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Abstra
t. This paper is devoted to the study of geometri
 stru
tures

modeled on homogeneous spa
es G=P , where G is a real or 
omplex

semisimple Lie group and P � G is a paraboli
 subgroup. We use meth-

ods from di�erential geometry and very elementary �nite{dimensional

representation theory to 
onstru
t sequen
es of invariant di�erential op-

erators for su
h geometries, both in the smooth and the holomorphi



ategory. For G simple, these sequen
es spe
ialize on the homogeneous

model G=P to the 
elebrated (generalized) Bernstein{Gelfand{Gelfand

resolutions in the holomorphi
 
ategory, while in the smooth 
ategory

we get smooth analogs of these resolutions. In the 
ase of geometries

lo
ally isomorphi
 to the homogeneous model, we still get resolutions,

whose 
ohomology is expli
itly related to a twisted de Rham 
ohomol-

ogy. In the general (
urved) 
ase we get distinguished 
urved analogs of

all the invariant di�erential operators o

urring in Bernstein{Gelfand{

Gelfand resolutions (and their smooth analogs).

On the way to these results, a signi�
ant part of the general theory

of geometri
al stru
tures of the type des
ribed above is presented here

for the �rst time.

1. Introdu
tion

Our approa
h to geometries modeled on homogeneous spa
es goes ba
k to

E. Cartan's notion of an `espa
e generalis�e'. The 
entral obje
ts for su
h ge-

ometries are suitably normalized Cartan 
onne
tions in the sense 
ommonly

adopted, see e.g. [31℄. The models for the geometries 
onsidered in this pa-

per are homogeneous spa
es of the type G=P , where G is real or 
omplex

semisimple and P � G is a paraboli
 subgroup. In this 
ase, there is a 
lose

link to the proje
t of paraboli
 invariant theory suggested by Ch. Fe�erman

in [17℄ and in view of this 
ontext we talk about the (real and 
omplex)

paraboli
 geometries.

We explore the semi{holonomi
 jet modules and we use impli
itly the


ohomologi
al information given by Kostant's version of the Bott{Borel{

Weil theorem in order to 
onstru
t sequen
es of homomorphisms between

jet{modules, whi
h in turn give rise to sequen
es of invariant di�erential op-

erators expressed in terms of the invariant derivatives with respe
t to Cartan


onne
tions, on all (
urved) geometries in question. These sequen
es are dif-

ferential 
omplexes if 
ertain twisted de Rham sequen
es are 
omplexes, and

then they 
ompute the same 
ohomology. In parti
ular, this always happens

for the homogeneous models themselves and then our sequen
es spe
ialize to

the Bernstein{Gelfand{Gelfand resolutions well known from representation

theory for 
omplex G=P , while their real smooth analogues are provided for

all real forms of this situation.

In spite of the fa
t that we have mentioned a few 
on
epts from represen-

tation theory, we want to underline that no deeper aspe
ts of representation
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theory are used in the 
onstru
tion of our new sequen
es of invariant opera-

tors and in the dis
ussion of their basi
 properties. In parti
ular, no in�nite

dimensional representation theory is needed. It is rather the language and

the way of thinking of representation theory that is essential (in a similar way

as the 
ategori
al language is useful in mathemati
s even if no deep results of


ategory theory are used). In order to stress this feature, we have postponed

the more detailed analysis of the stru
ture of the sequen
es to a forth
oming

se
ond part of the arti
le and we hope that the �rst part is a

essible for

di�erential geometers without a deeper ba
kground in representation the-

ory. We also provide a quite detailed exposition of the ne
essary algebrai


ba
kground. In parti
ular we have in
luded two appendi
es 
overing some

material whi
h is rather well known in representation theory.

The �rst general geometri
 theory 
lose to our needs had been worked out

in the series of papers by N. Tanaka and his s
hool aiming at the original

equivalen
e problem of E. Cartan, see [34, 35, 27℄ and the referen
es therein.

Our inspiration 
omes, however, rather from the interest in the links between

twistor theory and representation theory, as explained in the book [2℄. In

the generality we need, the normalized Cartan 
onne
tions were 
onstru
ted

in [7℄ �rst. We have been also in
uen
ed by the translation prin
iple in

representation theory (see [4, 5℄ for example) and, in parti
ular, by some

ideas in the se
ond part of Baston's paper [1℄. Some arguments and proofs

in the latter paper seem very un
lear to us, however.

There are also many treatments of spe
i�
 examples of paraboli
 geome-

tries in the literature, in
luding e.g. proje
tive, 
onformal, almost Grassman-

nian, and CR{geometries. Most of these well known geometries 
orrespond

to the so 
alled j1j{graded Lie algebras g whi
h 
an be equivalently expressed

by the requirement that the tangent spa
es 
orrespond to irredu
ible rep-

resentations of the paraboli
 subgroup P . Our theory of semi{holonomi


jet{modules is in fa
t a generalization of the approa
h worked out for all

real j1j{graded algebras in our former papers [8, 9, 10℄ (and this paper 
ould

be also viewed as a fourth part of this series expanded to the full general-

ity of paraboli
 geometries). On the other hand, there are only few expli
it

examples of 
urved analogues of the Bernstein{Gelfand{Gelfand resolutions

available in the literature, see e.g. [14℄, and in fa
t only the 
ase of 
onformal

Riemannian geometries has been studied systemati
ally, see [19℄ and [16℄ for

two di�erent approa
hes. For an introdu
tion addressed to wide audien
e,

see the forth
oming paper [13℄.

Let us indi
ate the stru
ture of the paper. In the next se
tion, we �rst


olle
t the ne
essary information on jkj-graded Lie algebras and the stru
-

ture of the 
orresponding Lie groups, and then real and 
omplex paraboli


geometries are introdu
ed (
f. 2.7). Our point of view is that the geometry

on a manifoldM is given by a 
hoi
e of a Cartan 
onne
tion (with possible

further normalization) and we are interested in the general 
al
ulus whi
h

su
h a 
hoi
e o�ers. In a 
ertain sense, this is similar to the rôle of the gen-

eral 
al
ulus for linear 
onne
tions in Riemannian geometry by appli
ation

to the Levi{Civita 
onne
tion. Thus we only brie
y dis
uss the more 
lassi-


al underlying geometri
al information on the manifolds M themselves and

the question of 
onstru
ting a (normalized) Cartan 
onne
tion from these

more basi
 data, 
f. 2.10. See [7, 27℄ for more information on this aspe
t. We
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also introdu
e the 
on
epts of natural bundles and operators for paraboli


geometries in the end of Se
tion 2.

The third se
tion deals with our basi
 algebrai
 tool, the semi{holonomi


jet modules. The invariant derivative with respe
t to Cartan 
onne
tions

then leads to the notion of strongly invariant di�erential operators whi
h

are de�ned by means of P{module homomorphisms. As a �rst appli
ation,

we introdu
e the twisted exterior derivatives whi
h are 
ertain torsion ad-

justed versions of the 
ovariant exterior derivatives indu
ed by the Cartan


onne
tions on 
ertain bundles.

The main results are stated and proved in Se
tion 4. Referring impli
itly

to the stru
ture of the Lie algebra 
ohomologies, we �rst embed the nat-

ural ve
tor bundles 
orresponding to 
ohomologies into exterior forms by

means of distinguished di�erential operators L, see Theorem 4.8. Then we

use the twisted exterior derivatives in order to 
onstru
t expli
itly many P{

module homomorphisms of the semi{holonomi
 jet modules, 
f. Proposition

4.9. The 
orresponding invariant di�erential operators build the Bernstein{

Gelfand{Gelfand sequen
es. Finally we dis
uss the 
onditions under whi
h

these sequen
es form di�erential 
omplexes, and we dis
uss their 
ohomolo-

gies, 
f. 4.13{4.15.

Finally, we illustrate brie
y the a
hievements on at least one non{trivial

paraboli
 geometry and this is done in Se
tion 5.

Throughout the paper, we dis
uss the real and 
omplex manifolds and

groups at the same time. We should point out however, that the relation

between the real and 
omplex settings deserves more attention. In fa
t, we

are able to present both smooth and holomorphi
 results in one line of

arguments, be
ause our point is to use the P{module homomorphisms in

order to 
onstru
t the sequen
es of operators. The distin
tion is hidden in

the expli
it stru
ture of the Lie algebra 
ohomologies, whi
h we use only

impli
itly. One should say, however, this does not mean that working out

the details for one real form gives expli
it results for all other real or 
omplex

forms of the group in question. This ambiguity disappears only if we restri
t

ourselves to 
omplex representations of the real forms.

A more detailed dis
ussion of our Bernstein{Gelfand{Gelfand sequen
es

requires a deeper study of the 
ohomologi
al information. Essentially, the

non{trivial operators between the irredu
ible bundles in the sequen
e 
or-

respond to arrows in the Hasse diagram of the paraboli
 subalgebras and

the knowledge of this stru
ture leads to quite expli
it information on the in-

dividual operators. We have preferred to postpone all 
onsiderations whi
h

need more involved information from representation theory to a prospe
tive


ontinuation in order to keep the 
avor of this arti
le.
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2. Paraboli
 geometries

In this se
tion we review basi
 fa
ts about jkj{graded Lie algebras and

we give basi
 de�nitions on paraboli
 geometries and invariant di�erential

operators on manifolds equipped with geometries of that type. Most of the

fa
ts on the algebras go ba
k to [34, 35℄, see also [7℄ whi
h is fully 
ompatible

in notation.

2.1. De�nition. Let K be R or C . A jkj{graded Lie algebra over K , k 2 N

is a Lie algebra g over K together with a de
omposition

g = g

�k

� � � � � g

�1

� g

0

� g

1

� � � � � g

k

su
h that [g

i

; g

j

℄ � g

i+j

and su
h that the subalgebra g

�

:= g

�k

� � � � � g

�1

is generated by g

�1

. In the whole paper, we will only deal with semisimple

jkj{graded Lie algebras.

By p we will denote the subalgebra g

0

� � � � � g

k

of g, and by p

+

the

subalgebra g

1

� � � � � g

k

of p.

There is always a unique element E 2 g whose adjoint a
tion is given by

[E;X℄ = `X for X 2 g

`

. The element E is 
ontained in the 
enter of the

subalgebra g

0

, whi
h is always redu
tive. Using this, one shows that any ideal

of g is homogeneous. Thus, a semisimple jkj{graded Lie algebra is always a

dire
t sum of simple jk

i

j{graded Lie algebras, where all k

i

� k. Hen
e, one

usually 
an redu
e most dis
ussions to the simple 
ase. When dealing with

the semisimple 
ase, we have to assume that none of the simple fa
tors is


ontained in g

0

, for te
hni
al reasons. Sin
e basi
ally we are interested in

homogeneous spa
es G=P , where G is a Lie group with Lie algebra g and P

an appropriate subgroup with Lie algebra p, and their 
urved analogs, this

is not really a restri
tion.

For ea
h i = 1; : : : ; k, the Killing form of g indu
es an isomorphism g

i

�

=

g

�

�i

of g

0

{modules. Finally, the powers of p

+

are given by p

i

+

= g

i

�� � ��g

k

,

for i = 1; : : : ; k. See e.g. [35, Se
tion 3℄ for details.

2.2. In the 
omplex 
ase, the meaning of a jkj{grading is parti
ularly simple

to des
ribe. One 
an show that there always exists a Cartan subalgebra

h � g whi
h 
ontains the element E from above, and a 
hoi
e of positive

roots �

+

for h su
h that all root spa
es 
orresponding to simple roots are

either 
ontained in g

0

or in g

1

. Denoting by � the set of those simple roots,

whose root spa
es are 
ontained in g

1

, one sees that the grading on g is

given by the �{height of roots. That is, if � is a root, then the root spa
e

g

�

is 
ontained in g

i

, where i is the sum of all 
oeÆ
ients of elements of �

in the expansion of � as a linear 
ombination of simple roots. In parti
ular,

this implies that the subalgebra p is always a paraboli
 subalgebra of g, and

p = g

0

� p

+

is exa
tly the Levi de
omposition of p into a redu
tive and a

nilpotent part.

Conversely, if g is 
omplex and semisimple and p � g is a paraboli


subalgebra, then one 
an �nd a Cartan subalgebra and a set of positive

roots su
h that p is the standard paraboli
 
orresponding to a set � of

simple roots. But then the �{height as de�ned above gives a jkj{grading on

g, where k is the �{height of the maximal root of g, su
h that p = g

0

�� � ��g

k

.

See e.g. [22, p. 88℄ or [2, Se
tion 2℄ for more details.
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Thus, in the 
omplex 
ase giving a jkj{grading on g is the same thing as

giving a paraboli
 subalgebra p of g. Therefore, 
omplex jkj{graded semisim-

ple Lie algebras 
an be 
onveniently denoted by Dynkin diagrams with


rossed nodes. That is, given a jkj{graded semisimple 
omplex Lie algebra

we may assume that p is the standard paraboli
 subalgebra 
orresponding

to a set � of simple roots. Then we denote the jkj{graded Lie algebra g by


rossing out the nodes 
orresponding to the simple roots 
ontained in � in

the Dynkin diagram of g. See the book [2℄ for a detailed dis
ussion of the

Dynkin diagram notation for paraboli
 subalgebras.

Finally note that for a jkj{graded Lie algebra g over R the 
omplexi�
ation

g

C

of g is jkj{graded, too. So in general we deal with 
ertain real forms of

pairs (g; p), where g is 
omplex and semisimple and p is a paraboli
 in g.

The 
lassi�
ation of all these real forms is provided in [35, Se
tion 4℄.

2.3. Suppose that g is jkj{graded and semisimple over K = R or C , and

let G be any Lie group with Lie algebra g. (We do not assume that G is


onne
ted.) Then we 
an de�ne subgroups G

0

� P � G as follows: G

0


onsists of all elements of G su
h that the adjoint a
tion Ad(g) : g ! g of

g preserves the grading of g. By P we denote the subgroup of all elements

g 2 G su
h that Ad(g) preserves the �ltration by right ends indu
ed by the

grading of g, i.e. Ad(g)(g

i

) � g

i

� � � � � g

k

. By de�nition G

0

is a subgroup

of P , and one easily veri�es that G

0

and P have Lie algebras g

0

and p,

respe
tively, see e.g. [7, 2.9℄. Moreover, it 
an be shown that if g is simple,

then P equals the normalizer N

G

(p) of p in G, so it is the usual paraboli


subgroup asso
iated to the paraboli
 subalgebra p.

The following proposition 
lari�es the stru
ture of the group P :

Proposition. Let g 2 P be any element. Then there exist unique elements

g

0

2 G

0

and X

i

2 g

i

for i = 1; : : : ; k, su
h that

g = g

0

exp(X

1

) : : : exp(X

k

):

Proof. See [7, 2.10℄.

2.4. For i = 1; : : : ; k we de�ne a subgroup P

i

+

� P as the image under the

exponential map of g

i

� � � � � g

k

, and we write P

+

for P

1

+

. Then we have

P � P

+

� P

2

+

� � � � � P

k

+

. The subgroup P

+

� P is obviously normal and

by Proposition 2.3 we have P=P

+

�

=

G

0

, so P is the semidire
t produ
t of

G

0

and the normal nilpotent subgroup P

+

. More generally, for ea
h i > 1

we see that P=P

i

+

is the semidire
t produ
t of G

0

and the normal nilpotent

subgroup P

+

=P

i

+

.

The adjoint a
tion of P on g by de�nition preserves any of the subspa
e

g

i

� � � � � g

k

for i = �k; : : : ; k. Thus for ea
h i = �k; : : : ; k and j > i we get

an indu
ed a
tion of P on the quotient g

i

� � � � � g

k

=(g

j

� � � � � g

k

). With

a slight abuse of notation, we will denote this P{module by g

i

� � � � � g

j�1

.

Again by Proposition 2.3, the a
tion of P

j�i

+

on g

i

�� � ��g

j�1

is trivial, so the

a
tion of P on this spa
e is indu
ed by an a
tion of P=P

j�i

+

. In parti
ular,

we get an a
tion of P on g

�

= g=p, whi
h is indu
ed by an a
tion of P=P

k

+

.

There is another important 
onsequen
e of Proposition 2.3: Suppose that

V and W are P{modules and that � : V ! W is a linear mapping. Suppose

that � is equivariant for the a
tion of G

0

and for the (in�nitesimal) a
tion
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of g

1

. Sin
e p

+

is generated by g

1

this implies equivarian
y with respe
t to

p

+

and thus also with respe
t to P

+

, so using Proposition 2.3 we see that

� is a
tually a homomorphism of P{modules. This will be te
hni
ally very

important in the sequel.

2.5. For a Lie group G with jkj{graded semisimple Lie algebra g and the

subgroup P de�ned in 2.3 above, 
onsider the homogeneous spa
e G=P .

This homogeneous spa
e is the 
at model for the paraboli
 geometry of the

type (G;P ) that we are going to study. It is well known that the 
anoni
al

proje
tion G! G=P is a prin
ipal �ber bundle with stru
ture group P .

If G is a 
omplex Lie group, then P is a paraboli
 subgroup, so G=P

is a generalized 
ag manifold, and thus in parti
ular a 
ompa
t 
omplex

manifold. In the real 
ase, G=P need not be 
ompa
t in general, as the

example of the 
onformal spheres in inde�nite signature shows.

Next suppose that � : P ! GL(V) is a representation of P on a �-

nite dimensional ve
tor spa
e V. Then we 
an form the asso
iated bundle

V := G �

P

V ! G=P . This is a homogeneous ve
tor bundle, that is the


anoni
al left a
tion of G on G=P lifts to a left a
tion of G on V by ve
-

tor bundle homomorphisms. Conversely, given a homogeneous ve
tor bundle

E ! G=P , 
onsider the �ber E of E over the 
anoni
al base point o 2 G=P .

Sin
e the a
tion of any element of P on G=P maps o to itself, the a
tion

of G on E indu
es a representation of P on E and one easily veri�es that

G �

P

E and E are isomorphi
 homogeneous ve
tor bundles (i.e. there is a

G{equivariant isomorphism of ve
tor bundles between them). Consequently,

there is a bije
tive 
orresponden
e between �nite dimensional representa-

tions of P and homogeneous ve
tor bundles over G=P . In the 
ase where G

is a 
omplex Lie group, the a
tion of G on G=P is holomorphi
 and there

is a bije
tive 
orresponden
e between holomorphi
 �nite dimensional rep-

resentations of P and holomorphi
 homogeneous ve
tor bundles over G=P

(that is holomorphi
 bundles with holomorphi
 G{a
tions).

In parti
ular, the tangent and 
otangent bundles of G=P are homogeneous

ve
tor bundles. One easily veri�es that they 
orrespond to the representa-

tions of P on g

�

�

=

g=p and p

+

indu
ed by the adjoint a
tion, respe
tively.

In the 
omplex 
ase, these representations indu
e the holomorphi
 tangent

and 
otangent bundle.

