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Abstrat. The general theory of paraboli geometries is applied

to the study of the normal Cartan onnetions for all hyperboli

and ellipti 6-dimensional CR-manifolds of odimension two. The

geometri meaning of the individual omponents of the torsion is

explained and the hains of dimensions one and two are disussed.

There have been many attempts to use some ideas going bak up to

Cartan, in order to understand the geometry of CR-manifolds. In the

odimension one ases, the satisfatory solution had been worked out

in the seventies, see [22, 8℄, but the higher odimensions have not been

understood yet in a omparable extent. In this paper, the reent general

theory of the so alled paraboli geometries is applied. In partiular, we

use the approah developed in [4, 21℄, see also [23, 26℄ for earlier results.

Relying on reent ahievements by the authors, a lean and quite simple

onstrution of the normal Cartan onnetion is presented. This Cartan

onnetion replaes the absolute parallelisms from [9℄ by more powerful

geometri tools and it enables the detailed study of geometrial and

analytial properties of the CR strutures. Consequently the resulting

geometri piture is muh more transparent and surprising new results

are obtained.

The main advantage of our approah is the fully oordinate-free han-

dling of the normal Cartan onnetion and its urvature. Thus we are

able to translate the ohomologial properties of the struture alge-

bras into full geometrial understanding of the urvature obstrution,

without writing down the urvature omponents expliitly. The initial

setion introdues the CR strutures and provides a brief exposition of

the seond order normal osulation of the surfaes. Then we observe,

that this osulation transfers enough data from the quadri to apply

the general onstrution of normal Cartan onnetions, due to [23, 4℄.

This leads easily to the main Theorems 1.2 and 1.3. In fat, the Car-

tan onnetions are onstruted also for ertain abstrat CR-manifolds

and the embedded ones have many distinguished properties. The third
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setion is devoted to the exposition of the generalities on paraboli ge-

ometries modelled over j2j-graded algebras and provides the proof of

the existene of the normal onnetions.

Next we study the loal geometry of the hyperboli points in detail.

We reover easily all known fats from [9℄, but we go muh further.

In partiular, we identify the omplete geometri obstrutions against

the integrability of the almost produt struture on the tangent bundle

(Theorem 3.5), the integrability of the almost omplex struture on

the tangent CR spae (Theorem 3.6), and the ompatibility of the

almost produt and almost omplex strutures (3.8). It turns out that

the latter two obstrutions always vanish on the embedded hyperboli

CR-strutures whih results in automati vanishing of several algebrai

brakets. In partiular, the whole hyperboli CR-manifold M � C

4

is

a produt of two 3-dimensional CR-manifolds if an only if its almost

produt struture is integrable, see Theorem 3.9. Finally we disuss the

hains of dimensions one and two.

Following our intuition, the geometri properties at hyperboli points

have been expeted to have their ounterparts in the loal geometry

at the ellipti points, f. remarks and open problems in [9℄. This is the

subjet of Setion 4. In partiular, we observe that the roles of almost

omplex and almost produt strutures are swapped. Thus, there is

an almost omplex struture on the whole tangent bundle TM and

we distinguish the algebrai brakets obstruting its integrability in

Theorem 4.3. The obstrutions against the integrability of the almost

produt strutures on the omplex spaes T

CR

M and their ompati-

bility with the almost omplex strutures vanish automatially for the

embedded ellipti CR-strutures. They are disussed in 4.4, 4.5. The

analogy to the produt property of torsion-free hyperboli geometries

is the holomorphi normal Cartan onnetion in the ellipti ase, see

Theorem 4.6. Finally we prove that for torsion-free ellipti geometries,

there are unique one-dimensional omplex hains in all omplex dire-

tions transversal to the omplex subbundle T

CR

M (Theorem 4.7).

The last setion ollets some onlusions and remarks on future ap-

pliations. The neessary ohomologies are omputed in Appendix A

while some more details on the normalized osulations and the disus-

sion of hains on the hyperboli and ellipti quadris is postponed to

Appendix B.

The whole paper stresses the di�erential-geometri properties and

we have on�ned the analytial problems and onsequenes to a few

remarks. The funtion theoretial aspets will be disussed elsewhere.



HYPERBOLIC AND ELLIPTIC CR-MANIFOLDS OF CODIMENSION TWO 3

Aknowledgements. The authors should like to mention very helpful

disussions with Andreas

�

Cap and Vladim��r Sou�ek. The researh orig-

inates in disussions during the stay of both authors at University of

Adelaide. Further support by SFB 256 at Universit�at Bonn, Masaryk

University in Brno, and GA

�

CR Grant Nr. 201/96/0079 has been im-

portant. Essential part of the writing was undertaken during the stay

of the seond author at the Max Plank Institute for Mathematis in

Sienes in Leipzig.

1. CR-strutures of odimension two

LetM be a real submanifold in the omplex spae C

N

. Then there is

the CR-subspae T

CR

M = TM \ J(TM) whih onsists of all vetors

�

x

2 T

x

M suh that the anonial omplex struture J on C

N

maps �

x

to J(�

x

) 2 T

x

M . We say that the CR-odimension ofM is k if dimM is

2n+k and dimT

CR

M is 2n. By means of the impliit funtion theorem,

we may use a holomorphi projetion of C

N

! C

n+k

and express M

loally as

Imw

�

= f

�

(z; �z;Rew); � = 1; : : : ; k

where z = (z

1

; : : : ; z

n

), w = (w

1

= u

1

+ iv

1

; : : : ; w

k

= u

k

+ iv

k

) are

oordinates in C

n+k

and f(0) = 0, df(0) = 0. Geometrially this means

that the origin belongs to M and T

0

M is just fv = 0g. By means of

further biholomorphi transformation of seond order we are able to

eliminate the \harmoni" part of the seond order term in f :

Re

X

�

2

f

�z

i

�z

j

j0

z

i

z

j

+ 2Re

X

�

2

f

�z

i

�u

j

j0

z

i

u

j

+

1

2

X

�

2

f

�u

j

�u

j

j0

u

i

u

j

:

Only the hermitian part in the seond order term of f :

h(z; �z) =

1

2

X

�

2

f

�z

i

��z

j

j0

z

i

�z

j

will remain, thus we ahieve that M is given by

v = h(z; �z) + O(3)(1)

at a neighborhood of the origin. For more details see [19℄. The vetor-

valued hermitian form h shall be denoted by hz; zi in the sequel. The

submanifold M is alled Levi non-degenerate (at the origin) if the

salar omponents of hz; zi are linearly independent and do not have

a ommon annihilator. The Levi form

1

2i

h is given by means of the

standard Lie braket f ; g

Lie

of vetor �elds modulo the omplex sub-

spae T

CR

M , � 7! f�

x

; J�

x

g

Lie

2 TM=T

CR

M for the CR-vetor �elds

�; J� :M ! T

CR

M . The latter braket is algebrai sine the standard
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Lie braket omposed with the projetion onto the quotient is learly

linear over funtions.

The geometri meaning of (1) is that M osulates the quadri

Q : v = hz; zi

in seond order. Both M and Q share the same tangent spae, CR-

tangent spae and Levi form at the origin.

Now, let us assume thatM � C

4

is of CR-odimension 2 and assume

further that M is Levi non-degenerate. Thus M is a smooth real 6-

dimensional manifold.

The quadri Q an be always understood as an open domain in the

homogeneous spae G=P where G is the group of the automorphisms

of the hermitian form and P its isotropi subgroup of the origin. This

means that the tangent spae in the origin arries the P -module stru-

ture of g=p in a anonial way and some seond order data should be

arried over to M from g=p to the individual tangent spaes of M by

means of the osulation.

Thus, in order to try to study the geometry of M in the spirit of

the general theory as briey reviewed in Setion 2, we have to dis-

tinguish the possible non-degenerate C

2

-valued hermitian forms by a

suitable normalization and to analyze the remaining freedom in the

osulation. This has been done in [16, 19℄, see Appendix B for a re-

view. In partiular, we an ahieve one of the following three forms for

h(z; �z) = hz; zi 2 C

2

by a linear transformation in z's and v's

h

1

(z; �z) = z

1

�z

1

; h

2

(z; �z) = z

2

�z

2

(2)

h

1

(z; �z) = z

1

�z

1

; h

2

(z; �z) = Re z

1

�z

2

(3)

h

1

(z; �z) = Re z

1

�z

2

; h

2

(z; �z) = Im z

1

�z

2

(4)

and we refer to these ases as to hyperboli, paraboli, and ellipti,

respetively. The normalization (1) with one of these hermitian forms

h is given uniquely up to the isotropi subgroup of the origin in the

group of all biholomorphi automorphisms of Q � C

4

.

We say that a point x 2 M is hyperboli or paraboli or ellipti if

the osulating quadri at x is of that type. Apparently, the set of all

hyperboli points is open and the same for the ellipti ones. The CR-

struture onM is alled hyperboli, or paraboli, or ellipti, if all points

of M are of the same type.

Let M � C

4

be a CR-struture of odimension two, suh that all its

points are either hyperboli or ellipti. As disussed above, the hoie

of the anonial form of the osulating quadri Q = G=P �xes the

freedom in the osulation (1) to the isotropi subgroup of the origin

in G=P and this allows to transfer the P -invariant data of �rst and
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seond order from the origin of Q to the individual tangent spaes in

all points of M .

We reall the details on the resulting groups

G =

�

(SU(2; 1)=Z

3

)� (SU(2; 1)=Z

3

)

�

o Z

2

(5)

in the hyperboli ase, and

G = (SL(3; C )=Z

3

)o Z

2

(6)

in the ellipti ase, P , G

0

, and their Lie algebras in Appendix B. At

the moment, let us notie that in both ases the Lie algebra g arries

the j2j-grading g = g

�2

� g

�1

� g

0

� g

1

� g

2

, p = g

0

� g

1

� g

2

, and

the subgroups P and G

0

have all properties disussed in 2.1 below.

In partiular P is the subgroup of all elements whose adjoint ation

leaves the p-submodules in g invariant, while G

0

onsists of all elements

whih leave the omponents g

i

invariant. Thus, the tangent spae T

x

M

at eah point x 2 M is identi�ed with the P -module g=p whih is the

tangent spae to the osulating quadri Q at its origin, the normalized

osulation transfers the P -submodule g

�1

� g=p to T

CR

M � TM , and

the algebrai struture of g=p is arried over to the assoiated graded

tangent spae GrTM = (TM=T

CR

M)� T

CR

M .

1.1. Lemma. Let M � C

4

be a hyperboli or ellipti 6-dimensional

CR-manifold. Then all algebrai brakets T

CR

M � T

CR

M ! T

CR

M

and T

CR

M � T

CR

M ! TM=T

CR

M on the real graded tangent spae

GrTM , and the analogous algebrai brakets on the omplexi�ed graded

tangent spae GrT

C

M are obtained via the osulation from the orre-

sponding brakets at the origin of the quadri.

In partiular, the algebrai Lie braket f ; g

Lie

on GrTM oinides

with the algebrai braket arried over by the osulation (1).

Proof. The Lie braket on g

�

= g

�2

�g

�1

is G

0

-equivariant, and so the

osulation (1) indues an algebrai braket on the assoiated graded

vetor bundle GrTM . A neighborhood of the origin in Q an be iden-

ti�ed with the exponential image of g

�

in G and the Lie braket in g

�

is given by the usual Lie brakets of the left invariant vetor �elds on

G. By means of the osulation, we an projet these �elds onto M lo-

ally and learly the algebrai braket T

CR

M �T

CR

M ! TM=T

CR

M

indued by the Lie braket of vetor �elds on M oinides with that

one arried over from g

�

by the osulation. Obviously, the result will

not be e�eted by the ation of an element in P

+

on Q (i.e. by the

possible hange of the osulation).

All other algebrai brakets on the real graded tangent spae an

be treated in exatly the same way, provided they are P -invariant on
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the quadri. The ation of an element of G

0

always ommutes with

the osulation while the ation of P

+

is not visible in all our ases.

Indeed, the ation is trivial if all arguments and values are in T

CR

M ,

while the ontributions of the ation is fatored out in the ase of the

brakets T

CR

M � T

CR

M ! TM=T

CR

M . Similarly, the left invariant

vetor �elds in the omplexi�ed tangent spaes on the quadri an be

mapped into omplex vetor �elds on M and the above arguments

apply as well.

Let us notie, however, that the possible algebrai brakets taking

some arguments in TQ=T

CR

Q are never P -invariant.

