the PRV onjeture to show thatV

�

appears in the deomposition

of �

k

(V

�

)
V

�

: �

3.6 Partial projetions. Let us reall that we always have �

k

(V)� �

k

(V) and

that �

k

(V) oinides with

[�

2

(V)℄� [�

k�2

(V)℄� [�

2

(V)℄
 [�

k�2

(V)℄:

As a orollary we get
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Lemma. Denote by � the projetion of 


k

(V) onto �

k

(V): Suppose that A is the

invariant omplement of �

2

(V) in 


2

(V) and �

A

is the orresponding projetion.

Then

�

A
 (


k�2

(V)

�

\

�

�

k

(V)

�

= ;, or equivalently

� Æ (�

A


 Id

k�2

) = 0:

3.7. The results above will be applied below in the following speial ase. Let

g = g

�1

� g � g

1

be a omplex j1j-graded Lie algebra, f. 2.1. The spae g

1

is an

irreduible g

s

0

-module whih is `small' enough, i.e. it satis�es assumptions of one of

the Theorems in 3.3. To hek it, it is neessary to inspet algebras g ase by ase.

The list of them together with details needed for the veri�ation are olleted in

Appendix A.

Consequently, for any irreduible g

0

-module V; the tensor produt g

1


V de-

omposes into irreduible omponents without multipliities and results of 3.5 and

3.6 an be used for deompositions of the produt 


k

(g

1

)
V:

4. Casimir omputations

4.1 Notation. For this setion, we shall suppose that g = g

�1

� g

0

� g

1

is a

omplex j1j-graded simple Lie algebra. In general, a hoie of jkj-graded struture

on a omplex simple Lie algebra g is the same as a hoie of its paraboli subalgebra.

Any paraboli subalgebra is onjugated to a standard one (i.e. one ontaining a

hosen Borel subalgebra b � g). There is one to one orrespondene between

standard paraboli subalgebras of g and subsets of the set S of simple roots of g.

The j1j-graded strutures on g exist only for four lassial series and for E

6

and

E

7

ases and they are given by ertain one-point subsets of S (Dynkin diagrams

with the orresponding simple root rossed are often used to denote the hosen

paraboli subalgebra). We shall hoose numbering of the set S of simple roots so

that the �rst simple root �

0

is the rossed one (for more information on jkj-graded

Lie algebras see [BasE, Y℄).

There is a unique grading element E 2 g

0

satisfying [E;X℄ = `X for X 2 g

`

; ` =

�1; 0; 1: A Cartan subalgebra h � g an be hosen in suh a way that E 2 h; then

h � g

0

: The set �

+

of positive roots for g an be hosen so that all root spaes for

positive roots are inluded in g

0

� g

1

.

It is often useful to normalize an invariant form (:; :) on g by the requirement

(E;E) = 1 (see e.g. [BOO℄). For the Killing form, we have B(E;E) = 2 dimg

1

,

hene (X;Y ) = (2 dimg

1

)

�1

B(X;Y ). This normalized form (:; :) indues nonde-

generate invariant bilinear forms on g

0

and g

�1

� g

1

, and it identi�es g

1

and g

�1

as dual spaes. Orthonormal bases and Casimir operators for g

0

will be omputed

using this normalized form.

The algebra g

0

splits into 1-dimensional enter a and a semisimple part g

s

0

=

[g

0

; g

0

℄ whih has h

s

= h\ g

s

0

as a Cartan subalgebra. Then h = a� h

s

. Irreduible

representations of p = g

0

�g

1

are trivial on g

1

. Every suh representation is a tensor

produt of a one-dimensional representation of a and an irreduible representation

of g

s

0

, whih an be haraterized by its highest weight � 2 (h

s

)

�

. For onveniene,

we shall onsider (h

s

)

�

as a subset of h

�

of all elements, whih restrit to zero on

a. Representations of a an be haraterized by a (generalized) onformal weight
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w 2 C : We shall say that a representation U of g

0

has a (generalized) onformal

weight w, if E �v = wv; v 2U. The otangent spaes of our manifolds are assoiated

to the adjoint representation of g

0

on g

1

, hene 1-forms will have (generalized)

onformal weight 1. An irreduible representation of g

0

with a onformal weight w

and highest weight � 2 (h

s

)

�

will be denoted by V

�

(w).

Let fY

a

g, a = 0; 1; : : : , be an orthonormal basis of g

0

with respet to the form

(:; :). We may hoose it in suh a way that Y

0

= E 2 a and fY

a

0

g, a

0

> 0 is an

orthonormal basis for g

s

0

. For any representation V of g

s

0

, the Casimir operator

C(V) is de�ned by C(V) =

P

a

0

>0

Y

a

0

Æ Y

a

0

. It is well known (see [H℄) that if V is

an irreduible representation with a highest weight �, then

C(V) = (�; �+ 2�); � = 1=2

X

�2�

+

(g

s

0

)

�:

As we have notied already, our algebras g

s

0

are irreduible in all ases exept

the sl(n; C ) series, but even then the formula C(V

�

) = (�; � + 2�); � = (�

1

; �

2

) is

still valid, see 3.1 for the reasons.

4.2 Casimir omputations. Suppose now that X 2 g

�1

, Z 2 g

1

and let us

onsider an irreduible g

0

-module V

�

(w); where � 2 h

�

is an integral dominant

weight for g

s

0

and w 2 C . In the desription of iterated invariant di�erentials, terms

of type [Z;X℄ � s, s 2V

�

(w), have appeared very often (the � means here the ation

of an element of g

0

under the representation haraterized by � and w), (see 2.4).

It is hene important to understand them better.

Reall that we identify g

1

and (g

�1

)

�

using the salar produt (:; :). The term

[Z;X℄ �s de�nes a map from g

1


g

�1


V

�

(w) intoV

�

(w); whih an be interpreted

also as a map �: g

1


V

�

(w)! g

1


V

�

(w); de�ned by

�(Z 
 v)(X) := �([Z;X℄)v; Z 2 g

1

; s 2V

�

(w); X 2 g

�1

:

Let us hoose bases f�

�

g, resp. f�

�

g of g

�1

, resp. g

1

, whih are dual with respet

to the salar produt (:; :). Due to

[Z;X℄ � s =

X

�

[Z; (�

�

; X)�

�

℄ � s =

�

X

�

�

�


 [Z; �

�

℄ � s

�

(X);

we get

�(Z 
 s) =

X

�

�

�


 [Z; �

�

℄ � s:

The map � is a g

0

-homomorphism (by diret omputation or by the lemma

below). Let g

1


 V

�

(w) =

P

�

V

�

(w + 1) be a deomposition of the produt of

g

0

-modules into irreduible omponents and let �

��

: g

1


V

�

(w) !V

�

(w + 1) be

the orresponding projetions. The g

0

-homomorphism � ats as a multiple of the

identity on eah irreduible omponent, i.e. there are onstants ~

��

2 R suh that

� =

P

�

~

��

�

��

and we are going to desribe a formula expressing these onstants

in terms of the weights � and �.
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4.3 Lemma. Let V

�

(w) be an irreduible representation of g

0

and let g

1


V

�

=

P

�

V

�

be a deomposition of the produt into irreduible g

s

0

-modules. Let � be the

highest weight of g

1

and let � be the half sum of positive roots for g

s

0

. Then for all

s 2V

�

(w),

�(Z 
 s)(X) = [Z;X℄ � s =

X

�

(w � 

��

)�

��

(Z 
 s)(X);

where 

��

= �

1

2

[(�; �+ 2�) � (�; � + 2�) � (�; �+ 2�)℄:

Proof. Let f�

�

g; resp. f�

�

g be dual bases of g

�1

, resp. g

1

. The invariane of the

salar produt implies

[Z; �

�

℄ =

X

a

(Y

a

; [Z; �

�

℄)Y

a

=

X

a

([Y

a

; Z℄; �

�

)Y

a

�(Z
s) =

X

�

�

�


 [Z; �

�

℄ �s =

X

�

�

�




�

X

a

([Y

a

; Z℄; �

�

)Y

a

�

�s =

X

a

[Y

a

; Z℄
Y

a

�s:

Sine Y

0

= E, the �rst term in the sum is [Y

0

; Z℄
 Y

0

� s = wZ 
 s and for the rest

we an use the de�nition of the Casimir operator and its omputation by means of

highest weights, together with

X

a

0

Y

a

0

Y

a

0

�(Z
s) =

X

a

0

(Y

a

0

Y

a

0

�Z)
s+

X

a

0

Z
(Y

a

0

Y

a

0

�s)+2

X

a

0

(Y

a

0

�Z)
(Y

a

0

�s)

(notie � means the ations on di�erent modules used in the formula) �

4.4 Example. Let us ompute now a simple ase of the formula above whih will

be needed below. The speial double ommutator terms [[X; � ℄; � ℄ from 2.5 are

appearing often in the algorithm mentioned in 2.6. We want to deompose them

into irreduible piees.

Againk, let � be the highest weight of g

1

onsidered as g

s

0

-module. By our on-

ventions, it has the onformal weight 1. The tensor square g

1


 g

1

deomposes

always into symmetri and antisymmetri parts. But the symmetri square deom-

poses in all but one ases into two omponents (an exeptional ase being projetive

strutures, where is does not deompose). For our purposes, it is suÆient to know

that there is always a piee in the deomposition with the highest weight 2� (the

Cartan produt of g

1

with itself), denoted by g

1

� g

1

.