For a homogeneous ve
tor bundle E ! G=P 
onsider the spa
e �(E) of

smooth se
tions of E. There is an indu
ed a
tion of G on this spa
e given

by (g�s)(x) = g�(s(g

�1

�x)) for x 2 G=P . In the 
omplex 
ase, we 
an deal

similarly with the spa
es of holomorphi
 se
tions.

De�nition. Let E and F be homogeneous ve
tor bundles over G=P . A (lin-

ear) invariant di�erential operator D : �(E) ! �(F ) is a linear di�erential

operator D whi
h is equivariant for the G{a
tions 
onstru
ted above.

2.6. If D is of order � r, then it is indu
ed by a ve
tor bundle homo-

morphism

~

D : J

r

(E) ! F , where J

r

(E) is the r{th jet prolongation of E.

Now simply by fun
toriality of the r{th jet prolongation, J

r

(E) is again a

homogeneous ve
tor bundle, and the invarian
e of D is equivalent to the

fa
t that

~

D is equivariant for the G{a
tions on J

r

(E) and F . Sin
e G a
ts

transitively on G=P , the homomorphism

~

D is a
tually determined by its
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restri
tion

~

D : J

r

(E)

o

! F

o

to the �ber over o 2 G=P , and by invarian
e of

D, this map is P{equivariant.

Conversely, a P{homomorphism J

r

(E)

o

! F

o

extends uniquely to a G{

homomorphism J

r

(E) ! F and thus gives rise to an invariant di�erential

operator. Thus, invariant di�erential operators �(E) ! �(F ) of order � r

are in bije
tive 
orresponden
e with P{homomorphisms J

r

(E)

o

! F

o

. To

avoid the restri
tion on the order, one 
an simply pass to in�nite jets and

we obtain that invariant di�erential operators �(E)! �(F ) are in bije
tive


orresponden
e with P{homomorphisms J

1

(E)

o

! F

o

, whi
h fa
torize over

some J

r

(E).

Surprisingly, the problem of determining all su
h homomorphisms has a

ni
e reformulation in term of (in�nite{dimensional) representation theory,

whi
h has led to a 
omplete solution in several 
ases. Namely, suppose that

E and F 
orrespond to representations E and F of P , respe
tively. For the

dual representation E

�

, one 
an form the indu
ed module U(g) 


U(p)

E

�

,

whi
h is a (g; P ){module, i.e. it admits 
ompatible a
tions of g and P . In

the 
ase where p � g is the Borel subalgebra (i.e. the minimal paraboli
)

and E is irredu
ible, these are the Verma{modules while for general p and

irredu
ible E , they are 
alled generalized Verma{modules. By a dualization

argument and Frobenius re
ipro
ity one shows that for E and F irredu
ible,

the spa
e of all P{module homomorphisms J

1

(E)

o

! F

o

, whi
h fa
torize

over some J

r

(E)

o

is isomorphi
 to the spa
e of all (g; P ){homomorphisms

U(g) 


U(p)

F

�

! U(g) 


U(p)

E

�

. Sin
e these 
onsiderations are essential for

understanding of the links of our development to the standard Bernstein{

Gelfand{Gelfand resolutions, we provide some more details in Appendix

Appendix A.

Let us remark however that while there is a 
omplete 
lassi�
ation of ho-

momorphisms of Verma{modules in the 
omplex 
ase in [3℄, the 
lassi�
ation

of homomorphisms of generalized Verma modules is a very diÆ
ult problem,

whi
h is unsolved in general (even in the 
omplex 
ase). There is a 
omplete


lassi�
ation in the 
ase of real rank one for one dimensional representa-

tions in [26℄ and for general representations in [4℄ and [5℄. The problem in

the 
ase of generalized Verma modules is the following: One has a 
lass of ho-

momorphisms whi
h are indu
ed by homomorphisms of Verma modules, the

so{
alled standard homomorphisms. These are exa
tly the homomorphisms

whi
h o

ur in Bernstein{Gelfand{Gelfand resolutions. But it may happen

that a homomorphism of Verma modules indu
es the zero{homomorphism

between generalized Verma modules, and in this situation there may still be

nonzero homomorphisms (the so 
alled non{standard homomorphisms).

2.7. Paraboli
 geometries. Some geometries 
an be viewed as 
urved

analogs of the homogeneous spa
es G=P 
onsidered above. For the purpose

of this paper, the best way to de�ne them is simply as generalized spa
es in

the sense of E. Cartan.

Let g = g

�k

� � � � � g

k

be a real jkj{graded Lie algebra and let G be a

Lie group with Lie algebra g. Let G

0

and P be the subgroups of G de�ned

in 2.3 above. Then we de�ne a (real) paraboli
 geometry of type (G;P ) on

a smooth manifold M to be a prin
ipal P{bundle G !M equipped with a
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Cartan 
onne
tion of type (G;P ), i.e. a di�erential form ! 2 


1

(G; g) su
h

that

(1) !(�

X

) = X for all X 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

Here �

X

denotes the fundamental ve
tor �eld generated by X 2 p and

r

b

denotes the prin
ipal right a
tion of b 2 P . Thus, ! gives a smooth P{

equivariant trivialization of the tangent bundle of G, whi
h reprodu
es the

generators of fundamental �elds. Ea
h X 2 g de�nes the 
onstant ve
tor

�eld !

�1

(X) given by !

�1

(X)(u) = !

�1

u

(X) 2 T

u

G. Clearly, a paraboli


geometry of type (G;P ) on M 
an only exist if M has the same dimension

as G=P .

In the 
omplex setting, the Lie algebras and groups, as well as the manifold

M are 
omplex and the above de�nition remains un
hanged ex
ept for the

repla
ement of smooth by holomorphi
. Thus a 
omplex paraboli
 geometry

of the type (G;P ) on a 
omplex manifold M is given by a holomorphi


prin
ipal �ber bundle equipped with a holomorphi
 absolute parallelism !

with the three properties listed above.

The (real or 
omplex) homogeneous spa
e G=P always 
arries a 
anoni
al

paraboli
 geometry, namely G = G and the Cartan 
onne
tion is given by

the left Maurer Cartan form. Then the 
onstant ve
tor �elds are exa
tly the

left invariant �elds on G.

It is fairly easy to make the paraboli
 geometries as de�ned above into

a 
ategory. Let (G; !) be a real paraboli
 geometry on M and (G

0

; !

0

) be a

paraboli
 geometry on M

0

, and suppose that � : G ! G

0

is a smooth homo-

morphism of prin
ipal P{bundles, su
h that the indu
ed map � :M !M

0

is a lo
al di�eomorphism. Then for any point u 2 G the tangent map

T

u

� : T

u

G ! T

�(u)

G

0

is a linear isomorphism, and using this, one imme-

diately veri�es that �

�

!

0

:= !

0

Æ T� is a Cartan 
onne
tion on G. Now

we de�ne a morphism from (G; !) to (G

0

; !

0

) to be a homomorphism � of

prin
ipal bundles su
h that the indu
ed map � : M ! M

0

is a lo
al di�eo-

morphism and su
h that ! = �

�

!

0

. For 
omplex paraboli
 geometries we

additionally require all maps to be holomorphi
.

Note that any homomorphism � : G ! G

0

of prin
ipal bundles whi
h

lies over a lo
al di�eomorphism 
an be viewed as a morphism (G;�

�

!

0

) !

(G

0

; !

0

). More generally, if (G

0

; !

0

) is a paraboli
 geometry on M

0

and f :

M ! M

0

is a lo
al di�eomorphism, then we 
an form the pullba
k bun-

dle f

�

G

0

! M . Then there is an indu
ed homomorphism � : f

�

G

0

! G

0

of prin
ipal bundles whi
h lies over f , and we get an indu
ed morphism

(f

�

G

0

;�

�

!

0

)! (G

0

; !

0

).

2.8. For some purposes, the 
ategory of paraboli
 geometries as de�ned

above is too large, and one has to impose 
ertain restri
tions. Usually, these

restri
tions are on the 
urvature of the Cartan 
onne
tion. Initially, the


urvature of a Cartan 
onne
tion ! is de�ned as the g{valued two{form

K 2 


2

(G; g) de�ned by the stru
ture equation

K(�; �) = d!(�; �) + [!(�); !(�)℄;
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where � and � are ve
tor �elds on G and the bra
ket is in g. Using the

properties of ! one immediately veri�es thatK is horizontal and equivariant.

In parti
ular, this implies that K is uniquely determined by the 
urvature{

fun
tion � : G ! �

2

g

�

�


g de�ned by �(u)(X;Y ) = K(u)(!

�1

u

(X); !

�1

u

(Y )).

There are two natural ways to split � into 
omponents. First, the splitting

of g indu
es a splitting of � a

ording to the values in g. In parti
ular, we


an split � = �

�

� �

p

a

ording to the splitting g = g

�

� p. Following the


lassi
al terminology for aÆne 
onne
tions, �

�

is 
alled the torsion of !.

The other possibility is to split � a

ording to homogeneous 
omponents.

We denote the homogeneous 
omponent of degree i of � by �

(i)

. So �

(i)

maps

g

j


 g

k

to g

i+j+k

.

Another important point is that the spa
e �

2

g

�

�


 g is the se
ond 
hain

group C

2

(g

�

; g) in the standard 
omplex for the Lie algebra 
ohomology

H

�

(g

�

; g) of the nilpotent Lie algebra g

�

with 
oeÆ
ients in the g

�

{module

g. As we shall re
all in detail in Se
tion 4, there is the adjoint �

�

to the

Lie algebra di�erential � in this 
omplex, so in parti
ular, we have �

�

:

�

2

g

�

�


 g! g

�

�


 g.

De�nition. Let (G; !) be a (real or 
omplex) paraboli
 geometry on a man-

ifold M , and let � be the 
urvature of !. Then the paraboli
 geometry is


alled

(1) normal if �

�

Æ � = 0.

(2) regular if it is normal and �

(i)

= 0 for all i � 0.

(3) torsion{free if �

�

= 0.

(4) 
at if � = 0.

Note that forming the 
urvature of a Cartan 
onne
tion is a natural oper-

ation. This means that if � : G ! G

0

is a homomorphism of prin
ipal bundles

and !

0

is a Cartan 
onne
tion with 
urvature K

0

and 
urvature{fun
tion �

0

then the 
urvature K and 
urvature fun
tion � of the pullba
k �

�

!

0

are

given by K = �

�

K

0

and � = �

0

Æ �, respe
tively. Sin
e all the sub
lasses

of paraboli
 geometries de�ned above are given by restri
ting the values of

the 
urvature{fun
tion, morphisms into a paraboli
 geometry from one of

the four sub
lasses 
an only 
ome from geometries from the same sub
lass.

Clearly, for any of the four sub
lasses the geometries belonging to the 
lass

form a full sub
ategory of the 
ategory of all paraboli
 geometries of �xed

type.

2.9. Examples. Before we review the 
onstru
tion of paraboli
 geometries

from underlying data, we present two well known examples.

Conformal stru
tures. Consider R

n

with 
oordinates x

1

; : : : ; x

n

and the

standard inner produ
t h ; i of signature (p; q), and R

n+2

with 
oordinates

x

0

; x

1

; : : : ; x

n

; x

1

and the inner produ
t asso
iated to the quadrati
 form

2x

0

x

1

+ h(x

1

; : : : ; x

n

); (x

1

; : : : ; x

n

)i, whi
h has signature (p+ 1; q + 1). Let

G = SO

0

(p+1; q+1) be the 
onne
ted 
omponent of the spe
ial orthogonal

group of this metri
. Then the Lie algebra g of G admits a j1j{grading by

de
omposing matri
es into blo
ks of sizes 1, n, and 1, see e.g. [8, 3.3(2)℄.

The 
onstru
tion of the 
anoni
al Cartan 
onne
tion for manifolds endowed

with a 
onformal stru
ture of signature (p; q), originally due to E. Cartan

(see [11℄), shows that 
onformal stru
tures of this signature are pre
isely the
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same thing as normal paraboli
 geometries 
orresponding to that 
hoi
e of

G and P . See [8℄ for a 
onstru
tion of the 
anoni
al Cartan 
onne
tion on


onformal manifolds in a style similar to the approa
h of this paper. In this

spe
ial situation, normal Cartan 
onne
tions turn out to be automati
ally

regular and torsion free, so three of the four sub
lasses de�ned in 2.8 above


oin
ide. The 
at paraboli
 geometries in this 
ase are exa
tly the lo
ally


onformally 
at manifolds.

Partially integrable almost CR{stru
tures. The 
omplex analog of the

above 
onstru
tion leads to the partially integrable almost CR{stru
tures

whi
h present another example of real paraboli
 geometries. Here we have

to 
onsider the 
omplex ve
tor spa
e C

n

with the standard Hermitian in-

ner produ
t of signature (p; q) and C

n+2

with the Hermitian inner prod-

u
t asso
iated to z

0

�z

1

+ �z

0

z

1

+ h(z

1

; : : : ; z

n

); (z

1

; : : : ; z

n

)i. Now we put

G = PSU(p+1; q+1) the quotient of the spe
ial unitary group 
orrespond-

ing to this Hermitian inner produ
t by its 
enter. Splitting the matri
es in

the Lie algebra g of G into blo
ks of sizes 1, n, and 1 this time gives rise

to a j2j{grading. The 
onstru
tion of 
anoni
al Cartan 
onne
tions in [7℄

shows that partially integrable almost CR{stru
tures with non{degenerate

Levi{form of signature (p; q) are exa
tly the same thing as regular paraboli


geometries 
orresponding to G (see [7, 4.14℄). In this 
ase, three of the four

sub
lasses of geometries de�ned in 2.8 above are really di�erent: The tor-

sion free paraboli
 geometries in this 
ase are pre
isely the CR{stru
tures

(see [7, 4.16℄), and the 
at ones are those whi
h are lo
ally isomorphi
 to

the homogeneous model. The only 
oin
iden
e in this 
ase is that normal

paraboli
 geometries are automati
ally regular.

2.10. Underlying stru
tures. These two examples already show that iden-

tifying a geometri
al stru
ture on a manifold as a paraboli
 geometry should

be rather the result of a theorem than a de�nition. In fa
t one 
an show in

a fairly general setting that 
ertain paraboli
 geometries are determined by

underlying stru
tures. This is the subje
t of the paper [7℄ whi
h general-

izes [34℄, see also [27℄ and [35℄. To review the results, we �rst des
ribe the

underlying stru
tures we have in mind.

Suppose that (G; !) is a regular paraboli
 geometry on a manifoldM . The

�rst thing we get out of this is a �ltration TM = T

�k

M � T

�k+1

M � � � � �

T

�1

M of the tangent bundle of M . This is given by de�ning T

i

M to be the

set of those tangent ve
tors � onM for whi
h there is a tangent ve
tor

~

� in TG

lying over � with !(

~

�) 2 g

i

�� � �� g

k

. The latter 
ondition is independent of

the 
hoi
e of

~

� sin
e 
hanging the ve
tor with �xed footpoint adds a verti
al

ve
tor whose image under ! lies in p, while 
hanging the footpoint leads

to the adjoint a
tion of an element of P , whi
h by de�nition preserves the

subspa
e g

i

� � � �� g

k

. Clearly, this �ltration has the property that the rank

of T

i

M=T

i+1

M equals the dimension of g

i

for all i = �k; : : : ;�1.

Now the underlying stru
tures basi
ally are given by 
onsidering the bun-

dles G=P

i

+

! M for i = 1; : : : ; k and the \tra
es" of the Cartan 
onne
tion

that remain on these bundles. This \tra
e" on the bundle G=P

i

+

! M is

a frame form of length i in the sense of [7, 3.2℄. For the 
ase i = 1 the

geometri
 meaning of su
h a frame form is parti
ularly easy to des
ribe: It
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is exa
tly a redu
tion to the stru
ture group G

0

of the asso
iated graded

ve
tor bundle

grTM = T

�k

M=T

�k+1

M � � � � � T

�2

M=T

�1

M � T

�1

M

to the tangent bundle TM . The fa
t that the 
urvature{fun
tion � of the

regular Cartan 
onne
tion ! has the property that �

(i)

= 0 for all i � 0 is

re
e
ted in a property of the underlying frame forms 
alled the stru
ture

equation, see [7, 3.4℄. The bundle G=P

i

+

together with the frame form of

length i, whi
h satis�es the stru
ture equations is 
alled the underlying P{

frame bundle of degree i. Again, for i = 1 this 
ondition 
an be easily

understood geometri
ally. It is equivalent to the fa
t that the algebrai
 Lie

bra
ket on grTM whi
h 
omes from the redu
tion to the groupG

0

is indu
ed

by the Lie bra
ket of ve
tor �elds, that is it is given by a (generalized) Levi{

form.

Now the main result of [7℄ 
an be stated (with the help of the language

of Dynkin diagrams for the pairs (g; p) mentioned in 2.2 above) as follows:

Let (g; p), G, P , and G

0

be as in 2.3 and suppose throughout that no

simple fa
tor of g is 
ontained in g

0

and g does not 
ontain a simple fa
tor

of type A

1

. Then:

(1) If (g; p) does not 
ontain any simple fa
tor of one of the types

�

� � � � � �
or

�

� � � � � �

h

then any regular paraboli
 geometry 
an be re
onstru
ted from the underlying

P{frame bundle of degree one, and any P{frame bundle of degree one 
omes

from a regular paraboli
 geometry. Thus, in all these 
ases regular paraboli


geometries are the same thing as manifolds with �ltered tangent bundle plus

redu
tions of gr TM to the group G

0

su
h that the resulting algebrai
 bra
ket

is indu
ed by the Lie bra
ket.

(2) If g 
ontains simple fa
tors of one of the two above types, then any regular

paraboli
 geometry 
an be re
onstru
ted from the underlying P{frame bundle

of degree two and any su
h bundle 
omes from a regular paraboli
 geometry.

Moreover, any P{frame bundle of degree one 
an be extended (in various

ways) to a P{frame bundle of degree two.

The 
lassi
al examples of the se
ond 
ase are the proje
tive stru
tures

where the P{frame bundle of degree one is simply the full frame bundle and

all the stru
ture is 
ontained in the 
hoi
e of an extension to a P{frame

bundle of degree two. The other ex
eptional examples are the so 
alled

proje
tive 
onta
t stru
tures.

2.11. Natural bundles and operators. We will not go into mu
h detail

in the generalities about natural bundles and natural operators, but just

outline the basi
 fa
ts. We do not want to 
ompare the various notions of

naturality (this will be taken up elsewhere) but just show that the operators

we are going to 
onstru
t are natural (or invariant) in any reasonable sense.

Given a representation of P on a ve
tor spa
e V and a paraboli
 geom-

etry (G ! M;!) we 
an form the asso
iated bundle VM = G �

P

V ! M .