The latter lemma turns out to be the most ruial point for our fur-

ther development. Indeed, there is the general theory of the so alled

paraboli geometries whih we adapt for our purposes in the next

setion. In partiular, Theorem 2.13 due to [23, 4℄ will provide the

anonial prinipal bundles together with anonial Cartan onne-

tions for all hyperboli and ellipti 6-dimensional CR-manifolds with

CR-odimension two (see the beginning of Setion 2 for de�nitions and

more explanation). We should also like to mention already now that

the omplete proof of Theorem 2.13 is in fat onstrutive, it is based

on well known fats from representation theory, and it is even shorter

and simpler than the ad ho onstrution of the absolute parallelisms

in [9℄. The ultimate results read as follows:

1.2. Theorem. On eah 6-dimensional hyperboli CR-manifold M �

C

4

of CR-odimension two, there is the unique normal Cartan on-

netion ! of type (G=P ) on the prinipal �bre bundle G ! M , up to

isomorphisms. The subgroup P is the subgroup of all elements in G

from (5) whih respet the p-module �ltration on su(2; 1)� su(2; 1).

1.3. Theorem. On eah 6-dimensional ellipti CR-manifold M � C

4

of CR-odimension two, there is the unique normal Cartan onnetion

! of type (G=P ) on the prinipal �bre bundle G ! M , up to isomor-

phisms. The subgroup P is the subgroup of all elements in G from (6)

whih respet the p-module �ltration on sl(3; C ).

For the proof of these theorems see 2.14 below. The reason why the

methods of [9℄ ould not produe a prinipal �bre bundle G with stru-

ture group P and a normal Cartan onnetion on G, was hidden in

the initial hoie of the normalization whih had to produe a Cartan

onnetion without torsion. In our approah, the torsions are the im-

portant parts of the obstrutions whih are easily observable on the

CR-manifold itself. The Setions 3 and 4 are basially dealing with the
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onsequenes of the vanishing of the individual omponents of the tor-

sion of the anonial Cartan onnetion for the hyperboli and ellipti

loal geometries.

2. Paraboli geometries modelled over j2j-graded Lie

algebras

The aim of this setion is to introdue the reader to the so alled

paraboli geometries, but we shall onentrate on the ases similar to

the real forms of the two-graded omplex Lie algebra g = sl(3; C ) �

sl(3; C ). Beside well known fats, we shall also have to adapt and extend

some points.

Let us notie �rst that the general ideas go bak to E. Cartan and his

notion of \espae generalis�e". The interest in the paraboli struture

groups was pointed out by Fe�erman, [12℄, in onnetion with prob-

lems in onformal and CR geometries. Extensive study was undertaken

even earlier by Tanaka (see [23℄ and the referenes therein), motivated

by a lass of equivalene problems for di�erential systems. Tanaka's

approah was developed further, see e.g. [18, 26℄. Motivation oming

from twistor alulus led to another diretion of related researh, see

e.g. [2, 1, 14℄. General bakground and an introdution to the subjet

may be also found in [20℄. The exposition in this setion extends the

development in [5, 4℄ and follows mainly [21℄.

2.1. Graded Lie algebras. Let g be a j2j-graded Lie algebra, p and

g

�

its subalgebras:

g = g

�2

� g

�1

� g

0

� g

1

� g

2

g

�

= g

�2

� g

�1

; p = g

0

� g

1

� g

2

:

Further, let G be a Lie group with the Lie algebra g. Then there is

the subgroup P � G of elements whose adjoint representations on g

preserve the �ltration by p-submodules g

i

�g

i+1

�� � ��g

2

and there also

is the subgroup G

0

� P of all elements whose adjoint representation

leaves invariant all g

i

. Thus the omponents g

i

of the grading an be

understood as G

0

-submodules, but also as the fators in the graded

P -module omponents assoiated to the P -module �ltration. Similarly

we de�ne the jkj-graded algebras g = g

�k

� : : : g

k

.

In the sequel, we shall deal with semi-simple j2j-graded Lie algebras

exlusively. It is well known that all graded semi-simple Lie algebras are

sums of jkj-graded algebras for suitable k's and the subgroups P � G

are always suitable real forms of paraboli subgroups P

C

� G

C

in the
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omplexi�ation. The exposition below extends easily to general semi-

simple jkj-graded Lie algebras and the orresponding paraboli stru-

tures, as disussed in [4℄ for example. Many geometri and algebrai

properties of these geometries are dedued in [6℄.

2.2. Cartan onnetions. The homogeneous spae p : G ! G=P is

equipped with the left Maurer-Cartan form ! 2 C

1

(G; g). This is the

prototype of a geometry modelled over the homogeneous spae G=P .

In general, a Cartan geometry of type G=P is a prinipal �bre bundle

p : G ! M over a smooth manifold M , equipped with a g-valued

one-form ! 2 C

1

(G; g) satisfying

� !(�

X

(u)) = X for all X 2 p and fundamental �elds �

X

on G,

� ! is right-invariant, i.e. (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P ,

� the restritions !

jT

u

G

: T

u

G ! g are linear isomorphisms, i.e. the

obvious mapping TG ! G � g is a di�eomorphism.

The homomorphisms of Cartan geometries are those prinipal �bre

bundle morphisms whih respet the Cartan onnetions. The at Car-

tan geometry is the homogeneous spae G ! G=P with the Maurer-

Cartan form !.

Let us also observe that the above absolute parallelisms ! turn out

to be speial ases of prinipal onnetions ~! on the prinipal bundle

~

G = G �

P

G with struture group G. Indeed, the onnetion forms of

all prinipal onnetions on

~

G whose horizontal distributions do not

meet the tangent spae TG � T

~

G restrit to forms ! with the required

properties. See e.g. [20℄ for more omments.

2.3. Normal oordinates. For eah X 2 g, the parallelism ! de�nes

the vetor �eld !

�1

(X) on G. The horizontal vetor �elds !

�1

(X) on G

are those with X 2 g

�

and their values span the horizontal distribution

on G. Due to the third property of !, the hoie of a frame u 2 G de�nes

an injetive smooth mapping of a neighborhood of zero in g

�

g

�

3 X 7! Fl

!

�1

(X)

1

(u)(7)

de�ned by means of the ows of the vetor �elds !

�1

(X). The tangent

spae of its image at u belongs to the horizontal distribution on G and

its omposition with the projetion p : G ! M de�nes the loally

de�ned mapping

~u : g

�

!M; X 7! p(Fl

!

�1

(X)

1

(u))(8)

whih is di�eomorphi on a neighborhood of the origin. We all ~u the

normal oordinates on M given by the frame u. At the same time, ~u
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indues the loal trivialization �

u

,

�

u

:M ! G; M 3 ~u(Y ) 7! Fl

!

�1

(Y )

1

(u) 2 G:(9)

Clearly, the normal oordinates around a �xed point x 2 M are pa-

rameterized by elements in P and they generalize the usual normal

oordinates of aÆne onnetions on manifolds. The general onept of

the normal oordinates has been introdued and studied in [21℄.

2.4. Chains. The notion of normal oordinates suggests a straightfor-

ward generalization of the geodetial urves. For eah hoie of X 2 g

�

and u 2 G we de�ne the 1-hain �

u;X

: R ! M on a neighborhood of

0 2 R by

�

u;X

(t) = p(Fl

!

�1

(X)

t

(u)):

Clearly the tangent diretion to the 1-hain �

u;X

at its origin is the ve-

tor Tp:!

�1

(X)(u) sine the tangent bundle TM is identi�ed with the

assoiated bundle G �

P

(g=p) via the adjoint representation, fu;Xg 7!

Tp:!

�1

(X). In partiular we see immediately that many di�erent 1-

hains may share the same tangent diretion.

The 1-hains have been studied under various names like Cartan's

irles or generalized irles, see e.g. [20℄, and the hains introdued

by Chern and Moser for CR-geometries of odimension one are exatly

the 1-hains with X 2 g

�2

. Sine dim g

�2

= 1 for these geometries, the

latter 1-hains oinide with the hains de�ned below.

All 1-hains orresponding to a �xed frame u yield exatly the nor-

mal oordinates with origin at p(u) and the transformation rules for

these oordinates under the hange of u may be quite ompliated, in

general. On the other hand, the 1-hains orresponding to the param-

eters fu;Xg with X 2 g

�2

have very spei� properties. We de�ne the

hain �

u

: g

�2

!M by the formula

�

u

(X) = p(Fl

!

�1

(X)

1

(u)):

Thus the hains are parameterized submanifolds in M of dimension

dim g

�2

.

2.5. Remark. The importane of the hains grows whenever they are

given uniquely by their tangent diretions in the origin. Another impor-

tant question is whether two di�erent hains may interset nontrivially

in eah small neighborhood of their ommon origin. The answer to these

questions is usually very easy beause of the following equivalent def-

inition of 1-hains by means of their developments into the assoiated

bundle FM =

~

G �

G

(G=P ).

The prinipal onnetion ~! on

~

G provides the indued (generalized)

onnetion on the bundle FM and there is the anonial embedding
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of M into FM , p(u) 7! fu; [e℄g. Thus eah urve �(t) 2 M an be

mapped by the parallel transport of ~! into a urve ~� in the �bre over

�(0). This urve ~� is alled the development of the urve �. Clearly,

the germs of urves through �(0) are in bijetive orrespondene with

the germs of their developments.

Now, our de�nition of the 1-hains an be easily rephrased as follows.

The 1-hains are exatly the urves � whose developments ~� are given

by one-parametri subgroups in G, i.e. ~�

u;X

= fu; [exp tX℄g. See e.g.

[21℄ for more details.

Sine our hains �

u

are obtained via 1-hains, all strutural questions

mentioned above are obtained by the disussion of the hains in the

homogeneous ase.

2.6. Curvature and torsion. The struture equation

d! = �

1

2

[!; !℄ +K

de�nes the g-valued horizontal 2-form K 2 


2

(G; g). If we evaluate

the struture equation on two horizontal vetor �elds we obtain the

so alled frame form of the urvature, the equivariant funtion � 2

C

1

(G;�

2

g

�

�


 g)

P

�(u)(X; Y ) = K(!

�1

(X); !

�1

(Y ))(u)

= [X; Y ℄� !([!

�1

(X); !

�1

(Y )℄(u)):

The Cartan geometry is loally isomorphi to the at one if and only

if its urvature vanishes.

If g is semi-simple, then P is a paraboli subgroup of the semi-simple

group G and we then refer to the above geometries as to paraboli

geometries of type G=P .

The urvature � has values in the spae of ohains of the Lie algebra

ohomology H

�

(g

�

; g). The grading on g indues the grading on the

spae of ohains. The homogeneous ohains of degree k are those

whih map g

i

^ g

j

into g

i+j+k

and this grading is respeted by the Lie

algebra ohomology di�erential �. For eah ohain � 2 �

k

g

�


A with

values in a g

�

-module A the di�erential is given by

��(X

0

; : : : ; X

k

) =

k

X

i=0

X

i

:�(X

0

; ^: : :; X

k

) +

X

i<j

�([X

i

; X

j

℄; X

0

; ^: : :; X

k

)

(10)

where the dot in the �rst summand means the g

�

-module ation while

the hats denote the obvious omitions.
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In partiular, the whole urvature splits into the homogeneous parts

�

(k)

� =

3`

X

k=�`+2

�

(k)

where ` = 2 is the length of the grading. On the other hand, we may

split � aording to its values. In partiular, there is the torsion part

�

�

with values in g

�

� =

`

X

i=�`

�

i

�

�

= �

�`

� � � � � �

�1

�

p

= �

0

� � � � � �

`

:

The torsion has a simple geometrial meaning: Let us de�ne the hori-

zontal braket [�; �℄

h

on the spae X

h

(G) of all �elds belonging to the

horizontal distribution on G by the standard Lie braket followed by

horizontal projetion. By the very de�nition, the torsion of ! vanishes

if and only if the mapping g

�

3 X 7! !

�1

(X) 2 X

h

(G) is a Lie algebra

homomorphism.

2.7. Regular and normal onnetions. We say that the paraboli

geometry (G; !) is regular if �

(k)

= 0 for all k � 0.

In the sequel, we shall always assume g is semi-simple. Then there is

the adjoint of the Lie algebra ohomology di�erential �, the odi�er-

ential �

�

: �

k

g

�

�


 g ! �

k�1

g

�

�


 g.

We say that ! is a normal Cartan onnetion if its urvature is o-

losed, i.e.

�

�

Æ � = 0 2 C

1

(G; g

�

�


 g):

Let us reall, that the whole spae of ohains deomposes into a sum

of irreduible omponents as a g

0

-module. Eah suh omponent is

either in the image of � or in the image of �

�

or in the kernel of both.

