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Abstrat. This paper is devoted to the study of geometri strutures

modeled on homogeneous spaes G=P , where G is a real or omplex

semisimple Lie group and P � G is a paraboli subgroup. We use meth-

ods from di�erential geometry and very elementary �nite{dimensional

representation theory to onstrut sequenes of invariant di�erential op-

erators for suh geometries, both in the smooth and the holomorphi

ategory. For G simple, these sequenes speialize on the homogeneous

model G=P to the elebrated (generalized) Bernstein{Gelfand{Gelfand

resolutions in the holomorphi ategory, while in the smooth ategory

we get smooth analogs of these resolutions. In the ase of geometries

loally isomorphi to the homogeneous model, we still get resolutions,

whose ohomology is expliitly related to a twisted de Rham ohomol-

ogy. In the general (urved) ase we get distinguished urved analogs of

all the invariant di�erential operators ourring in Bernstein{Gelfand{

Gelfand resolutions (and their smooth analogs).

On the way to these results, a signi�ant part of the general theory

of geometrial strutures of the type desribed above is presented here

for the �rst time.

1. Introdution

Our approah to geometries modeled on homogeneous spaes goes bak to

E. Cartan's notion of an `espae generalis�e'. The entral objets for suh ge-

ometries are suitably normalized Cartan onnetions in the sense ommonly

adopted, see e.g. [31℄. The models for the geometries onsidered in this pa-

per are homogeneous spaes of the type G=P , where G is real or omplex

semisimple and P � G is a paraboli subgroup. In this ase, there is a lose

link to the projet of paraboli invariant theory suggested by Ch. Fe�erman

in [17℄ and in view of this ontext we talk about the (real and omplex)

paraboli geometries.

We explore the semi{holonomi jet modules and we use impliitly the

ohomologial information given by Kostant's version of the Bott{Borel{

Weil theorem in order to onstrut sequenes of homomorphisms between

jet{modules, whih in turn give rise to sequenes of invariant di�erential op-

erators expressed in terms of the invariant derivatives with respet to Cartan

onnetions, on all (urved) geometries in question. These sequenes are dif-

ferential omplexes if ertain twisted de Rham sequenes are omplexes, and

then they ompute the same ohomology. In partiular, this always happens

for the homogeneous models themselves and then our sequenes speialize to

the Bernstein{Gelfand{Gelfand resolutions well known from representation

theory for omplex G=P , while their real smooth analogues are provided for

all real forms of this situation.

In spite of the fat that we have mentioned a few onepts from represen-

tation theory, we want to underline that no deeper aspets of representation
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theory are used in the onstrution of our new sequenes of invariant opera-

tors and in the disussion of their basi properties. In partiular, no in�nite

dimensional representation theory is needed. It is rather the language and

the way of thinking of representation theory that is essential (in a similar way

as the ategorial language is useful in mathematis even if no deep results of

ategory theory are used). In order to stress this feature, we have postponed

the more detailed analysis of the struture of the sequenes to a forthoming

seond part of the artile and we hope that the �rst part is aessible for

di�erential geometers without a deeper bakground in representation the-

ory. We also provide a quite detailed exposition of the neessary algebrai

bakground. In partiular we have inluded two appendies overing some

material whih is rather well known in representation theory.

The �rst general geometri theory lose to our needs had been worked out

in the series of papers by N. Tanaka and his shool aiming at the original

equivalene problem of E. Cartan, see [34, 35, 27℄ and the referenes therein.

Our inspiration omes, however, rather from the interest in the links between

twistor theory and representation theory, as explained in the book [2℄. In

the generality we need, the normalized Cartan onnetions were onstruted

in [7℄ �rst. We have been also inuened by the translation priniple in

representation theory (see [4, 5℄ for example) and, in partiular, by some

ideas in the seond part of Baston's paper [1℄. Some arguments and proofs

in the latter paper seem very unlear to us, however.

There are also many treatments of spei� examples of paraboli geome-

tries in the literature, inluding e.g. projetive, onformal, almost Grassman-

nian, and CR{geometries. Most of these well known geometries orrespond

to the so alled j1j{graded Lie algebras g whih an be equivalently expressed

by the requirement that the tangent spaes orrespond to irreduible rep-

resentations of the paraboli subgroup P . Our theory of semi{holonomi

jet{modules is in fat a generalization of the approah worked out for all

real j1j{graded algebras in our former papers [8, 9, 10℄ (and this paper ould

be also viewed as a fourth part of this series expanded to the full general-

ity of paraboli geometries). On the other hand, there are only few expliit

examples of urved analogues of the Bernstein{Gelfand{Gelfand resolutions

available in the literature, see e.g. [14℄, and in fat only the ase of onformal

Riemannian geometries has been studied systematially, see [19℄ and [16℄ for

two di�erent approahes. For an introdution addressed to wide audiene,

see the forthoming paper [13℄.

Let us indiate the struture of the paper. In the next setion, we �rst

ollet the neessary information on jkj-graded Lie algebras and the stru-

ture of the orresponding Lie groups, and then real and omplex paraboli

geometries are introdued (f. 2.7). Our point of view is that the geometry

on a manifoldM is given by a hoie of a Cartan onnetion (with possible

further normalization) and we are interested in the general alulus whih

suh a hoie o�ers. In a ertain sense, this is similar to the rôle of the gen-

eral alulus for linear onnetions in Riemannian geometry by appliation

to the Levi{Civita onnetion. Thus we only briey disuss the more lassi-

al underlying geometrial information on the manifolds M themselves and

the question of onstruting a (normalized) Cartan onnetion from these

more basi data, f. 2.10. See [7, 27℄ for more information on this aspet. We
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also introdue the onepts of natural bundles and operators for paraboli

geometries in the end of Setion 2.

The third setion deals with our basi algebrai tool, the semi{holonomi

jet modules. The invariant derivative with respet to Cartan onnetions

then leads to the notion of strongly invariant di�erential operators whih

are de�ned by means of P{module homomorphisms. As a �rst appliation,

we introdue the twisted exterior derivatives whih are ertain torsion ad-

justed versions of the ovariant exterior derivatives indued by the Cartan

onnetions on ertain bundles.

The main results are stated and proved in Setion 4. Referring impliitly

to the struture of the Lie algebra ohomologies, we �rst embed the nat-

ural vetor bundles orresponding to ohomologies into exterior forms by

means of distinguished di�erential operators L, see Theorem 4.8. Then we

use the twisted exterior derivatives in order to onstrut expliitly many P{

module homomorphisms of the semi{holonomi jet modules, f. Proposition

4.9. The orresponding invariant di�erential operators build the Bernstein{

Gelfand{Gelfand sequenes. Finally we disuss the onditions under whih

these sequenes form di�erential omplexes, and we disuss their ohomolo-

gies, f. 4.13{4.15.

Finally, we illustrate briey the ahievements on at least one non{trivial

paraboli geometry and this is done in Setion 5.