If � : G ! G

0

is a homomorphism of prin
ipal bundles whi
h 
overs a lo
al

di�eomorphism � : M ! M

0

, then we get an indu
ed homomorphism of

ve
tor bundles VM ! VM

0

whi
h lies over the same map � and restri
ts

to a linear isomorphism in ea
h �ber. To put it in another way, we get a
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fun
tor from the 
ategory of paraboli
 geometries to the 
ategory of ve
tor

bundles over manifolds of the same dimension as G=P and ve
tor bundle

homomorphisms whi
h 
over lo
al di�eomorphisms and indu
e linear iso-

morphisms in ea
h �ber su
h that the 
omposition of the base fun
tor with

the given fun
tor equals the base fun
tor. Thus, we get a spe
ial 
ase of a

gauge natural bundle as de�ned in [24, Chapter XII℄.

Consider next a �xed 
ategory of real paraboli
 geometries, and two repre-

sentations V and W of P . Let V and W be the 
orresponding natural ve
tor

bundles. A natural linear operator mapping se
tions of V to se
tions of W

is de�ned to be a system of linear operators D

(G;!)

: �(VM) ! �(WM),

where M is the base of G su
h that for any morphism � : (G; !) ! (G

0

; !

0

)

we have

�

�

ÆD

(G

0

;!

0

)

= D

(G;!)

Æ �

�

:

This de�nition implies immediately, that ea
h of the operators is lo
al both

in the se
tion and in the Cartan 
onne
tion: Suppose that s 2 �(VM)

vanishes identi
ally on an open subset U � M . Then there is an obvi-

ous in
lusion morphism i : (Gj

U

; !j

U

) ! (G; !) and i

�

s = 0. Thus also

i

�

(D

(G;!)

(s)) = 0, i.e. D

(G;!)

(s) is identi
ally zero on U . Similarly, assume

that ! and !

0

are two Cartan 
onne
tions whi
h 
oin
ide on Gj

U

. Then for

any se
tion s 2 �(VM) we have D

(G;!)

(s)j

U

= D

(G;!

0

)

(s)j

U

. In parti
ular,

the 
lassi
al Peetre theorem implies that ea
h of the operators D

(G;!)

is lo-


ally overM a �nite order di�erential operator with respe
t to the arguments

in the ve
tor bundles and the Cartan 
onne
tion.

For 
omplex paraboli
 geometries, we deal with holomorphi
 represen-

tations of P , the natural ve
tor bundles are holomorphi
, and the natural

operators a
t on holomorphi
 se
tions. Let us also remark that all these


on
epts extend to non-linear obje
ts without essential 
hanges.

2.12. The natural operators on the 
ategory of 
at paraboli
 geometries are

parti
ularly easy to des
ribe: It is a 
lassi
al result on Cartan 
onne
tions

that any 
at paraboli
 geometry is lo
ally isomorphi
 to the homogeneous

model G=P (see [7, 4.12℄ for a proof in the setting of paraboli
 geometries).

This immediately implies that any natural operator on the 
ategory of 
at

paraboli
 geometries is uniquely determined by its value on the homoge-

neous model G=P , i.e. the paraboli
 geometry (G! G=P; !). Moreover, an

operator on the 
at model extends to a natural operator on the 
ategory of


at paraboli
 geometries if and only if it is natural with respe
t to all auto-

morphisms of (G;!). The left multipli
ation by any element of G indu
es an

automorphism of the prin
ipal bundle G ! G=P and by left invarian
e of

the Maurer Cartan form this a
tually is an automorphism of the paraboli


geometry (G;!). On the other hand, by [31, Theorem 3.5.2℄ the only smooth

fun
tions G! G whi
h pull ba
k the Maurer Cartan form to itself are the


onstant left translations. Thus G is exa
tly the group of all automorphisms

of (G;!). But this immediately implies that an operator on the homoge-

neous model extends to a natural operator on the 
ategory of 
at paraboli


geometries if and only if it is invariant in the sense of de�nition 2.5. Thus for

the 
at 
ase, the des
ription of natural operators is equivalent to a problem

in representation theory.
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Usually, the question on more general natural operators is then posed

(in the spe
ial 
ases that have been studied so far) as the question of the

existen
e of 
urved analogs of invariant operators. This should be viewed as

follows: As we dis
ussed in 2.6, an invariant operator of order r is indu
ed

by a P{module homomorphism J

r

(E)

o

! F

o

, whi
h does not fa
tor over

J

r�1

(E)

o

. Now the kernel of the proje
tion J

r

(E)

o

! J

r�1

(E)

o

is the bundle

S

r

T

�

(G=P ) 
 E, so it 
orresponds to the representation S

r

p

+


 E . Thus

the invariant operator gives rise to a P{module homomorphism S

r

p

+




E ! F, whi
h in turn gives a G{equivariant homomorphism between the


orresponding homogeneous ve
tor bundles whi
h is pre
isely the symbol of

the operator we started with. But this P{module homomorphism indu
es

a homomorphism of asso
iated bundles on any paraboli
 geometry, so for

any paraboli
 geometry (G; !) over a manifoldM , we get the 
orresponding

homomorphism S

r

T

�

M 
EM ! FM . Now a 
urved analog of an invariant

operator is a natural operator su
h that for ea
h (G; !) the symbol of D

(G;!)

is the above homomorphism. Otherwise put, the question is whether we


an extend a given natural operator from the 
ategory of 
at paraboli


geometries to some larger 
ategory of paraboli
 geometries without 
hanging

its symbol, whi
h, as a natural transformation, makes sense on any paraboli


geometry.

2.13. We 
on
lude this introdu
tory se
tion with some more remarks on

the beautiful geometri
 stru
ture underlying ea
h paraboli
 geometry. This

topi
 deserves mu
h more attention than we 
ould pay here and it will be

studied in detail elsewhere. Some �rst steps have been done in [33℄.

Suppose that (G; !) is a real paraboli
 geometry on a manifold M . Then

we have the tower of prin
ipal �ber bundles G ! G=P

+

! M and the top

level has the stru
ture group P

+

. Now using the Baker{Campbell{Hausdor�

formula, Proposition 2.3 
an be restated in the form that for any g 2 P

there is a unique g

0

2 G

0

and a unique Z 2 p

+

su
h that g = g

0

exp(Z).

But using this, one easily shows that the bundle G ! G=P

+

admits global

G

0

{equivariant smooth se
tions. Namely, one 
an use a lo
al trivialization

of G ! M to 
onstru
t equivariant se
tions over the preimage in G=P

+

of

appropriate open subsets of M . Su
h lo
al se
tions 
an then be glued to

a global se
tion using a partition of unity (
ompare with the proof of [8,

Lemma 3.6℄). As in this last referen
e one also proves that the spa
e of all

these se
tions is an aÆne spa
e modeled on the spa
e 


1

(M) of one{forms

on M .

G

//
G=P

+

//
�

{{
M

!

OO

�

�

(!

g

�

+ !

g

0

)

OO

Ea
h su
h global se
tion � redu
es the stru
ture group of the tangent spa
e

TM to G

0

and indu
es an aÆne 
onne
tion 


�

= �

�

(!

g

�

+!

g

0

) on TM . This

aÆne 
onne
tion is �{related to another Cartan 
onne
tion !

�

on G, whi
h

di�ers from ! only in the p

+

{
omponent. The 
lass of all 
onne
tions 


�

is

a straightforward generalization of Weyl stru
tures on 
onformal geometries
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and all di�erential operators built of the Cartan 
onne
tion ! 
an be ex-

pressed by uniform formulae in terms of these aÆne 
onne
tions and their

torsions and 
urvatures. The te
hnique based on this general framework was

developed systemati
ally for all j1j-graded algebras g in [8, 9, 10℄.

3. Semi{holonomi
 jet modules and strongly invariant

operators

Semi{holonomi
 jet prolongations of modules were �rst introdu
ed in the


ontext of AHS{stru
tures in [8℄. Here we develop the 
on
ept in the more

general setting of paraboli
 geometries and we dis
uss how the homomor-

phisms of semi{holonomi
 jet prolongations give rise to natural operators.

Throughout this se
tion, there will be essentially no di�eren
es in the ar-

guments for the real and 
omplex paraboli
 geometries. Thus we shall not

mention the �eld of s
alars expli
itly, and one has to think of the proper

real or 
omplex modules in the appli
ations below.

3.1. The absolutely invariant derivative. Suppose that (G; !) is a par-

aboli
 geometry on a manifold M . We mentioned in 2.5, that the tangent

and 
otangent bundles on the homogeneous spa
es are homogeneous ve
tor

bundles. The Cartan 
onne
tion ! extends this identi�
ation to all paraboli


geometries as follows:

We identify g

�

(as a P{module) with g=p, and 
onsider the map G�g

�

!

TM de�ned by mapping (u;X) to Tp�!

�1

u

(X), where p : G ! M is the

proje
tion. The equivarian
y of the Cartan 
onne
tion immediately implies

that this fa
tors to a ve
tor bundle homomorphism G �

P

g

�

! TM . Sin
e

this is immediately seen to be surje
tive, it must be an isomorphism of

ve
tor bundles by dimensional reasons. Thus we have identi�ed TM with

the natural bundle asso
iated to the P{module g

�

. Now, the invarian
e of

the Killing form on g implies that g=p and p

+

with the a
tions indu
ed by the

adjoint a
tion are dual P{modules. Thus, similarly as above the 
otangent

bundle T

�

M of M 
an be identi�ed with the bundle G �

P

p

+

(impli
itly,

this has been used in 2.13 above).

There is a ni
e way to en
ode the a
tion of ve
tor �elds on fun
tions (or

equivalently the exterior derivative of fun
tions) using the identi�
ations

made above. As we have seen, a typi
al tangent ve
tor on M 
an be written

as Tp�!

�1

u

(X) for an element X 2 g

�

. A
ting with this tangent ve
tor on

a smooth fun
tion f 2 C

1

(M;R), we get !

�1

u

(X)�(f Æ p). Now, smooth

fun
tions on M are in bije
tive 
orresponden
e with smooth P{invariant

fun
tions on G, the 
orresponden
e given by mapping f to f Æ p. To any

smooth, P{invariant fun
tion f on G we asso
iate a fun
tion r

!

f : G !

L(g

�

;R) de�ned by r

!

f(u)(X) := !

�1

u

(X)�f . The equivarian
y properties

of ! imply that the map r

!

f is P{equivariant. Taking into a

ount the

above identi�
ation of T

�

M with an asso
iated bundle and of L(g

�

;R) ' p

+

,

we see that r

!

f is a one form on M , whi
h by de�nition 
oin
ides with df .

The above pro
edure immediately suggests a generalization. Let V be any

representation of P and let VM = G �

P

V be the 
orresponding asso
iated

bundle. Then we 
an identify smooth se
tions of VM with smooth maps

G ! V, whi
h are P{equivariant. Now to any smooth fun
tion s : G ! V
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we asso
iate a smooth fun
tion r

!

s : G ! L(g

�

;V) de�ned by

r

!

s(u)(X) := !

�1

u

(X)�s:

Obviously, this de�nes a di�erential operator

C

1

(G;V) ! C

1

(G; L(g

�

;V))

and these operators (for all (G; !)) form a natural operator on all paraboli


geometries in the sense of 2.11. This operation is 
alled the universal 
o-

variant derivative in the book [31, p. 194℄. In [8, 2.3℄ we have 
hosen to 
all

it the absolutely invariant derivative. The reason for the latter name also

shows the main drawba
k of this operation: It is not really 
ovariant, i.e. if

one starts with an equivariant map s (i.e. a se
tion of VM) the result is not

equivariant in general. Thus in general, if we start with a se
tion, the result

of the invariant derivative is not a se
tion of a bundle anymore.

3.2. There is a way, however, to make a se
tion of an asso
iated bundle out

of a se
tion of an asso
iated bundle and its absolutely invariant derivative.

This is 
alled the invariant one{jet of the se
tion. To des
ribe it, we �rst have

to analyze the a
tion of G on one{jets in the homogeneous 
ase. Thus, let

us 
onsider a representation V of P , the 
orresponding homogeneous bundle

V (G=P ) = G �

P

V and its �rst jet prolongation J

1

(V (G=P )) ! G=P . As

we noted in 2.6 this is again a homogeneous bundle, and we want to des
ribe

the 
orresponding a
tion of P on its standard �ber J

1

(V) := J

1

(V (G=P ))

o

.

As we noti
ed in 2.4 it suÆ
es to understand this spa
e as a module over

G

0

and over p

+

(in fa
t, already g

1

would be suÆ
ient).

If we think of se
tions in �(V (G=P )) as P{equivariant fun
tions s 2

C

1

(G;V)

P

, then the 1{jets of se
tions at the distinguished point o 2 G=P

are identi�ed with 1{jets of equivariant fun
tions at the unit e 2 G and the

a
tion is given by g:(j

1

e

s) = j

1

e

(s Æ `

g

�1
) for all g 2 G. Thus, the indu
ed

a
tion of Z 2 p on the se
tion s is given by the di�erentiation in the dire
tion

of the right invariant ve
tor �eld R

Z

on G, Z:j

1

e

s = �j

1

e

(R

Z

�s).

Now we 
an identify a one{jet j

1

e

(s) with (s(e); ds(e)) and as we saw in

3.1 above, ds(e) = r

!

s(e). As a ve
tor spa
e we 
an thus write

J

1

(V) = V � (g

�

�


 V)

and we have to understand the indu
ed a
tions of G

0

and p

+

on this spa
e.

Let us �rst assume that g 2 G

0

. Then (s Æ `

g

�1
)(e) = s(g

�1

) = g�s(e) by

equivarian
y of s. On the other hand, we have to evaluate !

�1

e

(X)�(s Æ `

�1

g

).

This 
an be 
omputed as

d

dt

j

t=0

s(g

�1

exp(tX)) =

d

dt

j

t=0

s(g

�1

exp(tX)gg

�1

) =

= !

�1

e

(Ad(g

�1

)X)�(g�s) = g�(!

�1

e

(Ad(g

�1

)X)�s):

Now sin
e g 2 G

0

, we have Ad(g

�1

)X 2 g

�

for all X 2 g

�

(the adjoint

a
tion on g

�


oin
ides with the indu
ed a
tion on g=p in this 
ase), so we

see that J

1

(V) = V � (g

�

�


 V) even as a G

0

{module.

For Z 2 p

+

we have �(R

Z

�s)(e) = Z�(s(e)) by the in�nitesimal version of

equivarian
y of s. On the other hand, for the derivative 
omponent we have

to 
ompute the linear mapping g

�

3 X 7! �!

�1

(X)�R

Z

�s(e). Sin
e !

�1

(X)
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is left invariant, it 
ommutes with R

Z

and the resulting expression depends

only on R

Z

(e) = Z = !

�1

(Z)(e), and we get

�!

�1

(X)�R

Z

�s(e) = �!

�1

(Z)�!

�1

(X)�s(e)

= �!

�1

(X)�!

�1

(Z)�s(e)� [!

�1

(Z); !

�1

(X)℄�s(e):

The in�nitesimal version of equivarian
y of s shows that the �rst term in the

last expression gives Z�(!

�1

e

(X)�s(e)). Sin
e !

�1

( ) is just the left invariant

ve
tor �eld, the se
ond term gives �!

�1

e

([Z;X℄)�s. Now let us split ad(Z) =

ad

�

(Z)�ad

p

(Z) a

ording to the splitting g = g

�

�p. Then the ad

p

(Z)(X){

part a
ts algebrai
ally by equivarian
y of s while the rest simply produ
es

�!

�1

e

(ad

�

(Z)(X))�s.

Thus, if we denote elements of J

1

(V) as pairs (v; '), where v 2 V and '

is a linear map from g

�

to V, then the appropriate a
tion of Z 2 p

+

is given

by

Z�(v; ') = (Z�v;X 7! Z�('(X)) � '(ad

�

(Z)(X)) + ad

p

(Z)(X)�v);

i.e. we get the tensorial a
tion plus one additional term mapping the value{

part to the derivative{part.

This a
tion 
an also be ni
ely written in a tensorial notation. To do

this let us 
hoose a basis f�

�

g of p

+

su
h that ea
h element �

�

is ho-

mogeneous of degree j�

�

j, and let f�

�

g be the dual basis of g

�

(with re-

spe
t to the Killing form B). Now 
onsider an element (v

0

; Z

1


 v

1

) 2

J

1

(V), where v

0

; v

1

2 V and Z

1

2 p

+

�

=

g

�

�

. Then by de�nition Z

1


 v

1

maps X 2 g

�

to B(Z;X)v

1

. Thus [Z;X℄

�

:= ad

�

(Z)(X) is mapped to

B(Z

1

; [Z;X℄

�

)v

1

. Sin
e the Killing form vanishes on p

+

� p, this 
an be

rewritten as B(Z

1

; [Z;X℄)v

1

= B([Z

1

; Z℄;X)v

1

. Moreover, we 
an write ad

Z

as an element of L(g

�

; g)

�

=

p

+


 g in the form

P

�

�

�


 [Z; �

�

℄. This implies

that for Z homogeneous of degree jZj, we may rewrite the a
tion on J

1

V as

Z�(v

0

; Z

1


 v

1

) = (Z�v

0

; Z

1


 Z�v

1

+ [Z;Z

1

℄
 v

1

+

X

j�

�

j�jZj

�

�


 [Z; �

�

℄�v

0

):

A simple 
omputation shows that J

1

( ) 
an be made into a fun
tor on

the 
ategory of P{modules by de�ning

J

1

(f)(v; ') := (f(v); f Æ ')

for ea
h P{module homomorphism f : V ! W .

3.3. Surprisingly, the �rst jet prolongation of representations introdu
ed

above leads for any paraboli
 geometry to a natural identi�
ation of the

�rst jet prolongation of any natural bundle with an asso
iated bundle, i.e.

with another natural bundle. Let (G; !) be a paraboli
 geometry on M , let

V be a representation of P , and let VM be the 
orresponding asso
iated

bundle over M .

Proposition. The invariant di�erential r

!

de�nes the mapping

� : C

1

(G;V)

P

! C

1

(G;J

1

V)

P

; �(s)(u) = (s(u); (X 7! r

!

s(u)(X)))

whi
h yields an isomorphism J

1

VM ' G �

P

J

1

V.

For ea
h �ber bundle map VM ! WM indu
ed by a P{module homo-

morphism f : V ! W , the �rst jet prolongation of the bundle map is indu
ed

by the P{module homomorphism J

1

(f).
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Proof. Let us re
all that r

!

s(u)(X) = !

�1

(X)(u)�s. Thus the mapping

� : s 7! (s;r

!

s) is well de�ned and depends on �rst jets only, so we only have

to 
he
k that the values are a
tually equivariant. First, for g 2 G

0

we have to


ompute (s(u�g);r

!

s(u�g)). Equivarian
y of s implies s(u�g) = g

�1

�(s(u)).

The se
ond 
omponent maps X 2 g

�

to !

�1

u�g

(X)�s. Now the equivarian
y

of ! immediately implies that !

�1

u�g

(X) = Tr

g

�!

�1

u

(Ad(g)X). Sin
e g 2 G

0

we see that Ad(g)X 2 g

�

and using equivarian
y of s again, we see that

r

!

s(u�g) maps X to g

�1

�(!