The latter omponents are alled harmoni and they are in bijetive

orrespondene with the non-zero ohomologies H

�

(g

�

; g).

2.8. Theorem. ([23, 26, 4℄) Let (G; !) be a normal Cartan onne-

tion and assume that all omponents �

(j)

, j < k, vanish. Then � Æ �

(k)

vanishes and so all non-trivial irreduible omponents of �

(k)

are har-

moni.

In partiular, the whole urvature of ! vanishes if and only if its

harmoni part does.
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The latter theorem is a straightforward onsequene of the important

Bianhi identity for Cartan geometries:

��

(k)

(X; Y; Z) =�

X

yli

k�1

X

i=1

�

(k�i)

(�

(i)

(X; Y ); Z)

�

X

yli

L

!

�1

(Z)

�

(k+jZj)

(X; Y )

�

(11)

where the sum is the yli sum over X; Y; Z 2 g

�

, and jZj = j if

Z 2 g

j

. See e.g. [4℄ for more details.

2.9. The underlying geometry on M . A part of the Cartan ge-

ometry (G; !) is visible diretly on the underlying manifold M and,

fortunately, these data are suÆient in order to reonstrut the Car-

tan onnetion ompletely. This is the ore of our approah to the CR

strutures in this paper. As before we shall restrit ourselves to the

j2j-graded ases below, but the disussion extends easily to the general

ase.

The P -module struture on g (de�ned via the Ad representation)

determines the �ltration by P -submodules

g = V

�2

� V

�1

� V

0

� V

1

� V

2

= g

2

V

k

= g

k

� � � � � g

2

� g; k = �2;�1; 0; 1; 2:

This in turn de�nes the �ltration on TG

TG = T

�2

G � T

�1

G � T

0

G � T

1

G � T

2

G

T

k

u

(G) = !

�1

(u)(V

k

); k = �2;�1; 0; 1; 2; u 2 G:

The right invariane of ! yields

!

�1

(u:b)(X) = Tr

b

:!

�1

(u)(Ad(b):X)(12)

and so the latter �ltration on G is P -invariant. The P -invariant pro-

jetion p : G !M de�nes then the �ltration

TM = T

�2

M � T

�1

M � f0g:

Moreover, eah �xed frame u 2 G with p(u) = x 2 M determines the

linear isomorphism of �ltered vetor spaes

û : g

�

! T

x

M X 7! Tp:!

�1

(X)(u)

and on the level of the assoiated graded spaes we obtain the linear

isomorphism

û : V

�2

=V

�1

� V

�1

=V

0

' g

�2

� g

�1

! T

�2

x

M=T

�1

x

M � T

�1

x

M:



HYPERBOLIC AND ELLIPTIC CR-MANIFOLDS OF CODIMENSION TWO 13

The whole struture group P is a semidiret produt of its redutive

subgroup G

0

(orresponding to the Lie algebra g

0

) and the subgroup

P

+

whih orresponds to p

+

g

1

� g

2

. Obviously, the latter identi�ation

û does not hange if we replae the frame u by u:b with b 2 P

+

. Thus we

have identi�ed the graded tangent bundle GrTM with the assoiated

vetor bundle to the prinipal bundle G

0

= G=P

+

whose standard �bre

is the G

0

-module g

�

. In partiular the Lie braket on g

�

is transfered

to the algebrai braket f ; g

0

by

f�

x

; �

x

g

0

= û([û

�1

(�

x

); û

�1

(�

x

)℄); �

x

; �

x

2 GrT

x

M;u 2 G:

Notie that this de�nition does not depend on the hoie of u sine û

is independent of the ation of P

+

and the Lie braket on g

�

is G

0

-

equivariant. Sine our G

0

-struture on GrTM is de�ned by the Cartan

onnetion, we may hoose representing vetors

�

�

x

2 T

i

x

M , ��

x

2 T

j

x

M ,

their overing vetors

^

�

u

,�̂

u

2 TG and we obtain

f�

x

; �

x

g

0

= �(!

�1

([!(

^

�

u

); !(�̂

u

)℄)(u))

where � is the obvious projetion T

i+j

G ! T

i+j

M ! T

i+j

M=T

i+j+1

M .

We shall see in a while that the regular Cartan geometries are exatly

those for whih the latter braket is indued from the Lie braket of

vetor �elds in an algebrai way. Sine we shall need a good ontrol

over the relations between the brakets of the horizontal vetor �elds

and some brakets on the underlying manifold in its proof, we shall

�rst formulate a general lemma based on our onept of the normal

oordinates.

2.10. Lemma. Let u 2 G and let �

u

be the orresponding distinguished

loal trivialization of G, see (9). Further let X; Y 2 g

�

, and onsider

the projetable vetor �elds

~

�, ~� over M , suh that their restritions

to the image of �

u

oinide with the horizontal �elds !

�1

(X), !

�1

(Y ),

respetively. Then [!

�1

(X); !

�1

(Y )℄(u) = [

~

�; ~�℄(u).

Thus, in partiular

Tp:[!

�1

(X); !

�1

(Y )℄(u) = [Tp:

~

�; Tp:~�℄(p(u))
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Proof. Let us write

~

� = !

�1

(X)+�, ~� = !

�1

(Y )+� and ompute their

braket. By the very de�nition, we obtain

[

~

�; ~�℄(u) =

d

dt

j

0

T (Fl

~

�

�t

) Æ (!

�1

(Y ) + �) Æ (Fl

~

�

t

)(u)

=

d

dt

j

0

T (Fl

~

�

�t

) Æ (!

�1

(Y ) + �) Æ (Fl

!

�1

(X)

t

)(u)

=

d

dt

j

0

T (Fl

~

�

�t

) Æ (!

�1

(Y )) Æ (Fl

!

�1

(X)

t

)(u)

= [

~

�; !

�1

(Y )℄(u)

where the �rst equality follows from the fat that the ows of

~

� and

!

�1

(X) through u oinide, the next one results from the vanishing of �

on the image of �

u

. Now, repeating the same arguments for [!

�1

(Y );

~

�℄,

we ahieve just the required equality.

2.11. Lemma. Let ! 2 


1

(G; g) be a Cartan onnetion with a j2j-

graded Lie algebra g. Then �

(i)

= 0 for all i < 0 and the Lie braket of

vetor �elds de�nes an algebrai braket f ; g

Lie

on the graded vetor

bundle GrTM . Moreover, �

(0)

vanishes if and only if the latter braket

oinides with the algebrai braket f ; g

0

on GrTM .

Proof. Reall that the de�ning equation for the homogeneous ompo-

nents �

(k)

(u)(X; Y ), k 6= 0, u 2 G, X 2 g

i

, Y 2 g

j

is

�

(k)

(u)(X; Y ) = �!

i+j+k

([!

�1

(X); !

�1

(Y )℄(u))(13)

while the omponent of degree zero is

�

(0)

(u)(X; Y ) = [X; Y ℄� !

i+j

([!

�1

(X); !

�1

(Y )℄(u))(14)

Now, onsider vetor �elds � in T

i

M , � in T

j

M and let us hoose

elements X

r

2 V

i

, Y

s

2 V

j

suh that � = Tp:

P

r

f

r

!

�1

(X

r

), � =

Tp:

P

s

g

s

!

�1

(Y

s

) with suitable funtions f

r

, g

s

on G. Then

[�; �℄ = (Tp:

X

r;s

f

r

g

s

[!

�1

(X

r

); !

�1

(Y

s

)℄) modT

i+j

M:

The negative homogeneous omponents �

(k)

, k < 0 have to vanish

beause the algebra is j2j-graded and so we have no hoie of arguments

for ohains with suh homogeneity. The lowest possible ase will be a

ohain g

�1

� g

�1

! g

�2

of homogeneity zero. The fat that the Lie

braket of vetor �elds produes an algebrai braket on the assoiated

graded tangent bundle is obvious.



HYPERBOLIC AND ELLIPTIC CR-MANIFOLDS OF CODIMENSION TWO 15

Now, the two brakets in question may be expressed for all vetors

�

x

= �(!

�1

(X)(u)) and �

x

= �(!

�1

(Y )(u)) as

f�

x

; �

x

g

0

= �(!

�1

([X; Y ℄)(u))

f�

x

; �

x

g

Lie

= [Tp:

~

�; Tp:~�℄(x) mod T

i+j+1

M

= �([!

�1

(X); !

�1

(Y )℄(u) mod T

i+j+1

G)

= �(!

�1

(!

i+j

([!

�1

(X); !

�1

(Y )℄(u))))

where

~

� or ~� are some projetable �elds from the previous Lemma 2.10.

Thus, aording to (14), the two brakets equal eah other if and only

if �

(0)

vanishes.

Now we have got the motivation for the following de�nition of geo-

metri strutures on manifolds. Let us also remark that the version of

the latter lemma whih is valid for all jkj-graded strutures needs one

more ondition. Namely, the existene of the algebrai braket indued

by the Lie brakets of vetor �elds is equivalent to the vanishing of all

negative omponents �

(k)

, k < 0.

2.12. De�nition. Let g, G, P , and G

0

be as in 2.1. A regular (g; P )-

struture on a smooth manifold M is a �ltration of the tangent bundle

TM

TM = T

�2

M � T

�1

M

together with the redution of the struture group of the assoiated

graded tangent vetor bundle GrTM to the subgroup G

0

, suh that the

algebrai braket on GrTM indued by the Lie braket of vetor �elds

oinides with the algebrai Lie braket de�ned by the G

0

-struture.

We may understand the above ondition as the requirement that the

subbundle T

�1

M be reasonably non-involutive. Due to our restrition

to j2j-graded algebras we do not need to onsider the other ondition

from proposition 2.11 on the Lie brakets of vetor �elds, namely that

they must not be \too muh non-involutive".

Surprisingly enough there is the theorem laiming that, apart of a

few exeptions, all regular normal paraboli geometries are uniquely

given by the underlying (g; P )-strutures on the manifolds M :

2.13. Theorem. Let M be a smooth manifold, g a graded semi-simple

Lie algebra, G a Lie group with Lie algebra g, and assume that all

homogeneous omponents of the ohomologies H

1

`

(g

�

; g) with positive

degrees ` > 0 are trivial. Then there is a bijetive equivalene between

isomorphism lasses of the regular (g; P )-strutures on M and the iso-

morphism lasses of regular normal Cartan geometries (G; !) over M .
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For the proof see Setion 3 of [4℄. The omputations in [26, 4℄ show

that, apart of situations with simple omponents in g

0

, the only exep-

tions are g = sl(2; C ), spei� maximal paraboli subalgebras in speial

linear algebras in higher dimension (j1j-graded examples) and spei�

maximal subalgebras in sympleti algebras (j2j-graded examples). An

equivalent theorem for the ases g simple and G onneted was proved

in [23℄.

2.14. Proof of Theorems 1.2 and 1.3. The relevant ohomologies

for the real forms of sl(3; C ) � sl(3; C ) are omputed in Appendix A.

In partiular, there is no obstrution in the onstrution of the normal

Cartan onnetions out of regular (g; P )-strutures aording to The-

orem 2.13. The de�nition of the relevant (g; P )-strutures by means of

the fundamental seond order osulation (1) was disussed at the end

of Setion 1, see Lemma 1.1.

3. The hyperboli strutures

In this setion, we shall study the onsequenes of the algebrai stru-

ture of su(2; 1) � su(2; 1) for the hyperboli points on 6-dimensional

CR-manifolds of CR-odimension 2 M � C

4

. Thus the Lie groups G,

P , G

0

, as well as the orresponding Lie algebras will be �xed through-

out this setion.

3.1. Almost produt and almost omplex strutures. As we no-

tied already in the proof of Theorem 1.2, there is the relevant (g; P )-

struture on M . Sine the individual left and right omponents of g

are P -submodules, this struture introdues the natural splitting of

the whole tangent bundle TM , i.e. an almost produt struture on M .

The almost produt struture also restrits to the omplex tangent

bundles T

CR

M . We shall write

TM = T

R

M � T

L

M; T

CR

M = T

CR;R

M � T

CR;L

M

GrTM = (T

L

M=T

CR;L

M � T

CR;L

M)� (T

R

M=T

CR;R

M � T

CR;R

M).

In partiular, the two omponents of TM are orthogonal with respet

to the algebrai braket f ; g

Lie

.

Next, we observe that the anonial almost omplex struture J de-

�ned on T

CR

M is indued by the (g; P )-struture. Indeed, we de�ne

J 2 (T

CR

M)

�


 T

CR

M; J(Tp:!

�1

(X)(u)) = Tp:(!