Lemma. Let g

1


 g

1

= �

3

i=1

V

�

i

be the deomposition into irreduible omponents

with V

�

1

' �

2

(g

1

) and V

�

3

' �

2

(g

1

) (V

�

2

is trivial in the projetive ase). Hene

�

1

= 2�. Then there exist real numbers A

i

; i = 1; 2; 3; suh that

�

1

2

[[X; � ℄; � ℄(Y ) =

3

X

i=1

A

i

�

i

[� 
 � ℄(X;Y );

where X;Y 2 g

�1

; � 2 g

1

, and �

i

is the projetion onto V

�

i

. For A

1

, we have

A

1

=

1

2

(j�j

2

+ 1).

Proof. This is the ase V

�

= g

1

of lemma 4.3, so the numbers A

i

are given by

A

i

= �

1

2

[

��

i

� 1℄; i = 1; 2; 3:
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In partiular, 

�;2�

= �

1

2

[(2�; 2�+ 2�)� 2(�; �+ 2�)℄ = �j�j

2

. �

In omputations below, we shall use often the onstant A

1

but we shall see

that its atual value does not inuene the expliit formula for standard operators,

beause the onstant A

1

will be absorbed by a renormalization of the deformation

tensor �.

5. P -module homomorphisms

Let us suppose, as in the previous setion, that g is a omplex j1j-graded Lie

algebra, p = g

0

� g

1

and V is a (omplex) irreduible p-module. The algebra g

0

splits into the sum of the ommutative 1-dimensional ideal a and the semisimple

part g

s

0

.

Using results obtained in the last two setions, it is possible to onstrut a broad

lass of p-homomorphisms � from

�

J

k

V to a P -module V

0

, where V

0

is a suitable

irreduible omponent of the g

0

-module 


k

(g

1

) 
V. Let us reall that there is a

unique grading element E 2 a for g and an invariant salar produt (:; :) on g is

normalized by the ondition (E;E) = 1.

Before stating the orresponding result, we shall prove a simple auxiliary Lemma.

A surprising and important fat oming from it is the independene of the onstants



j+1

� 

j

of the hosen representations.

5.1 Lemma. Let � be the highest weight of the g

s

0

-module g

1

and � one of its

extremal weights. For any weight �, let us de�ne weights �

j

= � + j�, j 2 N, and

numbers



j

= 

�

j

�

j+1

= �

1

2

�

(�

j+1

; �

j+1

+ 2�) � (�

j

; �

j

+ 2�) � (�; �+ 2�)

�

:

Then we have

(1) 

0

= (�; �) � (�; � + �);

(2) 

j

� 

j�1

= �j�j

2

;

(3)

P

k�1

j=0



j

= k [(�; �)� (�; � + �) �

k�1

2

j�j

2

℄.

Proof. By de�nition



0

= �

1

2

�

(� + �; � + � + 2�) � (�; �+ 2�) � (�; �+ 2�)

�

=

= (�; �)� (�; �+ �) �

1

2

(j�j

2

� j�j

2

):

The weight � lies in the W -orbit of �, so they have the same norm, and (1) follows.

Substituting �

j

instead of �, we get



j

= (�; �)� (�; � + �) � jj�j

2

as well as the formula (2). Using 

j

= 

0

� jj�j

2

; we get

k�1

X

j=0



j

=

k�1

X

j=0

(

0

� jj�j

2

) = k 

0

�

k(k � 1)

2

j�j

2

: �
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5.2 The algebrai riterion. We want now to prove that ertain G

0

-homomor-

phisms are in fat P -homomorphisms. In [CSS1℄, the following algebrai ondition

for it was proved, but in the ase when the invariant salar produt (:; :) was equal

to the Killing form B(:; :). If the normalization of (:; :) is di�erent and if � is a

number suh that B(:; :) = �(:; :), then it is easy to hek that all terms in the

Lemma below are saled uniformly by the onstant �

k

, hene the ondition does

not hange.

Lemma. Let V and V

0

be irreduible P -modules and �:

�

J

k

(V) ! V

0

be a g

0

-

module homomorphism whose restrition to 


k

(g

�

�1

)
V�

�

J

k

(V) does not vanish.

Let us hoose any invariant salar produt (:; :) on g and let us use it to identify g

1

with g

�

�1

: Then � is a P -module homomorphism if and only if:

(1) It fators through the projetion � :

�

J

k

(V)!


k

(g

�

�1

) 
V;

(2) � vanishes on the image of 


k�1

(g

�

�1

)
V in

�

J

k

(V) under the ation of g

1

,

i.e. for all Z; Y

1

; : : : ; Y

k�1

2 g

1

, v 2Vwe have

�

�

k�1

X

i=0

(

X

�

Y

1


 � � � 
 Y

i


 �

�




�

[Z; �

�

℄:(Y

i+1


 � � � 
 Y

k�1


 v)

�

�

= 0;

where �

�

and �

�

are dual bases of g

1

and g

�1

with respet to the salar produt (:; :)

and the dot means the standard ation of an element in g

0

on the argument.

This riterion looks quite ompliated. Using results of Setion 4, we an use it

to prove easily the existene of a broad lass of P -modules homomorphisms.

5.3 Corollary. Let V

�

be an irreduible g

s

0

-module and let � be the highest weight

of the irreduible g

s

0

-module g

1

.

Let us suppose that an extremal weight � of g

1

and an positive integer k is

hosen in suh a way that � = �+ k� is dominant. Let � : 


k

g

1


V

�

!V

�

be the

projetion on the unique irreduible omponent of the produt with highest weight �

(see Theorem 3.5).

Then there is a unique value for the generalized onformal weight w suh that

� de�nes a P -homomorphism from

�

J

k

(V

�

(w)) to V

�

(w + k): The value of that

onformal weight is given by

w = (�� �; �) �

k � 1

2

(j�j

2

+ 1)� (�; �);

where � is half the sum of positive roots for g

s

0

.

Proof. Let us �rst reall the onstrution of the projetion �. If �

k

0

= � + k

0

�,

k

0

= 0; : : : ; k, the projetions �

k

0

, k

0

= 1; : : : ; k, are de�ned indutively as the

projetions from g

1


 V

�

k

0

�1

onto the unique irreduible omponent V

�

k

0

with

highest weight �

k

0

. The projetion � is given by the formula

�(Z

1


 � � � 
 Z

k


 v) = �

k

(Z

1


 �

k�1

(Z

2


 : : : �

1

(Z

k


 v) : : : ));

where Z

1

; : : : ; Z

k

2 g

1

, v 2V

�

.
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To prove the theorem, we have to verify that with the hoie of the weight w

above, the ondition in Lemma 5.2 is satis�ed. So we want to �nd w in suh a way

that for all Z;Z

1

; : : :Z

k�1

2 g

1

, v 2V

�

,

�

�

k�1

X

i=0

X

�

Z

1


 � � � 
 Z

i


 �

�




�

[Z; �

�

℄:(Z

i+1


 � � � 
 Z

k�1


 v)

�

�

= 0;

where �

�

and �

�

are dual bases of g

1

and g

�1

with respet to the produt (:; :). Let

us reall the notation 

j

= 

�

j

;�

j+1

from Lemma 5.1.

By Lemma 4.3, applied to elements fromV

�

k�1�i

(w + k � 1� i), we have

�

k�i

�

X

�

�

�


 �

k�i�1

�

[Z; �

�

℄:(Z

i+1


 �

k�i�2

(: : :
 �

1

(Z

k�1


 v) : : : ))

�

�

=

�

k�i

�

X

�

�

�




�

[Z; �

�

℄:(�

k�i�1

(Z

i+1


 �

k�i�2

(: : :
 �

1

(Z

k�1


 v) : : : )))

�

�

=

(w + k � 1� i� 

k�1�i

)�

k�i

�

Z 
 �

k�i�1

(Z

i+1

(: : :
 �

1

(Z

k�1


 v) : : : ))

�

:

Due to the fat that all images of �

j

belong to �

j

g

1


V

�

, j = 1; : : : ; k, all elements

�(Z

1


 : : :
 Z

i


 Z 
 Z

i+1


 � � � 
 Z

k�1


 v)); i = 0; : : : ; k � 1

oinide. It is hene suÆient to �nd w so that

kw +

k(k � 1)

2

�

k�1

X

j=0



k�1�j

= 0:

To get the value for w, it is suÆient to use Lemma 5.1 (note that j�j = j�j). �

6. Standard operators

6.1 A onstrution of invariant operators. As desribed in Setion 2, the P -

module homomorphisms onstruted in the last Setion de�ne invariant di�erential

operators. We an now summarize the whole onstrution and the data needed for

it. Let us return to the situation of Setion 2 with a given j1j-graded (real) simple

Lie algebra g; the orresponding groups P � G; G

0

, and a prinipal �ber bundle G

over M with a given Cartan onnetion !.

The omplexi�ation g

C

is a omplex semisimple j1j-graded Lie algebra and

g

j

= g \ g

C

j

; j = �1; 0; 1. Any (omplex) irreduible P -module V is an irreduible

g

0

-module as well as g

C

0

-module. They are haraterized by an integral dominant

weight for (g

s

0

)

C

and the (generalized) onformal weight w. The tensor produt

g

1




R

V is isomorphi to g

C

1




C

V, the same is true for iterated tensor produts.

The spae g

C

1

is an irreduible module for g

s

0

with a highest weight �.

Suppose that we have hosen the following data: An irreduible module V

�

for

g

s

0

, a 'diretion' �, whih is an extremal weight of the g

s

0

-module g

C

1

, and a positive

integer k, suh that � = �+ k� 2 �

+

.
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Let � the projetion to the unique irreduible omponent of the g

s

0

-module




k

g

1


 V

�

with the highest weight � = � + k� (f. Theorem 3.5), and let w

be the orresponding (generalized) onformal weight from Corollary 5.3. Then the

operator

D � D(�; �; k) = � Æ (r

!