�1

u

(Ad(g)X)�s), and thus (s(u�g);r

!

s(u�g)) =

g

�1

�(s(u);r

!

s(u)).

On the other hand, we have to 
he
k equivarian
y for the in�nitesimal

a
tion of Z 2 p

+

. Thus, we have to 
ompute ((�

Z

�s)(u); �

Z

�(r

!

s)(u)). Equiv-

arian
y of s implies that the �rst 
omponent equals �Z�(s(u)). The se
ond


omponent maps X 2 g

�

to (�

Z

�!

�1

(X)�s)(u). Now �

Z

= !

�1

(Z) and we


an rewrite the expression as

(!

�1

(X)�!

�1

(Z)�s)(u) + [!

�1

(Z); !

�1

(X)℄�s(u):

Sin
e the 
urvature of ! is horizontal and !

�1

(Z) is verti
al, we may rewrite

the se
ond term in this expression as (!

�1

([Z;X℄)�s)(u). Now we 
an split

[Z;X℄ into a g

�

and a p{
omponent and 
on
lude as in 3.2 above that

((�

Z

�s)(u); �

Z

�(r

!

s)(u)) = �Z�(s(u);r

!

s(u)).

Clearly, this 
onstru
tion gives a smooth inje
tive homomorphism of ve
-

tor bundles J

1

VM ! G�

P

J

1

V, whi
h 
overs the identity map onM . Sin
e

both bundles 
learly have the same rank, this must be an isomorphism.

Finally, 
onsider a homomorphism f : V ! W . The 
orresponding bundle

map VM !WM is indu
ed by (u; v) 7! (u; f(v)), and so the indu
ed a
tion

on se
tions is indu
ed by

s 7! (x 7! (u(x); f Æ s(u(x)))):

Taking 1{jet of this expression we obtain just the homomorphism J

1

(f).

3.4. Semi{holonomi
 jets. Sin
e we posed no 
onditions on the repre-

sentation V above, we 
an iterate the fun
tors J

1

on the asso
iated ve
tor

bundles as well as the fun
tors J

1

on the P{modules. Proposition 3.3 then

implies that the r{th iteration J

1

: : : J

1

VM is an asso
iated bundle to G


orresponding to the P{module J

1

: : :J

1

V. Let us look more 
arefully at

J

1

J

1

V and J

1

J

1

VM . There are two obvious P{module homomorphisms

J

1

J

1

V ! J

1

V, the �rst one given by the proje
tion p

J

1

V

de�ned on ea
h

�rst jet prolongation by proje
tion to the �rst 
omponent, and the other

one obtained by the a
tion of J

1

on p

V

. Thus there is the submodule

�

J

2

V

in J

1

J

1

V on whi
h these two proje
tions 
oin
ide. As a ve
tor spa
e and a

G

0

{module we have

�

J

2

V = V � (g

�

�


 V) � (g

�

�


 g

�

�


 V):

The two P{module homomorphisms J

1

(p

V

) and p

J

1

V

give rise to ve
tor

bundle homomorphisms J

1

J

1

VM ! J

1

VM whi
h are just the two standard

proje
tions on the se
ond non{holonomi
 jet prolongation. So we 
on
lude

that the se
ond semi{holonomi
 prolongation

�

J

2

VM is naturally isomorphi


to G �

P

�

J

2

V.

Iterating this pro
edure, we obtain the r{th semi{holonomi
 jet prolonga-

tions and J

1

(

�

J

r

V) equipped with two natural proje
tions onto J

1

(

�

J

r�1

V),
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whi
h 
orrespond to the usual proje
tions on the �rst jet prolongation of

semi{holonomi
 jets. Their equalizer is then the submodule

�

J

r+1

V. As a

G

0

{module

�

J

r

V =

r

M

i=0

(


i

g

�

�


 V):

Proposition. For ea
h positive integer r, the r{th semi{holonomi
 jet pro-

longation

�

J

r

VM 
arries the natural stru
ture of asso
iated ve
tor bundle

G �

P

�

J

r

V. Moreover, there is the natural embedding

J

r

VM !

�

J

r

VM ' G �

P

�

J

r

V

j

r

s(u) 7! fu; (s(u);r

!

s(u); : : : ; (r

!

)

r

s(u))g:

Proof. The �rst part of the statement has been already shown. What re-

mains is to dis
uss the equivarian
y properties of the invariant di�erentials.

However also this follows from the �rst order 
ase easily by indu
tion, using

only the de�nition of the semi{holonomi
 prolongations.

3.5. Strongly invariant operators. The problem, why we 
annot work

with true (holonomi
) r{jets but have to use the semi{holonomi
 ones, is that

absolutely invariant derivatives 
ommute only for 
at Cartan 
onne
tions.

More pre
isely, from the de�nition of the absolutely invariant derivative and

the properties of the 
urvature, one immediately 
on
ludes the so 
alled

general Ri

i{identity

(r

!

r

!

s)(u)(X 
 Y � Y 
X) = r

!

s(u)([X;Y ℄) + �

p

(X;Y )�(s(u))

�r

!

s(u)(�

�

(X;Y ))

for all X;Y 2 g

�

. This also shows that the torsion{part of � has a quite

di�erent geometri
 meaning than the 
omponent valued in p. Thus, the

identi�
ation from proposition 3.4 has values in the P{submodule J

r

(V) of

symmetri
 elements �

r

i=0

(S

i

g

�

�


 V) in the 
at 
ase. Consequently we have

re
overed the standard identi�
ation of the r{th holonomi
 jet prolongation

of a homogeneous bundle with an asso
iated bundle for 
at geometries, but

this does not work in the 
urved 
ase.

Nevertheless, one 
an well use the semi{holonomi
 jet prolongations to

generate invariant operators. Suppose that V and W are representations of

P and suppose that � :

�

J

r

(V) ! W is a homomorphism of P{modules.

Then for any paraboli
 geometry (G; !) we 
an de�ne a di�erential operator

�(VM) ! �(WM) as follows: For a se
tion s viewed as an equivariant

fun
tion G ! V de�ne

D

(G;!)

(s)(u) = �(s(u);r

!

s(u); : : : ; (r

!

)

r

s(u)):

From Proposition 3.4 above it follows that this gives a se
tion of the bundle

WM and that ea
h D

(G;!)

is a di�erential operator of order � r. Moreover,

by 
onstru
tion the operators D

(G;!)

form a natural operator on the 
ate-

gory of all paraboli
 geometries in the sense of 2.11. Operators arising in

this way will be 
alled strongly invariant operators in the sequel. We will

often not distinguish 
arefully between a strongly invariant operator and

the 
orresponding homomorphism

�

J

r

(V) ! W . Thus, the semi{holonomi


jet modules give a possibility to 
onstru
t natural operators for a paraboli
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geometry in a 
ompletely algebrai
 way, sin
e one only has to 
onstru
t a

homomorphism between two �nite dimensional P{modules.

There is a slight problem about strongly invariant operators, however.

Namely, even if a homomorphism

�

J

r

(V) ! W does not fa
tor over

�

J

r�1

(V),

the 
orresponding operators may be of order stri
tly less than r or even

identi
ally zero. To see this, note that we 
an easily 
ompute the symbol of

a strongly invariant operator. This symbol is a ve
tor bundle homomorphism

S

r

T

�

M 
 VM ! WM , whi
h is indu
ed by a homomorphism S

r

g

�

�


V !

W . Using Proposition 3.4 it is 
lear that this homomorphism is given by

restri
ting � to S

r

g

�

�


 V, viewed as a submodule of 


r

g

�

�


 V, whi
h in

turn 
an be viewed as a submodule of

�

J

r

(V). Thus, if a homomorphism

restri
ts to zero on the symmetri
 part of the top 
omponent of the jet{

module, then the 
orresponding operator a
tually is of lower order (and


ontains terms involving the 
urvature of the Cartan 
onne
tion).

There is an important situation in whi
h this problem does not play any

role. Suppose that we have an operator of order r in the 
at 
ase with

nontrivial symbol, and suppose that we 
an �nd a homomorphism

�

J

r

(V) !

W whi
h indu
es this operator (in the 
at 
ase). Then this gives a 
urved

analog of the operator in question, and there is no problem with the symbol

at all. This will always be the 
ase for the operators we are going to study.

In parti
ular, sin
e

�

J

1

(V) = J

1

(V), any �rst order invariant operator on

the 
ategory of 
at paraboli
 geometries is automati
ally strongly invariant,

and thus has a 
anoni
al 
urved analog.

3.6. Remark. There are operators whi
h are natural (invariant) in the

sense of 2.11 but are not strongly invariant. Basi
ally, there is only one

example of su
h an operator known: It is shown in [21℄ that on 
onformal

manifolds of dimension 2m there exists a 
onformally invariant m{th power

of the Lapla
ian on smooth fun
tions. In [16℄ it is shown that this operator

is not strongly invariant. It 
an, however, be written in terms of absolutely

invariant derivatives, and thus it is also natural. In fa
t, it is shown in

[32℄ that for AHS{stru
tures, i.e. paraboli
 geometries 
orresponding to j1j{

graded Lie algebras, naturality of (even non-linear) operators is equivalent

to the possibility to express them by means of the absolute invariant deriv-

ative and 
urvature of the de�ning Cartan 
onne
tion, and this, in turn, is

equivalent to the existen
e of a universal formula in terms of all underlying

aÆne 
onne
tions, 
f. 2.13.

The existen
e of invariant operators whi
h are not strongly invariant is

due to symmetries of the 
urvature of a Cartan 
onne
tion. Suppose that we

write an expression in terms of absolutely invariant derivatives and 
he
k

whether the result is P{equivariant. Otherwise put, we 
an 
ompute the

obstru
tion against being equivariant whi
h usually 
ontains expressions in-

volving the 
urvature of the Cartan 
onne
tion and its derivatives. In the


ase of a strongly invariant operator, these obstru
tions vanish algebrai
ally.

But the jets of the 
urvature of any Cartan 
onne
tion have 
ertain symme-

tries, basi
ally due to the Bian
hi identity, see e.g. [7, 4.9℄. This implies that

expressions that do not vanish algebrai
ally, still may vanish whenever the

jet of the 
urvature of a Cartan 
onne
tion is inserted, and this is pre
isely

what happens in the 
ase of the 
riti
al powers of the Lapla
ian.
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3.7. Twisted invariant operators. Besides the 
ompletely redu
ible rep-

resentations (whi
h 
ome from the redu
tive subgroup G

0

) there is a se
ond


lass of parti
ularly simple representations of the group P . Namely one 
an

take a representation of the full (semisimple) group G and restri
t it to P .

These representations have parti
ularly ni
e features in the 
ase of the 
at

model sin
e they give rise to trivial homogeneous bundles. There are many

ways to see that, but the most appropriate one for our purposes is to asso-


iate to any element v in a representation V of G a global nonzero se
tion

of the asso
iated bundle G�

P

V. To do this, we just have to spe
ify a P{

equivariant map G! V, and we de�ne this map simply by g 7! g

�1

�v. This

map is even G{equivariant and not only P{equivariant.

There is a simple generalization of this result. Suppose that W is any

representation of P . Then se
tions of W (G=P ) are in bije
tive 
orrespon-

den
e with P{equivariant maps G! W . Now we de�ne a map on se
tions

of homogeneous bundles

�(W (G=P ))
 V ! �

�

W (G=P )
 V (G=P )

�

s
 v 7! (g 2 G 7! s(g)
 g

�1

�v)

and one immediately veri�es that this is an isomorphism of G{modules.

In parti
ular, this implies that if W

0

is another P{representation and D :

�(W (G=P )) ! �(W

0

(G=P )) is an invariant di�erential operator, then we


an pull ba
k

D 
 id

V

: �(W (G=P ))
 V ! �(W

0

(G=P ))
 V

along these isomorphisms to get an invariant operator

D

V

: �

�

W (G=P )
 V (G=P )

�

! �

�

W

0

(G=P )
 V (G=P )

�

:

This operator is 
alled the twisted invariant operator 
orresponding to D

and V.

Now, let us noti
e that the above isomorphism between the spa
es of se
-

tions of the asso
iated bundles indu
es a P{module isomorphism

�

J

r

(W ) 


V '

�

J

r

(W 
 V) for all P{modules W and G{modules V and all orders r.

Thus, for strongly invariant operators D, we may extend the 
onstru
tion of

the twisted invariant operators to natural operators D

V

a
ting on all geome-

tries (G; !) of the type (G;P ) and the resulting operators are again strongly

invariant. Let us remark that a 
ompletely algebrai
 treatment of this 
on-

stru
tion has been worked out (in the spe
ial 
ase of the AHS-stru
tures) in

[6℄.

In parti
ular, we obtain the strongly invariant twisted operators D

V

for

all �rst order invariant operators D on the homogeneous ve
tor bundles and

all G{modules V.

3.8. Twisted exterior derivatives. The standard exterior derivatives d

on the di�erential forms on G=P are �rst order invariant operators (sin
e

they are even invariant under the a
tion of all di�eomorphisms of G=P ), so

we 
an apply the 
onstru
tion above to get the twisted exterior derivatives

d

V

: �

�

�

n

T

�

(G=P )
 V (G=P )

�

! �

�

�

n+1

T

�

(G=P )
 V (G=P )

�

for n = 0; : : : ;dim(G=P ). Moreover, the operators d

V

are strongly invariant,

sin
e they are of �rst order, and so there are the 
orresponding P{module
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homomorphisms on the semi{holonomi
 jet modules. Sin
e we will need it

later, we will 
ompute these homomorphisms expli
itly.

Let us start with the ordinary exterior derivative. We have already noted

in 3.1 that the exterior derivative of fun
tions equals the absolutely invariant

derivative. To 
ompute the exterior derivative for general di�erential forms,

we �rst have to des
ribe ni
ely the identi�
ation of n{forms with smooth

equivariant fun
tionsG! �

n

p

+

. Throughout, we are going to identify �

n

p

+

with the spa
e of n{linear alternating maps from g

�

�

=

g=p to K . Now using

the identi�
ation of the tangent bundle of G=P with G�

P

g

�

des
ribed in

3.1, one easily veri�es that the relation between a form ' 2 


k

(G=P ) and

the 
orresponding fun
tion s : G! �

n

p

+

is given by

(p

�

')(g)(!

�1

g

(X

1

); : : : ; !

�1

g

(X

n

)) = s(g)(X

1

; : : : ;X

n

);

where p

�

' is the pullba
k of ' along the proje
tion p : G! G=P , and the X

i

are in g

�

. Note that this formula remains 
orre
t for X

i

2 g if one interprets

s(g) as an n{linear map on g whi
h vanishes if at least one argument lies in

p.

Lemma. Let s and ds be the fun
tions on G 
orresponding to di�erential

forms ' and d' on G=P , respe
tively. Then the formula for the exterior

derivative reads as

ds(X

0

; : : : ;X

n

) =

n

X

i=0

(�1)

i

(r

!

s)(g)(X

i

)(X

0

; : : : ;

^

i; : : : ;X

n

) +

X

i<j

(�1)

i+j

s(g)([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

n

)

where ! is the left Maurer-Cartan form on G and, as usual, the hat denotes

omission.

Proof. To 
ompute the fun
tion 
orresponding to d', we just have to evalu-

ate p

�

(d')(g) = d(p

�

')(g) on ve
tor �elds of the form

~

X(g) = !

�1

g

(X). We

have

d(p

�

')(

~

X

0

; : : : ;

~

X

n

) =

n

X

i=0

(�1)

i

~

X

i

�(p

�

')(

~

X

0

; : : : ;

^

i; : : :

~

X

n

) +

+

X

i<j

(�1)

i+j

(p

�

')([

~

X

i

;

~

X

j

℄;

~

X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;

~

X

n

):

Inserting p

�

' from above and evaluating at g, we see dire
tly that the �rst

summand agrees with the �rst summand in the 
laimed formula, whi
h


learly equals n+1 times the alternation of (r

!

s)(g) evaluated at (X

0

; : : : ;X

n

).

For the se
ond summand, we just have to note that by the Maurer{Cartan

equation for ! we have [

~

X

i

;

~

X

j

℄ =

^

[X

i

;X

j

℄. Thus, this summand gives exa
tly

the other part of the required formula.

Now let us pass to the general 
ase of a V (G=P ){valued n{form, where

V is a representation of the whole group G. Any su
h form 
an be written

as a �nite sum of expressions of the form '
 ~v, where ' 2 


n

(G=P ) and ~v

is the global se
tion of V (G=P ) 
orresponding to v 2 V as in 3.7 above. By

de�nition, the twisted exterior derivative is given by d

V

(' 
 ~v) = (d') 
 ~v.
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Now let s be the fun
tion 
orresponding to ' and denote by ~v also the

fun
tion 
orresponding to the global se
tion. From above, we thus see that

d

V

('
 ~v) is represented by the fun
tion whi
h maps (X

0

; : : : ;X

n

) to

(�)

n

X

i=0

(�1)

i

(r

!

s)(g)(X

i

)(X

0

; : : : ;

^

i; : : : ;X

n

)~v(g) +

+

X

i<j

(�1)

i+j

s(g)([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

n

)~v(g):

By de�nition of the absolutely invariant derivative, we have

r

!

(s
 ~v)(X) = r

!

s(X)
 ~v + s
 (r

!

~v(X))

and the in�nitesimal version of G{invarian
e of ~v says that

r

!

~v(g)(X) = �X�(~v(g)):

Thus we may rewrite the �rst summand in (�) as

(��)

n

X

i=0

(�1)

i

r

!

(s
 ~v)(g)(X

i

)(X

0

; : : : ;

^

i; : : : ;X

n

) +

+

n

X

i=0

(�1)

i

X

i

�(s(g)(X

0

; : : : ;

^

i; : : : ;X

n

)~v(g)):

Finally note that the se
ond term in (��) adds up with the se
ond term

in (�) to the value of the standard Lie algebra di�erential � : C

n

(g

�

;V) =

�

n

g

�

�


 V ! C

n+1

(g

�

;V) (
f. 4.1 for the expli
it formula) applied to the

map s(g)
 ~v(g) evaluated on (X

0

; : : : ;X

n

). Thus we may summarize:

3.9. Proposition. The twisted exterior derivative d

V

on G=P is a strongly

invariant operator indu
ed by the P{module homomorphism

�

J

1

(�

n

p

+




V) ! �

n+1

p

+


 V, whi
h is given by the formula

(f

0

; Z 
 f

1

) 7! �(f

0

) + (n+ 1)Z ^ f

1

;

where we view elements of �

n

p

+


 V as n{linear alternating maps from

g

�

to V and Z ^ f

1

denotes the alternation of the map (X

0

; : : : ;X

n

) 7!

B(Z;X

0

)f

1

(X

1

; : : : ;X

n

).

3.10. Corollary. The Lie algebra di�erential � satis�es

(W ��(f)� �(W �f)) = (n+ 1)

X

j�

�

j�jW j

�

�

^ [W; �

�

℄�f

for f 2 �

n

p

+


V and W 2 p

+

, where �

�

and �

�

are homogeneous dual bases

of g

�

and p

+

with respe
t to the Killing form.