�1

(iX)(u))

and this formula does not depend on the hoie of u and X beause

the adjoint ation of P on g

�1

� g=p is omplex linear.
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At the same time, there is the obvious integrable omplex struture

oming from the de�nition T

CR

M = TM \ iTM � T C

4

on the embed-

ded CR-manifolds. The fundamental osulation (1) then implies that

these two almost omplex strutures on T

CR

M oinide.

3.2. The abstrat hyperboli CR-manifolds of dimension six and CR-

odimension two are de�ned by the spei�ation of a regular (g; P )-

struture onM in the sense of De�nition 2.12. In partiular, they ome

equipped by the CR-subbundle T

CR

M � TM of real odimension two

with an almost omplex struture, and the ompatible almost produt

struture on TM . The general theory then applies as well and so the

normal Cartan onnetions are given uniquely on all suh manifolds.

We shall see, however, that the embedded ones have very spei� fea-

tures. The automati integrability of the almost omplex struture J

on T

CR

M is an example. We an meet these more general strutures on

some 6-dimensional real submanifolds in 8-dimensional almost omplex

manifolds.

Our goal is to understand fully the loal geometrial properties. For

that reason we shall �rst disuss all possible algebrai brakets on TM

whih arise from the Lie braket of vetor �elds and we shall link them

to ertain omponents of the urvature of the anonial Cartan on-

netion ! on M . In fat we shall work on the abstrat level, forgetting

more or less about the embedding of the manifold M into C

4

. Thus

some of the obstrutions will vanish automatially for the embedded

hyperboli CR-manifolds.

For example, the algebrai Lie braket of two vetor �elds �; � in

T

CR;L

M has no ontribution in T

R

M=T

CR;R

M and so the projetion

of the Lie braket [�; �℄ to T

R

M = TM=T

L

M has values in T

CR;R

M .

Analogously we an deal with left and right omponents exhanged and

so there are two obvious algebrai brakets

f ; g

L

: T

CR;L

M � T

CR;L

M ! T

CR;R

M(15)

f ; g

R

: T

CR;R

M � T

CR;R

M ! T

CR;L

M(16)

whih have to vanish automatially for all embedded hyperboli CR-

manifolds in view of Lemma 1.1. We shall see in a moment that these

brakets vanish even for the abstrat strutures.

Our general strategy will be to link algebrai brakets to ertain

omponents of the urvature � of the Cartan onnetion !. Aord-

ing to Theorem 2.8, we have to start by the desription of the real

ohomologies

H

2

�

(g

L

�

� g

R

�

; su(2; 1)

L

� su(2; 1)

R

):
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homog. ohains omment

1 g

R

�2

� g

R

�1

! g

L

�2

real linear in both arguments

1 g

L

�2

� g

L

�1

! g

R

�2

real linear in both arguments

1 g

L

�1

� g

R

�1

! g

L

�1

antilinear in both arguments

1 g

L

�1

� g

R

�1

! g

R

�1

sesquilinear

1 g

R

�1

� g

L

�1

! g

R

�1

antilinear in both arguments

1 g

R

�1

� g

L

�1

! g

L

�1

sesquilinear

4 g

L

�2

� g

L

�1

! g

L

1

real and omplex linear

4 g

R

�2

� g

R

�1

! g

R

1

real and omplex linear

Table 1. Real ohomologies of g

�

with oeÆients in g

3.3. Lemma. All irreduible omponents of these real ohomologies

are the one-dimensional g

0

-modules whih are generated by the (real)

bilinear ohains listed in Table 1.

Proof. Let us onsider the g

0

-modules

A

`

= H

2

`

(g

L

�

� g

R

�

; su(2; 1)

L

� su(2; 1)

R

):

By the general theory we know that the omplexi�ations (A

�

`

)

C

of the

dual g

0

-modules A

�

`

are the omplex ohomologies H

2

�`

(p

+

; sl(3; C ) �

sl(3; C )) listed in the table of all omplex ohomologies, see Table 4

in Appendix A. Further, let us notie that the two omponents in g

�1

have a anonial omplex struture. Now, we have just to keep in mind,

that a omplexi�ation of a real linear mapping � : V ! W , de�ned

on a omplex vetor spae V , splits into two omponents aording to

the splitting of the omplexi�ation V

C

= V �

�

V . If the target of suh

a mapping is omplex as well, then the mapping � itself splits into

the omplex linear and omplex antilinear parts. Thus the omplex

ohomologies on the list of Table 4, and the other half of them, must

ome exatly from the omponents listed in Table 1.

Now we are ready to �nd the geometri meaning of the individual

torsion omponents. First, we shall fous on the obstrutions against

the integrability of the natural almost produt struture on M .
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Thus we are interested in brakets GrT

L

M � GrT

L

M ! GrT

R

M

and those with the left and right omponents exhanged. The restri-

tion of f ; g

Lie

vanishes learly. Hene, apart from the algebrai brakets

(15), (16), there is another andidate

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

R

M=T

CR;R

M(17)

f ; g

R

: T

R

M=T

CR;R

M � T

CR;R

M ! T

L

M=T

CR;L

M .(18)

Indeed, hoosing any representative of the argument from the quotient

spae, the ordinary Lie braket projeted to the desired omponent

yields our algebrai braket. In ontrast to the Levi form, these two

algebrai brakets are not oming from the quadri by the osulation.

3.4. Lemma. The brakets (15), (16) vanish identially. The brakets

(17), (18) are given by the formulae

f�

L

(�); �g

L

= ��

R

(Tp:!

�1

(�

(1)

(u)(X; Y ))(u))(19)

f�

R

(�); �g

R

= ��

L

(Tp:!

�1

(�

(1)

(u)(X; Y ))(u))(20)

where u 2 G, �

L

and �

R

are the obvious quotient projetions in the left

and right omponents of the graded tangent spae, and X 2 g

L

�2

; Y 2

g

L

�1

, or X 2 g

R

�2

; Y 2 g

R

�1

, respetively, and

� = Tp:!

�1

(X)(u); � = Tp:!

�1

(Y )(u):

There are no more non-trivial algebrai brakets GrT

L

M�GrT

L

M !

GrT

R

M and GrT

R

M �GrT

R

M ! GrT

L

M .

Proof. We shall disuss only brakets GrT

L

M �GrT

L

M ! GrT

R

M .

The other ones are treated analogously.

The �rst part is quite easy. Let us onsider �

x

; �

x

2 T

CR;L

x

M . Further,

hoose u 2 G, x = p(u), and X; Y 2 g

L

�1

suh that �

x

= Tp:!

�1

(X)(u),

�

x

= Tp:!

�1

(Y )(u). Aording to the Lemma 2.10, there are the pro-

jetable vetor �elds

~

�, ~� on G suh that their projetions � = Tp Æ

~

�,

� = Tp:~� satisfy �(x) = �

x

, �(x) = �

x

and

[�; �℄(x) = Tp:[

~

�; ~�℄(u) = Tp:[!

�1

(X); !

�1

(Y )℄(u):(21)

Now let us reall the general formulae (13) and (14) for the evaluations

of urvatures and remember there are no urvature omponents of non-

positive homogeneities. In partiular,

!([!

�1

(X); !

�1

(Y )℄(u)) 2 g

L

�2

� (g

L

�1

� g

R

�1

) mod p:
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Thus applying the projetion �

R

onto the image T

CR;R

M of f ; g

L

, we

may rewrite (21) as

f�

x

; �

x

g

L

= �

R

Æ Tp:[

~

�; ~�℄

= �

R

Æ Tp:!

�1

(u)

�

!([!

�1

(X); !

�1

(Y )℄(u))

�

= ��

R

Æ Tp:!

�1

(u)(�

(1)

(u)(X; Y )):

In partiular, the braket must vanish beause there is no ohomology

represented by ohains g

L

�1

� g

L

�1

! g

R

�1

, see Table 1, and so this

omponent of the urvature vanishes by Theorem 2.8.

We shall proeed analogously in the ase of the braket (17). Let us

�x again a frame u 2 G, x = p(u), hoose the element in T

L

M=T

CR;L

M

represented by Tp:!

�1

(X)(u) with X 2 g

L

�2

, and hoose another vetor

�

x

2 T

CR;L

x

M , �

x

= Tp:!

�1

(Y )(u), with Y 2 g

L

�1

. Next, we onsider

the projetable vetor �elds

~

� on G suh that !

�1

(X) =

~

� on the image

of �

u

and similarly for �. Then the value of Tp Æ

~

� = � at x represents

the right argument in T

L

M=T

CR;L

M and we obtain

[�; �℄(x) = Tp:[

~

�; ~�℄(u) = Tp:[!

�1

(X); !

�1

(Y )℄(u)(22)

see again Lemma 2.10. Sine X 2 g

L

�2

, Y 2 g

L

�1

, our table of ohomolo-

gies implies

�

(1)

(u)(X; Y ) = �!

R

�2

([!

�1

(X); !

�1

(Y )℄(u)) 2 g

R

�2

where !

R

�2

is the omponent of ! valued in g

R

�2

. In partiular we obtain

the required equality (19).

There are still two more possibilities for algebrai brakets GrT

L

M�

GrT

L

M ! GrT

R

M . The �rst one,

T

L

M=T

CR;L

M � T

L

M=T

CR;L

M ! GrT

R

M

is obviously zero sine the arguments are from an one-dimensional

spae. The remaining brakets

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

CR;R

M(23)

f ; g

R

: T

L

M=T

CR;R

M � T

CR;R

M ! T

CR;L

M(24)

an be well de�ned and algebrai if and only if the brakets (17) and

(18) vanish, respetively. If so, then their values are again de�ned by

onsidering the representatives of the elements in the quotient spaes

in the domain. By the vanishing assumption, their projetion to the

quotient on the right hand side is zero, thus they lie in the desired

targets.

So let us assume that the braket (17) vanishes. Then traing the

above omputation of the latter braket step by step, with the target
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replaed by T

CR;R

M , we end up with the formula

f�

L

(�(x)); �(x)g

L

= ��

R

Æ Tp(!

�1

(u)(�

(2)

(u)(X; Y ))):

Thus the vanishing of our braket is equivalent to the vanishing of the

orresponding omponent �

(2)

: g

L

�2

� g

L

�1

! g

R

�1

. Consider now the

homogeneous omponent of degree two of the Bianhi identity, see (11)

in Setion 2. Its right hand side inludes terms of two kinds:

�

(1)

(�

(1)

(X; Y ); Z) L

!

�1

(Z)

�

(2+jZj)

(X; Y ):(25)

The di�erential ��

(2)

on the left hand side is homogeneous of degree two

again and � ats injetively on the image of �

�

. Sine our omponent

of �

(2)

is not in the list of the available ohomologies and �

(2)

is o-

losed, this omponent must be in the image of �

�

. Thus its image

under � vanishes if and only if this omponent vanishes too. Now, we

are interested only in the omponent g

L

�2

�


g

L

�1

�


g

R

�1

and so its image

under � will sit in the subspae (f. (10))

(g

R

�1

�


 g

L

�2

�


 g

L

�1

�


 g

R

�2

)� (g

L

�1

�


 g

L

�1

�


 g

L

�1

�


 g

R

�1

):

Our knowledge of all possibly non-zero omponents of �rst degree in �

(remember we assume that the braket (19) vanishes) and a straight-

forward inspetion of the few possibilities of the plaement of the ar-

guments into the two terms in the Bianhi identity shows that there is

no way to get anything non-zero.

Thus the vanishing of the last possible algebrai braket has been

proved.

3.5. Theorem. Let M be an abstrat hyperboli 6-dimensional CR-

manifold of CR-odimension two. The left distribution T

L

M is invo-

lutive if and only if the braket (17) vanishes, the right distribution is

involutive if and only if the braket (18) vanishes.

The almost produt struture on M is integrable if and only if both

these brakets vanish.

Proof. All projetions of the Lie brakets T

L

M � T

L

M ! T

R

M are

linear over funtions and thus algebrai. Therefore, Lemma 3.4 implies

immediately the �rst laim. Similarly for the other distribution T

R

M

and the last laim follows by the standard foliation theory.

3.6. Theorem. Let M be a 6-dimensional abstrat hyperboli CR-

manifold of CR-odimension two. The anonial almost omplex stru-

ture J on T

CR

M is integrable if and only if the part �

(1)

aa

2 C

1

(G; g

�

�1

^

g

�

�1


g

�1

) of �

(1)

whih is antilinear in both arguments vanishes. In par-

tiular, this part of the torsion vanishes on the embedded 6-dimensional

hyperboli CR-manifolds in C

4

.



22 GERD SCHMALZ AND JAN SLOV

�

AK

Proof. By the de�ning properties of the regular (g; P )-strutures, the

omplexi�ed CR-tangent subbundle T

CR

C

M � T

C

M must be involutive.