Throughout the paper, we disuss the real and omplex manifolds and

groups at the same time. We should point out however, that the relation

between the real and omplex settings deserves more attention. In fat, we

are able to present both smooth and holomorphi results in one line of

arguments, beause our point is to use the P{module homomorphisms in

order to onstrut the sequenes of operators. The distintion is hidden in

the expliit struture of the Lie algebra ohomologies, whih we use only

impliitly. One should say, however, this does not mean that working out

the details for one real form gives expliit results for all other real or omplex

forms of the group in question. This ambiguity disappears only if we restrit

ourselves to omplex representations of the real forms.

A more detailed disussion of our Bernstein{Gelfand{Gelfand sequenes

requires a deeper study of the ohomologial information. Essentially, the

non{trivial operators between the irreduible bundles in the sequene or-

respond to arrows in the Hasse diagram of the paraboli subalgebras and

the knowledge of this struture leads to quite expliit information on the in-

dividual operators. We have preferred to postpone all onsiderations whih

need more involved information from representation theory to a prospetive

ontinuation in order to keep the avor of this artile.
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2. Paraboli geometries

In this setion we review basi fats about jkj{graded Lie algebras and

we give basi de�nitions on paraboli geometries and invariant di�erential

operators on manifolds equipped with geometries of that type. Most of the

fats on the algebras go bak to [34, 35℄, see also [7℄ whih is fully ompatible

in notation.

2.1. De�nition. Let K be R or C . A jkj{graded Lie algebra over K , k 2 N

is a Lie algebra g over K together with a deomposition

g = g

�k

� � � � � g

�1

� g

0

� g

1

� � � � � g

k

suh that [g

i

; g

j

℄ � g

i+j

and suh that the subalgebra g

�

:= g

�k

� � � � � g

�1

is generated by g

�1

. In the whole paper, we will only deal with semisimple

jkj{graded Lie algebras.

By p we will denote the subalgebra g

0

� � � � � g

k

of g, and by p

+

the

subalgebra g

1

� � � � � g

k

of p.

There is always a unique element E 2 g whose adjoint ation is given by

[E;X℄ = `X for X 2 g

`

. The element E is ontained in the enter of the

subalgebra g

0

, whih is always redutive. Using this, one shows that any ideal

of g is homogeneous. Thus, a semisimple jkj{graded Lie algebra is always a

diret sum of simple jk

i

j{graded Lie algebras, where all k

i

� k. Hene, one

usually an redue most disussions to the simple ase. When dealing with

the semisimple ase, we have to assume that none of the simple fators is

ontained in g

0

, for tehnial reasons. Sine basially we are interested in

homogeneous spaes G=P , where G is a Lie group with Lie algebra g and P

an appropriate subgroup with Lie algebra p, and their urved analogs, this

is not really a restrition.

For eah i = 1; : : : ; k, the Killing form of g indues an isomorphism g

i

�

=

g

�

�i

of g

0

{modules. Finally, the powers of p

+

are given by p

i

+

= g

i

�� � ��g

k

,

for i = 1; : : : ; k. See e.g. [35, Setion 3℄ for details.

2.2. In the omplex ase, the meaning of a jkj{grading is partiularly simple

to desribe. One an show that there always exists a Cartan subalgebra

h � g whih ontains the element E from above, and a hoie of positive

roots �

+

for h suh that all root spaes orresponding to simple roots are

either ontained in g

0

or in g

1

. Denoting by � the set of those simple roots,

whose root spaes are ontained in g

1

, one sees that the grading on g is

given by the �{height of roots. That is, if � is a root, then the root spae

g

�

is ontained in g

i

, where i is the sum of all oeÆients of elements of �

in the expansion of � as a linear ombination of simple roots. In partiular,

this implies that the subalgebra p is always a paraboli subalgebra of g, and

p = g

0

� p

+

is exatly the Levi deomposition of p into a redutive and a

nilpotent part.

Conversely, if g is omplex and semisimple and p � g is a paraboli

subalgebra, then one an �nd a Cartan subalgebra and a set of positive

roots suh that p is the standard paraboli orresponding to a set � of

simple roots. But then the �{height as de�ned above gives a jkj{grading on

g, where k is the �{height of the maximal root of g, suh that p = g

0

�� � ��g

k

.

See e.g. [22, p. 88℄ or [2, Setion 2℄ for more details.
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Thus, in the omplex ase giving a jkj{grading on g is the same thing as

giving a paraboli subalgebra p of g. Therefore, omplex jkj{graded semisim-

ple Lie algebras an be onveniently denoted by Dynkin diagrams with

rossed nodes. That is, given a jkj{graded semisimple omplex Lie algebra

we may assume that p is the standard paraboli subalgebra orresponding

to a set � of simple roots. Then we denote the jkj{graded Lie algebra g by

rossing out the nodes orresponding to the simple roots ontained in � in

the Dynkin diagram of g. See the book [2℄ for a detailed disussion of the

Dynkin diagram notation for paraboli subalgebras.

Finally note that for a jkj{graded Lie algebra g over R the omplexi�ation

g

C

of g is jkj{graded, too. So in general we deal with ertain real forms of

pairs (g; p), where g is omplex and semisimple and p is a paraboli in g.

The lassi�ation of all these real forms is provided in [35, Setion 4℄.

2.3. Suppose that g is jkj{graded and semisimple over K = R or C , and

let G be any Lie group with Lie algebra g. (We do not assume that G is

onneted.) Then we an de�ne subgroups G

0

� P � G as follows: G

0

onsists of all elements of G suh that the adjoint ation Ad(g) : g ! g of

g preserves the grading of g. By P we denote the subgroup of all elements

g 2 G suh that Ad(g) preserves the �ltration by right ends indued by the

grading of g, i.e. Ad(g)(g

i

) � g

i

� � � � � g

k

. By de�nition G

0

is a subgroup

of P , and one easily veri�es that G

0

and P have Lie algebras g

0

and p,

respetively, see e.g. [7, 2.9℄. Moreover, it an be shown that if g is simple,

then P equals the normalizer N

G

(p) of p in G, so it is the usual paraboli

subgroup assoiated to the paraboli subalgebra p.

The following proposition lari�es the struture of the group P :

Proposition. Let g 2 P be any element. Then there exist unique elements

g

0

2 G

0

and X

i

2 g

i

for i = 1; : : : ; k, suh that

g = g

0

exp(X

1

) : : : exp(X

k

):

Proof. See [7, 2.10℄.

2.4. For i = 1; : : : ; k we de�ne a subgroup P

i

+

� P as the image under the

exponential map of g

i

� � � � � g

k

, and we write P

+

for P

1

+

. Then we have

P � P

+

� P

2

+

� � � � � P

k

+

. The subgroup P

+

� P is obviously normal and

by Proposition 2.3 we have P=P

+

�

=

G

0

, so P is the semidiret produt of

G

0

and the normal nilpotent subgroup P

+

. More generally, for eah i > 1

we see that P=P

i

+

is the semidiret produt of G

0

and the normal nilpotent

subgroup P

+

=P

i

+

.