Proof. The 
laim 
an be veri�ed by a ni
e and elementary, but tedious al-

gebrai
 
omputation. However, the previous proposition o�ers the following

simple argument:

We know that the formula for the strongly invariant operator

d

V

(f

0

; Z 
 f

1

) = �(f

0

) + (n+ 1)Z ^ f

1
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is P{equivariant. Thus for all f

0

, f

1

2 V, Z 2 p

+

, W 2 p

+

we obtain the

equality of the following two expressions

d

V

(W �(f

0

;Z 
 f

1

)) = d

V

((W �f

0

;W �(Z 
 f

1

) +

X

�

�


 [W; �

�

℄�f

0

) =

= �(W �f

0

) + (n+ 1)W �(Z ^ f

1

) + (n+ 1)

X

�

�

^ [W; �

�

℄�f

0

W �(�(f

0

) + (n+ 1)Z ^ f

1

) =W �(�f

0

) + (n+ 1)W �(Z ^ f

1

):

This yields the required formula.

3.11. The 
ovariant exterior derivatives. Proposition 3.9 o�ers a 
anon-

i
al 
urved analog of the twisted exterior derivatives on all manifolds with a

paraboli
 geometry of the type (G;P ). It should be remarked that we may

obtain another 
urved analog as follows. For any paraboli
 geometry (G; !)

on M , we 
onsider the extended bundle

~

G = G �

P

G, whi
h is a prin
ipal

G{bundle over M . It is a 
lassi
al observation that the Cartan 
onne
tion

! indu
es a prin
ipal 
onne
tion ~! on

~

G. Now if V is a representation of G,

then we 
an view the 
orresponding natural bundle VM = G �

P

V also as

VM =

~

G�

G

V, and thus we have the indu
ed linear 
onne
tion on this bun-

dle. The 
ovariant exterior derivative with respe
t to this 
onne
tion gives

a natural operator on VM{valued forms on M . If s :

~

G ! �

k

p

+


 V is the

equivariant fun
tion 
orresponding to a k-form ' on M , then the value of

the latter operator is a (k + 1)-form on M , given by the formula

d

~!

s(u)(X

0

; : : : ;X

n

) =

k

X

i=0

(�1)

i

r

~!

X

i

s(u)(X

0

; : : : ;

^

i; : : : ;X

k

) +

+

X

i<j

(�1)

i+j

s(u)([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

k

)

where X

0

; : : : ;X

k

2 g

�

, u 2

~

G, r

~!

X

i

s(u) means the derivative of s in the

dire
tion of the horizontal ve
tor at u determined by X

i

, and there are

the standard omissions of arguments in the expressions on the right hand

side. Indeed, d

~!

is de�ned as the pullba
k of the standard d on

~

G by the

horizontal proje
tion of ~!, applied to the pullba
k of the k-form ' on M by

the proje
tion p :

~

G ! M . Sin
e the 
urvature of ~! produ
es verti
al �elds

on

~

G, the above formula equals to the standard evaluation of d(p

�

') on the

horizontal lifts of ve
tor �elds on M .

These operators 
oin
ide with the twisted exterior derivatives on the ho-

mogeneous spa
e but they di�er in general. The expli
it general 
omparison

is as follows:

Lemma. Let V be a G-module, VM the 
orresponding natural ve
tor bundle

over a manifold M equipped with a paraboli
 geometry (G; !). The 
ovariant

exterior derivative d

~!

on �

k

T

�

M 
 VM , k > 0, and the twisted exterior

derivative d

V

on the same spa
e satisfy

d

~!

' = d

V

'+ i

�

�

'

where �

�

is the torsion{
omponent of the 
urvature of ! and i

�

�

' is the

usual insertion operator evaluated on �

�

and ', i.e. the alternation of '(�

�

(X

0

;X

1

);X

2

; : : : ;X

k

)

over the arguments.
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Proof. The key to the required formula is in the expressions (�) and (��) in

3.8. Namely, the latter expressions whi
h were derived on the homogeneous

spa
es des
ribe also the twisted exterior derivatives in general, but we have

to be aware that instead of the bra
ket [X

i

;X

j

℄ in (�) we have to plug in

!(u)([!

�1

(X

i

); !

�1

(X

j

)℄) = [X

i

;X

j

℄� �(u)(X

i

;X

j

):

At the same time, for all u 2 G �

~

G, the 
ovariant derivative r

~!

of a se
tion

s :

~

G ! V relates to the absolute invariant derivative as

r

~!

s(u)(X) = r

!

s(u)(X) +X�s(u)

(sin
e the horizontal �elds given by ~! equal to !

�1

(X) minus the funda-

mental �eld �

X

).

Combining the latter two fa
ts, we see that exa
tly the expression

i

�

�

'(u)(X

0

; : : : ;X

k

) =

X

i<j

(�1)

i+j

'(u)(�

�

(X

i

;X

j

);X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

k

)

has to be added to d

V

(u)'(X

0

; : : : ;X

k

) in order to obtain the 
ovariant

derivative. This is exa
tly the evaluation of the insertion operator, 
f. [24,

8.2℄.

The latter lemma shows that our twisted exterior di�erentials d

V

are 
er-

tain torsion adjusted versions of the standard 
ovariant exterior derivatives.

In parti
ular, even in the 
ase V = R the twisted derivative d

R

equals to the

usual exterior derivative d if and only if the geometry is torsion{free.

3.12. Remarks. (1) As we saw in 3.8, the isomorphism

�(W (G=P ))
 V

�

=

�(W (G=P )
 V (G=P ))

of G{modules indu
es an isomorphism of P{modules

�

J

r

(W )
V

�

=

�

J

r

(W 


V) for any P{representation W and G{representation V. This 
an also be

proved algebrai
ally along the lines of [6℄. This isomorphism 
an then be

used to de�ne twisted versions of any strongly invariant operators in a 
om-

pletely algebrai
 way. Using this pi
ture, the subsequent developments in

this paper 
an be viewed as a 
urved analog of the Jantzen{Zu
kermann

translation prin
iple in representation theory. The �rst version of su
h a


urved translation pro
edure appeared in the 
ontext of 4{dimensional 
on-

formal geometry in [15℄, see also [12℄.

(2) The twisted exterior derivatives give a sequen
e

�(VM)! 


1

(M ;VM)! � � � ! 


max

(M ;VM)! 0;

of invariant di�erential operators, where se
tions and forms are smooth in

the real 
ase and holomorphi
 in the 
omplex 
ase. In the 
ase of the 
at

model, this sequen
e is just the pullba
k of the tensor produ
t of the (smooth

or holomorphi
) de Rham sequen
e with V, so it is a resolution of the 
on-

stant sheaf V. In the 
ase of a general paraboli
 geometry, it fails to be a


omplex. A
tually, it is easy to verify that the 
omposition d

V

Æ d

V

is just

given by the a
tion of the 
urvature of !. Thus, in the 
ase of a 
at paraboli


geometry, we still get a 
omplex, whi
h by Lemma 3.11 
oin
ides with the


omplex given by the 
ovariant exterior derivative with respe
t to the 
at
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linear 
onne
tion indu
ed by the Cartan 
onne
tion. Note however, that on

a 
at paraboli
 geometry bundles 
orresponding to representation of G are

no more trivial in general.

(3) As a G

0

{module, one 
an split any representation W of P as �W

j

a

ording to eigenvalues of the grading element E 2 g

0

. Clearly, the a
tion of

p

+

maps g

i


W

j

to W

j+i

. In parti
ular, we 
an apply this to �

n

p

+


V to split

the spa
e 


n

(M ;VM) into homogeneous 
omponents, and analyze how the

twisted exterior derivative behaves with respe
t to this splitting. From the

formula in Proposition 3.9 it is obvious that d

V

never lowers homogeneous

degree and the 
omponent of the same homogeneous degree as the input

is just the Lie algebra di�erential � 
omposed with the given form. Thus,

the homogeneous 
omponent of degree zero of d

V

is algebrai
 and equals �.

This observation is 
ru
ial for the subsequent development. Using the fa
t

that the Lie algebra 
ohomology of g

�

with 
oeÆ
ients in g admits a Hodge

theory (whi
h we will dis
uss in the next se
tion), we will show that we 
an

repla
e the sequen
e of remark (2) above by a di�erent sequen
e in whi
h

only se
tions of 
ompletely redu
ible bundles o

ur, and whi
h is a 
omplex


omputing the same 
ohomology if the original sequen
e was a 
omplex.

4. Curved analogs of Bernstein{Gelfand{Gelfand resolutions

In this se
tion, we �rst dis
uss the Hodge{stru
ture on the standard 
om-

plex for the 
ohomology H

�

(g

�

;V) for a g{module V. Then we 
ome to the


ore of the paper, the 
onstru
tion of a huge 
lass of distinguished natural

operators on all paraboli
 geometries.

4.1. We have already mentioned the standard 
omplex for the 
ohomol-

ogy H

�

(g

�

;V) in 3.8. The 
hain groups in this 
omplex are the groups

C

n

(g

�

;V) = �

n

g

�

�


V, whi
h are viewed as the spa
es of n{linear alternat-

ing maps from g

�

to V. The di�erential

� : C

n

(g

�

;V) ! C

n+1

(g

�

;V)

is de�ned by

�(f)(X

0

; : : : ;X

n

) =

n

X

i=0

(�1)

i

X

i

�f(X

0

; : : : ;

^

i; : : : ;X

n

) +

+

X

i<j

(�1)

i+j

f([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

n

);

where the hats denote omission. Clearly, if we start with a representation

V of the group G, then � is a homomorphism of G

0

{modules, and it is well

known that � Æ � = 0.

The 
ru
ial fa
t for us is that on this standard 
omplex there is a Hodge

theory, whi
h was �rst introdu
ed for 
omplex simple Lie algebras in [25℄.

The most 
on
eptual way to des
ribe this Hodge stru
ture is to use the

natural duality between g

�

and p

+

via the Killing form. This is a dual-

ity of G

0

{modules, but if we 
onsider g

�

as a P{module via the adjoint

a
tion and the identi�
ation with g=p, then it even is a duality of P{

modules by invarian
e of the Killing form. Thus, given a representation

V of g and its dual V

�

, we 
an naturally identify C

n

(p

+

;V

�

) with the dual
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P{module of C

n

(g

�

;V). Thus, the dual map to the Lie algebra di�erential

� : C

n

(p

+

;V

�

)! C

n+1

(p

+

;V

�

) 
an be viewed as a linear map

�

�

: C

n+1

(g

�

;V) ! C

n

(g

�

;V)

whi
h is 
alled the 
odi�erential . From the above, it is obvious that the 
odif-

ferential is a G

0

{homomorphism and �

�

Æ�

�

= 0. Moreover, one immediately

veri�es that the Lie algebra di�erential for p

+

is even a P{homomorphism

and thus the same is true for �

�

.

A formula for �

�


an be easily 
omputed for elements of the form Z

0

^

� � � ^Z

n


 v, where the Z

i

are in p

+

and v is in V. Pairing this element with

a multilinear map  2 C

n+1

(p

+

;V

�

), we simply get  (Z

0

; : : : ; Z

n

)(v). Using

this, one immediately 
omputes that

�

�

(Z

0

^ � � � ^ Z

n


 v) =

n

X

i=0

(�1)

i+1

Z

0

^ � � �

^

i � � � ^ Z

n


 Z

i

�v +

+

X

i<j

(�1)

i+j

[Z

i

; Z

j

℄ ^ � � �

^

i � � �

^

j � � � ^ Z

n


 v:

From this formula, it is again obvious that �

�

is a P{homomorphism.

Using Lie theory, one 
onstru
ts an inner produ
t on the spa
es of 
o
hains,

with respe
t to whi
h � and �

�

are adjoint operators. The proof for this fa
t

in the generality we need it is only a rather simple extension of results avail-

able in the literature, see e.g. [34, 35℄. For the sake of 
ompleteness and the


onvenien
e of the reader, we give a 
omplete proof in Appendix Appendix

B.

4.2. This adjointness result has a number of important 
onsequen
es: First

of all one gets a harmoni
 theory for the 
ohomology H

�

(g

�

;V). We de�ne

the Lapla
ian

� = � Æ �

�

+ �

�

Æ �:

Then for ea
h n this is a G

0

{endomorphism of C

n

(g

�

;V). Moreover, the ad-

jointness implies that ker(�) = ker(�)\ker(�

�

) and we have a G

0

{invariant

splitting

C

n

(g

�

; V ) = im(�)� ker(�)� im(�

�

):

This implies then that the 
ohomology group H

n

(g

�

;V) is isomorphi
 (as

a G

0

{module) to the subspa
e ker(�) � C

n

(g

�

;V). Moreover, the situa-

tion between � and �

�

is 
ompletely symmetri
, so we 
an as well 
om-

pute the 
ohomology groups H

�

(g

�

;V) as ker(�

�

)= im(�

�

). This is more

suitable for our purposes, sin
e, as we have noti
ed above, �

�

is even a

P{homomorphism. This also implies that (even as a G

0

{module) the 
oho-

mology group H

n

(g

�

;V) is dual to H

n

(p

+

;V

�

).

Thus, we get a 
anoni
al a
tion of P on the 
ohomology groupsH

n

(g

�

;V).

We 
laim, that this module is 
ompletely redu
ible, i.e. a dire
t sum of

irredu
ibles. To prove this, we only have to show that p

+

a
ts trivially on the


ohomology groups. Fortunately, there is the following simple observation

Lemma. Let Z 2 p

+

and f 2 C

n

(g

�

;V)

�

=

�

n

p

+


 V. Consider Z�f 2

C

n

(g

�

;V) and Z ^ f 2 C

n+1

(g

�

;V), as de�ned in 3.9. Then

�

�

(Z ^ f) = �Z�f � Z ^ �

�

(f):
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Proof. This is a dire
t 
onsequen
e of the general formula for �

�

in 4.1.

Now, one immediately 
on
ludes that the p

+

{a
tion maps ker(�

�

) to im(�

�

),

and thus in parti
ular the indu
ed a
tion on the 
ohomology groups is trivial.

In [25℄, B. Kostant 
omputed the 
ohomology groups H

�

(p

+

;V) in the


ase when g is 
omplex and simple and V is a 
omplex irredu
ible represen-

tation. The basi
 idea in the proof is to analyze the a
tion of the Lapla
ian

� in terms of Casimir operators.

In fa
t, our 
onstru
tion of the sequen
es of natural operators will not

need the expli
it knowledge of the 
ohomologies. On the other hand, the full

power of Kostant's theorem is ne
essary in order to 
ompare the resulting

sequen
es with the standard BGG{resolutions in representation theory.

Let us also remark here, that the knowledge of the se
ond 
ohomologies

with values in g determines ni
ely the stru
ture of the 
urvature of normal

paraboli
 geometries, see e.g. [35, 30℄.

4.3. A sket
h of the 
onstru
tion. Let us return to the twisted de Rham

sequen
e

�(VM)! 


1

(M ;VM)! � � � ! 


max

(M ;VM)! 0

on a manifold M equipped with a paraboli
 geometry (G; !). For ea
h i,




i

(M ;VM) is the spa
e of se
tions (smooth in the real 
ase, holomorphi
 in

the 
omplex setting) of the natural bundle asso
iated to the representation

�

i

p

+


V. The maps �, �

�

, and � de�ned above indu
e maps on the spa
es of

se
tions, whi
h we denote by the same symbols. Moreover, sin
e these maps

are indu
ed by pointwise operations the Hodge de
omposition of �

i

p

+


 V

gives rise to a Hodge de
omposition




i

(M ;V M) = im(�)� ker(�)� im(�

�

):

One has to be 
areful, however, that this de
omposition is not P{invariant

but just G

0

{invariant, sin
e �

�

is a P{homomorphism but � and � are not.

Thus the latter de
omposition makes expli
it geometri
al sense only after a

redu
tion of G to G

0

, 
f. the dis
ussion in 2.13.

Sin
e �

�

is a P{homomorphism, the kernel ker(�

�

) and the image im(�

�

)

are the spa
es of se
tions of natural subbundles of �

n

T

�

M
VM . Moreover,

from 4.2 we know that the quotient ker(�

�

)= im(�

�

) 
an be identi�ed with

the spa
e of se
tions of the bundle asso
iated to the (
ompletely redu
ible)

representation H

n

V

= H

n

(g

�

;V) of P , so we get an algebrai
 natural operator

from the subset ker(�

�

) of 


n

(M ;VM) to the spa
e of smooth se
tions of the

natural bundle 
orresponding to the representation H

n

V

. If E is an irredu
ible


omponent of H

n

V

, then we 
an further proje
t onto this 
omponent to get

an algebrai
 natural operator ker(�

�

)! �(EM).

On the other hand, H

n

V


an be identi�ed with ker(�) � �

n

p

+


 V as a

G

0

{module, so we may view any se
tion of the 
orresponding bundle as a

VM{valued n{form, but this is not a natural operator. The main point of

the following will be that one 
an 
onstru
t a natural di�erential operator

L from se
tions of the bundle 
orresponding to H

n

V

to VM{valued n{forms

in ker(�

�

), whi
h has this in
lusion as the lowest homogeneous 
omponent.

Otherwise put, one 
an split the algebrai
 proje
tion � 
onstru
ted above

by a natural di�erential operator L. Moreover, it will turn out that this
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operator is fully determined by the following surprising fa
t: For ea
h se
tion

� 2 �(H

n

V

M) there exists the unique se
tion L(�) 2 ker(�

�

) � 


n

(M ;VM)

su
h that � Æ L(�) = � and d

V

(L(�)) 2 ker(�

�

) � 


n+1

(M ;VM).

ker(�

�

)

�

��

ker(�

�

)

�

��
: : :

//

d

V

ÆL

;;vvvvvvvvvvv
�(H

i

V

M)

L

OO
d

V

ÆL

88qqqqqqqqqqq

//
�(H

i+1

V

M)

L

OO

//
: : :

Summarizing the prospe
tive a
hievement, the twisted exterior derivatives

will produ
e plenty of natural di�erential operators indi
ated by the dotted

arrows in the diagram.