)

k

: C

1

(P; V

�

(w))

P

! C

1

(P; V

�

(w + k))

P

;

is an invariant di�erential operator of order k.

6.2 Standard operators. We have de�ned above a ertain lass of operators

whih were proved to be invariant. There is a traditional division of invariant

operators into two lasses | standard and nonstandard ones. We would like to

show now that the operators onstruted above inlude almost the whole lass of

so alled standard operators.

(Fundamental) standard operators were originally de�ned in the homogeneous

situation (on generalized ag manifolds G=P; with G omplex simple and P par-

aboli). In the Borel ase, the lassi�ation of all invariant di�erential operators

was given (in the dual language of homomorphism between Verma modules) by

Bernstein, Gelfand and Gelfand, see [BGG℄. They are all de�ned uniquely by their

soure and target (up to a onstant multiple) and they are preisely all operators

forming the so alled BGG resolutions. For a general paraboli, the BGG reso-

lutions are also well known but the lass of invariant operators orresponding to

individual arrows in them | they are alled (fundamental) standard operators |

is no more the omplete set of invariant operators. There exist also the so alled

non-standard operators. To show a relation of our invariant operators D(�; �; k) to

the standard operators, we need just their following simple property (more details

an be found e.g. in [BasE℄).

Suppose that a Cartan subalgebra h in g

C

and the set of simple roots is hosen

in suh a way that E 2 h and that all positive spaes are ontained in g

C

0

\ g

C

1

:

Irreduible representations of g

C

0

an be haraterized by their highest weight, on-

sidered as an element in h

�

; suh that its restrition to (h)

s

= h\(g

C

0

)

s

is dominant.

This arries information both on the highest weight for (g

C

0

)

s

and on a generalized

onformal weight. For any suh � 2 h

�

; the symbol V

�

denotes a homogeneous

bundle given by the irreduible representation of g

C

0

; orresponding to this highest

weight. The Weyl group W of g

C

has a struture of a direted graph whih is

diretly related to existene of invariant operators.

The property we need is the following. If D : �(V

�

) ! �(V

�

0

) is a standard

invariant operator, then there is a positive root � for g

C

suh that �

�

(� + �) =

�

0

+�, where �

�

is the reetion with respet to � and � is a half-sum of positive

roots for g

C

. Consequently, we have also j�+�j

2

= j�

0

+�j

2

. Before going further,

we need two simple auxiliary lemmas.

6.3 Lemma. Let g be a omplex j1j-graded Lie algebra, S = f�

i

g

m

i=0

the set of its

simple roots with its numbering hosen in suh a way that �

0

is the rossed simple

root. Let f�

i

g be the orresponding set of fundamental weights.

Then we have

(1) If � is the highest weight of an irreduible g

0

-module V, then its onformal

weight is equal to w = �(E).
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(2) The root spae g

�

belongs to g

j

, j = �1; 0; 1, if and only if a

0

= j, where

a

i

are oeÆients in the deomposition � =

P

m

i=0

a

i

�

i

.

(3) For any weight � 2 h

�

, we have (�

0

;�) =

j�

0

j

2

2

�(E); where E is the grading

element.

(4) Let us onsider two weights �, �

0

and a number a suh that j�j

2

= j�

0

j

2

,

j�+ a�

0

j

2

= j�

0

+ a�

0

j

2

and (�� �

0

; �

0

) 6= 0. Then a = 0.

Proof. (1) If v is a highest weight vetor forV; then E �v = �(E)v; but by de�nition

E � v = w v:

(2) This is a speial ase of a simple general statement valid for all jkj-graded Lie

algebras. The reason is that all simple roots but �

0

are in g

0

, while �

0

generates

g

1

.

(3) There is an element H 2 h suh that (�

0

;�) = �(H) for all � 2 h

�

. Then for

all j = 1; : : : ;m, we have 0 = (�

0

; �

_

j

) = �

_

j

(H), where �

_

j

=

2�

j

j�

j

j

2

. The element

H is orthogonal to all roots of g

0

, hene it is a multiple of E (whih has the same

property). To hek the multiple, it is suÆient to note that �

0

(E) = 1; beause

the onformal weight for g

1

is 1:

4) The last property follows from

j�+ a�

0

j

2

� j�

0

+ a�

0

j

2

= 2a(�� �

0

; �

0

): �

As a onsequene, we get the following interesting fat.

6.4 Lemma. In the setting of 6.1, let �; �

0

be two dominant integral weights for

g

s

0

: Suppose that there are two nontrivial standard invariant di�erential operators

D;

~

D of order k > 0 suh that

D : �(V

�

(w))! �(V

�

0

(w + k));

~

D : �(V

�

( ~w))! �(V

�

0

( ~w + k)):

Then w = ~w:

Proof. Let �, �

0

,

~

�,

~

�

0

be in turn highest weights from h

�

for irreduible represen-

tations

V

�

(w);V

�

0

(w + k);V

�

( ~w);V

�

0

( ~w + k):

If � is the half-sum of positive roots for g; then existene of D;

~

D implies (see 6.2)

that

j�+ �j

2

= j�

0

+�j

2

; j

~

� + �j

2

= j

~

�

0

+�j

2

:

The di�erenes

~

� � �,

~

�

0

� �

0

annihilate h

s

, hene there are numbers a, a

0

suh

that

~

�� � = a�

0

;

~

�

0

� �

0

= a

0

�

0

. But

a�

0

(E) = (

~

� � �)(E) = ~w �w = (

~

�

0

� �

0

)(E) = a

0

�

0

(E);

hene a = a

0

. Moreover, (���

0

)(E) = k > 0, hene (���

0

; �

0

) 6= 0. Now, Lemma

6.3 implies that a = 0. �
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6.5 Theorem. Let D be a standard invariant di�erential operator ating between

setions of V

�

and V

~

�

: Let � 2 h

�

be a positive root of g suh that

~

� + � =

�

�

(� + �): Denote by � the restrition of � to h

s

and by � the restrition of �:

Then � is a weight of g

s

0

-module g

1

and the number k = 2(�+�;�)=(�;�) is a

positive integer.

If moreover the weight � is an extremal weight of g

1

; then the operator D(�; �; k)

de�ned in 6.1 oinides (up to a multiple) with the operator D on setions of the

homogeneous bundle V

�

.

Proof. The root � is a positive root of g: Consequently, the value of �(E) is either

0 or 1. By the properties of standard operators (see 6.2), we have

~

�� � = k�;

where k = 2(�+�;�)=(�;�) must be an integer. Beause any di�erential operator

must inrease (generalized) onformal weight (whih is given by evaluation of the

highest weight on E), the value �(E) annot vanish. Hene �(E) = 1 and k > 0:

If we denote by �, resp.

~

�, the restritions of �, resp.

~

� to h

s

, then we have also

the relation

~

� = �+ k�:

Hene the operators D and D(�; �; k) at between the same g

s

0

bundles and they

are both invariant. By Lemma 6.4, their onformal weights oinide as well. Now,

the standard operators are ompletely de�ned by their domains and targets up to

multiples, see [BC℄, and D and D(�; �; k) di�er at most by a onstant multiple. �

6.6 Remark. We have just seen that our onstrution gives all standard invariant

operators for those AHS strutures, for whih the set of weights of g

C

1

is just one

orbit of the Weyl group. This is true for all ases with two exeptions | the odd

dimensional onformal ase and the spinorial ase.

There is indeed an exeptional set of standard operators for AHS strutures

whih do not have a simple desription of the form D(�; �; k) onstruted above.

A typial example is the ase of odd onformal strutures and the operators in

the middle of the BGG resolution. These are operators ating between setions

�(V

�

(w)) and �(V

�

(w

0

)). The representation V

�

of the semi-simple part of G

0

is

the same for the soure and the target, they di�er only by their onformal weights.

They orrespond to the ase of operators (�; �; k), where � is the zero weight of

g

1

. In this ase, however, the isotypi omponent V

�

appears in 


k

(g

1

)
V

�

with

higher multipliities.

In general, the BGG sequene of a representationVof g an be realized using the

twisted (V-valued) de Rham sequene. In the partiular ase of the BGG sequene

of the basi spinor representation Sof g = Spin(2n + 2; C ), the middle operator

orresponds to a seond order operator D between �(V

�

(n� 1=2)), and �(V

�

(n+

3=2)), where � = (3=2; : : : ; 3=2). There are 3 piees in the deomposition of the

tensor produt 


2

(g

1

)
�(V

�

), orresponding to sequenes of weights (�; �; �) with

�

1

= (5=2; 3=2; : : : ; 3=2); �

2

= (3=2; : : : ; 3=2); �

3

= (3=2; : : : ; 3=2; 1=2). It an be

shown by methods desribed in [CSS4℄, [B℄, (see also [Sev℄) that the orresponding

standard operator is given by � Æ (r



)

2

, where the projetion � is equal to � =
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�

2

+ 1=4�

3

, where �

j

are de�ned as projetions to irreduible piees orresponding

to the sequenes with �

j

. The form of the operator D is hene more ompliated,

it has the form

D t = �

2

[(r



)

2

t� (1=2)�
 t℄ + 1=4�

3

[(r



)

2

t� 2�
 t℄:

So it is lear that its formula has no more the simple universal formD t = �((r



)

2

t+

�
 t℄) of the seond order standard operators dedued below, see 7.11.

7. Expliit formulae for standard operators

7.1 Obstrutionand orretion terms. An algorithm for omputation of (r

!