The adjoint ation of P on g by de�nition preserves any of the subspae

g

i

� � � � � g

k

for i = �k; : : : ; k. Thus for eah i = �k; : : : ; k and j > i we get

an indued ation of P on the quotient g

i

� � � � � g

k

=(g

j

� � � � � g

k

). With

a slight abuse of notation, we will denote this P{module by g

i

� � � � � g

j�1

.

Again by Proposition 2.3, the ation of P

j�i

+

on g

i

�� � ��g

j�1

is trivial, so the

ation of P on this spae is indued by an ation of P=P

j�i

+

. In partiular,

we get an ation of P on g

�

= g=p, whih is indued by an ation of P=P

k

+

.

There is another important onsequene of Proposition 2.3: Suppose that

V and W are P{modules and that � : V ! W is a linear mapping. Suppose

that � is equivariant for the ation of G

0

and for the (in�nitesimal) ation
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of g

1

. Sine p

+

is generated by g

1

this implies equivariany with respet to

p

+

and thus also with respet to P

+

, so using Proposition 2.3 we see that

� is atually a homomorphism of P{modules. This will be tehnially very

important in the sequel.

2.5. For a Lie group G with jkj{graded semisimple Lie algebra g and the

subgroup P de�ned in 2.3 above, onsider the homogeneous spae G=P .

This homogeneous spae is the at model for the paraboli geometry of the

type (G;P ) that we are going to study. It is well known that the anonial

projetion G! G=P is a prinipal �ber bundle with struture group P .

If G is a omplex Lie group, then P is a paraboli subgroup, so G=P

is a generalized ag manifold, and thus in partiular a ompat omplex

manifold. In the real ase, G=P need not be ompat in general, as the

example of the onformal spheres in inde�nite signature shows.

Next suppose that � : P ! GL(V) is a representation of P on a �-

nite dimensional vetor spae V. Then we an form the assoiated bundle

V := G �

P

V ! G=P . This is a homogeneous vetor bundle, that is the

anonial left ation of G on G=P lifts to a left ation of G on V by ve-

tor bundle homomorphisms. Conversely, given a homogeneous vetor bundle

E ! G=P , onsider the �ber E of E over the anonial base point o 2 G=P .

Sine the ation of any element of P on G=P maps o to itself, the ation

of G on E indues a representation of P on E and one easily veri�es that

G �

P

E and E are isomorphi homogeneous vetor bundles (i.e. there is a

G{equivariant isomorphism of vetor bundles between them). Consequently,

there is a bijetive orrespondene between �nite dimensional representa-

tions of P and homogeneous vetor bundles over G=P . In the ase where G

is a omplex Lie group, the ation of G on G=P is holomorphi and there

is a bijetive orrespondene between holomorphi �nite dimensional rep-

resentations of P and holomorphi homogeneous vetor bundles over G=P

(that is holomorphi bundles with holomorphi G{ations).

In partiular, the tangent and otangent bundles of G=P are homogeneous

vetor bundles. One easily veri�es that they orrespond to the representa-

tions of P on g

�

�

=

g=p and p

+

indued by the adjoint ation, respetively.

In the omplex ase, these representations indue the holomorphi tangent

and otangent bundle.

For a homogeneous vetor bundle E ! G=P onsider the spae �(E) of

smooth setions of E. There is an indued ation of G on this spae given

by (g�s)(x) = g�(s(g

�1

�x)) for x 2 G=P . In the omplex ase, we an deal

similarly with the spaes of holomorphi setions.

De�nition. Let E and F be homogeneous vetor bundles over G=P . A (lin-

ear) invariant di�erential operator D : �(E) ! �(F ) is a linear di�erential

operator D whih is equivariant for the G{ations onstruted above.

2.6. If D is of order � r, then it is indued by a vetor bundle homo-

morphism

~

D : J

r

(E) ! F , where J

r

(E) is the r{th jet prolongation of E.

Now simply by funtoriality of the r{th jet prolongation, J

r

(E) is again a

homogeneous vetor bundle, and the invariane of D is equivalent to the

fat that

~

D is equivariant for the G{ations on J

r

(E) and F . Sine G ats

transitively on G=P , the homomorphism

~

D is atually determined by its
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restrition

~

D : J

r

(E)

o

! F

o

to the �ber over o 2 G=P , and by invariane of

D, this map is P{equivariant.

Conversely, a P{homomorphism J

r

(E)

o

! F

o

extends uniquely to a G{

homomorphism J

r

(E) ! F and thus gives rise to an invariant di�erential

operator. Thus, invariant di�erential operators �(E) ! �(F ) of order � r

are in bijetive orrespondene with P{homomorphisms J

r

(E)

o

! F

o

. To

avoid the restrition on the order, one an simply pass to in�nite jets and

we obtain that invariant di�erential operators �(E)! �(F ) are in bijetive

orrespondene with P{homomorphisms J

1

(E)

o

! F

o

, whih fatorize over

some J

r

(E).

Surprisingly, the problem of determining all suh homomorphisms has a

nie reformulation in term of (in�nite{dimensional) representation theory,

whih has led to a omplete solution in several ases. Namely, suppose that

E and F orrespond to representations E and F of P , respetively. For the

dual representation E

�

, one an form the indued module U(g) 


U(p)

E

�

,

whih is a (g; P ){module, i.e. it admits ompatible ations of g and P . In

the ase where p � g is the Borel subalgebra (i.e. the minimal paraboli)

and E is irreduible, these are the Verma{modules while for general p and

irreduible E , they are alled generalized Verma{modules. By a dualization

argument and Frobenius reiproity one shows that for E and F irreduible,

the spae of all P{module homomorphisms J

1

(E)

o

! F

o

, whih fatorize

over some J

r

(E)

o

is isomorphi to the spae of all (g; P ){homomorphisms

U(g) 


U(p)

F

�

! U(g) 


U(p)

E

�

. Sine these onsiderations are essential for

understanding of the links of our development to the standard Bernstein{

Gelfand{Gelfand resolutions, we provide some more details in Appendix

Appendix A.

Let us remark however that while there is a omplete lassi�ation of ho-

momorphisms of Verma{modules in the omplex ase in [3℄, the lassi�ation

of homomorphisms of generalized Verma modules is a very diÆult problem,

whih is unsolved in general (even in the omplex ase). There is a omplete

lassi�ation in the ase of real rank one for one dimensional representa-

tions in [26℄ and for general representations in [4℄ and [5℄. The problem in

the ase of generalized Verma modules is the following: One has a lass of ho-

momorphisms whih are indued by homomorphisms of Verma modules, the

so{alled standard homomorphisms. These are exatly the homomorphisms

whih our in Bernstein{Gelfand{Gelfand resolutions. But it may happen

that a homomorphism of Verma modules indues the zero{homomorphism

between generalized Verma modules, and in this situation there may still be

nonzero homomorphisms (the so alled non{standard homomorphisms).