The idea for the 
onstru
tion of this natural di�erential operator L is fairly

simple. Re
all from 3.9 that the lowest homogeneous 
omponent of d

V

equals

the Lie algebra di�erential �. Suppose we have a se
tion s in the bundle


orresponding to H

n

V

, whi
h is homogeneous of some degree i. Then it lies in

ker(�) and thus in parti
ular in ker(�), so the homogeneous 
omponent of

degree i of d

V

(s) is automati
ally zero. The idea is now to extend s to ~s in

su
h a way that d

V

(~s) is as small as possible. The homogeneous 
omponent

of degree i+ 1 of d

V

(s) 
an be split into 
omponents in im(�), ker(�), and

im(�

�

), and the best we 
an do to kill it is to add to s an element s

i+1

whi
h

is homogeneous of degree i+1 su
h that �(s

i+1

) is the negative of the im(�){


omponent of d

V

(s) in degree i+1. There is a freedom in the 
hoi
e of s

i+1

whi
h 
an be �xed by requiring that s

i+1

2 im(�

�

) (whi
h is a 
omplement

to ker(�) by the adjointness). But this allows us already to 
ompute s

i+1

:

Sin
e �

�

(s

i+1

) = 0 we see that �(s

i+1

) = �

�

(�(s

i+1

)). But �(s

i+1

) is just the

negative of the im(�){part of the homogeneous 
omponent of degree i + 1

of d

V

(s), so this is known. Moreover, by de�nition � 
ommutes both with

� and �

�

, and ker(�) \ im(�

�

) = f0g. Thus � restri
ts to an isomorphism

im(�

�

) ! im(�

�

). Hen
e we 
an 
ompute s

i+1

by applying �

�1

Æ �

�

to the

homogeneous 
omponent of degree i+1 of d

V

(s). Similarly we 
an 
ontinue

to add an appropriate homogeneous 
omponent of degree i+ 2 and so on.

From this des
ription it is not at all obvious that this 
onstru
tion pro-

du
es a natural operator, sin
e the map �

�1

involved in the 
onstru
tion is

not a P{homomorphism, and the subsequent steps of the 
onstru
tion use

d

V

� � whi
h is not natural either. Below we will manage, however, to work

out the pro
edure sket
hed above within the framework of homomorphisms

between semi{holonomi
 jet modules. Thus the resulting operators L will

be even strongly invariant.

4.4. Ea
h P{module V enjoys a de
omposition

V = V

i

0

� V

i

0

+1

� � � � � V

i

0

+k

as a G

0

{module, where the submodules V

i

are distinguished by the require-

ment that the grading element E 2 g

0

(
f. 2.1) a
ts by s
alar multipli
ation

by i. The a
tion of the elements Z 2 g

j

then maps V

i

into V

i+j

and so for

ea
h j = 0; : : : ; k the subspa
e V

j

:= V

i

0

+j

�� � ��V

i

0

+k

is a P{submodule of

V. In parti
ular, this de
omposition of an irredu
ible G{module V, viewed

as P -module, runs from V

�k

to V

k

, where V

k

is the P{submodule generated

by the highest weight of V.
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Now, let E

i

0

be an irredu
ible 
omponent of H

n

(g

�

;V), on whi
h the

grading element a
ts by multipli
ation by i

0

. Then we 
an view E

i

0

as a G

0

submodule of ker(�) � �

n

p

+


 V and we write E for the P{submodule in

�

n

p

+


 V generated by E

i

0

. Let

E = E

i

0

� � � � � E

i

0

+r

be the above G

0

{module de
omposition a

ording to eigenvalues of the grad-

ing element. Then the a
tion of g

`

maps ea
h E

i

0

+i

to E

i

0

+i+`

. For ea
h

i = 1; : : : ; r + 1 we have the P{submodule E

i

as above, so we 
an form the

quotient E=E

i

, whi
h is as a G

0

{module isomorphi
 to E

i

0

� � � � � E

i

0

+i�1

.

In parti
ular, E=E

1

is again the irredu
ible module E

i

0

we started with but

now viewed as a P{module, and E=E

r+1

= E .

Lemma. (1) E � ker(�

�

) and E

1

� im(�

�

).

(2) The Lapla
ian � restri
ts to a G

0

{isomorphism E

i

0

+i

! E

i

0

+i

for ea
h

i = 1; : : : ; r.

Proof. (1) The �rst part is 
lear, sin
e ker(�

�

) is a P{submodule whi
h by


onstru
tion 
ontains E

i

0

. Sin
e we have already seen in Lemma 4.2 that

the a
tion of p

+

maps ker(�

�

) to im(�

�

), the se
ond part is also 
lear.

(2) We have already noted in 4.3 above that � restri
ts to an automorphism

on im(�

�

). Hen
e it suÆ
es to prove that �(E

i

0

+i

) � E

i

0

+i

. By Corollary

3.10, we have for all e 2 E , Z 2 g

1

�(Z�e) = Z��(e) � (n+ 1)

X

j�

�

j=1

�

�

^ [Z; �

�

℄�e:

Applying �

�

to the �rst term we get Z��(e).

Let us �rst take e

0

2 E

i

0

, and 
onsider �(Z�e

0

) = �

�

(�(Z�e

0

)). Then the

�rst term vanishes while ea
h summand in the se
ond term is 
ontained in

�

�

(g

1

^ g

0

�E

i

0

) � �

�

(g

1

^ E

i

0

). Sin
e E

i

0

� ker(�

�

), Lemma 4.2 implies that

�

�

(g

1

^E

i

0

) � g

1

�E

i

0

� E

i

0

+1

. Thus, we see that �(E

i

0

+1

) � E

i

0

+1

. Now one


an pro
eed indu
tively in the same way to show that �(E

i

0

+i

) � E

i

0

+i

.

4.5. The a
tual 
onstru
tion of the splitting operators is a little tri
ky. The

problem is that the individual steps in the 
onstru
tion sket
hed in 4.3 are

indu
ed by maps on jet{modules whi
h are not P{module homomorphisms

but only restri
t to P{module homomorphisms on appropriate submodules,

whi
h also have to be 
onstru
ted during the pro
edure.

For j � i � 0 we denote by �

j

i

the 
anoni
al proje
tion E=E

j

! E=E

i

,

whi
h is a homomorphism of P{modules. Clearly, �

i

i

is the identity and

�

j

i

Æ �

k

j

= �

k

i

for i � j � k. By p

i

: J

1

(E=E

i

) ! E=E

i

we denote the

footpoint proje
tion, whi
h is a P{homomorphism, too. For any element  

in a general G

0

{module, we denote by  

i

the 
omponent of  on whi
h the

grading element E a
ts by multipli
ation by i

0

+ i. Note that the mapping

 7!  

i

is only a G

0

{homomorphism and not a P{homomorphism. Finally,

let us denote by j

i

: E=E

i

! E=E

i+1

the G

0

{homomorphism given by the

in
lusion E

i

0

�� � ��E

i

0

+i�1

! E

i

0

�� � ��E

i

0

+i

. Again, this is obviously not a

P{homomorphism. Finally, let Alt : p

+


�

n

p

+


V ! �

n+1

p

+


V denote the

alternation mapping. This is a P{homomorphism preserving homogeneous

degrees.
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For i = 1; : : : ; r+1 
onsider now the module J

1

(E=E

i

). A typi
al element

of this module is a pair (e;  ), with e 2 E=E

i

and

 2 p

+


 E=E

i

� p

+


 �

n

p

+


 V:

Now we de�ne a mapping L

i

: J

1

(E=E

i

)! E=E

i+1

by

L

i

(e;  ) = j

i

(e) � (n+ 1)�

�1

�

�

((Alt( ))

i

):

In parti
ular, if  = Z 
 f for Z 2 p

+

and f 2 E=E

i

, then L

i

(e; Z 


f) = j

i

(e) � (n + 1)�

�1

�

�

((Z ^ f)

i

). Now the main te
hni
al step in the


onstru
tion is the following

4.6. Proposition. The maps L

i

: J

1

(E=E

i

) ! E=E

i+1

have the following

properties:

(1) L

i

is a G

0

{homomorphism and �

i+1

i

Æ L

i

= p

i

.

(2) For 	 2 J

1

(E=E

i

) and W 2 g

1

, we have

L

i

(W �	)�W �L

i

(	) = �

�1

�

W �(� Æ j

i

Æ (L

i�1

Æ J

1

(�

i

i�1

)� p

i

)(	))

�

:

In parti
ular, L

1

is a P{homomorphism.

Proof. (1) The fa
t that L

i

is a G

0

{homomorphism follows immediately from

the fa
t that J

1

(E=E

i

)

�

=

E=E

i

�(p

+


E=E

i

) as a G

0

{module, see 3.2 and the

de�nition of L

i

. Moreover, sin
e Alt, �

�

, and � all preserve homogeneities,

the last term in the de�nition of L

i

is homogeneous of degree i

0

+ i, so it

lies in the kernel of �

i+1

i

and the se
ond part follows.

(2) Clearly, it suÆ
es to 
he
k this for elements 	 of the form (e; Z 
 f)

with e; f 2 E=E

i

and Z 2 p

+

. By de�nition of the a
tion on jets, see 3.2,

we see that W �(e; Z 
 f) has footpoint W �e, while the homogeneous part of

degree i

0

+ i of the se
ond 
omponent is given by

X

j�

�

j=1

�

�


 [W; �

�

℄�e

i�1

+W �(Z 
 f)

i�1

:

Consequently,

L

i

(W �(e; Z 
 f)) = j

i

(W �e)� (n+ 1)�

�1

�

�

(

X

j�

�

j=1

�

�

^ [W; �

�

℄�e

i�1

)�

� (n+ 1)�

�1

�

�

(W �(Z ^ f)

i�1

):

By Corollary 3.10 the se
ond term on the right hand side of this equation

just gives

�

�1

�

�

(�(W �e

i�1

)�W ��(e

i�1

)) =W �e

i�1

��

�1

(W ��(e

i�1

));

where we have used that �

�

is a P{homomorphism, e

i�1

and W �e

i�1

lie

in the kernel of �

�

, and that we are in a region where the Lapla
ian is

invertible. On the other hand, we 
learly have j

i

(W �e) +W �e

i�1

=W �j

i

(e),

sin
e W 2 g

1

and e

i�1

is the highest nonzero homogeneous 
omponent of

e. Finally, we 
learly have W �L

i

(e; Z 
 f) = W �j

i

(e), sin
e the rest lies in

the 
omponent of maximal homogeneity, on whi
h p

+

a
ts trivially. Thus,

we have arrived at

L

i

(W �(e; Z 
 f))�W �L

i

(e; Z 
 f) =

= ��

�1

(W ��(e

i�1

))� (n+ 1)�

�1

(W ��

�

((Z ^ f)

i�1

));
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where we have used on
e more the fa
t that �

�

is a P{homomorphism.

On the other hand, 
onsider J

1

(�

i

i�1

)(e; Z 
 f). The footpoint of this

element is just �

i

i�1

(e), while in the jet part, the 
omponent of maximal

homogeneity must 
oin
ide with (Z 
 f)

i�1

. Consequently, we get

L

i�1

(J

1

(�

i

i�1

)(e; Z 
 f)) = j

i�1

(�

i

i�1

(e)) � (n+ 1)�

�1

�

�

((Z ^ f)

i�1

):

Subtra
ting e = p

i

(e; Z 
 f) from this, we get

�e

i�1

� (n+ 1)�

�1

�

�

((Z ^ f)

i�1

);

and the formula follows. In the 
ase i = 1, we get L

1

(W �	) �W �L

1

(	) =

��

�1

(W �(� Æ j

1

Æ p

1

)(	)), whi
h vanishes, sin
e E

i

0

� Ker(�). Hen
e, L

1

is equivariant for the a
tion of g

1

and thus a P{homomorphism by (1) and

2.4.

4.7. Now we indu
tively de�ne subspa
es

~

J

1

(E=E

i

) � J

1

(E=E

i

) by

~

J

1

(E=E

1

) =

J

1

(E=E

1

) and

~

J

1

(E=E

i+1

) = J

1

(�

i+1

i

)

�1

(

~

J

1

(E=E

i

)) \Ker(L

i

Æ J

1

(�

i+1

i

)� p

i+1

):

Proposition. For ea
h i = 1; : : : ; r + 1 the spa
e

~

J

1

(E=E

i

) � J

1

(E=E

i

) is

a P{submodule and L

i

restri
ts to a homomorphism

~

J

1

(E=E

i

) ! E=E

i+1

of P{modules. Moreover, for ea
h k < i we have

J

1

(�

i

k

)

�

~

J

1

(E=E

i

)

�

�

~

J

1

(E=E

k

);

and on

~

J

1

(E=E

i

) we have �

i

k+1

Æ p

i

= L

k

Æ J

1

(�

i

k

).

Proof. For i = 1 the �rst two properties are satis�ed by de�nition of

~

J

1

(E=E

1

)

and Proposition 4.6(2), while the last two properties are trivially satis-

�ed. If we indu
tively assume that the result has been proved for i � 1,

then J

1

(�

i

i�1

)

�1

(

~

J

1

(E=E

i�1

)) is a P{submodule of J

1

(E=E

i

), and L

i�1

Æ

J

1

(�

i

i�1

) � p

i

de�nes a P{homomorphism from this submodule to E=E

i

,

so

~

J

1

(E=E

i

) is a P{submodule. Moreover, Proposition 4.6(2) immediately

implies that the restri
tion of L

i

to this submodule is equivariant under the

a
tion of g

1

and thus L

i

restri
ts to a P{homomorphism on that submodule

by Proposition 4.6(1) and 2.4. Moreover, we get the last two properties in

the 
ase k = i� 1.

For k < i � 1, note �rst that �

i

k

= �

i�1

k

Æ �

i

i�1

immediately implies that

J

1

(�

i

k

)

�

~

J

1

(E=E

i

)

�

�

~

J

1

(E=E

k

) by indu
tion. Finally, we 
ompute

L

k

Æ J

1

(�

i

k

) = L

k

Æ J

1

(�

i�1

k

) Æ J

1

(�

i

i�1

) = �

i�1

k+1

Æ p

i�1

Æ J

1

(�

i

i�1

) =

= �

i�1

k+1

Æ �

i

i�1

Æ p

i

= �

i

k+1

Æ p

i

;

by fun
toriality of J

1

, indu
tion, and the de�nition of the jet prolongation

of a homomorphism.

For k � 2 and i = 1; : : : ; r + 1 we indu
tively de�ne

~

J

k

(E=E

i

) := J

1

(

~

J

k�1

(E=E

i

)) \

�

J

k

(E=E

i

):

By Proposition 4.7 and 3.4 it follows indu
tively that

~

J

k

(E=E

i

) is a P{

submodule in both modules on the right hand side of the de�nition. For i =

1, we obtain

~

J

k

(E=E

1

) =

�

J

k

(E=E

1

), so we simply get the full semiholonomi
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jet{module in this 
ase. Moreover, a simple indu
tive argument shows for

all ` < k, and i

~

J

k

(E=E

i

) �

�

J

`

(

~

J

k�`

(E=E

i

)) \

�

J

k

(E=E

i

):

For ea
h of the homomorphisms L

i

:

~

J

1

(E=E

i

)! E=E

i+1

we 
an now re-

stri
t the semiholonomi
 jet prolongation

�

J

k

(L

i

) to the submodule

~

J

k+1

(E=E

i

) �

�

J

k

(

~

J

1

(E=E

i

)) to obtain a P{homomorphism

�

J

k

(L

i

) :

~

J

k+1

(E=E

i

)!

�

J

k

(E=E

i+1

):

4.8. Theorem. Let E

i

0

be an irredu
ible 
omponent in the 
ohomology H

n

V

whi
h generates the P{submodule E in �

n

p

+


 V, 
f. 4.3. For ea
h k � 1

and i = 1; : : : ; r + 1 we have

�

J

k

(L

i

)

�

~

J

k+1

(E=E

i

)

�

�

~

J

k

(E=E

i+1

):

In parti
ular, the 
omposition

L := L

r

Æ

�

J

1

(L

r�1

) Æ : : : Æ

�

J

r�1

(L

1

)

de�nes a P{homomorphism L :

�

J

r

(E=E

1

) ! E . Sin
e by de�nition E is a

P{submodule of �

n

p

+


V, this homomorphism indu
es a strongly invariant

operator �(E

i

0

M) ! Ker(�

�

) � 


n

(M ;VM), whi
h splits the algebrai


proje
tion Ker(�

�

)! �(E

i

0

M) des
ribed in 4.3.

Proof. Let us �rst 
onsider the 
ase k = 1. So we have to show that

J

1

(L

i

)

�

~

J

2

(E=E

i

)

�

�

~

J

1

(E=E

i+1

). By de�nition of

~

J

1

(E=E

i+1

), we �rst

have to 
onsider the 
omposition J

1

(�

i+1

i

) Æ J

1

(L

i

) = J

1

(�

i+1

i

Æ L

i

). By

Proposition 4.6(1), this equals J

1

(p

i

). Sin
e

~

J

2

(E=E

i

) �

�

J

2

(E=E

i

), this pro-

je
tion 
oin
ides with the restri
tion of the 
anoni
al proje
tion

�

J

2

(E=E

i

)!

J

1

(E=E

i

), and sin
e

~

J

2

(E=E

i

) � J

1

(

~

J

1

(E=E

i

)), this 
anoni
al proje
tion

has values in

~

J

1

(E=E

i

). Thus, we have veri�ed that J

1

(L

i

)

�

~

J

2

(E=E

i

)

�

�

J

1

(�

i+1

i

)

�1

�

~

J

1

(E=E

i

)

�

.

But then it also follows that L

i

Æ J

1

(�

i+1

i

) Æ J

1

(L

i

) 
oin
ides with the


omposition of L

i

with the 
anoni
al proje
tion

~

J

2

(E=E

i

) !

~

J

1

(E=E

i

),

whi
h by de�nition of the jet prolongation of a homomorphism (see 3.2)


oin
ides with p

i+1

Æ J

1

(L

i

) and the proof in the 
ase k = 1 is 
omplete.

The 
ase k � 2 now immediately follows from the de�nitions by indu
-

tion. Thus, also the existen
e of L and the 
orresponding strongly invariant

operator is 
lear. The fa
t that this operator splits the algebrai
 proje
tion

follows from the fa
t that by Lemma 4.4(1) this algebrai
 proje
tion is in-

du
ed by the 
anoni
al proje
tion E ! E=E

1

and the fa
t that �

i+1

i

ÆL

i

= p

i

from Proposition 4.6(1).

Next, we 
onsider the 
omposition of d

V

with the operator 
orresponding

to L. The 
orresponding homomorphism on jet modules 
an be 
omputed

as the restri
tion to

�

J

r+1

(E=E

1

) of d

V

Æ J

1

(L).

4.9. Proposition. For ea
h irredu
ible G-module V, and irredu
ible G

0

{

submodule E

i

0

� H

n

V

= H

n

(g

�

;V), the 
omposition

d

V

Æ J

1

L :

�

J

r+1

(E=E

1

)! �

n+1

p

+


 V
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has values in ker �

�

. The 
omposition with the proje
tion to the 
ohomology

�

H

: (�

n

p

+


 V) \ (ker �

�

) ! H

n+1

V

= H

n+1

(g

�

;V) gives the P -module

homomorphism

�

H

Æ d

V

Æ J

1

L :

�

J

r+1

(E=E

1

)! H

n+1

V

:

For ea
h n = 0; : : : ;dimM � 1, there is the strongly invariant di�erential

operator

D

V

: �(H

n

V

M)! �(H

n+1

V

M)

whose restri
tions to the subbundles E

0

M are determined by the above P{

module homomorphisms

�

J

r+1

(E=E

1

)! H

n+1

V

.