Thus the obstrution against the integrability of J is the Nijenhuis

tensor N 2 �

2

(T

CR

M)

�


 T

CR

M . Consequently, the theorem will be

proved one we verify the following laim: The Nijenhuis tensor N ,

expressed by its frame form � 2 C

1

(G; g

�

�1

^ g

�

�1


 g

�1

), equals to

4�

(1)

aa

.

In order to prove this, let us hoose vetor �elds �, � in T

CR

M ,

a frame u 2 G, p(u) = x 2 M , and X; Y 2 g

�1

suh that �(x) =

Tp:!

�1

(X)(u), �(x) = Tp:!

�1

(Y )(u). We have

N(�(x); �(x)) = [�; �℄� [J�; J�℄ + J([J�; �℄ + [�; J�℄)

and N(Tp:!

�1

(X)(u); T p:!

�1

(Y )(u)) = Tp:!

�1

(�(u)(X; Y )).

As before, there are projetable vetor �elds

~

�, ~� over � and �,

suh that [!

�1

(X); !

�1

(Y )℄(u) = [

~

�; ~�℄(u) and similarly for J�(x) =

Tp:!

�1

(iX)(u) and J�(x) = Tp:!

�1

(iY )(u). Then we an ompute

N(�(x); �(x)) = Tp:

�

[!

�1

(X); !

�1

(Y )℄� [!

�1

(iX); !

�1

(iY )℄ +

!

�1

(i!([!

�1

(iX); !

�1

(Y )℄ + [!

�1

(X); !

�1

(iY )℄)(u))

�

(u)

= Tp:

�

!

�1

�

[X; Y ℄� [iX; iY ℄ + i[iX; Y ℄ + i[X; iY ℄ +

�

(1)

(X; Y )� �

(1)

(iX; iY ) + i�

(1)

(iX; Y ) + i�

(1)

(X; iY )

�

(u)

�

(u)

= Tp:!

�1

(4�

(1)

aa

(u)(X; Y ))(u)

3.7. The omplexi�ed Cartan onnetion. The proof of the pre-

eding theorem ould be also done by the methods of 3.4, with the

help of omplexi�ation. Indeed, the omplexi�ation of the anoni-

al form ! is !

C

: T

C

G ! g

C

whih is a omplex linear automor-

phism on eah omplex tangent spae. The Lie braket of real vetor

�elds extends to the omplex ones and again eah hoie of u 2 G,

X; Y 2 (g

�

)

C

allows to hoose projetable omplex vetor �elds

~

�, ~�

suh that [

~

�; ~�℄(u) = [!

�1

C

(X); !

�1

C

(Y )℄(u). Furthermore, the expansion

of !

C

([!

�1

C

(X); !

�1

C

(Y )℄) into the real and imaginary parts shows that

the latter expression yields exatly the omplexi�ation �

C

of the ur-

vature. Thus we may proeed exatly as in 3.5 in order to link the

omponent of �

(1)

C

ating on two holomorphi vetors in the omplexi�-

ation of g

�1

and valued in the antiholomorphi ones, with the obstru-

tion against the integrability of the holomorphi tangent subbundle in

(T

CR

M)

C

. Of ourse, the same applies if we swap the holomorphi and

antiholomorphi vetor �elds.
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3.8. The rest of the torsion. Similarly, the remaining two ompo-

nents of the urvature obtain a nie geometri interpretation in form

of an algebrai braket whih is de�ned as follows. Take a holomor-

phi vetor �eld � 2 (T

CR;L

M)

C

, an antiholomorphi � 2 (T

CR;R

M)

C

and projet their Lie braket to holomorphi omponent in (T

CR;R

M)

C

.

Clearly, this is an algebrai braket and it vanishes if and only if the or-

responding urvature omponent vanishes. Similarly to the involutivity

of the holomorphi and antiholomorphi bundles, this obstrution has

an tensorial interpretation S

R

2 (T

CR;L

M)

�


 (T

CR;R

M)

�


 T

CR;R

M ,

S

R

(�; �) = �

R

([�; �℄ + [J�; J�℄� J [J�; �℄ + J [�; J�℄):(26)

Swapping the left and right tangent bundle omponents, we obtain

S

L

2 (T

CR;R

M)

�


 (T

CR;L

M)

�


 T

CR;L

M:(27)

3.9. Theorem. Let M � C

4

be a Levi non-degenerate 6-dimensional

CR-manifold of CR-odimension 2 and let x 2 M be a hyperboli

point. Then M is produt of two Levi non-degenerate 3-dimensional

CR-strutures M

1

;M

2

� C

2

, loally around x, if and only if the alge-

brai Lie brakets

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

R

M=T

CR;R

M

f ; g

R

: T

R

M=T

CR;R

M � T

CR;R

M ! T

L

M=T

CR;L

M

vanish on a neighborhood of x.

The abstrat 6-dimensional hyperboli CR-manifolds of CR-odimen-

sion two are loally produts of (abstrat) 3-dimensional CR-manifolds

of CR-odimension 1 if and only if the above algebrai brakets, as well

as the Nijenhuis tensor N

J

2 �

2

(T

CR

M)

�


T

CR

M and tensors S

R

, S

L

from (26), (27) vanish.

Proof. All onsiderations are loal and so we may suppose that the

whole M is hyperboli. If M is a produt of two 3-dimensional CR-

manifolds, then we an also onsider the produt G !M

1

�M

2

of the

orresponding anonial Cartan bundles G

1

!M

1

, G

2

!M

2

equipped

with the produt ! = !

1

� !

2

of the orresponding normal Cartan

onnetions. These bundles and onnetions were onstruted already

by Cartan in [7℄ and their onstrution is also overed by Theorem

2.13. By de�nition, the new form ! 2 


1

(G; g) has all properties of

normal Cartan onnetions and its urvature � is the sum of the two

urvatures �

1

and �

2

of !

1

and !

2

, respetively. In partiular, there is

no torsion beause the onnetions !

1

and !

2

are torsion free. Thus the

four tensorial obstrutions on M � C

4

have to vanish as well.

Now, let M be a (abstrat) hyperboli 6-dimensional CR-manifold

and assume that all six tensorial obstrutions from our theorem vanish
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globally. Aording to previous results, all homogeneous omponents

�

(1)

of the torsion of the normal Cartan onnetion vanish globally.

Thus, aording to Theorem 2.8 and the table of the relevant oho-

mologies, all homogeneous omponents �

(i)

, i � 3, vanish too. In par-

tiular, there is no torsion part in �. Let us onsider next the part �

L

of the whole urvature whih is represented by ohains of the form

g

L

�

� g

L

�

! g

R

and analogously �

R

with left and right omponents

swapped. We shall use the indution on the homogeneity degrees to

show, that all these omponents vanish. Thus, assume we have done

this for homogeneity less than j and onsider the omponents in ho-

mogeneity j. Sine there are no ohomologies of the types in question,

the orresponding parts of �

L

and �

R

are in the image of �

�

and so the

di�erential � ats on them injetively. Thus we an apply the Bianhi

identity in order to see that there is no omponent whih ould on-

tribute, f. the end of the proof of Theorem 3.5. Consequently, both �

L

and �

R

vanish.

The splitting g = g

L

� g

R

indues two omplementary P -invariant

distributions on G, TG = T

L

G � T

R

G. These distributions are involu-

tive if and only if the obvious algebrai braket T

L

G � T

L

G ! T

R

G '

TG=T

L

G vanishes and similarly with L andR swapped. Sine the brak-

ets are algebrai, we may use the parallel �elds !

�1

(X), !

�1

(Y ) with

properly hosen X; Y for their evaluation. The projetion may be real-

ized by means of the omponent of ! valued in the left or right part of

g. But this is ontrolled by the urvatures �

L

, �

R

and so the brakets

vanish, as prolaimed.

Now, we know that the Cartan bundle G loally splits as a produt

of two manifolds but we need muh more. We wish to prove that there

is a neighborhood of x over whih the whole Cartan bundle (G; !) is

isomorphi to a produt of (G

L

; �

L

) and (G

R

; �

R

) for some suitable

Cartan onnetions �

L

, �

R

. In fat, if we onstrut these data only

loally around a hosen frame u 2 G, then the right invariane will

ensure what we need. The normal oordinates determined by the hoie

of u will be again our basi tool.

So let '

u

: g

L

�

� g

R

�

! G be the mapping de�ned only loally around

the origin by the horizontal ows and let �

u

be the orresponding se-

tion of G ! M . As an abuse of notation, we shall not mention the

de�nition domains of these and other loally de�ned mappings. Let us

write P

L

and P

R

for the paraboli subgroups in the individual om-

ponents of G and de�ne the trivial prinipal bundles G

L

= g

L

�

� P

L

,

G

R

= g

R

�

� P

R

. Further, onsider the prinipal �bre bundle morphism

	 : G

L

� G

R

! G (notie P

L

and P

R

ommute and the whole mapping
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is de�ned on �bres over a neighborhood of origin in g

�

only)

	 : ((X; p); (Y; q)) 7! '

u

(X; Y )pq:

Furthermore, the restritions of 	 yield prinipal �bre bundle mor-

phisms

	

L

: G

L

! G; (X; p) 7! '

u

(X; 0)p

	

R

: G

R

! G; (Y; q) 7! '

u

(0; Y )q

and onsider the one forms �

L

= 	

�

L

!

L

, �

R

= 	

�

R

!

R

. It remains to

prove that (G

L

; �

L

) � (G

R

; �

R

) is a bundle with Cartan onnetion

(de�ned loally over a neighborhood of the origin) and 	

�

! = �

L

��

R

wherever de�ned.

First notie that, due to our hoies and the involutivity of the left

and right parts of TG, the forms �

L

and �

R

are pullbaks of the whole

! (viewed then as forms with values in g, but without any ontribution

to one half of the image). Thus the properties of the Cartan onnetions

are simply transfered by 	

L

and 	

R

. Furthermore, sine the urvature

of ! does not mix left and right sides either, the struture equations

for �

L

and �

R

are obtained as pullbaks of the struture equation

of !. In partiular, the urvatures are again �

�

losed. Thus (G

L

; �

L

)

and (G

R

; �

R

) are 3-dimensional CR-manifolds of CR-odimension one

(loally around the origin of the base manifolds). Finally, we observe

that 	

�

! will (loally) oinide with the produt of the newly on-

struted Cartan onnetions if and only if they will evaluate equally

on vetors tangent to a �xed setion of G

L

� G

R

. Thus onsider the

setion (X; Y ) 7! ((X; e); (Y; e)), evaluate (�

L

� �

R

) at the vetor

(W; 0) + (0; Z) 2 T

((X;e);(Y;e))

(G

L

� G

R

), and ompare this with 	

�

!.

In fat, we may even deal with the left and right omponents of the

tangent spae separately.

Eah suh vetor � =

�

�t

j0

((X + tW; e); (Y; e)) is mapped by 	

L

to

T (	

L

)(�) =

�

�t

j0

Fl

X+tW

1

(u) and so we an easily ompare the values

�

L

(�) and 	

�

!(�):

(�

L

)(�) = !

L

(

�

�t

j0

Fl

!

�1

(X+tW )

1

(u))

	

�

!(�) = !

L

(

�

�t

j0

Fl

!

�1

(X+tW+Y )

1

(u)):
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Next, we observe that !

�1

(Y ) ommutes with !

�1

(X+tW ) sine there

is no ohomology mixing the arguments from the left and right om-

ponents of g

�

. Thus we may rewrite the last expression as

	

�

!(�) = !

L

�

T (Fl

!

�1

(Y )

1

)(

�

�t

j0

Fl

!

�1

(X+tW )

1

(u))

�

= (Fl

!

�1

(Y )

1

)

�

!

L

(

�

�t

j0

Fl

!

�1

(X+tW )

1

(u)):

Thus, in order to see that the two values oinide, it suÆes to show

that (Fl

!

�1

(Y )

1

)

�

!

L

= !

L

for all Y 2 g

R

�

.

We know this for the ow in the time zero, Fl

!

�1

(Y )

0

= id

G

, and so we

have just to show that

�

�s

(Fl

!

�1

(Y )

s

)

�

!

L

vanishes identially. Eah vetor

in the left omponent of T

v

G is of the form !

�1

(V )(v) with V 2 g

L

and

we ompute

(Fl

!

�1

(Y )

s

)

�

!

L

(

�

�t

j0

Fl

!

�1

(V )

t

(v)) = !

L

(

�

�t

j0

Fl

!

�1

(Y )

s

ÆFl

!

�1

(V )

t

(v))

= !