2.7. Paraboli geometries. Some geometries an be viewed as urved

analogs of the homogeneous spaes G=P onsidered above. For the purpose

of this paper, the best way to de�ne them is simply as generalized spaes in

the sense of E. Cartan.

Let g = g

�k

� � � � � g

k

be a real jkj{graded Lie algebra and let G be a

Lie group with Lie algebra g. Let G

0

and P be the subgroups of G de�ned

in 2.3 above. Then we de�ne a (real) paraboli geometry of type (G;P ) on

a smooth manifold M to be a prinipal P{bundle G !M equipped with a
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Cartan onnetion of type (G;P ), i.e. a di�erential form ! 2 


1

(G; g) suh

that

(1) !(�

X

) = X for all X 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

Here �

X

denotes the fundamental vetor �eld generated by X 2 p and

r

b

denotes the prinipal right ation of b 2 P . Thus, ! gives a smooth P{

equivariant trivialization of the tangent bundle of G, whih reprodues the

generators of fundamental �elds. Eah X 2 g de�nes the onstant vetor

�eld !

�1

(X) given by !

�1

(X)(u) = !

�1

u

(X) 2 T

u

G. Clearly, a paraboli

geometry of type (G;P ) on M an only exist if M has the same dimension

as G=P .

In the omplex setting, the Lie algebras and groups, as well as the manifold

M are omplex and the above de�nition remains unhanged exept for the

replaement of smooth by holomorphi. Thus a omplex paraboli geometry

of the type (G;P ) on a omplex manifold M is given by a holomorphi

prinipal �ber bundle equipped with a holomorphi absolute parallelism !

with the three properties listed above.

The (real or omplex) homogeneous spae G=P always arries a anonial

paraboli geometry, namely G = G and the Cartan onnetion is given by

the left Maurer Cartan form. Then the onstant vetor �elds are exatly the

left invariant �elds on G.

It is fairly easy to make the paraboli geometries as de�ned above into

a ategory. Let (G; !) be a real paraboli geometry on M and (G

0

; !

0

) be a

paraboli geometry on M

0

, and suppose that � : G ! G

0

is a smooth homo-

morphism of prinipal P{bundles, suh that the indued map � :M !M

0

is a loal di�eomorphism. Then for any point u 2 G the tangent map

T

u

� : T

u

G ! T

�(u)

G

0

is a linear isomorphism, and using this, one imme-

diately veri�es that �

�

!

0

:= !

0

Æ T� is a Cartan onnetion on G. Now

we de�ne a morphism from (G; !) to (G

0

; !

0

) to be a homomorphism � of

prinipal bundles suh that the indued map � : M ! M

0

is a loal di�eo-

morphism and suh that ! = �

�

!

0

. For omplex paraboli geometries we

additionally require all maps to be holomorphi.

Note that any homomorphism � : G ! G

0

of prinipal bundles whih

lies over a loal di�eomorphism an be viewed as a morphism (G;�

�

!

0

) !

(G

0

; !

0

). More generally, if (G

0

; !

0

) is a paraboli geometry on M

0

and f :

M ! M

0

is a loal di�eomorphism, then we an form the pullbak bun-

dle f

�

G

0

! M . Then there is an indued homomorphism � : f

�

G

0

! G

0

of prinipal bundles whih lies over f , and we get an indued morphism

(f

�

G

0

;�

�

!

0

)! (G

0

; !

0

).

2.8. For some purposes, the ategory of paraboli geometries as de�ned

above is too large, and one has to impose ertain restritions. Usually, these

restritions are on the urvature of the Cartan onnetion. Initially, the

urvature of a Cartan onnetion ! is de�ned as the g{valued two{form

K 2 


2

(G; g) de�ned by the struture equation

K(�; �) = d!(�; �) + [!(�); !(�)℄;
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where � and � are vetor �elds on G and the braket is in g. Using the

properties of ! one immediately veri�es thatK is horizontal and equivariant.

In partiular, this implies that K is uniquely determined by the urvature{

funtion � : G ! �

2

g

�

�


g de�ned by �(u)(X;Y ) = K(u)(!

�1

u

(X); !

�1

u

(Y )).

There are two natural ways to split � into omponents. First, the splitting

of g indues a splitting of � aording to the values in g. In partiular, we

an split � = �

�

� �

p

aording to the splitting g = g

�

� p. Following the

lassial terminology for aÆne onnetions, �

�

is alled the torsion of !.

The other possibility is to split � aording to homogeneous omponents.

We denote the homogeneous omponent of degree i of � by �

(i)

. So �

(i)

maps

g

j


 g

k

to g

i+j+k

.

Another important point is that the spae �

2

g

�

�


 g is the seond hain

group C

2

(g

�

; g) in the standard omplex for the Lie algebra ohomology

H

�

(g

�

; g) of the nilpotent Lie algebra g

�

with oeÆients in the g

�

{module

g. As we shall reall in detail in Setion 4, there is the adjoint �

�

to the

Lie algebra di�erential � in this omplex, so in partiular, we have �

�

:

�

2

g

�

�


 g! g

�

�


 g.

De�nition. Let (G; !) be a (real or omplex) paraboli geometry on a man-

ifold M , and let � be the urvature of !. Then the paraboli geometry is

alled

(1) normal if �

�

Æ � = 0.

(2) regular if it is normal and �

(i)

= 0 for all i � 0.

(3) torsion{free if �

�

= 0.

(4) at if � = 0.

Note that forming the urvature of a Cartan onnetion is a natural oper-

ation. This means that if � : G ! G

0

is a homomorphism of prinipal bundles

and !

0

is a Cartan onnetion with urvature K

0

and urvature{funtion �

0

then the urvature K and urvature funtion � of the pullbak �

�

!

0

are

given by K = �

�

K

0

and � = �

0

Æ �, respetively. Sine all the sublasses

of paraboli geometries de�ned above are given by restriting the values of

the urvature{funtion, morphisms into a paraboli geometry from one of

the four sublasses an only ome from geometries from the same sublass.

Clearly, for any of the four sublasses the geometries belonging to the lass

form a full subategory of the ategory of all paraboli geometries of �xed

type.

2.9. Examples. Before we review the onstrution of paraboli geometries

from underlying data, we present two well known examples.

Conformal strutures. Consider R

n

with oordinates x

1

; : : : ; x

n

and the

standard inner produt h ; i of signature (p; q), and R

n+2

with oordinates

x

0

; x

1

; : : : ; x

n

; x

1

and the inner produt assoiated to the quadrati form

2x

0

x

1

+ h(x

1

; : : : ; x

n

); (x

1

; : : : ; x

n

)i, whih has signature (p+ 1; q + 1). Let

G = SO

0

(p+1; q+1) be the onneted omponent of the speial orthogonal

group of this metri. Then the Lie algebra g of G admits a j1j{grading by

deomposing matries into bloks of sizes 1, n, and 1, see e.g. [8, 3.3(2)℄.