Proof. Consider �rst the map �

�

Æ d

V

: J

1

(E ) ! �

n

p

+


 V. By de�nition

of d

V

, Lemma 4.2, and using the fa
t that E � Ker(�

�

), we see that this

maps (e; Z 
 f) 2 J

1

(E ) to �

�

�(e) + (n+1)�

�

(Z ^ f) = �(e)� (n+1)Z�f ,

so �

�

Æ d

V

: J

1

(E ) ! E . Now Theorem 4.8 applied to J

1

(L

r

) shows, that

J

1

(L) has values in the submodule

~

J

1

(E ) � J

1

(E ), and we 
laim that

�

�

Æ d

V

restri
ts to zero on that submodule.

To simplify notations, let us write p : J

1

(E ) ! E for the footpoint pro-

je
tion p

r+1

and �

i

for �

r+1

i

. For i � r + 1 
onsider the P{homomorphism

�

i

Æ�

�

Æd

V

: J

1

(E ) ! E=E

i

. By de�nition, this maps (e; Z
f) to �

i

(�(e))+

(n+1)�

i

(�

�

(Z^f)). Sin
e the Lapla
ian and �

�

both preserve homogeneous

degrees, we may rewrite the �rst summand as �(�

i

(e)) and the se
ond sum-

mand as (n+ 1)�

i

(�

�

(Z ^ �

i�1

(f))).

On the other hand, 
onsider J

1

(�

i�1

) : J

1

(E ) ! J

1

(E=E

i�1

). This maps

(e; Z
f) to (�

i�1

(e); Z
�

i�1

(f)), and applying L

i�1

to this element, we get

j

i�1

(�

i�1

(e))� (n+1)�

�1

�

�

((Z ^�

i�1

(f))

i

). Finally, �

i

Æ p maps (e; Z 
 f)

to �

i

(e). Consequently, � Æ (�

i

Æ p� L

i�1

Æ J

1

(�

i�1

)) maps (e; Z 
 f) to

�(�

i

(e)) � j

i�1

(�(�

i�1

(e))) + (n+ 1)�

�

((Z ^ �

i�1

(f))

i

);

and the last summand in this expression equals

(�

i

� j

i�1

Æ �

i�1

)((n+ 1)�

�

(Z ^ f));

sin
e �

�

preserves homogeneous degrees. Hen
e, we see that on J

1

(E ) we

get the equation

�

i

Æ �

�

Æ d

V

� j

i�1

Æ �

i�1

Æ �

�

Æ d

V

= � Æ

�

�

i

Æ p� L

i�1

Æ J

1

(�

i�1

)

�

:

In fa
t, this equation is exa
tly what we were aiming at in the motivation

for the whole 
onstru
tion in 4.3. But on the submodule

~

J

1

(E ), the right

hand side of the above formula vanishes identi
ally by Proposition 4.7. Thus,

iterated appli
ation of this formula shows that on

~

J

1

(E ) we have

�

�

Æ d

V

= �

r+1

Æ �

�

Æ d

V

= j

r

Æ �

r

Æ �

�

Æ d

V

= � � � = j

1

Æ �

1

Æ �

�

Æ d

V

:

But �

1

Æ �

�

Æ d

V

maps (e; Z 
 f) to �(�

1

(e)), whi
h vanishes sin
e E

i

0

is


ontained in the kernel of the Lapla
ian, so we have proved �

�

Æd

V

ÆJ

1

(L) =

0. All the rest is now an immediate 
onsequen
e.
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4.10. De�nition. Let (G; !) be a (real or 
omplex) paraboli
 geometry on a

manifoldM . The 
onstru
tion above has given rise to a sequen
e of strongly

invariant operators D

V

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0 :

whi
h is 
alled the Bernstein{Gelfand{Gelfand sequen
e or BGG{sequen
e

determined by the G-module V.

All bundles in this sequen
e 
orrespond to 
ompletely redu
ible represen-

tations of P , so they all split into dire
t sums of bundles 
orresponding to

irredu
ible representations. Let us also remark that the 
onstru
tion applies

to both real and 
omplex settings. Next, we will show that in the 
at 
ase this

sequen
e is a resolution of the 
onstant sheaf V. Sin
e by Kostant's version

of the Bott{Borel{Weil theorem, the bundles o

urring in this resolution in

the 
omplex 
ase are exa
tly the same bundles as in the Bernstein{Gelfand{

Gelfand resolution, we have obtained 
urved analogs of this resolution even

in the real 
ase.

The main step towards the proof that we often get a resolution is formu-

lated in the next lemma for the general real 
urved 
ase. For the 
omplex

analog see below.

4.11. Lemma. Let (G; !) be a real paraboli
 geometry on a manifold M

and let s 2 


n

(M ;VM) be a VM{valued n{form. Then:

(1) There is an element t 2 


n�1

(M ;VM) su
h that s+d

V

(t) lies in ker(�

�

).

(2) If s and d

V

(s) both lie in ker(�

�

), then s = L(�

H

(s)).

(3) If d

2

V

(ker(�

�

)) � ker(�

�

), then the diagram




0

(M ;VM)

d

V //



1

(M ;VM)

d

V //
: : :

V

55kkkkkkk

))SSSSSSS

�(H

0

V

M)

L

OO

D

V

//
�(H

1

V

M)

L

OO

D

V

//
: : :

is 
ommutative. In parti
ular, D

V

ÆD

V

= 0 whenever d

V

Æ d

V

= 0.

Proof. (1) Put G

0

= G=P

+

and 
hoose a global G

0

{equivariant se
tion

� : G

0

! G as indi
ated in 2.13. Then we get a smooth map � : G ! P

+


hara
terized by u = �(p(u))��(u) for all u 2 G, and u 7! (p(u); �(u)) is a

di�eomorphism G ! G

0

�P

+

. Using this, we get an isomorphism (depending

on �) between 


n

(M ;VM) and the spa
e of smooth G

0

{equivariant fun
-

tions G

0

! �

n

p

+


 V. But �

�1

Æ �

�

is a G

0

{homomorphism �

n

p

+


 V !

�

n�1

p

+


 V su
h that e� �(�

�1

Æ �

�

(e)) 2 ker(�

�

) for all e 2 �

n

p

+


 V.

Now, let s : G

0

! �

n

p

+


 V be the G

0

{equivariant map 
orrespond-

ing to the lowest homogeneous 
omponent s

j

of the given n{form s su
h

that �

�

(s

j

) 6= 0. Passing from ��

�1

Æ �

�

Æ s ba
k to a P{equivariant map

t : G ! �

n�1

p

+


 V, we see that the homogeneous 
omponents up to de-

gree j of �

�

(s + d

V

(t)) vanish on the image of � and thus on the whole

G by equivarian
y. Indu
tively, we 
an �nd an element t with the required

properties.

(2) Put s

0

= �

H

(s). By 
onstru
tion of the operators L, we know that

L(s

0

) 2 ker(�

�

), �

H

(L(s

0

)) = s

0

, and d

V

(L(s

0

)) 2 ker(�

�

). Thus, we see that
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s�L(s

0

) 2 im(�

�

) and d

V

(s�L(s

0

)) 2 ker(�

�

). Let a

j

be the lowest possibly

nonzero homogeneous 
omponent of s � L(s

0

). Then the lowest possibly

nonzero 
omponent of d

V

(s�L(s

0

)) is �(a

j

). Sin
e ker(�

�

) is 
omplementary

to im(�) we must have �(a

j

) = 0. But on the other hand, we know that

a

j

2 im(�

�

) whi
h is 
omplementary to ker(�), so we must have a

j

= 0.

(3) For s 2 �(H

n

V

M), 
onsider the element d

V

(L(s)) 2 


n+1

(M ;VM). By

Proposition 4.9, this lies in ker(�

�

). Moreover, sin
e L(s) 2 ker(�

�

), our

assumption on d

2

V

implies that d

V

(d

V

(L(s))) 2 ker(�

�

). Hen
e from (2) we

get d

V

(L(s)) = L(�

H

(d

V

(L(s)))) = L(D

V

(s)).

The last 
laim is obvious.

4.12. Lemma. Let (G; !) be a 
omplex paraboli
 geometry on a 
omplex

manifold M . Then the se
ond and third assertion in Lemma 4.11 remain

valid with the same assumptions, while the 
laim 4.11(1) holds true under

the additional assumption that the holomorphi
 bundle G ! G

0

admits a

global holomorphi
 G

0

-equivariant se
tion. This additional requirement is

always ful�lled lo
ally.

Proof. All arguments in the proof of (2) and (3) in 4.11 are on the level of

the P -modules and so they go equally through for both real and 
omplex

settings. The only di�eren
e in (1) is the argument whi
h 
onstru
ts the

global se
tion by means of the smooth partition of unity. On
e we assume

the existen
e of the global se
tion, the rest is 
lear again. Now, any point in

M has an open neighborhood U �M su
h that both G and G

0

are trivial over

U . Sin
e G

0

� P

+

and P are di�eomorphi
, and the map in one dire
tion is

obviously holomorphi
, they are biholomorphi
. Thus, the 
omplex paraboli


geometry Gj

U

! U admits appropriate global holomorphi
 G

0

{equivariant

se
tion.

4.13. Theorem. Let (G; !) be a real paraboli
 geometry of the type (G;P )

on a manifold M , V be a G{module. If the twisted de Rham sequen
e

0

//



0

(M ;VM)

d

V//



1

(M ;VM)

d

V//
: : :

d

V//



dim(G=P )

(M ;VM)

//
0 :

is a 
omplex, then also the Bernstein{Gelfand{Gelfand sequen
e

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0

de�ned in 4.10 is a 
omplex, and they both 
ompute the same 
ohomology.

The same statement is true for 
omplex paraboli
 geometries (G; !) under

the additional requirement that G ! G

0

= G=P

+

admits a global holomorphi


G

0

{equivariant se
tion.

Remark. In parti
ular, the 
omplex version of the Theorem may be refor-

mulated as follows: If the twisted de Rham sequen
e indu
es a 
omplex on

the sheaf level, then the same is true for the Bernstein{Gelfand{Gelfand se-

quen
e. In parti
ular, if the twisted de Rham sequen
e indu
es a resolution

of V, then so does the BGG{sequen
e.

Now, the original representation theoreti
al version of the (generalized)

BGG{resolution follows immediately by duality. Moreover, let us noti
e that

the global G

0

{equivariant se
tion as required in the Theorem always exists

over a dense open submanifold in the homogeneous spa
e G=P (the so 
alled

big 
ell).
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Proof. As we saw in Lemma 4.11, the BGG{sequen
e forms a 
omplex when-

ever the twisted de Rham does. So let us assume, we deal with 
omplexes.

Sin
e d

2

V

= 0, 4.11(3) implies that L is a morphism of the 
orresponding


omplexes, hen
e the mapping

�(H

n

V

M) 3 s

0

7! L(s

0

) 2 


n

(M ;VM)

indu
es a morphism between the 
ohomologies.

Next, suppose that s 2 


n

(M ;VM), n � 1 is su
h that d

V

(s) = 0. Then

by 4.11(1) we �nd an element t 2 


n�1

(M ;VM) su
h that s + d

V

(t) 2

ker(�

�

). But then d

V

(s+ d

V

(t)) = 0 so by 4.11(2) we know that s+ d

V

(t) =

L(�

H

(s+ d

V

(t))), and thus the mapping de�ned above is surje
tive.

Finally, let us assume that s

0

2 �(H

n�1

V

M) is su
h that there exists a

t 2 


n�1

(M ;VM) with d

V

(t) = L(s

0

). Then by 4.11(1) we may without loss

of generality assume that t 2 ker(�

�

). But by assumption d

V

(t) = L(s

0

), so

this is also 
ontained in ker(�

�

), and hen
e t = L(�

H

(t)) by 4.11(2), and thus

L(s

0

) = d

V

(L(�

H

(t))) and applying �

H

on both sides we get s

0

= D

V

(�

H

(t)),

and so we get an isomorphism in the 
ohomology groups.

4.14. Corollary. Let (G; !) be a torsion free real paraboli
 geometry of type

(G;P ) onM . Then the de Rham 
ohomology ofM with 
oeÆ
ients in K = R

or C is 
omputed by the (mu
h smaller) 
omplex

0

//
�(H

0

K

M)

D

K

//
�(H

1

K

M)

D

K

//
: : :

D

K

//
�(H

dim(G=P )

K

M)

//
0 :

Proof. The 
ovariant exterior di�erential 
orresponding to the 
hoi
e of the

trivial P{module K 
oin
ides with the usual exterior di�erential d. A

ord-

ing to Lemma 3.11, the exterior 
ovariant di�erential 
oin
ides with our

twisted exterior di�erential for all torsion{free geometries. Thus the state-

ment follows from 4.13.

4.15. Corollary. Let (G; !) be a 
at real paraboli
 geometry. Then for any

representation V of G the BGG{sequen
e

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0

is a 
omplex, whi
h 
omputes the twisted de Rham 
ohomology of M with


oeÆ
ients in the bundle VM , whi
h is de�ned as the 
ohomology of the


omplex given by the 
ovariant exterior derivative with respe
t to the linear


onne
tion on VM indu
ed by the Cartan 
onne
tion !, see 3.11.

The importan
e of this 
orollary lies in the fa
t that while 
at paraboli


geometries are lo
ally isomorphi
 to the homogeneous model G=P , they may

be very di�erent from G=P from a global point of view. Just keep in mind

the broad variety of smooth manifolds admitting a lo
ally 
onformally 
at

Riemannian metri
. In parti
ular, the bundle VM is not trivial in general,

so the twisted de Rham 
ohomology is a less trivial obje
t than in the

homogeneous 
ase.

On the other hand, we may always 
onsider the obvious 
at paraboli


geometry on the trivial P{bundle over R

dim(G=P )

�

=

g

�

. In this 
ase, the

twisted de Rham 
ohomologies are obviously zero, so Corollary 4.15 provides

global resolutions of the 
onstant sheaf V in this 
ase. Simple instan
es of
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su
h sequen
es are of basi
 importan
e in various areas of mathemati
s, see

for example [14℄.

4.16. Remark. As we have seen already, the P{modules H

n

V

are 
ompletely

redu
ible and so the natural bundles H

n

V

M de
ompose into dire
t sums of

irredu
ible bundles. Consequently, also the operators D

V

split into sums

of operators between the irredu
ible natural bundles. In the 
ase of the

homogeneous bundles, the latter operators (and sometimes also their non-

trivial 
ompositions) are usually referred to as standard invariant operators.

In parti
ular, our 
onstru
tion provides a distinguished 
urved analog for

ea
h of those standard operators.

As we have underlined already in the introdu
tion, no deep representa-

tion theoreti
al results had to be applied in the 
onstru
tion of the BGG{

sequen
es and in the proof of Theorem 4.13. On the other hand, the full

information of the Kostant's version of Bott{Borel{Weil theorem on the Lie

algebra 
ohomologies is stri
tly ne
essary in order to get more expli
it infor-

mation about the individual standard operators and the overall stru
ture of

the BGG{sequen
e in the 
at 
ase. Moreover, further non-trivial operators

with 
urvature 
ontributions in their symbols may appear in general.

Let us also remark that the expli
it formulae for the standard operators

were given in 
losed form in the terms of the underlying linear 
onne
tions

on M in [10℄ for all paraboli
 geometries with irredu
ible tangent bundles,

i.e. for all 
ases with j1j{graded Lie algebra g. We believe that the te
hnique

developed there should be extendible to the general 
ase, too.

4.17. Remark. In the 
at 
ase, the twisted de Rham 
omplex 
an be

viewed as a �ltered 
omplex with the �ltration given by homogeneous de-

grees. The fa
t that the lowest homogeneous 
omponent of d

V

is just �

implies that the di�erential on the asso
iated graded 
omplex is exa
tly �.

Asso
iated to this �ltration there is a spe
tral sequen
e whi
h obviously


onverges and 
omputes the twisted de Rham 
ohomology. Now from the


onstru
tion of the operators D

V

it is obvious that when passing to the

appropriate subquotients, they indu
e the higher di�erentials in this spe
-

tral sequen
e. Usually, these higher di�erentials are only well de�ned on the

appropriate subquotients, but due to the fa
t that we have a (fairly sim-

ple) Hodge stru
ture on the asso
iated graded 
omplex, we 
an get a global

de�nition in our setting.

5. Example

We shall illustrate the power of our results in the simple 
ase of 5{

dimensional partially integrable almost CR{stru
tures, 
f. Example 2.9. We

believe that this simple geometry re
e
ts many of the general features of

paraboli
 geometries and we 
an still write down the whole BGG{sequen
es

very expli
itly at the same time. We hope that based on this example, the

reader is able to imagine the vast amount of invariant operators whi
h our

main theorems produ
e for all paraboli
 geometries.

Let M be a smooth manifold of odd dimension 2n + 1 together with a

distinguished rank n 
omplex subbundle T

CR

M of the tangent bundle TM .

Then the Lie bra
ket of ve
tor �elds indu
es a skew{symmetri
 bundle map
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L

R

: T

CR

M � T

CR

M ! TM=T

CR

M , the real Levi{Form. (M;T

CR

M) is


alled a partially integrable almost CR{manifold if and only if L is non{

degenerate and totally real, i.e. L(J(�); J(�)) = L(�; �) for all �; � 2 T

CR

M ,

where J denotes the almost 
omplex stru
ture on T

CR

M . In that 
ase,


hoosing a lo
al trivialization of TM=T

CR

M , L is the imaginary part of a

Hermitian form. Here we 
onsider the 
ase where n = 2, soM has dimension

5 and this Hermitian form is positive de�nite (for an appropriate 
hoi
e of

the lo
al trivialization).

Typi
al examples of su
h manifolds are smooth hypersurfa
es in a six{

dimensional smooth manifold N endowed with an almost 
omplex stru
ture

~

J , whi
h satisfy a non{degenera
y and an integrability 
ondition. In this


ase, we put T

CR

M = TM \

~

J(TM) and J =

~

J j

T

CR

M

. To understand the

non{degenera
y and integrability 
onditions, it is more 
onvenient to pass to


omplexi�ed tangent bundles. Sin
e T

CR

M is a 
omplex bundle, its 
omplex-

i�
ation T

CR

C

M splits into a dire
t sum T

1;0

M�T

0;1

M of a holomorphi
 and

an antiholomorphi
 part. Moreover, mapping �; � 2 �(T

1;0

M) to the 
lass

of �i[�; ��℄ de�nes a bundle valued Hermitian form L : T

1;0

M � T

1;0

M !

T

C

M=T

CR

C

M =: QM , the Levi form. The partial integrability 
ondition

from above is then equivalent to the fa
t that [�; �℄ 2 �(T

CR

C

M) for all se
-

tions �; � of T

1;0

M , and the 
onditions of positive de�niteness is equivalent

to L being positive de�nite in an appropriate lo
al trivialization of QM .

(Certainly, these 
onditions also make sense for abstra
t almost CR man-

ifolds). A partially integrable almost CR manifold is 
alled integrable or a

CR{manifold if and only if the subbundle T

1;0

M is involutive. In parti
ular,

this is the 
ase for hypersurfa
es in 
omplex manifolds.