L

(!

�1

(V )(Fl

!

�1

(Y )

s

(v))) = V:

Sine the derivative of this onstant mapping vanishes, the required

invariane of !

L

has been proved.

Similarly we deal with the other omponent !

R

.

Finally we observe that ifM is embedded in C

4

, then we may always

�nd embeddings �

i

of the omponents M

i

in neighborhoods of x

i

into

C

2

suh that

� = �

1

� �

2

: M ! C

4

= C

2

� C

2

is an embedding of M at x = (x

1

; x

2

). In fat, onsider the initial

embedding  : M ! C

4

. Then the restrition of  to M

1

� fx

2

g is

an embedding of M

1

into C

4

that respets the CR-struture of M

1

.

There is a holomorphi projetion �

1

: C

4

! C

2

that is di�eomorphi

from  (M

1

� fx

2

g) onto its image. Denote the resulting mapping by

�

1

and the analogous mapping for the seond omponent by �

2

. Then

�

1

� �

2

is the desired embedding. By passing to normal forms (see

Appendix B) one an even prove that the embeddings � and  are

equivalent, i.e., � = � Æ  with some loally de�ned biholomorphi

map � : C

4

! C

4

.

3.10. Chains. The last topi we want to disuss are the analogies to

the hains on CR-manifolds of CR-odimension one. We have intro-

dued the general onepts of hains and 1-hains in 2.4 for all para-

boli geometries. These two notions oinide for the CR-manifolds of

CR-odimension one and they also oinide with the hains de�ned in

[8℄.
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Let us reall that the amount of di�erent 1-hains up to parametriza-

tions passing in �xed diretion through a given point x 2 M , as well

as the set of all hains through x is visible from the homogeneous ase

(see 2.5).

The detailed disussion on the quadri Q is reviewed in Appendix B

with the following result: There is a one-parametri family of distin-

guished parametrizations on eah (non-parametrized) 1-hain, and in

eah diretion whih does not belong to the subspae T

CR

x

M and does

not belong to T

L

x

M neither to T

R

x

M , there is a 1-parametri lass of

1-hains up to their parameterizations, f. (41). If the diretion does

belong to the left or right tangent spae then there is a unique 1-hain

in that diretion. The hains through a given point x 2M are available

only in 2-dimensional diretions of the form fu;X ^ Y g 2 T

x

M ^ T

x

M

with u 2 G in the �bre over x and X, Y 2 g

�2

.

A general 2-dimensional surfae is said to have the hain property at

its point y if there is a hain providing a parametrization of this surfae

around y.

The vetor �elds !

�1

(X), X 2 g

�2

span a two-dimensional distribu-

tion in TG whih we all the hain distribution of the CR-struture.

In general, the two-dimensional (non-parameterized) hains �

u

t

ro-

tate around one �xed 1-hain �

u

0

;X

(t) if we move the ruling frame

u

t

= Fl

!

�1

(X)

t

(u) along the horizontal ow. This is not possible, how-

ever, if the whole torsion of our CR-struture is zero, beause then the

whole hain distribution is integrable. This is in aordane with the

previous theorem laiming that the whole bundle G is the produt of

two anonial Cartan bundles and the Cartan onnetion is a produt,

too. Thus, in the torsion-free ase, our hains �

u

are obtained as prod-

uts of the hains in the three-dimensional CR-manifolds. In partiular

we have proved the following theorem.

3.11. Theorem. Let M � C

4

be an embedded 6-dimensional hyper-

boli CR-manifold and assume that the algebrai brakets

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

R

M=T

CR;R

M

f ; g

R

: T

R

M=T

CR;R

M � T

CR;R

M ! T

L

M=T

CR;L

M

vanish identially. Then eah hain �

u

: U � g

�2

! M has the hain

property at eah of its points.

The same onlusion holds for abstrat 6-dimensional hyperboli CR-

manifolds of CR-odimension 2 without torsion.
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4. The ellipti strutures

4.1. Almost omplex and almost produt strutures. Let us

reall that on embedded ellipti 6-dimensional CR-manifolds of CR-

odimension two, the fundamental osulation (1) provides the (g; P )

struture on M with g = sl(3; C ), and its standard omplex Borel sub-

algebra p (viewed both as real Lie algebras). The proper hoies for the

groups G, G

0

, P are disussed in Appendix B.

There are striking general similarities between the hyperboli and

ellipti geometries. Indeed, the deomposition of the subspae g

�1

� g

�

g

�1

= g

L

�1

� g

R

�1

indues an almost produt struture on the omplex tangent bundle

T

CR

M . We shall write again T

CR;L

M and T

CR;R

M for the individ-

ual omponents. Furthermore, the omplex struture of the whole real

Lie algebra sl(3; C ) indues the almost omplex struture J on TM ,

given by the formula J(Tp:!

�1

(X)(u)) = Tp:!

�1

(iX)(u). Clearly this

formula is independent of the hoie of X and u whih give the same

vetor !

�1

(X)(u) 2 T

x

M beause the adjoint ation of P on g is om-

plex linear.

As we have seen in the hyperboli ase, the knowledge of the real

seond ohomologies of the algebras in question is most essential. Also

now, we shall mostly deal with the abstrat (g; P )-strutures de�ned

on 6-dimensional manifolds but we shall point out the spei� proper-

ties of the embedded ones. In partiular, all obstrutions oming from

ohomologies with ohains of the form g

�1

�g

�1

! g

�1

will disappear

automatially aording to Lemma 1.1.

Roughly speaking, the role of the integrability of the almost om-

plex strutures on the omplex subbundles on hyperboli manifolds is

played by the integrability of the almost produt struture on T

CR

M in

the ellipti ase. In partiular the almost produt struture will always

be integrable on the embedded ellipti CR-manifolds. Further, the in-

tegrability of the almost produt struture of the hyperboli manifolds

orresponds to the integrability of the almost omplex struture J on

the ellipti ones. In partiular, the almost omplex struture J is in-

trinsi to the manifold M and it annot be indued by the ambient

omplex struture in C

4

.

4.2. Lemma. All irreduible omponents in H

2

�

(g

�

; sl(3; C )) are the

one dimensional G

0

-modules whih are generated by the ohains listed

in Table 2.
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homog. ohains omment

1 g

�2

� g

L

�1

! g

�2

antilinear in both arguments

1 g

�2

� g

R

�1

! g

�2

antilinear in both arguments

1 g

L

�1

� g

L

�1

! g

R

�1

sesquilinear

1 g

R

�1

� g

R

�1

! g

L

�1

sesquilinear

1 g

R

�1

� g

L

�1

! g

L

�1

sesquilinear

1 g

L

�1

� g

R

�1

! g

R

�1

sesquilinear

4 g

�2

� g

L

�1

! g

L

1

omplex linear in both arguments

4 g

�2

� g

R

�1

! g

R

1

omplex linear in both arguments

Table 2. Real seond ohomologies of g

�

with oeÆ-

ients in g = sl(3; C )

Proof. Exatly as in the hyperboli ase, the omplexi�ation of the

ohomologies we want to desribe is fully desribed by the Table 4 in

Appendix A. Beause of the omplex struture on g

�

, eah of the real

omponents will produe two opies in the omplexi�ation. In order

to reognize them, we have to notie that omplexi�ations of omplex

linear maps will not swap the two opies in the omplexi�ed Lie algebra,

while the antilinear ones will swap them. This simple observation leads

immediately to our Table 2.

4.3. Theorem. The almost omplex struture J on an abstrat ellipti

CR-manifold of CR-odimension two is integrable if and only if the

antilinear part �

(1)

aa

of the urvature � of the anonial normal Cartan

onnetion vanishes. This in turn happens if and only if the algebrai

Lie brakets

T

(1;0)

M=T

CR

C

M � (T

CR;L

M)

(1;0)

! T

(0;1)

M=T

CR

C

M(28)

T

(1;0)

M=T

CR

C

M � (T

CR;R

M)

(1;0)

! T

(0;1)

M=T

CR

C

M(29)

on the omplexi�ed graded tangent bundles vanish identially.

Proof. Essentially, all tehnique we need has been developed already. In

partiular, we may repeat the omputation of the Nijenhuis tensor from

the proof of Theorem 3.6. Sine the whole g

�

is omplex, we an do

that with any X; Y 2 g

�

. The result tells us that the whole Nijenhuis
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tensor N , evaluated on Tp:!

�1

(X)(u), Tp:!

�1

(Y )(u), is equal

Tp:!

�1

�

(4�

(1)

aa

+ 4�

(2)

aa

+ 4�

(3)

aa

)(X; Y )(u)

�

(u):

Now, under the additional ondition that the higher homogeneities an-

not ontribute whenever �

(1)

aa

(X; Y ) vanishes, the Nijenhuis tensor van-

ishes if and only if �

(1)

aa

vanishes. Aording to the table of ohomologies,

the latter expression must be given by the algebrai brakets (28), (29).

Thus we have to show, that if �

(1)

aa

vanished, then no other antilinear

omponent valued in g

�

ould our in �

(2)

, and if so, than even not

in �

(3)

. Let us assume the two brakets (28), (29) vanish. Then there

is the algebrai braket

T

(1;0)

M=T

CR

C

M � (T

CR;L

M)

(1;0)

! (T

CR

M)

(0;1)

whih an be evaluated by means of the omplexi�ed urvature om-

ponent of homogeneity two. Clearly this must ome from an antilinear

omponent and the vanishing of this algebrai braket is equivalent to

the vanishing of the antilinear parts �

(2)

aa

: g

�2

� g

L

�1

! g

�1

. Using the

Bianhi identity exatly as in the end of the proof of Lemma 3.4 we

verify that there is no urvature like this.

Similarly we ould proeed with the remaining algebrai brakets

on the holomorphi tangent bundle with values in the antiholomorhi

tangent bundle. However, the only omponent of homogeneity three is

�

(3)

aa

: g

�2

� g

�2

! g

�1

and this vanishes automatially beause it is

omplex antiliear and g

�2

is of (omplex) dimension one.

4.4. Theorem. LetM be an abstrat 6-dimensional ellipti CR-mani-

fold with CR-odimension two. The distributions T

CR;L

M , T

CR;R

M in

the omplex subspae T

CR

M are integrable if and only if the algebrai

Lie brakets

(T

CR;L

M)

(1;0)

� (T

CR;L

M)

(0;1)

! (T

CR;R

M)

(1;0)

(30)

(T

CR;R

M)

(1;0)

� (T

CR;R

M)

(0;1)

! (T

CR;L

M)

(1;0)

(31)

on the omplexi�ed omplex spaes T

CR

C

M vanish identially.

In partiular, these almost produt strutures are always integrable

on the embedded ellipti CR-manifolds.

Proof. The distributions are integrable if and only if the algebrai Lie

brakets of two �elds from the same omponent projeted to the other

one vanish. This is equivalent to the orresponding ondition on the

omplexi�ed bundles T

CR

C

. Now we may use the tehnique introdued

in 3.7. Thus all the algebrai brakets in question will be linked to

spei� omponents of the urvature. Sine they are all living on the
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CR tangent spaes, they must vanish automatially on the embedded

ellipti manifolds.

On abstrat manifolds, this means the brakets of holomorphi �elds

projeted to the other omponent vanish automatially and the distri-

bution T

CR;L

M is integrable if and only if the algebrai braket (30)

vanishes (f. Table 2). The other distribution is treated similarly.

4.5. Remaining torsion omponents. Let us notie that also the

remaining two omponents of the torsion part of the urvature � of the

anonial normal Cartan onnetion allow an expression by algebrai

brakets. This time we obtain

(T

CR;R

M)

(1;0)

� (T

CR;L

M)

(0;1)

! (T

CR;L

M)

(1;0)

(32)

(T

CR;L

M)

(1;0)

� (T

CR;R

M)

(0;1)

! (T

CR;R

M)

(1;0)

(33)

and they vanish again on all embedded ellipti 6-dimensional CR-

manifolds in C

4

.

4.6. Theorem. Let M � C

4

be an embedded 6-dimensional ellipti

CR-manifold of CR-odimension 2 and assume that the algebrai brak-

ets (28), (29) both vanish. Then the omplex struture J on the entire

Cartan bundle G is integrable, the normal Cartan onnetion is holo-

morphi, and there are two integrable foliations ofM by omplex urves

in C

4

whih span the omplex subbundle T

CR

M .

The same onlusion is true on the abstrat 6-dimensional ellipti

CR-manifolds if and only if all algebrai brakets (28), (29), (30), (31),

(32), and (33) vanish identially.