The onstrution of the anonial Cartan onnetion for manifolds endowed

with a onformal struture of signature (p; q), originally due to E. Cartan

(see [11℄), shows that onformal strutures of this signature are preisely the
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same thing as normal paraboli geometries orresponding to that hoie of

G and P . See [8℄ for a onstrution of the anonial Cartan onnetion on

onformal manifolds in a style similar to the approah of this paper. In this

speial situation, normal Cartan onnetions turn out to be automatially

regular and torsion free, so three of the four sublasses de�ned in 2.8 above

oinide. The at paraboli geometries in this ase are exatly the loally

onformally at manifolds.

Partially integrable almost CR{strutures. The omplex analog of the

above onstrution leads to the partially integrable almost CR{strutures

whih present another example of real paraboli geometries. Here we have

to onsider the omplex vetor spae C

n

with the standard Hermitian in-

ner produt of signature (p; q) and C

n+2

with the Hermitian inner prod-

ut assoiated to z

0

�z

1

+ �z

0

z

1

+ h(z

1

; : : : ; z

n

); (z

1

; : : : ; z

n

)i. Now we put

G = PSU(p+1; q+1) the quotient of the speial unitary group orrespond-

ing to this Hermitian inner produt by its enter. Splitting the matries in

the Lie algebra g of G into bloks of sizes 1, n, and 1 this time gives rise

to a j2j{grading. The onstrution of anonial Cartan onnetions in [7℄

shows that partially integrable almost CR{strutures with non{degenerate

Levi{form of signature (p; q) are exatly the same thing as regular paraboli

geometries orresponding to G (see [7, 4.14℄). In this ase, three of the four

sublasses of geometries de�ned in 2.8 above are really di�erent: The tor-

sion free paraboli geometries in this ase are preisely the CR{strutures

(see [7, 4.16℄), and the at ones are those whih are loally isomorphi to

the homogeneous model. The only oinidene in this ase is that normal

paraboli geometries are automatially regular.

2.10. Underlying strutures. These two examples already show that iden-

tifying a geometrial struture on a manifold as a paraboli geometry should

be rather the result of a theorem than a de�nition. In fat one an show in

a fairly general setting that ertain paraboli geometries are determined by

underlying strutures. This is the subjet of the paper [7℄ whih general-

izes [34℄, see also [27℄ and [35℄. To review the results, we �rst desribe the

underlying strutures we have in mind.

Suppose that (G; !) is a regular paraboli geometry on a manifoldM . The

�rst thing we get out of this is a �ltration TM = T

�k

M � T

�k+1

M � � � � �

T

�1

M of the tangent bundle of M . This is given by de�ning T

i

M to be the

set of those tangent vetors � onM for whih there is a tangent vetor

~

� in TG

lying over � with !(

~

�) 2 g

i

�� � �� g

k

. The latter ondition is independent of

the hoie of

~

� sine hanging the vetor with �xed footpoint adds a vertial

vetor whose image under ! lies in p, while hanging the footpoint leads

to the adjoint ation of an element of P , whih by de�nition preserves the

subspae g

i

� � � �� g

k

. Clearly, this �ltration has the property that the rank

of T

i

M=T

i+1

M equals the dimension of g

i

for all i = �k; : : : ;�1.

Now the underlying strutures basially are given by onsidering the bun-

dles G=P

i

+

! M for i = 1; : : : ; k and the \traes" of the Cartan onnetion

that remain on these bundles. This \trae" on the bundle G=P

i

+

! M is

a frame form of length i in the sense of [7, 3.2℄. For the ase i = 1 the

geometri meaning of suh a frame form is partiularly easy to desribe: It
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is exatly a redution to the struture group G

0

of the assoiated graded

vetor bundle

grTM = T

�k

M=T

�k+1

M � � � � � T

�2

M=T

�1

M � T

�1

M

to the tangent bundle TM . The fat that the urvature{funtion � of the

regular Cartan onnetion ! has the property that �

(i)

= 0 for all i � 0 is

reeted in a property of the underlying frame forms alled the struture

equation, see [7, 3.4℄. The bundle G=P

i

+

together with the frame form of

length i, whih satis�es the struture equations is alled the underlying P{

frame bundle of degree i. Again, for i = 1 this ondition an be easily

understood geometrially. It is equivalent to the fat that the algebrai Lie

braket on grTM whih omes from the redution to the groupG

0

is indued

by the Lie braket of vetor �elds, that is it is given by a (generalized) Levi{

form.

Now the main result of [7℄ an be stated (with the help of the language

of Dynkin diagrams for the pairs (g; p) mentioned in 2.2 above) as follows:

Let (g; p), G, P , and G

0

be as in 2.3 and suppose throughout that no

simple fator of g is ontained in g

0

and g does not ontain a simple fator

of type A

1

. Then:

(1) If (g; p) does not ontain any simple fator of one of the types

�

� � � � � �
or

�

� � � � � �

h

then any regular paraboli geometry an be reonstruted from the underlying

P{frame bundle of degree one, and any P{frame bundle of degree one omes

from a regular paraboli geometry. Thus, in all these ases regular paraboli

geometries are the same thing as manifolds with �ltered tangent bundle plus

redutions of gr TM to the group G

0

suh that the resulting algebrai braket

is indued by the Lie braket.

(2) If g ontains simple fators of one of the two above types, then any regular

paraboli geometry an be reonstruted from the underlying P{frame bundle

of degree two and any suh bundle omes from a regular paraboli geometry.

Moreover, any P{frame bundle of degree one an be extended (in various

ways) to a P{frame bundle of degree two.

The lassial examples of the seond ase are the projetive strutures

where the P{frame bundle of degree one is simply the full frame bundle and

all the struture is ontained in the hoie of an extension to a P{frame

bundle of degree two. The other exeptional examples are the so alled

projetive ontat strutures.

2.11. Natural bundles and operators. We will not go into muh detail

in the generalities about natural bundles and natural operators, but just

outline the basi fats. We do not want to ompare the various notions of

naturality (this will be taken up elsewhere) but just show that the operators

we are going to onstrut are natural (or invariant) in any reasonable sense.

Given a representation of P on a vetor spae V and a paraboli geom-

etry (G ! M;!) we an form the assoiated bundle VM = G �

P

V ! M .

If � : G ! G

0

is a homomorphism of prinipal bundles whih overs a loal

di�eomorphism � : M ! M

0

, then we get an indued homomorphism of

vetor bundles VM ! VM

0

whih lies over the same map � and restrits

to a linear isomorphism in eah �ber. To put it in another way, we get a
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funtor from the ategory of paraboli geometries to the ategory of vetor

bundles over manifolds of the same dimension as G=P and vetor bundle

homomorphisms whih over loal di�eomorphisms and indue linear iso-

morphisms in eah �ber suh that the omposition of the base funtor with

the given funtor equals the base funtor. Thus, we get a speial ase of a

gauge natural bundle as de�ned in [24, Chapter XII℄.