)

k

in terms of the prinipal onnetion r



and its deformation tensor � was given in

[CSS1℄, Se. 4. The formulae for obstrution terms (important for existene proofs)

as well as for orretion terms (important for expliit desription of operators) be-

ome quikly very ompliated. Using expliit desription of the homomorphism

� in Setion 4 by means of Casimir operators, it is possible to simplify the algo-

rithm substantially and to get quite expliit formulae for the oeÆients in general

orretion terms for the invariant operators onstruted in the previous setion. It

is quite remarkable that oeÆients in the �nal formula for urvature orretion

terms do not depend on a hoie of a representation V

�

as well as on a hoie of a

partiular AHS struture! They depend only on the order of the operator.

Let us �rst simplify the algorithmgiven in [CSS1℄. Let k be a �xed integer and let

us onsider an operator D = � Æ (r

!

)

k

, where the projetion � of 


k

(g

C

1

)
V

�

onto

one of its irreduible omponents is determined by a hain of dominant weights,

as desribed in Setion 3. Knowing highest weights of all intermediate irreduible

omponents in the hain of projetions, Lemma 4.3 an be used to ompute the

values of the homomorphism � on all terms in the algorithm. The same is true for

the ation of the double ommutator term [[X; � ℄; � ℄ (see Example 4.4). This makes

it possible to evaluate, in priniple, all terms in the expansion. But the result is

still quite ompliated.

A onsiderable simpli�ation in the algorithm an be ahieved, if we restrit

ourselves to the symmetri ase, i.e. if the image of � is a subspae of �

k

(g

C

1

)
V

�

.

Then many multiple tensor produts ontained in various terms of the formula

may be reordered and ombined together. Any term of the formula is then just

a symmetri tensor produt of a power of � , suitable powers of �; its ovariant

derivatives and a ovariant derivative of the setion s: A problem to be solved is

whether there is a way how to ompute e�etively oeÆients in the orresponding

linear ombination of suh terms.

An additional simpli�ation an be ahieved in the ase, when we know whih

summand in the desription of the ation of the double ommutator (Lemma 4.4)

is really appearing in various terms. Suh information is available in the ase of

the operators D(�; �; k) onstruted above. In this ase, we may use properties of

the deomposition of the tensor produt 


k

(g

C

1

)
V

�

proved in Setion 3 to get an

expliit form of the operator. Before takling the main Theorems 7.4 and 7.9, we

disuss the low order ases.

7.2 The �rst order operators. Using results from [CSS1℄, see 2.4, and Lemma

4.3, we get immediately the existene and an expliit form of the 1st order operators.
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Corollary. Let V

�

be an irreduible representation of (g

C

0

)

s

and V

�

be an irre-

duible omponent of the produt g

1


V

�

. Let � = �

��

be the orresponding pro-

jetion. Then

�(r

!

(p

�

t)) = �[p

�

(r



t) + (

0

� w)� 
 t℄

where 

0

= 

��

are the onstants from 4.3.

In partiular, there is the unique value w = 

0

of the onformal weight for whih

the projetion de�nes a �rst order invariant operator D t = �[p

�

(r



)t℄.

Operators of this type were introdued in onformal ase in paper [SW℄ and

are now standardly alled generalized gradients or Stein{Weiss operators (see e.g.

[Bra℄). The result above was proved in the onformal ase by Fegan (see [F℄). He

gave the �rst systemati lassi�ation of suh operators. The theorem above treats

ompletely all �rst order operators for all AHS strutures (note that in odd on-

formal ase, the lass of them inludes also ertain exeptional standard operators

of �rst order not overed by the lass of operators D(�; �; k), e.g. the one in the

middle in the de Rham resolution).

7.3 The seond order operators. In a similar way, we an use the �rst order

formula, the algorithm leading in [CSS1℄ to the formula in 2.5, and Lemma 4.2,

in order to ompute expliitly the form of the seond order invariant di�erential

projeted to an irreduible omponent given by a sequene of dominant weights

� = (�

0

; �

1

; �

2

). Let � be the orresponding projetion.

Corollary. Using notation of Example 4.4 and Lemma 5.1, we have

�

��

(r

!

)

2

(p

�

t)

�

℄ = �[p

�

((r



)

2

t) + (

0

� w)�
 p

�

t+

(

0

�w)� 
 p

�

(r



t) + (

1

�w � 1)p

�

(r



t)
 �+

(

0

�w)(

1

� w � 1)� 
 � 
 t�

3

X

i=1

A

i

�

i

(� 
 � 
 t)

�

:

The most ompliated term to ompute is learly the last one oming from the

double ommutator term. To understand that term, one has to understand well the

relation among the hosen projetion � de�ned by the hain of weights � and the

projetions �

i

oming from the splitting g

1


 g

1

into symmetri and antisymmetri

parts. We shall see that for operators D(�; �; k), this relation an be understood

and the formula above an be simpli�ed further.

The operators D(�; �; 2) are invariant for a unique value for the (generalized)

onformal weight, f. 6.1. It is immediate to hek that it is just given by the

requirement that the sum of oeÆients at terms linear in � vanishes. It is also

possible to verify diretly that then the oeÆient at the term of seond order in �

vanishes as well.

We shall now follow line of reasoning suggested in 7.1 and we shall develop an

e�etive proedure for expliit desription of all operators D(�; �; k).

7.4 Theorem. Let A

1

be the number de�ned in Example 4.4. The value of the

operator D(�; �; k)t(u) = �

k

Æ ((r

!

)

k

(p

�

t))(u) onstruted in 6.1 expands into a

sum of the form

X

a

k;j

s

0

;::: ;s

m

�

k

[�

j

� �

s

0

� (r�)

s

1

� : : :� (r

m

�)

s

m

�r

i

t℄(u);
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where the summation goes over

j; s

i

2 f0; 1; 2; : : :g suh that j +

m

X

i

0

=0

s

i

0

(i

0

+ 2) + i = k;

a

k;j

s

0

;::: ;s

m

2 R, � (u) 2 g

C

1

, and

�

j

= �

j

�; [r

i

t℄(X

1

; : : : ; X

i

) = p

�

r



X

i

: : :r



X

1

t;

[r

`

�℄(X;Y;X

1

; : : : ; X

`

) = [p

�

Æ r



X

`

: : :r



X

1

(�)℄(X;Y ):

The expressions

F

k

t(u) := �

k

[(r

!

)

k

(p

�

t)℄(u) 2 �

k

(g

C

1

)
 V

�

are given by reursive formulae

F

0

t(u) = p

�

t(u)

F

k+1

t(u) = [S

�+�

℄(F

k

t(u)) + [S

r

℄(F

k

t(u)) + [S

�

℄(F

k

t(u)):

The individual transformations S

�+�

; S

r

and S

�

at as follows:

S

�+�

[�

k

(�

j�1

� !

k�j+1

)℄ = (

k

� k + (j � 1)A

1

� w)�

k+1

(�

j

� !

k�j+1


 t);

where !

k�j+1

2 �

k�j+1

(g

C

1

) 
 V

�

; 

k

= 

�

k

;�

k+1

; �

k

= �+ k�; j > 1.

S

r

[�

k

(�

j

� �

s

0

� (r�)

s

1

� : : :� (r

m

�)

s

m

�r

i

t)℄ =

= s

0

[�

k+1

(�

j

� �

s

0

�1

� (r�)

s

1

+1

� : : :� (r

m

�)

s

m

�r

i

t)℄+

+ : : :+

s

m

[�

k+1

(�

j

� �

s

0

� : : :� (r

m

�)

s

m

�1

� (r

m+1

�)
r

i

t℄+

[�

k+1

(�

j

� �

s

0

� (r�)

s

1

� : : :� (r

m

�)

s

m

�r

i+1

t)℄:

S

�

[�

k

(�

j+1

� !

k�j�1

)℄ = (j + 1)�

k+1

(�

j

� �� !

k�j�1

);

where !

k�j�1

2 �

k�j�1

(g

C

1

)
 V

�

.

Proof. In [CSS1, 4.9℄, we have desribed an algorithm to indutively ompute the

di�erene (r

!

)

k

(p

�

t) � p

�

((r



)

k

t) as a sum of orretion and obstrution terms.

Computing instead of that di�erene the value of F

k

t(u) := (r

!

)

k

(p

�

t) indutively,

the results of [CSS1, 4.9℄ read as follows: The expression F

k

t(u), evaluated at k

arguments from g

�1

, expands into a sum of terms of the form

a�

(t

1

)

(�

1

) : : :�

(t

i

)

(�

i

)p

�

(r



)

j

t

where a is a salar oeÆient, the �

`

are iterated brakets involving some arguments

X

`

2 g

�1

, the iterated ovariant di�erentials (r



)

r

� evaluated on some X's, and

� 's. Exatly the �rst t

j

arguments X

1

; : : : ; X

t

j

are evaluated after the ation of



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 23

�

(t

j

)

(�

j

), the other ones appearing on the right are evaluated before. For k = 1,

we have

F

1

t(u)(X

1

) = p

�

((r



)t)(u)(X

1

) + [X

1

; � ℄(p

�

t)(u):

Indutively,

F

k

t(u)(X

1

; : : : ; X

k

) =

�

�

(k�1)

([X

k

; � (u)℄)F

k�1

t(u)

�

(X

1

; : : : ; X

k�1

)+

~

S

�

(F

k�1

t(u))(X

1

; : : : ; X

k

)+

~

S

r

(F

k�1

t(u))(X

1

; : : : ; X

k

)+

~

S

�

(F

k�1

t(u))(X

1

; : : : ; X

k

):

where �

(k�1)

is the obvious tensor produt representation on 


k�1

g 
 V

�

and the

individual transformations

~

S

�

,

~

S

r

, and

~

S

�

at as follows.