By [7, 4.14℄, 5{dimensional partially integrable almost CR{manifolds are

exa
tly the normal paraboli
 geometries 
orresponding to G = PSU(3; 1)

and the paraboli
 subalgebra of g = su(3; 1) 
orresponding to the Dynkin

diagram

�

�

�

. Let us also 
onsider

~

G = SU(3; 1) and let P , G

0

� G,

or

~

P ,

~

G

0

�

~

G be the 
orresponding subgroups as in 2.3. Then the semisimple

part of

~

G

0

is SU(2) and the 
enter of G

0

is C .

In the Dynkin diagram notation, ea
h (
omplex) irredu
ible

~

G-module V

is given by the 
hoi
e of three non{negative integers a; b; 


V =
�

a

�

b

�




:

More expli
itly,
�

a

�

b

�




is the highest weight 
omponent in S

a

C

4




S

b

(�

2

C

4

) 
 S




(C

4�

), where S

i

denotes the i{th symmetri
 power, and so

these representations integrate to representation of G if and only if a� 
 is


ongruent to 2b modulo four (the 
enter of

~

G 
onsist of �1 and �i times

the identity).

The irredu
ible

~

P{modules 
orrespond to 
hoi
es with b non{negative

while a and 
 may be arbitrary integers. Now, b determines the represen-

tation of SU(2) while the other two parameters des
ribe the a
tion of the


enter of

~

G

0

. We adopt the 
onvention used in [2℄, i.e. the parameters give

the linear 
ombination of the fundamental weights of

~

g whi
h is the high-

est weight of the dual module to V. In this way, the resulting weights for

our modules happen to be the same as those in the dual pi
tures known
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from representation theory. For our purposes, however, this has no impor-

tan
e and it is enough to say that the distinguished two subbundles T

1;0

M

and T

0;1

M in the 
omplexi�ed tangent spa
e and the 
omplexi�ed quotient

QM = T

C

M=T

CR

C

M have duals T

�

1;0

M , T

�

0;1

M (quotients of the 
omplexi�ed


otangent bundle), and Q

�

M , whi
h 
orrespond to the modules

T

�

1;0

=

�

�2

�

1

�

0

; T

�

0;1

=

�

0

�

1

�

�2

; Q

�

=

�

�1

�

0

�

�1

:

Now, all

~

P{modules are tensor produ
ts of symmetri
 powers S

b

(T

�

1;0

) and

suitable one-dimensional representations E [a; 
℄ 
orresponding to the Dynkin

diagram

�

a

�

0

�




. We shall write S

b

(T

�

1;0

)[a; 
℄ for these modules and use

the shorthand S

b

[a;
℄

for the 
orresponding natural bundles. In parti
ular,

S

b

[a;
℄

= S

b

(T

�

1;0

)[a; 
℄ =

�

a�2b

�

b

�




T

�

0;1

= T

�

1;0

[2;�2℄ = S

1

[2;�2℄

S

0

[�1;�1℄

= E[�1;�1℄ = Q

�

S

0

[�4;0℄

= �

2

T

�

1;0


Q

�

:

Another important bundle is the dual to the kernel of the bilinear Levi form

(kerL)

�

� T

�

1;0


 T

�

0;1

whi
h 
orresponds to S

2

[2;�2℄

.

All natural bundles S

b

[a;
℄

exist on manifoldsM with the so 
alled SU(3; 1){

stru
tures, i.e. we have to 
hoose 
overings of the Cartan P{bundle G to the

stru
ture group

~

P . This is 
learly equivalent to the 
hoi
e of a �xed line bun-

dle E[1; 0℄ su
h that its fourth tensor power is �

2

T

1;0

M 
 QM . This is an

analogous situation to natural bundles and natural operators in 
onformal

Riemannian geometry whi
h often depend on the 
hoi
e of a spin stru
ture.

Using the expli
it des
ription of the 
ohomology from Kostant's Bott{

Borel{Weil theorem we obtain expli
itly all natural bundles appearing in

our main theorems. The 
omputations are done fairly simply in terms of the

Dynkin diagram notation, see [2℄ for the details. Furthermore, using elemen-

tary �nite dimensional representation theory one easily shows that there are

no homomorphisms between the semi{holonomi
 jet modules 
orresponding

to the items in the neighboring 
olumns of the BGG{sequen
es, ex
ept those

whi
h are indi
ated in Figure 1. Let us also noti
e that the orders of the

operators are easily read o� the homogeneities of the bundles with respe
t

to the a
tion of the grading element in G

0

and the homogeneity of S

b

[a;
℄

is

a+ 
� b. Thus we 
an summarize:

5.1. Theorem. For ea
h SU(3; 1){module V =
�

a

�

b

�




, the BGG{sequen
e

of invariant di�erential operators shown on Figure 1 exists on all 5{dimensional

partially integrable almost CR{manifoldsM with a 
hosen SU(3; 1){stru
ture.

The orders of the operators are indi
ated by the labels over the arrows.

Moreover, the sequen
e exists on all partially integrable CR{manifolds if

a � 2b + 
 � 0 mod4, and then all bundles in question 
an be 
onstru
ted

from T

�

1;0

M and Q

�

M . If M is 
at, then the BGG{sequen
e is a 
omplex

whi
h 
omputes the twisted de Rham 
ohomology of M with 
oeÆ
ients in

the bundle VM 
orresponding to V.
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Figure 1. Bernstein{Gelfand{Gelfand sequen
es on par-

tially integrable 5{dimensional almost CR stru
tures

As a 
orollary, we immediately obtain

5.2. Theorem. For all (integrable) 5{dimensional CR{manifolds, there is

the resolution of the sheaf of 
onstant 
omplex fun
tions

�

2

T

�

1;0

//

##GGGGGGGGGGG
Q

�


 �

2

T

�

1;0

**UUUU

T

�

1;0

88qqqq

&&NNNN



2

Q

�


 T

�

1;0

((RRR
RR

C

//
E[0; 0℄

88rrrr

&&LL
LL

(kerL)

�

;;wwwwwwwwwww

//

##GGGGGGGGGGG
Q

�


 (kerL)

�

44iiii

**UUUU



3

Q

�

T

�

0;1

88pppp

&&MM
MM




2

Q

�


 T

�

0;1

66lllll

�

2

T

�

0;1

//

;;wwwwwwwwwww

Q

�


 �

2

T

�

0;1

44iiii

whi
h 
omputes the de Rham 
ohomology with 
omplex 
oeÆ
ients. The or-

ders of the operators in the 
olumn in the middle of the diagram are two,

while all the other ones are of �rst order.

This 
omplex is a spe
ial instan
e of the so 
alled Rumin 
omplex on 
on-

ta
t geometries, [28℄, see also [18℄ for a re�ned version for the CR{stru
tures.

In the homogeneous 
ase, this 
omplex was also mentioned in [2℄. Similar

questions were also studied by Ly
hagin earlier, see e.g. [23℄ and the refer-

en
es therein. Noti
e that the dimensions of the individual 
olumns are 1, 4,

5, 5, 4, 1 (opposed to dimensions 1, 5, 10, 10, 5, 1 in the de Rham 
omplex).
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Appendix A. Infinite jets and Verma modules

The aim of this appendix is to provide di�erential geometers with basi


information on the links between jets and Verma modules, and in parti
ular

to prove the 
orresponden
e between invariant di�erential operators and

homomorphisms of generalized Verma modules used in 2.6.

A.1. We have seen in 2.6 that invariant operators �(E) ! �(F ) between

homogeneous ve
tor bundles over G=P are in bije
tive 
orresponden
e with

P{homomorphisms J

1

(E)

o

! F

o

, whi
h fa
torize over some J

r

(E)

o

.

First note that se
tions of E 
an be identi�ed with smooth fun
tions G!

E , whi
h are P{equivariant. Sin
e this identi�
ation is purely algebrai
, it

gives an identi�
ation of in�nite jets at o of se
tions of E with P{equivariant

in�nite jets of smooth fun
tions G ! E at e 2 G. Now it is easy to verify

that in the pi
ture of smooth equivariant fun
tions, the a
tion of G is given

by (g�s)(g

0

) = s(g

�1

g

0

). The 
orresponding in�nitesimal a
tion of g is given

by (X�s)(g) = �(R

X

�s)(g), where R

X

denotes the right{invariant ve
tor

�eld on G generated by X 2 g = T

e

G. For X 2 p, the in�nitesimal version

of equivarian
y of s implies that (X�s)(g) = X�(s(g)), but for general X

the value (X�s)(g) depends on the one{jet of s at g. Thus we do not get an

indu
ed a
tion of g on �nite jets, but for in�nite jets we get a well de�ned

a
tion of g. Sin
e this a
tion is 
learly 
ompatible with the a
tion of P , it

makes J

1

(E)

o

into a (g; P ){module.

On the other hand, mapping ea
h X 2 g to the left invariant ve
tor �eld

L

X

generated by X indu
es an isomorphism between the universal envelop-

ing algebra U(g) and the algebra of left invariant di�erential operators on

G. Now we get a bilinear map J

1

(E)

o

� (U(g) 
 E

�

) ! K by mapping

(j

1

s(e);D 
 �) to �(D(s)(e)), where D is a left invariant di�erential oper-

ator and � is an element of the dual representation E

�

to E , and as above

we view s as an equivariant fun
tion on G. By equivarian
y of s this fa
tors

to a bilinear map J

1

(E)

o

� (U(g)


U(p)

E

�

)! K be
ause elements of U(p)

a
t algebrai
ally and this 
an be expressed as an a
tion on �.

We 
laim that the above pairing is 
ompatible with the a
tions of both

g and P . For the a
tion of g, let us take a typi
al element X

1


 � � � 


X

n


 � 2 U(g)


U(p)

E

�

and X 2 g. From above, we know that X�j

1

s(e) =

�j

1

(R

X

�s)(e). Pairing this withX

1


� � �
X

n


�, we get��((L

X

1

: : : L

X

n

�R

X

�s)(e)).

Sin
e left invariant ve
tor �elds 
ommute with right invariant ones, this

equals ��((R

X

�L

X

1

: : : L

X

n

�s)(e)). But this depends only on R

X

(e), so we

may as well repla
e R

X

by L

X

, so this 
oin
ides with X
X

1


� � �
X

n


�

evaluated on j

1

s(e).

The a
tion of b 2 P on U(g) 


U(p)

E

�

is indu
ed by mapping D 
 �

to b�D 
 b��, where (b�D)(s) = D(s Æ r

b

�1

) Æ r

b

and r

b

denotes the right

multipli
ation by b. This obviously maps the anihilator of the spa
e of P{

equivariant fun
tions to itself and thus des
ends to an a
tion on U(g)


U(p)

E

�

. If s is equivariant, then (s Æ r

b

�1

)(g) = b�(s(g)), and thus (b�D)(s)(g) =

b�(D(s)(gb)). But this implies that pairing j

1

s(e) with b�D 
 b�� we get

(b��)((b�D)(s)(e)) = �(D(s)(b)). On the other hand, the a
tion of b on
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J

1

(E)

o

is given by b�j

1

s(e) = j

1

(sÆ`

b

�1
)(e), where `

b

denotes the left mul-

tipli
ation by b. Thus pairing b

�1

�j

1

s(e) with D
 � we get �(D(s Æ `

b

)(e)),

whi
h by left invarian
e of D 
oin
ides with �(D(s)(b)).

Now for any k 2 N, we have the natural proje
tion J

1

(E)

o

! J

k

(E)

o

.

On the other hand, the universal enveloping algebra U(g) has a natural (in-

�nite) �ltration K = U

0

(g) � U

1

(g) � : : : su
h that U(g) = [

i2N

U

i

(g).

In the pi
ture of left invariant di�erential operators on G, this is just the

�ltration by the order of operators. This �ltration 
learly indu
es a �ltra-

tion F

i

on U(g) 


U(p)

E

�

, and ea
h �ltration 
omponent is a P{submodule

(but not a g{submodule). The pairing of an element of F

k

with an element

j

1

(s)(e) 2 J

1

(E)

o


learly depends only on j

k

s(e), so we get an indu
ed

paring between F

k

and J

k

(E)

o

, and this indu
ed pairing is obviously non{

degenerate and still 
ompatible with the P{a
tions, so sin
e both sides are

�nite dimensional, they are dual P{modules.

Let us remark at this point that it is also possible to put lo
ally 
onvex

topologies on the spa
es in question, su
h that they be
ome topologi
ally

dual (g; P ){modules. Namely, one has to view J

1

(E)

o

as the limit of the

system � � � ! J

k

(E)

o

! J

k�1

(E)

o

! : : : , while U(g) 


U(p)

E

�

has to be

topologized as a dire
t sum of �nite dimensional spa
es.

A.2. Let E and F be P{representations, E and F the 
orresponding bun-

dles and ' : J

k

(E)

o

! F

o

= F a P{homomorphism. By the duality shown

above, we 
an view the dual map '

�

as a P{homomorphism F

�

! F

k

�

U(g)


U(p)

E

�

. Conversely, if we have a P{homomorphism F

�

! U(g)


U(p)

E

�

,

then this has values in some F

i

sin
e F

�

is �nite dimensional, so dualiz-

ing it 
orresponds to a P{homomorphism J

i

(E)

o

! F

o

. Consequently, we

see that the spa
e of invariant operators �(E) ! �(F ) is isomorphi
 to

Hom

P

(F

�

;U(g)


U(p)

E

�

).

By Frobenius re
ipro
ity the latter spa
e is isomorphi
 to

Hom

(g;P )

(U(g)


U(p)

F

�

;U(g)


U(p)

E

�

):

This isomorphism is quite simple to prove: If ' : F

�

! U(g) 


U(p)

E

�

is a

P{homomorphism, then

~

�(A
�) = A�'(�) de�nes a (g; P ){homomorphism

U(g)
 F

�

! U(g)


U(p)

E

�

, and sin
e ' is a P{homomorphism, this fa
tors

to a (g; P ){homomorphism � between the required spa
es. Conversely, we

put '(�) = �(1
�) and this 
learly is a P{homomorphism if � is a (g; P ){

homomorphism.

Appendix B. Adjointness of � and �

�

B.1. As promised in the beginning of Se
tion 4, we show that the operators

� and �

�

are adjoint operators with respe
t to a 
ertain inner produ
t on

C

n

(g

�

;V). To 
onstru
t this inner produ
t, we have to distinguish between

the real and the 
omplex 
ase. Let us start with the 
ase where g and V

are 
omplex. Sin
e the grading element E 2 g

0

is semisimple, we 
an �nd

a Cartan subalgebra h � g whi
h 
ontains E. Then ea
h root spa
e for

this Cartan subalgebra is 
ontained in some g

i

. Let u be a 
ompa
t real

form of g with a Cartan subalgebra h

0


ontained in h, and let � be the


omplex 
onjugation with respe
t to this real form. By de�nition of E, the

map ad(E)Æad(E) a
ts on g

i

by multipli
ation by i

2

, so for the Killing form
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we have B(E;E) > 0. Consequently, we must have �(E) = �E, and thus

�(g

i

) = g

�i

for all i = �k; : : : ; k. Now one immediately veri�es dire
tly that

B

�

(X;Y ) := �B(X;�(Y )) is a positive de�nite Hermitian inner produ
t on

g, su
h that the de
omposition g = g

�k

� � � � � g

k

is an orthogonal dire
t

sum. In parti
ular, this indu
es a Hermitian inner produ
t on g

�

.

Next, sin
e u is a 
ompa
t real form, there is a positive de�nite Hermitian

inner produ
t h ; i on V su
h that the elements of u a
t as skew{Hermitian

operators. But this immediately implies that for ea
h X 2 g and v

1

; v

2

2 V,

we have hX�v

1

; v

2

i = �hv

1

; �(X)�v

2

i. Together with the inner produ
t on

g

�


onstru
ted above we get a positive de�nite Hermitian inner produ
t on

C

n

(g

�

;V) for ea
h n.

In the real 
ase, the situation is slightly more 
ompli
ated. In this 
ase

we have to 
onstru
t appropriate involutions � on the individual simple

fa
tors separately, and we have to distinguish between the 
ase where the


omplexi�
ation of a simple fa
tor is again simple and the 
ase where it is

not. Note that the simple fa
tors of a jkj{graded Lie algebra are themselves

j`j{graded for some ` � k and that the grading element of g is just the sum

of the grading elements of the simple fa
tors.

If we have a real simple algebra g whose 
omplexi�
ation is not simple,

then it is well known that g is a
tually the underlying real Lie algebra of a


omplex simple Lie algebra. In this 
ase, we 
an pro
eed as above to get a


ompa
t real form u � g and the 
orresponding involution �.

In the 
ase where both g and its 
omplexi�
ation g

C

are simple, we 
hoose

a Cartan subalgebra h � g

C

whi
h 
ontains the element E 2 g. By [29,

Expos�e 11, Th�eor�eme 3℄ there is a 
ompa
t real form u � g

C

with Cartan

subalgebra h

0

� h su
h that the 
omplex 
onjugation � with respe
t to u


ommutes with the 
omplex 
onjugation with respe
t to g, and thus �(g) =

g.

The involutions on the simple fa
tor together de�ne an involution of g and

as above one uses the Killing form on g and � to get a positive de�nite inner

produ
t on g and on g

�

. If the representation V is not already 
omplex, then

we 
an pass to its 
omplexi�
ation to get a Hermitian inner produ
t su
h

that hX�v

1

; v

2

i = �hv

1

; �(X)�v

2

i as above, an in both 
ases the real part of

this Hermitian produ
t gives a positive de�nite inner produ
t on V whi
h

we use together with the inner produ
t on g

�

to get a positive de�nite inner

produ
t on C

n

(g

�

;V).

B.2. Proposition. The di�erential � : C

n

(g

�1

;V) ! C

n+1

(g

�1

;V) and

the 
odi�erential �

�

: C

n+1

(g

�1

;V) ! C

n

(g

�1

;V) are adjoint operators with

respe
t to the inner produ
ts 
onstru
ted in B.1 above.

Proof. The point about this is that in ea
h 
ase the inner produ
t of f

1

; f

2

2

C

n

(g

�

;V) 
an be 
omputed as F(f

2

)(f

1

), where F is a linear (over the

reals) isomorphism C

n

(g

�

;V) ! C

n

(p

+

;V

�

). The map F is de�ned by

F(f)(Z

1

; : : : ; Z

n

)(v) := hf(�(Z

1

); : : : ; �(Z

n

)); vi for Z

i

2 p

+

and v 2 V,

where � is the involution 
onstru
ted in B.1 and the inner produ
t is in V.

But then the 
ompatibility of the inner produ
t on V with the a
tion of g
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implies that F(�(f)) = �(F(f)). Thus we 
an 
ompute:

h�

�

(f

1

); f

2

i = F(f

2

)(�

�

(f

1

)) = �(F(f

2

))(f

1

)

= F(�(f

2

))(f

1

) = hf

1

; �(f

2

)i
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