Consider next a �xed ategory of real paraboli geometries, and two repre-

sentations V and W of P . Let V and W be the orresponding natural vetor

bundles. A natural linear operator mapping setions of V to setions of W

is de�ned to be a system of linear operators D

(G;!)

: �(VM) ! �(WM),

where M is the base of G suh that for any morphism � : (G; !) ! (G

0

; !

0

)

we have

�

�

ÆD

(G

0

;!

0

)

= D

(G;!)

Æ �

�

:

This de�nition implies immediately, that eah of the operators is loal both

in the setion and in the Cartan onnetion: Suppose that s 2 �(VM)

vanishes identially on an open subset U � M . Then there is an obvi-

ous inlusion morphism i : (Gj

U

; !j

U

) ! (G; !) and i

�

s = 0. Thus also

i

�

(D

(G;!)

(s)) = 0, i.e. D

(G;!)

(s) is identially zero on U . Similarly, assume

that ! and !

0

are two Cartan onnetions whih oinide on Gj

U

. Then for

any setion s 2 �(VM) we have D

(G;!)

(s)j

U

= D

(G;!

0

)

(s)j

U

. In partiular,

the lassial Peetre theorem implies that eah of the operators D

(G;!)

is lo-

ally overM a �nite order di�erential operator with respet to the arguments

in the vetor bundles and the Cartan onnetion.

For omplex paraboli geometries, we deal with holomorphi represen-

tations of P , the natural vetor bundles are holomorphi, and the natural

operators at on holomorphi setions. Let us also remark that all these

onepts extend to non-linear objets without essential hanges.

2.12. The natural operators on the ategory of at paraboli geometries are

partiularly easy to desribe: It is a lassial result on Cartan onnetions

that any at paraboli geometry is loally isomorphi to the homogeneous

model G=P (see [7, 4.12℄ for a proof in the setting of paraboli geometries).

This immediately implies that any natural operator on the ategory of at

paraboli geometries is uniquely determined by its value on the homoge-

neous model G=P , i.e. the paraboli geometry (G! G=P; !). Moreover, an

operator on the at model extends to a natural operator on the ategory of

at paraboli geometries if and only if it is natural with respet to all auto-

morphisms of (G;!). The left multipliation by any element of G indues an

automorphism of the prinipal bundle G ! G=P and by left invariane of

the Maurer Cartan form this atually is an automorphism of the paraboli

geometry (G;!). On the other hand, by [31, Theorem 3.5.2℄ the only smooth

funtions G! G whih pull bak the Maurer Cartan form to itself are the

onstant left translations. Thus G is exatly the group of all automorphisms

of (G;!). But this immediately implies that an operator on the homoge-

neous model extends to a natural operator on the ategory of at paraboli

geometries if and only if it is invariant in the sense of de�nition 2.5. Thus for

the at ase, the desription of natural operators is equivalent to a problem

in representation theory.
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Usually, the question on more general natural operators is then posed

(in the speial ases that have been studied so far) as the question of the

existene of urved analogs of invariant operators. This should be viewed as

follows: As we disussed in 2.6, an invariant operator of order r is indued

by a P{module homomorphism J

r

(E)

o

! F

o

, whih does not fator over

J

r�1

(E)

o

. Now the kernel of the projetion J

r

(E)

o

! J

r�1

(E)

o

is the bundle

S

r

T

�

(G=P ) 
 E, so it orresponds to the representation S

r

p

+


 E . Thus

the invariant operator gives rise to a P{module homomorphism S

r

p

+




E ! F, whih in turn gives a G{equivariant homomorphism between the

orresponding homogeneous vetor bundles whih is preisely the symbol of

the operator we started with. But this P{module homomorphism indues

a homomorphism of assoiated bundles on any paraboli geometry, so for

any paraboli geometry (G; !) over a manifoldM , we get the orresponding

homomorphism S

r

T

�

M 
EM ! FM . Now a urved analog of an invariant

operator is a natural operator suh that for eah (G; !) the symbol of D

(G;!)

is the above homomorphism. Otherwise put, the question is whether we

an extend a given natural operator from the ategory of at paraboli

geometries to some larger ategory of paraboli geometries without hanging

its symbol, whih, as a natural transformation, makes sense on any paraboli

geometry.

2.13. We onlude this introdutory setion with some more remarks on

the beautiful geometri struture underlying eah paraboli geometry. This

topi deserves muh more attention than we ould pay here and it will be

studied in detail elsewhere. Some �rst steps have been done in [33℄.

Suppose that (G; !) is a real paraboli geometry on a manifold M . Then

we have the tower of prinipal �ber bundles G ! G=P

+

! M and the top

level has the struture group P

+

. Now using the Baker{Campbell{Hausdor�

formula, Proposition 2.3 an be restated in the form that for any g 2 P

there is a unique g

0

2 G

0

and a unique Z 2 p

+

suh that g = g

0

exp(Z).

But using this, one easily shows that the bundle G ! G=P

+

admits global

G

0

{equivariant smooth setions. Namely, one an use a loal trivialization

of G ! M to onstrut equivariant setions over the preimage in G=P

+

of

appropriate open subsets of M . Suh loal setions an then be glued to

a global setion using a partition of unity (ompare with the proof of [8,

Lemma 3.6℄). As in this last referene one also proves that the spae of all

these setions is an aÆne spae modeled on the spae 


1

(M) of one{forms

on M .

G

//
G=P

+

//
�

{{
M

!

OO

�

�

(!

g

�

+ !

g

0

)

OO

Eah suh global setion � redues the struture group of the tangent spae

TM to G

0

and indues an aÆne onnetion 

�

= �

�

(!

g

�

+!

g

0

) on TM . This

aÆne onnetion is �{related to another Cartan onnetion !

�

on G, whih

di�ers from ! only in the p

+

{omponent. The lass of all onnetions 

�

is

a straightforward generalization of Weyl strutures on onformal geometries
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and all di�erential operators built of the Cartan onnetion ! an be ex-

pressed by uniform formulae in terms of these aÆne onnetions and their

torsions and urvatures. The tehnique based on this general framework was

developed systematially for all j1j-graded algebras g in [8, 9, 10℄.

3. Semi{holonomi jet modules and strongly invariant

operators

Semi{holonomi jet prolongations of modules were �rst introdued in the

ontext of AHS{strutures in [8℄. Here we develop the onept in the more

general setting of paraboli geometries and we disuss how the homomor-

phisms of semi{holonomi jet prolongations give rise to natural operators.

Throughout this setion, there will be essentially no di�erenes in the ar-

guments for the real and omplex paraboli geometries. Thus we shall not

mention the �eld of salars expliitly, and one has to think of the proper

real or omplex modules in the appliations below.

3.1. The absolutely invariant derivative. Suppose that (G; !) is a par-

aboli geometry on a manifold M . We mentioned in 2.5, that the tangent

and otangent bundles on the homogeneous spaes are homogeneous vetor

bundles. The Cartan onnetion ! extends this identi�ation to all paraboli

geometries as follows:

We identify g

�

(as a P{module) with g=p, and onsider the map G�g

�

!