(1) The ation of

~

S

�

replaes eah summand a�

(t

1

)

(�

1

) : : :�

(t

i

)

(�

i

)p

�

(r



)

j

t by

a sum with just one term for eah ourrene of � where this � is replaed

by [�; [�;X

k

℄℄ and the oeÆient a is multiplied by �1=2.

(2)

~

S

r

replaes eah summand in F

k�1

by a sum with just one term for eah

ourrene of � and its di�erentials, where these arguments are replaed by

their ovariant derivatives r



X

k

, and with one additional term where (r



)

j

t

is replaed by r



X

k

((r



)

j

t).

(3)

~

S

�

replaes eah summand by a sum with just one term for eah ourrene

of � where this � is replaed by �(u):X

k

.

Now we are going to speialize these results to the ase we are interested in here:

Under the assumptions of the theorem, whih we want to prove, the image of the

projetion � is inluded in �

k

(g

C

1

)
V

�

hene order of fators in the multiple tensor

produt does not matter. Consequently all � 's an be shifted to the front of the

produt, derivatives of � an be reordered as indiated above, and all derivatives

of t an be put to the end of the expression. Terms r

l

� an be hene interpreted

as elements of �

l+2

(g

C

1

)
 V

�

and r

i

t an be substituted by its symmetrization in

�

i

(g

C

1

) 
 V

�

. We have already seen that the expression F

1

t has the required form

(see 7.2). Using Casimir operators, we an now express the algorithm desribed

above in the following way.

Suppose (by indution) that the term F

k

has already been written in the form

given in the theorem. The ation of an element [X

k+1

; � (u)℄ on F

k

t(u) an be

omputed by Lemma 4.3, beause we know that F

k

t(u) belongs to the image of �

k

,

whih is, by assumption, an irreduible representation with the highest weight �

k

.

The result is (

k

� w � k)F

k

t(u).

The ation of

~

S

�

was a replaement of � at all j � 1 plaes in the expression

by �1=2[�; [�;X

k

℄℄ Applying the projetion � and using the result of Example 4.4

and 3.6, only the �rst part in the deomposition of � 
 � survives and the result

is the same term ontaining one more � multiplied by (j � 1)A

1

. Adding both

ontributions, we get the ation of S

�+�

.

The ation of

~

S

r

is just a derivation and ation of

~

S

�

is a substitution of �

instead of � , so we arrive diretly at the desription of S

r

and S

�

in the theorem.

The fat that F

k

has the required form follows from the above desription of the

operators S

�+�

, S

r

, S

�

by indution. �
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Looking at the ation of the individual transformations and at the form of the

expansion, we get immediately the following algorithm for the unknown oeÆients.

7.5 An algorithm for expansion oeÆients. The oeÆients a

k+1;j

s

0

;::: ;s

m

in the-

orem 7.4 satisfy the following reursive relations.

a

k+1;j

s

0

;::: ;s

m

= (1� Æ

j;0

)a

k;j�1

s

0

;::: ;s

m

(

k

� k + (j � 1)A

1

� w)

+ a

k;j

s

0

;::: ;s

m

+ (1� Æ

s

0

;0

)(j + 1)a

k;j+1

s

0

�1;s

1

;::: ;s

m

+

+ (1� Æ

s

1

;0

)(s

0

+ 1)a

k;j

s

0

+1;s

1

�1;::: ;s

m

+

+ : : :+

+ (1� Æ

s

m

;0

)(s

m�1

+ 1)a

k;j

s

0

;::: ;s

m�2

;s

m�1

+1;s

m

�1

:

7.6 Constants ~

k

. In the algorithmabove, the value 

k

�k+jA

1

�w has frequently

appeared. It will be onvenient to hange the de�nition of onstants 

j

and to de�ne

new shifted onstants ~

j

instead. Let us de�ne them by

~

j

= 

0

� j A

1

:

Then 

k

� k + j A

1

�w = 

0

� kA

1

� (k � j)A

1

� w = ~

k

� (k � j)A

1

�w.

Note for future use that the di�erenes ~

j

� ~

k

= (k� j)A

1

are always multiples

of A

1

.

7.7 Constants B

m

(s

0

;::: ;s

m

)

. As the last item in the preparation of an expliit

omputation of the oeÆients in the expansion, we are going to de�ne indu-

tively the following parametri system of onstants B

n

s

; where n � 0 is an integer,

s = (s

0

; s

1

; s

2

; : : : ) is a sequene of non-negative integers with a �nite number of

nonvanishing elements. We shall often write s = (s

0

: : : s

m

) by utting the sequene

at the last nontrivial entry; (0) will denote the sequene (0; 0; : : :). For any �nite

sequene of integers s ,we shall use two integers jsj, [s℄ assoiated with s, de�ned

by

jsj =

1

X

0

s

i

and [s℄ =

1

X

0

s

i

(i+ 1):

Symbols �

i

; i = 0; 1; : : : , will be used for speial sequenes of integers de�ned by

�

0

= (1; 0; : : :); �

1

= (�1; 1; 0; : : :); �

2

= (0;�1; 1; 0; : : :); : : :

De�nition. Let ~

0

, A

1

, and w, be any �xed real numbers and de�ne ~

j

, j 2 N, by

~

j

= ~

0

� j A

1

.

A system of real numbers B

n

s

, where n is a non-negative integer and s is a

sequene of non-negative integers with �nite number of nonzero terms, is de�ned

by indution with respet to n+ [s℄ as follows

B

0

0

= 1;

B

n

s

= (1� Æ

s

0

;0

)(n + jsj � 1)(~

n+jsj�2

�w)

"

n�1

X

l=0

B

l

s��

0

#

+

1

X

i=1

(1� Æ

s

i

;0

)(s

i�1

+ 1)

n�1

X

l=0

B

l

s��

i

:
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In the formula above, we use the onvention that any sum

P

b

a

::: vanishes whenever

a > b.

In the sequel, we shall use the B's with the numbers A

1

and ~

0

= 

0

hosen as

in 4.4 and 5.1, respetively. Note that then the numbers B

n

s

still depend impliitly

on the value of the variable w whih plays the role of the onformal weight.

The indution above works �ne, beause the smallest possible value of n+ [s℄ is

ahieved only for n = 0, s = (0) and the value of B

0

0

is �xed as 1 in advane. The

indutive formula for B

n

s

learly uses only B's with a smaller value of n+ [s℄.

Certain values of B's are immediately lear from de�nition: B

n

(0)

= 0 for all

n 6= 0 and B

0

s

= 0 for all s 6= (0). More generally, we get from the de�nition by

indution (with respet to n) that B

n

s

= 0 for all n, s suh that n < [s℄.

7.8 Basi properties of B

n

s

. Before treating more ompliated examples, we

shall introdue one more piee of notation. For a positive integer n, the symbol

fng will denote the number

fng := n(~

n�1

�w):

Later on, we shall onsider values of these fators fng at speial values of onformal

weight w = ~

k�1

, k 2 N. Let us note already at this point that for this value of w

the resulting number depends linearly on A

1

(see 7.6).

The ase where jsj = 1. Using the shorthands fng, we get immediately from the

de�nition that

B

n

(1)

= fng; for all n � 1,

B

n

(2)

= fn+ 1g

n�1

X

l=1

flg; for n � 2,

while B

1

(2)

= 0.

Similarly (by indution with respet to n), we get easily for any n � m + 1

B

n

(m+1)

= fn+mg

n�1

X

l

m

=m

fl

m

+m� 1g

l

m

�1

X

l

m�1

=m�1

fl

m�1

+m � 2g

l

m�1

�1

X

l

m�2

=m�2

: : :

l

2

�1

X

l

1

=1

fl

1

g;

and B

n

(m+1)

= 0 for n = 0; : : : ;m: Clearly, the numbers B

n

(m)

j

w=~

k�1

are homoge-

neous of degree m in A

1

for eah k 2 N.

The ase where jsj = 2. To understand the de�nition of B

n

s

better, let us also

onsider the numbers B

n

(ij)

: Couples (ij) of non-negative integers an be onsidered

as verties of a graph in the plane. These verties will be onneted with arrows

of length 1 going horizontally right and antidiagonal arrows of length

p

2 going up

and left.

Any vertex in the lattie an be reahed from (00) by one or more paths (lying

ompletely in the �rst quadrant). For every path to a vertex (ij), it is possible

to dedue a ontribution to the value of B

n

(ij)

orresponding to this path from
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the algorithm de�ning B's. The atual value of B

n

(ij)

is then the sum of suh

ontributions over all possible paths from (00) to (ij).

The situation for longer sequenes s is similar. The numbers B

n

s

play a prinipal

role in the evaluation of oeÆients for standard operators, so we shall study them

in more details in Appendix B and we shall give an expliit formula for them there.

Using the very de�nition of B's and the simple relations js � �

0

j = jsj � 1,

js� �

i

j = jsj, for all i > 0, we get immediately by indution with respet to values

of n and jsj the following important fat:

Lemma. The numbers B

n

s

evaluated at w = ~

k�1

are homogeneous of degree jsj in

A

1

.

7.9 Formulae for expansion oeÆients. Let k 2 N be �xed. Suppose that

j 2 N and s = (s

0

; s

1

; : : : ; s

m

) is a �nite sequene of non-negative integers suh

that j + [s℄ = j +

P

m

i=0

s

i

(i+ 2) � k. Let ~

i

be the real numbers de�ned in 7.6 and

B

n

s

the numbers de�ned in 7.7. Then we have the following theorem.