Proof. In fat, we have nearly proved all neessary fats. Again, the

same omputation with the Nijenhuis tensor reveals, that the antilin-

ear part �

aa

of the entire urvature obstruts its integrability. One we

assume that all the torsion vanishes, there are no omponents of the

urvature up to homogeneity four. This is not antilinear, however. A

simple hek with the Bianhi identity shows that the omplex linear

urvature omponents an never produe anything antilinear. Thus the

integrability of the omplex struture follows. Sine the omplex stru-

ture J on G has been de�ned by the absolute parallelism !, learly

! 2 


1

(G; g) is holomorphi.

On the abstrat manifolds, the same argument applies if we assume

that the whole torsion vanishes. On the other, eah of the omponents of

the torsion eventually produes some antilinear ontribution in higher

homogeneities via the Bianhi identity.

Now, assume J is integrable and the torsion vanishes. Then also all

horizontal vetor �elds !

�1

(X), !

�1

(Y ) with X, Y 2 g

L

�1

, or both in
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the other omponent, ommute. Thus we obtain the integrable (real)

2-dimensional distributions in TG spanned by their values. The integral

surfaes an be loally parametrized by the holomorphi (with respet

to J) mappings



R

u

: g

R

�1

! TG; X 7! Fl

!

�1

(X)

1

(u)



L

u

: g

L

�1

! TG; X 7! Fl

!

�1

(X)

1

(u)

and also their projetions to M will be holomorphi urves. Obviously,

we have obtained integral manifolds for the distributions T

CR;R

and

T

CR;L

.

4.7. Chains. LetM be a 6-dimensional ellipti CR-manifold with CR-

odimension two, x 2M , � 2 T

x

M . As disussed in 2.4, the projetions

of the ows of horizontal vetor �elds determined by elements in g

�2

are 1-hains with spei� properties, while

g

�2

3 X 7! Fl

!

�1

(X)

1

(u) 7! p(Fl

!

�1

(X)

1

(u))

is the hain at x determined by a �xed frame u 2 G over x. A omplex

hain is a (loally de�ned) urve � : C !M whih is holomorphi with

respet to the almost omplex struture J and has the hain property

in all its points.

4.8. Theorem. If the brakets (28) and (29) vanish on a neighbor-

hood of an ellipti point x of an embedded 6-dimensional CR-manifold

M � C

4

of CR-odimension two, then there are unique omplex hains

through x in all omplex diretions whih do not belong to T

CR

M .

The same onlusion is true for the abstrat ellipti CR-manifolds if

the other four obstrutions against the vanishing of the torsion equal to

zero too.

Proof. Analogously to the hyperboli strutures, there is the hain dis-

tribution in TG spanned by the horizontal �elds !

�1

(X) with X 2 g

�2

.

Again, the straightforward inspetion of the possible urvature ompo-

nents reveals that there is no urvature with both arguments in g

�2

if

the torsion vanishes. Thus the hain distribution is integrable. Conse-

quently the ows of the horizontal �elds yield holomorphi parameter-

izations and the theorem is proved.

5. Final remarks and onlusions

5.1. Relation to other results. Mizner [17℄ onstruted CR-invari-

ant onnetions for weakly uniform CR-strutures of odimension 2.

In the ases onsidered there, the automorphisms of the quadris are

always linear (thus, p

+

is absent). Similar results were obtained by



HYPERBOLIC AND ELLIPTIC CR-MANIFOLDS OF CODIMENSION TWO 33

Garrity and Mizner for CR-strutures of odimension bigger than 2

with rigid osulating quadris. The CR-manifolds that are onsidered

in this paper are not overed there.

In [9℄ Ezhov, Isaev and Shmalz onstruted parallelisms for hyper-

boli and ellipti manifolds. These parallelisms turn out to be Cartan

onnetions only in very speial ases. The geometri reason for that is

the presene of torsion in our Cartan onnetion. We were able to har-

aterize the torsion-free (\semi-at") ases as manifolds with integrable

almost produt struture in the hyperboli ase and with integrable al-

most omplex struture in the ellipti ase. Thus we give an answer to

the question about the geometri meaning of \semi-atness" for ellipti

manifolds that has been posed in [9℄.

Let us also remark that the almost CR-manifolds of CR-odimension

one (e.g. ertain real hypersurfaes in almost omplex manifolds) have

been studied from the point of view of the general theory of paraboli

geometries in [3℄. In partiular, a nie geometri spei�ation of the

onstrution from 2.13 is presented there.

5.2. The paraboli CR-geometry. Unfortunately, the automorph-

ism group of the paraboli quadri (3) does not �t into our sheme

of general paraboli geometries at all (notie the abuse of the non-

ompatible use of the word \paraboli" whih is used in the sense of

Setion 2 now). This is obvious already from its dimension whih is 17.

The struture of its in�nitesimal automorphisms is desribed in detail

in [19℄ and it turns out that the disrete enter Z

2

of the hyperboli

or ellipti group blows up into the additional dimension and one opy

of su(2; 1) sits still inside. So it plays niely its role of an intermediate

state between the hyperboli and ellipti points.

In partiular the methods of Setion 2 whih are based on the ex-

istene of the Hodge theory on the ohains in the Lie algebra oho-

mology annot work. One should believe that some spei�ation of the

very general approah in [18℄ ould be appliable. We onsider this as

a very interesting open problem.

5.3. Webster{Tanaka onnetions. There is a very rih underly-

ing geometry on eah manifold equipped with a Cartan onnetion

modelled over graded Lie algebras. In partiular, we always have the

prinipal bundles G

0

= G=P

+

! M with struture group G

0

and the

prinipal bundle G ! G

0

with the struture group P

+

. The latter bun-

dle always admits global smooth G

0

-equivariant setions and the set

of all of them is parameterized by one-forms on M . The pullbak of

the (g

�

� g

0

){omponent of the Cartan onnetion ! by means of any
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of these setions provides an aÆne onnetion on TM , i.e. a solder-

ing form on G

0

together with a prinipal onnetion on G

0

. This on-

strution has been desribed in full generality in [21℄ and it produes

exatly the Webster-Tanaka onnetions on the CR-manifolds with CR-

odimension one. Thus we have a similar lass of linear onnetions on

M underlying our ellipti and hyperboli strutures.

5.4. Natural bundles and invariant operators. Another very in-

teresting onsequene of our onstrution of the anonial Cartan on-

netions is the theory of the semi-holonomi jet modules for general

paraboli geometries, whih allows to transfer the problem of �nding

invariant operators whih at on some natural bundles oming from

representations of P into problems in �nite dimensional representation

theory. The �rst appliation of this theory is worked out in [5, 6℄.

In partiular, there are the Bernstein-Gelfand-Gelfand sequenes for

all irreduible G-modules V whih speialize to the BGG resolution

of the onstant sheaf with oeÆients in V on the homogeneous spae,

see [6℄. The analogies to lassial omplexes on CR-manifolds with CR-

odimension one should be loalized inside of these sequenes.

A. Cohomologies

The aim of this setion is to provide the list of all non-zero oho-

mologies in H

2

(g

�

; g) for the omplex algebras

g = sl(3; C ) � sl(3; C ) p = fall upper triangular matries in gg

We shall refer to the two opies of sl(3; C ) as the left and right ones.

The two parts of g

0

oinide with the parts of the Cartan subalgebra

of the diagonal matries and all the one-dimensional root spaes are

(omplex) one-dimensional. We shall denote them as indiated in the

following matries

g =

0

�

� g

L

1;0

g

L

2

g

L

�1;0

� g

L

0;1

g

L

�2

g

L

0;�1

�

1

A

�

0

�

� g

R

1;0

g

R

2

g

R

�1;0

� g

R

0;1

g

R

�2

g

R

0;�1

�

1

A

(34)

Here the stars �ll up the subalgebra g

0

, p

+

onsists of the stritly upper

triangular matries, g

1

= g

1;0

� g

0;1

as g

0

-module, et.

The ohomologies for modules over simple algebras are ompletely

desribed in terms of the orbits of the Weyl groups on the weights.

We shall use the notation and tehnique as developed in [2℄. First, we

have to reall a few basi fats on the representations of the paraboli

subalgebra p � g.

The Dynkin diagram of sl(3; C ) is � � . The paraboli subalgebras

are denoted by rossing the nodes whih orrespond to the negative



HYPERBOLIC AND ELLIPTIC CR-MANIFOLDS OF CODIMENSION TWO 35

simple oroots whih do not belong to p. In our ase this means one

� � for both left and right sl(3; C ). The weights of irreduible rep-

resentations of p are then denoted by the oeÆients in their expres-

sions as linear ombinations of fundamental weights, plaed over the

orresponding nodes. The g-dominant weights have non-negative inte-

gral oeÆients, the p-dominant weights must be non-negative over the

unrossed nodes only. For example, the trivial representation and the

�rst and seond fundamental representations of sl(3; C ) have the high-

est weights �

0

�

0

, �

1

�

0

, �

0

�

1

. Eah p-module enjoys the �ltration of

the p-submodules suh that the assoiated graded p module deom-

poses into the diret sum of irreduible p-modules. For example, the

�ltration and deomposition of the p-module sl(3; C ) is as follows

g

�1;0

g

1;0

g

�2

+ � + g

0

+ � + g

2

g

0;�1

g

0;1

(35)

and in the terms of the highest weights for the one-dimensional irre-

duible p-modules

�

1

�

�2

�

0

�

0

�

�1

�

2

�

�1

�

�1

+ � + � + � + �

1

�

1

�

�2

�

1

�

0

�

0

�

2

�

�1

(36)

The whole Weyl group W of sl(3; C ) is generated by the two simple

reetions s

1

, s

2

with respet to the two simple roots, ating on the

weights g

�

0

.

s

1

: �

a

�

b

7! �

�a

�

a+ b

s

2

: �

a

�

b

7! �

a + b

�

�b

(37)

Sine our paraboli subalgebra p � g is the Borel subalgebra, the or-

responding paraboli subgroup W

p

oinides with the whole W .

The di�erential � respets the homogeneities of the ohains and so

the ohomologies split into homogeneous omponents H

�

`

(g

�

; g) too.

Moreover, we have the identi�ation H

p

`

(g

�

; g) ' H

p

�`

(p

+

; g) (of real

vetor spaes). Thus the Kostant's version of the Bott-Borel-Weil the-

orem is relevant for our aims as well:

A.1. Theorem. Let p � g be a paraboli subalgebra in a omplex sim-

ple algebra g. If A is a �nite dimensional irreduible g-module of highest

weight �, then the whole ohomology H

�

(p

+

; A) is ompletely reduible

as a p-module and the irreduible omponents with highest weight �

our if and only if there is an element w 2 W

p

� W suh that

� = w:� = w(� + �) � � and in that ase it ours in degree jwj

with multipliity one.
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H

0

(p

+

; C ) �

0

�

0

H

0

(p

+

; sl(3; C )) �

1

�

1

H

1

(p

+

; C )

�

�2

�

1

�

1

�

�2

H

1

(p

+

; sl(3; C ))

�

�3

�

3

�

3

�

�3

H

2

(p

+

; C )

�

0

�

�3

�

�3

�

0

H

2

(p

+

; sl(3; C ))

�

1

�

�5

�

�5

�

1

Table 3

The degree of an element w 2 W is de�ned as the smallest possible

number of simple reetions whose omposition is w. See e.g. [15, 24℄

for the proof the Theorem.

Now, we have a simple proedure to ompute the ohomologies: First,

we write down the labelled Dynkin diagram depiting the g-dominant

highest weight �. For example, the highest weight of the adjoint rep-

resentation is �

1

�

1

. Then we add one to eah oeÆient and at by

ombinations of simple reetions aording to (37). Finally we sub-

trat one from eah oeÆient. The p-dominant results are just the

highest weights of the ohomologies.

Unfortunately, we deal with a sum g = g

L

� g

R

of two simple al-

gebras. In order to make use of the latter theorem, we shall view the

representation spaes of g and p as the (exterior) tensor produts A�

�

B

of g

L

-modules A and g

R

-modules B. In partiular, we understand the

adjoint representation on g = g

L

� g

R

as

g = (g

L

�

�

C ) � (C �

�

g

R

)

with the obvious tensorial ations of p

+

= p

L

+

� p

R

+

.