TM de�ned by mapping (u;X) to Tp�!

�1

u

(X), where p : G ! M is the

projetion. The equivariany of the Cartan onnetion immediately implies

that this fators to a vetor bundle homomorphism G �

P

g

�

! TM . Sine

this is immediately seen to be surjetive, it must be an isomorphism of

vetor bundles by dimensional reasons. Thus we have identi�ed TM with

the natural bundle assoiated to the P{module g

�

. Now, the invariane of

the Killing form on g implies that g=p and p

+

with the ations indued by the

adjoint ation are dual P{modules. Thus, similarly as above the otangent

bundle T

�

M of M an be identi�ed with the bundle G �

P

p

+

(impliitly,

this has been used in 2.13 above).

There is a nie way to enode the ation of vetor �elds on funtions (or

equivalently the exterior derivative of funtions) using the identi�ations

made above. As we have seen, a typial tangent vetor on M an be written

as Tp�!

�1

u

(X) for an element X 2 g

�

. Ating with this tangent vetor on

a smooth funtion f 2 C

1

(M;R), we get !

�1

u

(X)�(f Æ p). Now, smooth

funtions on M are in bijetive orrespondene with smooth P{invariant

funtions on G, the orrespondene given by mapping f to f Æ p. To any

smooth, P{invariant funtion f on G we assoiate a funtion r

!

f : G !

L(g

�

;R) de�ned by r

!

f(u)(X) := !

�1

u

(X)�f . The equivariany properties

of ! imply that the map r

!

f is P{equivariant. Taking into aount the

above identi�ation of T

�

M with an assoiated bundle and of L(g

�

;R) ' p

+

,

we see that r

!

f is a one form on M , whih by de�nition oinides with df .

The above proedure immediately suggests a generalization. Let V be any

representation of P and let VM = G �

P

V be the orresponding assoiated

bundle. Then we an identify smooth setions of VM with smooth maps

G ! V, whih are P{equivariant. Now to any smooth funtion s : G ! V
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we assoiate a smooth funtion r

!

s : G ! L(g

�

;V) de�ned by

r

!

s(u)(X) := !

�1

u

(X)�s:

Obviously, this de�nes a di�erential operator

C

1

(G;V) ! C

1

(G; L(g

�

;V))

and these operators (for all (G; !)) form a natural operator on all paraboli

geometries in the sense of 2.11. This operation is alled the universal o-

variant derivative in the book [31, p. 194℄. In [8, 2.3℄ we have hosen to all

it the absolutely invariant derivative. The reason for the latter name also

shows the main drawbak of this operation: It is not really ovariant, i.e. if

one starts with an equivariant map s (i.e. a setion of VM) the result is not

equivariant in general. Thus in general, if we start with a setion, the result

of the invariant derivative is not a setion of a bundle anymore.

3.2. There is a way, however, to make a setion of an assoiated bundle out

of a setion of an assoiated bundle and its absolutely invariant derivative.

This is alled the invariant one{jet of the setion. To desribe it, we �rst have

to analyze the ation of G on one{jets in the homogeneous ase. Thus, let

us onsider a representation V of P , the orresponding homogeneous bundle

V (G=P ) = G �

P

V and its �rst jet prolongation J

1

(V (G=P )) ! G=P . As

we noted in 2.6 this is again a homogeneous bundle, and we want to desribe

the orresponding ation of P on its standard �ber J

1

(V) := J

1

(V (G=P ))

o

.

As we notied in 2.4 it suÆes to understand this spae as a module over

G

0

and over p

+

(in fat, already g

1

would be suÆient).

If we think of setions in �(V (G=P )) as P{equivariant funtions s 2

C

1

(G;V)

P

, then the 1{jets of setions at the distinguished point o 2 G=P

are identi�ed with 1{jets of equivariant funtions at the unit e 2 G and the

ation is given by g:(j

1

e

s) = j

1

e

(s Æ `

g

�1
) for all g 2 G. Thus, the indued

ation of Z 2 p on the setion s is given by the di�erentiation in the diretion

of the right invariant vetor �eld R

Z

on G, Z:j

1

e

s = �j

1

e

(R

Z

�s).

Now we an identify a one{jet j

1

e

(s) with (s(e); ds(e)) and as we saw in

3.1 above, ds(e) = r

!

s(e). As a vetor spae we an thus write

J

1

(V) = V � (g

�

�


 V)

and we have to understand the indued ations of G

0

and p

+

on this spae.

Let us �rst assume that g 2 G

0

. Then (s Æ `

g

�1
)(e) = s(g

�1

) = g�s(e) by

equivariany of s. On the other hand, we have to evaluate !

�1

e

(X)�(s Æ `

�1

g

).

This an be omputed as

d

dt

j

t=0

s(g

�1

exp(tX)) =

d

dt

j

t=0

s(g

�1

exp(tX)gg

�1

) =

= !

�1

e

(Ad(g

�1

)X)�(g�s) = g�(!

�1

e

(Ad(g

�1

)X)�s):

Now sine g 2 G

0

, we have Ad(g

�1

)X 2 g

�

for all X 2 g

�

(the adjoint

ation on g

�

oinides with the indued ation on g=p in this ase), so we

see that J

1

(V) = V � (g

�

�


 V) even as a G

0

{module.

For Z 2 p

+

we have �(R

Z

�s)(e) = Z�(s(e)) by the in�nitesimal version of

equivariany of s. On the other hand, for the derivative omponent we have

to ompute the linear mapping g

�

3 X 7! �!

�1

(X)�R

Z

�s(e). Sine !

�1

(X)
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is left invariant, it ommutes with R

Z

and the resulting expression depends

only on R

Z

(e) = Z = !

�1

(Z)(e), and we get

�!

�1

(X)�R

Z

�s(e) = �!

�1

(Z)�!

�1

(X)�s(e)

= �!

�1

(X)�!

�1

(Z)�s(e)� [!

�1

(Z); !

�1

(X)℄�s(e):

The in�nitesimal version of equivariany of s shows that the �rst term in the

last expression gives Z�(!

�1

e

(X)�s(e)). Sine !

�1

( ) is just the left invariant

vetor �eld, the seond term gives �!

�1

e

([Z;X℄)�s. Now let us split ad(Z) =

ad

�

(Z)�ad

p

(Z) aording to the splitting g = g

�

�p. Then the ad

p

(Z)(X){

part ats algebraially by equivariany of s while the rest simply produes

�!

�1

e

(ad

�

(Z)(X))�s.

Thus, if we denote elements of J

1

(V) as pairs (v; '), where v 2 V and '

is a linear map from g

�

to V, then the appropriate ation of Z 2 p

+

is given

by

Z�(v; ') = (Z�v;X 7! Z�('(X)) � '(ad

�

(Z)(X)) + ad

p

(Z)(X)�v);

i.e. we get the tensorial ation plus one additional term mapping the value{

part to the derivative{part.