Theorem. The oeÆients a

k;j

s

in the expression for D(�; �; k)t in 7.4 are given

by the formulae

a

k;j

s

:=

�

k

j

�

2

4

k�1

Y

i=k�j

(~

i

� w)

3

5

2

4

k�j�jsj

X

l=0

B

l

s

3

5

; for all j � 1(1)

a

k;0

s

:=

k�jsj

X

l=0

B

l

s

:(2)

Proof. The theorem will be proved by indution with respet to k, using the reur-

sive relations from 7.5.

Let k = 1. Then, aording to Corollary 7.2, F

1

= �(rt + (~

0

� w)� 
 t). The

inequality j +

P

m

i=0

s

i

(i + 2) � 1 is satis�ed only for s = (0) and j = 0; 1. The

relations (1) and (2) read as a

1;0

0

= B

0

0

+B

1

0

and a

1;1

0

= (~

0

�w)B

0

0

. The de�nition

of B's yields B

0

0

= 1; B

1

0

= 0 whih proves the laim in this ase.

Suppose now that the theorem holds for some �xed k. Let us �rst prove the

relation (2), i.e. suppose �rst j = 0. By indutive assumption and the reursive

relations 7.5 for a's, we get

a

k+1;0

s

=

2

4

k�jsj

X

l=0

B

l

s

3

5

+ (1� Æ

s

0

;0

)

�

k

1

�

(~

k�1

� w)

2

4

k�jsj

X

l=0

B

l

s��

0

3

5

+

m

X

i=1

(1� Æ

s

i

;0

)(s

i�1

+ 1)

2

4

k�jsj

X

l=0

B

l

s��

i

3

5

=

k+1�jsj

X

l=0

B

l

s

;
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where we use

B

k+1�jsj

s

= (1� Æ

s

0

;0

)k(~

k�1

� w)

2

4

k�jsj

X

l=0

B

l

s��

0

3

5

+

m

X

i=1

(1� Æ

s

i

;0

)(s

i�1

+ 1)

2

4

k�jsj

X

l=0

B

l

s��

i

3

5

:

For positive j, we get

a

k+1;j

s

=

�

k

j � 1

�

k�1

Y

k�j+1

(~

i

�w)

2

4

k+1�j�jsj

X

l=0

B

l

s

3

5

(~

k

� w � (k � j + 1)A

1

)+

+

�

k

j

�

k�1

Y

k�j

(~

i

� w)

2

4

k�j�jsj

X

l=0

B

l

s

3

5

+

+ (j + 1)(1� Æ

s

0

;0

)

�

k

j + 1

�

k�1

Y

k�j�1

(~

i

� w)

2

4

k�j�jsj

X

l=0

B

l

s��

0

3

5

+

+

m

X

i=1

(1 � Æ

s

i

;0

)(s

i�1

+ 1)

�

k

j

�

k�1

Y

k�j

(~

i

� w)

2

4

k�j�jsj

X

l=0

B

l

s��

i

3

5

=

�

k + 1

j

�

k�1

Y

k�j+1

(~

i

� w)

2

4

k�j�jsj

X

l=0

B

l

s

3

5

�

�

�

j

k + 1

(~

k

�w � (k � j + 1)A

1

) +

k � j + 1

k + 1

(~

k�j

� w)

�

+

+

�

k + 1

j

�

k�1

Y

k�j+1

(~

i

�w)

h

B

k+1�j�jsj

s

i

�

�

�

j

k + 1

(~

k

�w � (k � j + 1)A

1

) +

k � j + 1

k + 1

(~

k�j

� w)

�

=

�

k + 1

j

�

k

Y

k�j+1

(~

i

� w)

2

4

k+1�j�jsj

X

l=0

B

l

s

1

;::: ;s

m

3

5

;

where we have used the relations

B

k+1�j�jsj

s

=(1� Æ

s

0

;0

)(~

k�j�1

�w)

k�j�jsj

X

l=0

B

l

s��

0

(k � j)+

m

X

i=1

(s

i�1

+ 1)(1� Æ

s

i

;0

)

k�j�jsj

X

l=0

B

l

s��

i

: �
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7.10 Formulae for the operators D(�; �; k). Note that the form of the oef-

�ients a

k;j

s

shows immediately that all obstrution terms vanish at one for the

value w = ~

k�1

of the (generalized) onformal weight. It on�rms one more that

the operators D(�; �; k) are invariant, independently of the algebrai proof worked

out in Setion 5. Theorem 7.9 gives at the same time the values of oeÆients in

the orretion terms, i.e. the expliit form of the operators D(�; �; k). It is suÆient

to use 7.9.(2) and to substitute there the orresponding value of w.

As a onsequene of Lemma 7.8 and the de�nition of the onstants a

k;0

s

, it is

lear that a

k;0

s

are homogeneous of degree jsj in A

1

. Hene the onstants A

1

an

be absorbed into the de�nition of the deformation tensor � by introduing news

tensors

~

� := A

1

� and the resulting formula is uniform and universal for all AHS

strutures (for onformal strutures, the onstant A

1

is equal to 1).

For pratial alulations of urvature orretion terms of standard operators,

it is better to �rst write down formulas for oeÆients B

n

s

, beause they have the

same form for all k. Having k �xed, it is then easy to evaluate B

n

s

at w = ~

k�1

and

to get the neessary oeÆients a

k;0

s

. Note, however, that for operators of order

bigger than 10, it is better to implement the algorithm on a omputer, sine the

list of orretion terms is going quikly to be unmanageable. We have postponed

the exposition of the general formulae for B

n

s

to Appendix B, but let us illustrate

the proedure by a few examples now.

In order to make the dependene on the order k and the orresponding �xed

onformal weight w expliit, we shall use the notation B

n

s

(k), or fng(k), for the

numbers B

n

s

, or fng, evaluated with w = ~

k�1

, respetively. Clearly fng(k) =

n(k � n)A

1

. The numbers B

n

s

(k) are simpli�ed onsiderably, beause the term

~

j�1

�w redues to k � j. Note that after suh substitution, 'symmetri' produts

fjg = j(k � j)A

1

are appearing repeatedly in formulas for B

n

s

(k). This leads to

further simpli�ations of the formulae for some B(k)'s, for example B

n

(n)

(2n) =

[(2n� 1)!!℄

2

.

7.11 Examples in low degrees. Let us reall that B

n

s

= 0 for all n, s suh that

n < [s℄ and B

n

(0)

= 0 for all n > 0. We have already seen speial ases of the

previous general formulae:

B

n

(1)

= fng; B

n

(2)

= fn+ 1g

n�1

X

`�1

f`g:

The Example in Appendix B provides the oeÆients

B

n

(01)

=

n�1

X

l=1

flg; B

n

(001)

=

n�1

X

l

0

=2

l

0

�1

X

l=1

flg

B

n

(11)

= 2

n�1

X

l

0

=2

fl

0

+ 1g

l

0

�1

X

l=1

flg+ fn+ 1g

n�1

X

l

0

=2

l

0

�1

X

l=1

flg:

We denote by

~

� here the orreted tensor A

1

� and we ompute the universal

formula for the operators D(�; �; k) independently of the hoie of AHS struture
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and the data �; � for low values of k. The projetion � denotes as before the

projetion onto the unique irreduible omponentV

�

in 


k

(g

C

1

)
V

�

, the operator

D is written using the onventions set up in Theorem 7.4, and we write a

k

s

instead of

a

k;0

s

. Note that by formula (2) of theorem 7.9 we have a

k

(0)

=

P

k

l=0

B

l

(0)

= B

0

(0)

= 1.

The ase k = 2. Here we only need the oeÆients a

2

(0)

= 1 and

a

2

(1)

= B

1

(1)

= f1g(2) = 1:

Hene

D(�; �; 2)t = �[r

2

t+

~

�
 t℄:

The ase k = 3. We need the 3 oeÆients a

3

(0)

= 1,

a

3

(1)

= B

1

(1)

+ B

2

(1)

= f1g+ f2g and a

3

(01)

= B

2

(01)

= f1g:

Using f1g(3) = 2, f2g(3) = 2, we get

D(�; �; 3)t = �[r

3

t + 4

~

�
 (rt) + 2(r

~

�)
 t℄:

The ase k = 4. Now, we need 5 oeÆients: a

4

(0)

= 1, and

a

4

(1)

= B

1

(1)

+B

2

(1)

+B

3

(1)

= f1g+ f2g+ f3g a

4

(2)

= B

2

(2)

= f3gf1g

a

4

(01)

= B

2

(01)

+B

3

(01)

= 2f1g+ f2g a

4

(001)

= B

3

(001)

= f1g:

Hene using again fng(k) = n(k � n)A

1

, we get

D(�; �; 4)t = �[r

4

t+ 10

~

�
 (r

2

t) + 10(r

~

�)
 (rt) + 9

~

�


~

�
 t+ 3(r

2

~

�) 
 t℄:

The ase k = 5. Here we need 7 oeÆients: a

5

(0)

= 1, and

a

5

(1)

= B

1

(1)

+ : : :+ B

4

(1)

= f1g+ f2g+ f3g+ f4g

a

5

(2)

= B

2

(2)

+B

3

(2)

= f3gf1g+ f4g(f1g+ f2g)

a

5

(01)

= B

2

(01)

+ B

3

(01)

+ B

4

(01)

= 3f1g+ 2f2g+ f3g

a

5

(001)

= B

3

(001)

+ B

4

(001)

= f1g+ (2f1g+ f2g)

a

5

(0001)

= B

4

(0001)

= f1g

a

5

(11)

= B

3

(11)

= 2f3gf1g+ f4gf1g

Hene we get

D(�; �; 5)t = �[r

5

t+ 20

~

�
 (r

3

t) + 30(r

~

�)
 (r

2

t) + 64

~

�


~

�
 (rt)+

18(r

2

~

�)
 (rt) + 4(r

3

~

�) 
 t+ 64

~

�
 (r

~

�)
 t℄:

As a further illustration we inlude the �nal formula in order seven. Here we use

the onatenation of the symbols instead of the tensor produts and we omit the

projetion �

r

7

t+ 56

~

�r

5

t+ 140(r

~

�)r

4

t+ 168(r

2

~

�)r

3

t + 784(

~

�)

2

r

3

t + 2352

~

�(r

~

�)r

2

t+

112(r

3

~

�)r

2

t+ 2304(

~

�)

3

rt+ 1180(r

~

�)

2

rt+ 1408

~

�(r

2

~

�)r

t

+ 40(r

4

~

�)rt+

708(r

~

�)(r

2

~

�)t+ 312

~

�(r

3

~

�)t + 3456(

~

�)

2

(r

~

�)t+ 6(r

5

~

�)t
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Appendix A.