The ohomology with values in a diret sum of modules is just the

diret sum of the ohomologies with values in the submodules. Now,

the K�unneth theorem implies for eah tensor produt of our modules

A�

�

B

H

p

(p

L

+

� p

R

+

; A�

�

B) =

X

i+j=p

�

H

i

(p

L

+

; A)�

�

H

j

(p

R

+

; B)

�

:(38)

Thus, in order to ompute the seond ohomologies

H

2

`

(p

L

+

� p

R

+

; sl(3; C ) � sl(3; C ))

we have to know all ohomologies H

i

�

(p

+

; sl(3; C )), i = 0; 1; 2, and

H

i

�

(p

+

; C ). The results omputed by the proedure as desribed above

are listed in Table 3.
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homogeneities omponents in H

2

(p

L

+

� p

R

+

; g

L


 C )

total

ations of

E

L

; E

R

; F

L

; F

R

omponents ohains

�1 2;�3; 0; 1 �

1

�

1

�

�

�

0

�

�3

g

R

2

� g

R

1;0

! g

L

2

�1 2;�3; 0;�1 �

1

�

1

�

�

�

�3

�

0

g

R

2

� g

R

0;1

! g

L

2

�1 0;�1;�2;�1 �

�3

�

3

�

�

�

�2

�

1

g

L

0;1

� g

R

0;1

! g

L

1;0

�1 0;�1;�2; 1 �

�3

�

3

�

�

�

1

�

�2

g

L

0;1

� g

R

1;0

! g

L

1;0

�1 0;�1; 2;�1 �

3

�

�3

�

�

�

�2

�

1

g

L

1;0

� g

R

0;1

! g

L

0;1

�1 0;�1; 2; 1 �

3

�

�3

�

�

�

1

�

�2

g

L

1;0

� g

R

1;0

! g

L

0;1

�4 �4; 2; 0; 0 �

1

�

�5

�

�

�

0

�

0

g

L

2

� g

L

1;0

! g

L

�1;0

�4 �4;�2; 0; 0 �

�5

�

1

�

�

�

0

�

0

g

L

2

� g

L

0;1

! g

L

0;�1

Table 4

The homogeneity of the omponents is given by the sum of the oeÆ-

ients, whih is the ation by the so alled grading element E 2 sl(3; C ),

E = diag(1; 0;�1). There is another independent element F 2 sl(3; C ),

F = diag(1;�2=3; 1), whih ats trivially on g

2

, by 1 on g

�1;0

, and by

�1 on g

0;�1

. Thus the ation of F on a weight module is given by one

third of the di�erene of the oeÆients over the nodes in the Dynkin

diagram.

Now, the rest of our omputation is quite easy sine all irreduible

omponents in the ohomologies are one-dimensional. Thus in order

to loalize the representatives of ohomologies as bilinear mappings,

we have just to evaluate the ations of the left and right g

0

-elements

E

L

, E

R

, F

L

, F

R

on the weight modules in the seond ohomologies

and this always desribes the possible domain and target of a bilinear

representative in the spae of ohains uniquely. A half of the result is

listed in Table 4. The other half is obtained by mutually replaing all

the left and right omponents.

In fat, we are interested in the real ohomologies H

2

`

(g

�

; su(2; 1)�

su(2; 1)) and H

2

`

(g

�

; sl(3; C )) where g

�

is the negative omplement to

the real Borel subalgebras p. As we have mentioned already, the lat-

ter ohomologies are dual to the real ohomologies H

2

�`

(p

+

; su(2; 1)�
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su(2; 1)) and H

2

�`

(g

�

; sl(3; C )). Thus the omplexi�ations of the re-

quested ohomologies will be dual (as real modules) to those listed in

Table 4.

B. Normal forms

For embedded real-analyti hyperboli or ellipti CR-manifolds one

has onstrutions of normal oordinates in the ambient spae in a neigh-

borhood of a given point. These oordinates are uniquely determined

up to some Lie-group ation of the isotropy group of the quadri (2)

resp. (4). The equation of the manifold takes then a speial form alled

normal form that re�nes the osulation (1) by the quadri. These on-

strutions generalize Chern{Moser's normal form for real-analyti hy-

persurfaes in C

n

. They were obtained by Loboda [16℄ in the hyperboli

and by Ezhov and Shmalz [11℄ in the ellipti ase.

Let us reall the isotropy groups of the quadris. It is onvenient to

hoose oordinates that reet the geometri struture of the quadris.

The hyperboli quadri is the diret produt of two hyperspheres in

C

2

:

v

1

= jz

1

j

2

; v

2

= jz

2

j

2

:

The geometri struture of the ellipti quadri will be revealed by pass-

ing to oordinates

w

℄

1

= w

1

+ iw

2

; w

℄

2

= w

1

� iw

2

:

Then v

1

+ iv

2

=

w

℄

1

� �w

℄

2

2i

and the equation of the quadri takes the form

V =

w

℄

1

� �w

℄

2

2i

= z

1

�z

2

:

Thus this quadri arries a omplex struture; it is a omplex hyper-

surfae in C

4

with oordinates z

1

; �z

2

; w

℄

1

; �w

℄

2

. Below we will use these

oordinates and omit the sharps.

The automorphism group of any quadri ontains a transitive sub-

group alled Heisenberg group. For any point (p; q) at the quadri the

Heisenberg translation that takes the origin into (p; q) has the form

z

�

= z + p

w

�

= w + q + 2ihz; pi:

Thus, any automorphism deomposes into a Heisenberg translation

and an isotropi automorphism. The subgroup of isotropi automor-

phisms will play the role of the paraboli subgroup P with Lie algebra

p.
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For both our quadris the isotropi automorphisms an be written

by the well-known Poinar�e formula for sphere automorphisms

Z

�

= C(Z + AW )(1� 2i

�

AZ � (R + iA

�

A)W )

�1

W

�

= C

�

CW (1� 2i

�

AZ � (R + iA

�

A)W )

�1

;

where Z and W are diagonal 2 � 2-matries with entries z

1

; z

2

and

w

1

; w

2

, respetively, C and A are omplex, and R is a real diagonal

matrix. There ours an additional disrete automorphism that inter-

hanges z

1

$ z

2

and w

1

$ w

2

. The group P deomposes into G

0

and P

+

where G

0

onsists of the linear isotropi automorphisms (with

A = R = 0, inluding the disrete automorphism) and P

+

onsists of

the \non-linear" automorphisms with C = E. The Lie algebras of the

latter subgroups are g

0

and p

+

, respetively.

The only di�erene between the hyperboli and ellipti ase is a

di�erent de�nition of the omplex onjugation. In the hyperboli ase

the onjugation is the usual one and R is real means that it has real

entries. Thus, the automorphisms also split into a diret produt. Sine

the automorphism group of the sphere is SU(2; 1)=Z

3

this shows that

the automorphism group of the hyperboli quadri is

�

(SU(2; 1)=Z

3

)� (SU(2; 1)=Z

3

)

�

o Z

2

:

In the ellipti ase the omplex onjugation is the usual one ombined

with interhanging z

1

$ z

2

and w

1

$ w

2

. R is real means now that the

entries are mutually omplex onjugated numbers. The identi�ation

of the automorphism group G as

�

SL(3; C )=Z

3

�

o Z

2

is less evident than in the hyperboli ase. As shown in [19℄ the Lie alge-

bra of in�nitesimal automorphisms of the ellipti quadri is isomorphi

to sl(3; C ). Sine G ats e�etively at sl(3; C ) via Ad one an onsider

G as a subgroup of Aut sl(3; C ). Both groups have the same dimen-

sion and onsist of two onneted omponents. Therefore they must

oinide. It is not hard to hek that Aut sl(3; C )

�

=

SL(3; C )=Z

3

o Z

2

.

It follows from the expliit desription of the ation of G on the in-

�nitesimal automorphisms that P is exatly the subgroup that respets

the �ltration of g by the p-submodules (f. 2.1).

Let us remark that the hyperboli and ellipti quadris have ompat

ompletions in C P

2

� C P

2

resp. C P

2


 C . All automorphisms extend to

automorphisms of the ompletion and are then linear with respet to

the orresponding homogeneous oordinates (see [10℄). Moreover, these

ompletions an be onsidered as G=P .
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Now we formulate the onrete normal form onditions: In the hy-

perboli ase the normalized equation of the manifolds takes the form

v

j

= jz

j

j

2

+

X

N

j

kl

(z; �z; u);(39)

where N

j

kl

= N

j

lk

are polynomials of degree k in z and of degree l in �z

with oeÆients that are analyti funtions of u = Rew. The summa-

tion runs over all integral k; l with maxfk; lg > 1 and minfk; lg > 0

The polynomials satisfy the onditions

�N

1

k1

��z

1

= 0

�N

2

k1

��z

2

= 0; for k � 2

�

2

N

1

21

�z

1

�z

2

= 0

�

2

N

2

21

�z

1

�z

2

= 0

�

4

N

1

22

�z

1

�z

2

��z

1

��z

2

= 0

�

4

N

2

22

�z

1

�z

2

��z

1

��z

2

= 0

�

4

N

1

22

(�z

1

)

2

(��z

1

)

2

ju

2

=0

= 0

�

4

N

2

22

(�z

2

)

2

(��z

2

)

2

ju

1

=0

= 0

�

5

N

1

32

(�z

1

)

3

(��z

1

)

2

ju

2

=0

= 0

�

5

N

2

32

(�z

2

)

3

(��z

2

)

2

ju

1

=0

= 0

�

6

N

1

33

(�z

1

)

3

(��z

1

)

3

ju

2

=0

= 0

�

6

N

2

33

(�z

2

)

3

(��z

2

)

3

ju

1

=0

= 0:

In the ellipti ase the normalized equation takes the form

V = z

1

�z

2

+

X

N

kl

(z; �z;U);(40)

where U =

w

1

+ �w

2

2

and theN

kl

are polynomials as above (though without

additional reality ondition). The summation is also as above and the
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polynomials satisfy the onditions

�N

k1

��z

2

= 0

�N

1k

�z

1

= 0; for k � 2

�

3

N

21

�z

1

��z

1

�z

2

= 0

�

3

N

12

��z

2

��z

1

�z

2

= 0

�

4

N

22

�z

1

�z

2

��z

1

��z

2

= 0

�

4

N

22

(�z

1

)

2

(��z

2

)

2

j��=0

= 0

�

5

N

32

(�z

1

)

3

(��z

2

)

2

j��=0

= 0

�

5

N

23

(�z

1

)

2

��z

1

(��z

2

)

2

j��=0

= 0

�

6

N

33

(�z

1

)

3

(��z

2

)

3

j��=0

= 0:

From the normal form one an see that the real 2-dimensional surfae

fz = 0; v = 0g resp. fz = 0; V = 0g is always ontained in the

manifold. It is alled standard 2-hain �

0

(with respet to the given

normalization). One an de�ne analyti 2-hains as all possible images

of the standard 2-hain under renormalizations. The family of hains

passing through a given point does not depend on the hoie of normal

oordinates but it does depend on the initial point. In di�erene to the

situation for hypersurfaes a 2-hain � for the initial point p need not

be a 2-hain for other points p

0

2 �.

It is easy to obtain the analyti 2-hains for the quadris through

the origin as the images of the standard hain under isotropi auto-

morphisms. Thus these 2-hains oinide with the geometrially de-

�ned hains from 2.4. One obtains that unparametrized 2-hains are

the intersetions of the quadri with so-alled matrix lines Z = AW ,

where Z;W;A have the same meaning as above. Automorphisms with

C = E; A = 0 preserve the standard hain and hange only the pa-

rameter. Sine the renormalizations of a manifold oinide up to higher

order terms with automorphisms of the osulating quadri this shows

that there exists exatly one 2-hain through the origin tangent to

fZ = AUg.

The 1-hains onsidered in 2.4 an be easily desribed for quadris

(see [19℄). The projetions of the 1-parametri families from g

�2

are

straight lines in �

0

through the origin. All other 1-hains are obtained

by the ation of isotropi automorphisms. Sine the latter preserve

2-hains it follows that 1-hains always remain in some 2-hain. The

isotropi automorphisms deompose into one automorphism that pre-

serves �

0

and one that maps �

0

to another hain. Therefore it suÆes to
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study the 1-hains that are ontained in �

0

. For the hyperboli quadri

we have the following situation:

� There are two singular diretions at �

0

suh that the only 1-hains

in these diretions are straight lines: fu

1

= 0g and fu

2

= 0g.

� In all non-singular diretions one has a 1-parametri family of

1-hains onsisting of one straight line and hyperbolas

u

1

=

�u

2

1� �u

2

;(41)

where � indiates the diretion and � is the additional parameter.

� 2-hains may interset at single points or singular 1-hains only.

In the ellipti ase we have

� In any diretion of �

0

there is a 1-parametri family of 1-hains

onsisting of a straight line and irles

�(u

2

1

+ u

2

2

) + sin�u

1

� os�u

2

= 0;(42)

where � indiates the diretion and � is the additional parameter.

� 2-hains interset at single points.
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