For expliit desription of all weights in the representation g

1

in individual ases,

we shall use results gathered in [FH℄. The fats whih are not proved below an be

found there.

A.1 Conformal ase, even dimension. Here g

C

= so(2n + 2; C ), (g

C

0

)

s

=

so(2n; C ). Let L

1

; : : : ; L

n

be the standard basis for the dual of the Cartan subal-

gebra. The fundamental weights �

i

; i = 1; : : : ; n are given by relations

�

i

= L

1

+ : : :+L

i

; i = 1; : : : ; n�2; �

n

+�

n�1

= L

1

+ : : :+L

n�1

; �

n

��

n�1

= L

n

:

The dimension of g

1

is 2n and the list of all weights of g

1

(all with multipliity one)

is given by f�L

i

; i = 1; : : : ; ng. In terms of fundamental weights, we get

L

1

= �

1

; L

i

= �

i

� �

i�1

; i = 2; : : : ; n� 2;

L

n�1

= �

n

+ �

n�1

� �

n�2

; L

n

= �

n

� �

n�1

:

Hene all oeÆients in the deompositions are in absolute values at most one. All

weights of g

1

belong in this ase to the same orbit of the Weyl group.

A.2 Conformal ase, odd dimension.

Here g

C

= so(2n+ 3; C ), (g

C

0

)

s

= so(2n+ 1; C ). Let L

1

; : : : ; L

n

be the standard

basis for the dual of the Cartan subalgebra. The fundamental weights �

i

; i =

1; : : : ; n are given by relations

�

i

= L

1

+ : : :+ L

i

; i = 1; : : : ; n� 1; �

n

= (1=2)[L

1

+ : : :+ L

n�1

℄:

The dimension of g

1

is 2n+ 1 and the list of all weights of g

1

(all with multipliity

one) is given by f0; �L

i

; i = 1; : : : ; ng. In terms of fundamental weights, we get

L

1

= �

1

; L

i

= �

i

� �

i�1

; i = 2; : : : ; n� 1; L

n

= 2�

n

� �

n�1

:

So it not true in this ase that all weights of g

1

have oeÆients (with respet

to fundamental weights) in absolute value less or equal to 1: There are two orbits

of the Weyl group in the set of all weights of g

1

: All nonzero weights form the �rst

orbit and the zero weight the seond one.

A.3 Grassmannian ase. Here g

C

= A

p+q+1

, (g

C

0

)

s

= A

p

� A

q

. This is the

only ase, where (g

C

0

)

s

is not a simple Lie algebra. Irreduible representations

V

�;�

0

of (g

C

0

)

s

are just tensor produts V

�


 V

�

0

of two irreduible representations

V

�

, resp. V

�

0

of A

p

, resp. A

q

. To deompose the produt V

�;�

0


 g

1

means to

deompose individual produts V

�


V and V

�

0


V

0

, where V , resp. V

0

are de�ning

representations of both parts of (g

C

0

)

s

and then to multiply both deompositions.

So it is suÆient to study just the ase A

n

: Let us onsider the algebra A

n

=

sl(n + 1; C ): Let L

1

; : : : ; L

n+1

be the anonial basis for C

n+1

: The dual of the

Cartan subalgebra an be identi�ed with the quotient f(L

i

) 2 C

n+1

g=f

P

n+1

i=1

L

i

=

0g: The fundamental weights �

i

; i = 1; : : : ; n are given by relations

�

i

= L

1

+ : : :+ L

i

; i = 1; : : : ; n:
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The dimension of the de�ning representation V of sl(n+ 1; C ) is n+ 1 and the list

of all weights of g

1

(all with multipliity 1) is given by f�L

i

; i = 1; : : : ; n+ 1g. In

terms of fundamental weights, we get

L

1

= �

1

; L

i

= �

i

� �

i�1

; i = 2; : : : ; n; L

n+1

= ��

n

:

Hene all oeÆients in the deompositions are in absolute values at most one.

All weights of g

1

belong in this ase to the same orbit of the Weyl group.

A.4 Sympleti ase. Here g

C

= sp(2n; C ); (g

C

0

)

s

= sl(n�1; C ); hene the algebra

(g

C

0

)

s

is again of type A

k

: Let L

1

; : : : ; L

n

be the anonial basis for the de�ning

representation V = C

n

. The dual of the Cartan subalgebra is again identi�ed

with the quotient f(L

i

) 2 C

n

g=f

P

n

i=1

L

i

= 0g. The fundamental weights �

i

; i =

1; : : : ; n� 1 are given by relations

�

i

= L

1

+ : : :+ L

i

; i = 1; : : : ; n� 1:

In this ase, the representation g

1

of (g

C

0

)

s

is equivalent to �

2

(V ) and its highest

weight is equal to the seond fundamental weight �

2

. The dimension of g

1

is equal

to n(n � 1)=2 and the list of all weights of g

1

(all with multipliity 1) is given by

fe

ij

= L

i

+ L

j

; i; j = 1; : : : ; n; i < jg. Using onventions �

0

= �

n

= 0; we an

express e

ij

using �

j

by

e

ij

= (�

i

� �

i�1

) + (�

j

� �

j+1

):

Hene all oeÆients in the deompositions are in absolute values at most one.

All weights of g

1

belong in this ase to the same orbit of the Weyl group.

A.5 Spinorial ase. Here g

C

= so(2n; C ); (g

C

0

)

s

= sl(n � 1; C ) and the algebra

(g

C

0

)

s

is again of type A

k

: In this ase, the representation g

1

of (g

C

0

)

s

is equivalent

to �

2

(V ) and its highest weight is equal to 2�

1

. The dimension of g

1

is equal to

(n+ 1)n=2 and the list of all weights of g

1

(all with multipliity 1) is given by

fe

ij

= L

i

+ L

j

; i; j = 1; : : : ; n; i � jg:

Using the same onventions �

0

= �

n

= 0; we an express e

ij

using �

j

by

e

ij

= (�

i

� �

i�1

) + (�

j

� �

j+1

); i � j:

Hene e

ii

= 2�

i

� 2�

i�1

and the orresponding oeÆients are �2. There are

two orbits of the Weyl group | fe

ii

g and fe

ij

ji < jg.

A.6 E

6

ase. Here g

C

= E

6

, (g

C

0

)

s

= D

5

and g

1

is one of the basi (half)-spinor

representations. Its dimension is 16. All weights form one orbit of the Weyl group

and all their oeÆients with respet to the fundamental weights are in absolute

value at most one. The struture of the orbit as well as all these oeÆients an be

found in [Kr℄.

A.7 E

7

ase. Here g

C

= E

7

and (g

C

0

)

s

= E

6

. All weights of g

1

form one orbit

of the Weyl group and all their oeÆients are in absolute value at most one (for

details, see [Kr℄).
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Appendix B.

To understand the de�nition of B

n

s

better, we disussed the ase of numbers B

n

(ij)

already in 7.8. Couples (ij) of non-negative integers were onsidered as verties of

a graph in plane and these verties were onneted with arrows of length 1 going

horizontally right and antidiagonal arrows of length

p

2 going up and left.

Any vertex in the lattie an be reahed from (00) by one or more paths. For

every path to a vertex (ij), it is possible to dedue its ontribution to the value of

B

n

(ij)

from the algorithm de�ning B's. The atual value of B

n

(ij)

is then the sum

of suh ontributions over all possible paths from (0) to (ij). The situation for

longer sequenes s is similar. It would be possible to de�ne a similar graph for all

sequenes s, but it is not possible to draw it in more general ases. We shall do the

same in the language of sequenes, whih also makes possible to prove an expliit

formula for the values of B

n

s

, resp. B

n

s

(k).

Let us �rst introdue a few additional notations. Let A denote the set of all �nite

sequenes (of a variable length) J = (j

1

; j

2

; : : : ; j

�

), where j

1

= 0 and j

2

; : : : ; j

�

are non-negative integers and put jJ j := �. For a positive integer a and J 2 A, let

us de�ne the sequenes s

J

, s

J

a

by

s

J

:=

jJj

X

a

0

=1

�

j

a

0

; s

J

a

:=

a

X

a

0

=1

�

j

a

0

; a = 1; : : : ; jJ j � 1; s

J

0

:= (0)

where �

i

are the sequenes from 7.7. The subset A

0

of A is de�ned by

A

0

:= fJ 2 A j (s

J

a

)

i

� 0; a = 1; : : : ; jJ j; i = 0; 1; : : : g:

We have the following simple properties

[�

i

℄ = 1 for all i and [�

i

℄ + [�

j

℄ = [�

i

+ �

j

℄ for all i; j

[s

J

℄ = jJ j:

In order to generalize formulas for B

n

(m)

dedued in Setion 7, let us introdue

for every sequene s of non-negative integers the set

A

0

s

:= fJ 2 A

0

j s

J

= sg:

This set is a generalization of the set of all di�erent paths from (0) to s disussed

above in the ase of sequenes of length two.

We also need a generalization of the numbers fng from 7.8. Let us de�ne the

numbers fs; l; ag, where s is a �nite sequene of integers and l, a are positive integers

fs; l; ag :=

�

fl + jsjg if a = 0

s

a�1

if a 6= 0.

Using all this notation we obtain the following expliit formula for the numbers B

n

s

:
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Theorem. The numbers B

n

s

are given by the formula

X

J2A

0

s

fs

J

��1

; n; j

�

g

n�1

X

l

��1

=��1

fs

J

��2

; l

��1

; j

��1

g

l

��1

�1

X

l

��2

=��2

: : :

l

3

�1

X

l

2

=2

fs

J

1

; l

2

; j

2

g

l

2

�1

X

l

1

=1

fl

1

g

where � = [s℄ = jJ j.

Proof. We an use indution with respet to �. The ase � = 1 means that s = (1).

This ase was disussed in 7.8: B

n

(1)

= fng. But s = �

0

; there is just one element

J = (0) in A

0

s

and the theorem holds.

Suppose now that the formula is valid for all s with [s℄ � k � 1 and onsider a

sequene s with [s℄ = k: The set A

0

s

of sequenes J an be split into a disjoint union

of subsets by an additional ondition j

[s℄

= i; i = 0; 1; : : : ; (all but a �nite number

of them being empty). Now, let us have a look at the algorithm de�ning B's.

Using the indution assumption for terms

P

n�1

l=0

B

l

s��

i

; i = 0; 1; : : : and notiing

that n+ jsj � 1 = n+ js� �

0

j; s

i�1

+ 1 = (s � �

i

)

i�1

; we get the orret value for

B

n

s

: �

Examples. Let us use the formula in a few ases. If s = (01), then the set A

0

s

is

a one point set. It onsists of J = (0; 1), s = �

0

+ �

1

. Hene

B

n

(01)

= f(1); n; 1g

n�1

X

l=1

flg =

n�1

X

l=1

flg:

Similarly, for s = (001), we have A

0

s

= f(0; 1; 2)g, s = �

0

+ �

1

+ �

2

. Hene

B

n

(001)

= f(01); n; 2g

n�1

X

l

0

=2

f(1); l

0

; 1g

l

0

�1

X

l=1

flg =

n�1

X

l

0

=2

l

0

�1

X

l=1

flg:

If s = (11), there are two elements in the set A

0

s

; namely J = (0; 0; 1); s =

�

0

+ �

0

+ �

1

and J = (0; 1; 0); s = �

0

+ �

1

+ �

0

: So

B

n

(11)

= f(2); n; 1g

n�1

X

l

0

=2

f(1); l

0

; 0g

l

0

�1

X

l=1

flg+ f(01); n; 0g

n�1

X

l

0

=2

f(1); l

0

; 1g

l

0

�1

X

l=1

flg =

= 2

n�1

X

l

0

=2

fl

0

+ 1g

l

0

�1

X

l=1

flg+ fn+ 1g

n�1

X

l

0

=2

l

0

�1

X

l=1

flg:

A similar omputation leads to the last onstant B

4

(0001)

= f1g whih we have

used in 7.11.

Referenes

[BaiE℄ Bailey T.N, EastwoodM.G, Complex paraonformal manifolds; their di�erential geometry

and twistor theory,, Forum Mathematium 3 (1991), 61-103.

[BEG℄ Bailey, T. N.; Eastwood, M. G.; Gover, A. R., Thomas's struture bundle for onformal,

projetive and related strutures, Roky Mountain J. 24 (1994), 1191{1217.



34 ANDREAS

�

CAP, JAN SLOV

�

AK, VLADIM

�

IR SOU

�

CEK

[B℄ Baston, R. J., Almost Hermitian symmetri manifolds, I: Loal twistor theory; II: Di�er-

ential invariants, Duke Math. J. 63 (1991), 81{111, 113{138.

[BasE℄ Baston, R.; Eastwood M., Penrose transform; Its interation with representation theory,

Clarendon Press, Oxford, 1989.

[BGG℄ Bernstein, I.N.; Gelfand, I.M.; Gelfand, S.I., Di�erential operators on the base aÆne

spae and a study of g{modules, Lie Groups and their Representations (Gelfand, I.M.,

eds.), Adam Hilger, 1975, pp. 21{64.

[BC℄ Boe, B.D.; Collingwood, D.H, Multipliity free ategories of highest weight representa-

tions. I, II., Commun. Algebra 18 (1990), 947-1032, 1033-1070.

[Bra℄ Branson, T., Stein{Weiss operators and elliptiity, J. Funt. Anal. 151 (1997), 334{383.

[BOO℄ Branson, T.; Olafsson, G.; �rsted, B., Spetrum generating operators and intertwining

operators for representations indued from a maximal paraboli subgroup,, J. Funt. Anal.

135 (1996), 163-205.

[C℄

�

Cap, A., Translation of natural operators on manifolds with AHS{strutures, Arhivum

Math. (Brno) 32, 4 (1996), 249{266, eletronially available at www.emis.de.

[CS℄

�

Cap, A.; Shihl, H., Paraboli geometries and anonial Cartan onnetions, Preprint

ESI 450, eletronially available at www.esi.a.at.

[CSS1℄

�

Cap, A.; Slov�ak, J.; Sou�ek, V., Invariant operators on manifolds with almost hermitian

symmetri strutures, I. invariant di�erentiation, Ata Math. Univ. Comenianae 66,1

(1997), 33{69, eletronially available at www.emis.de.

[CSS2℄

�

Cap, A.; Slov�ak, J.; Sou�ek, V., Invariant operators on manifolds with almost hermitian

symmetri strutures, II. normal Cartan onnetions, Ata Math. Univ. Comenianae 66,2

(1997), 203{220, eletronially available at www.emis.de.

[CSS4℄

�

Cap, A.; Slov�ak, J.; Sou�ek, V., Curved analogues of Bernstein{Gelfand{Gelfand resolu-

tions, to appear.

[E℄ M.Eastwood, M.G., Notes on onformal di�erential geometry,, Proeedings of the 15th

Winter Shool Geometry and Physis, Srni, 43 (1996), 57{76.

[ES℄ Eastwood, M.; Slov�ak, J., Semi-holonomi Verma modules,, Jour. of Algebra 197 (1997),

424{448.

[F℄ Fegan, H.D., Conformally invariant �rst order di�erential operators,, Quart.J.Math. 27

(1976), 371{378.

[FH℄ Fulton, W.; Harris, J., Representation theory: A �rst ourse, Springer-Verlag, Berlin

Heidelberg New York, 1991.

[Gi℄ Gindikin, S.G., Generalized onformal strutures, Twistors in Mathematis and Physis,

LMS Leture Notes 156, Cambridge University Press, 1990, pp. 36{52.

[Go℄ Gonharov, A. B., Generalized onformal strutures on manifolds, Seleta Math. Soviet.

6 (1987), 308{340.

[G℄ Graham, C. R., Conformally invariant powers of the Laplaian, II: Nonexistene, J. Lon-

don Math. So. 46 (1992), 566{576.

[H℄ Humphreys, J.E., Introdution to Lie algebras and representation theory, Springer-Verlag,

Berlin Heidelberg New York, 1972.

[KN℄ Kobayashi, S.; Nagano, T., On �ltered Lie algebras and geometri strutures I, J. Math.

Meh. 13 (1964), 875{907.

[KMS℄ Kol�a�r, I.; Mihor, P. W.; Slov�ak, J., Natural operations in di�erential geometry, Springer-

Verlag, Berlin Heidelberg New York, 1993.

[Ko℄ Kostant, B., Lie algebra ohomology and the generalized Borel-Weil theorem, Ann. Math.

74 (1961), 329-387.

[Kr℄ Krump, L., Representation theoretial properties of j1j-graded Lie algebras, Master Thesis,

Charles University in Prague (1996).

[Ku℄ Kumar, S., Proof of the Parthasarathy-Ranga Rao-Varadarajan onjeture, Invent. math.

93 (1988), 117-130.

[O℄ Ohiai, T., Geometry assoiated with semisimple at homogeneous spaes, Trans. Amer.

Math. So. 152 (1970), 159{193.

[Sev℄ Severa, V., Invariant di�erential operators on spinor{valued di�erential forms, PhD. Dis-

sertation, Charles University, Prague (1998).



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 35

[Slo℄ Slov�ak, J., On the geometry of almost Hermitian symmetri strutures, Proeedings of

the Conferene Di�erential Geometry and Appliations, Brno, 1995, in eletroni form on

www.emis.de, Masaryk University in Brno, 1996, pp. 191{206.

[SW℄ Stein, E.M.; Weiss, G., Generalization of the Cauhy-Riemann equations and representa-

tions of the rotation group, Amer. J. Math. 90 (1968), 163-196.

[Ta℄ Tanaka, N., On the equivalene problems assoiated with simple graded Lie algebras,

Hokkaido Math. J. 8 (1979), 23{84.

[Y℄ Yamaguhi, K., Di�erential systems assoiated with simple graded Lie algebras, Progress

in Di�erential Geometry 22 (1993), 413-494.

Institut f

�

ur Mathematik, Universit

�

atWien, Strudlhofgasse 4, 1090 Wien, Austria

Department of Algebra and Geometry, Masaryk University in Brno, Jan

�

a

�

kovo

n

�

am. 2a, 662 95 Brno, Czeh Republi

Mathematial Institute, Charles University, Sokolovsk

�

a 83, Praha, Czeh Re-

publi