This ation an also be niely written in a tensorial notation. To do

this let us hoose a basis f�

�

g of p

+

suh that eah element �

�

is ho-

mogeneous of degree j�

�

j, and let f�

�

g be the dual basis of g

�

(with re-

spet to the Killing form B). Now onsider an element (v

0

; Z

1


 v

1

) 2

J

1

(V), where v

0

; v

1

2 V and Z

1

2 p

+

�

=

g

�

�

. Then by de�nition Z

1


 v

1

maps X 2 g

�

to B(Z;X)v

1

. Thus [Z;X℄

�

:= ad

�

(Z)(X) is mapped to

B(Z

1

; [Z;X℄

�

)v

1

. Sine the Killing form vanishes on p

+

� p, this an be

rewritten as B(Z

1

; [Z;X℄)v

1

= B([Z

1

; Z℄;X)v

1

. Moreover, we an write ad

Z

as an element of L(g

�

; g)

�

=

p

+


 g in the form

P

�

�

�


 [Z; �

�

℄. This implies

that for Z homogeneous of degree jZj, we may rewrite the ation on J

1

V as

Z�(v

0

; Z

1


 v

1

) = (Z�v

0

; Z

1


 Z�v

1

+ [Z;Z

1

℄
 v

1

+

X

j�

�

j�jZj

�

�


 [Z; �

�

℄�v

0

):

A simple omputation shows that J

1

( ) an be made into a funtor on

the ategory of P{modules by de�ning

J

1

(f)(v; ') := (f(v); f Æ ')

for eah P{module homomorphism f : V ! W .

3.3. Surprisingly, the �rst jet prolongation of representations introdued

above leads for any paraboli geometry to a natural identi�ation of the

�rst jet prolongation of any natural bundle with an assoiated bundle, i.e.

with another natural bundle. Let (G; !) be a paraboli geometry on M , let

V be a representation of P , and let VM be the orresponding assoiated

bundle over M .

Proposition. The invariant di�erential r

!

de�nes the mapping

� : C

1

(G;V)

P

! C

1

(G;J

1

V)

P

; �(s)(u) = (s(u); (X 7! r

!

s(u)(X)))

whih yields an isomorphism J

1

VM ' G �

P

J

1

V.

For eah �ber bundle map VM ! WM indued by a P{module homo-

morphism f : V ! W , the �rst jet prolongation of the bundle map is indued

by the P{module homomorphism J

1

(f).
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Proof. Let us reall that r

!

s(u)(X) = !

�1

(X)(u)�s. Thus the mapping

� : s 7! (s;r

!

s) is well de�ned and depends on �rst jets only, so we only have

to hek that the values are atually equivariant. First, for g 2 G

0

we have to

ompute (s(u�g);r

!

s(u�g)). Equivariany of s implies s(u�g) = g

�1

�(s(u)).

The seond omponent maps X 2 g

�

to !

�1

u�g

(X)�s. Now the equivariany

of ! immediately implies that !

�1

u�g

(X) = Tr

g

�!

�1

u

(Ad(g)X). Sine g 2 G

0

we see that Ad(g)X 2 g

�

and using equivariany of s again, we see that

r

!

s(u�g) maps X to g

�1

�(!

�1

u

(Ad(g)X)�s), and thus (s(u�g);r

!

s(u�g)) =

g

�1

�(s(u);r

!

s(u)).

On the other hand, we have to hek equivariany for the in�nitesimal

ation of Z 2 p

+

. Thus, we have to ompute ((�

Z

�s)(u); �

Z

�(r

!

s)(u)). Equiv-

ariany of s implies that the �rst omponent equals �Z�(s(u)). The seond

omponent maps X 2 g

�

to (�

Z

�!

�1

(X)�s)(u). Now �

Z

= !

�1

(Z) and we

an rewrite the expression as

(!

�1

(X)�!

�1

(Z)�s)(u) + [!

�1

(Z); !

�1

(X)℄�s(u):

Sine the urvature of ! is horizontal and !

�1

(Z) is vertial, we may rewrite

the seond term in this expression as (!

�1

([Z;X℄)�s)(u). Now we an split

[Z;X℄ into a g

�

and a p{omponent and onlude as in 3.2 above that

((�

Z

�s)(u); �

Z

�(r

!

s)(u)) = �Z�(s(u);r

!

s(u)).

Clearly, this onstrution gives a smooth injetive homomorphism of ve-

tor bundles J

1

VM ! G�

P

J

1

V, whih overs the identity map onM . Sine

both bundles learly have the same rank, this must be an isomorphism.

Finally, onsider a homomorphism f : V ! W . The orresponding bundle

map VM !WM is indued by (u; v) 7! (u; f(v)), and so the indued ation

on setions is indued by

s 7! (x 7! (u(x); f Æ s(u(x)))):

Taking 1{jet of this expression we obtain just the homomorphism J

1

(f).

3.4. Semi{holonomi jets. Sine we posed no onditions on the repre-

sentation V above, we an iterate the funtors J

1

on the assoiated vetor

bundles as well as the funtors J

1

on the P{modules. Proposition 3.3 then

implies that the r{th iteration J

1

: : : J

1

VM is an assoiated bundle to G

orresponding to the P{module J

1

: : :J

1

V. Let us look more arefully at

J

1

J

1

V and J

1

J

1

VM . There are two obvious P{module homomorphisms

J

1

J

1

V ! J

1

V, the �rst one given by the projetion p

J

1

V

de�ned on eah

�rst jet prolongation by projetion to the �rst omponent, and the other

one obtained by the ation of J

1

on p

V

. Thus there is the submodule

�

J

2

V

in J

1

J

1

V on whih these two projetions oinide. As a vetor spae and a

G

0

{module we have

�

J

2

V = V � (g

�

�


 V) � (g

�

�


 g

�

�


 V):

The two P{module homomorphisms J

1

(p

V

) and p

J

1

V

give rise to vetor

bundle homomorphisms J

1

J

1

VM ! J

1

VM whih are just the two standard

projetions on the seond non{holonomi jet prolongation. So we onlude

that the seond semi{holonomi prolongation

�

J

2

VM is naturally isomorphi

to G �

P

�

J

2

V.

Iterating this proedure, we obtain the r{th semi{holonomi jet prolonga-

tions and J

1

(

�

J

r

V) equipped with two natural projetions onto J

1

(

�

J

r�1

V),
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whih orrespond to the usual projetions on the �rst jet prolongation of

semi{holonomi jets. Their equalizer is then the submodule

�

J

r+1

V. As a

G

0

{module

�

J

r

V =

r

M

i=0

(


i

g

�

�


 V):

Proposition. For eah positive integer r, the r{th semi{holonomi jet pro-

longation

�

J

r

VM arries the natural struture of assoiated vetor bundle

G �

P

�

J

r

V. Moreover, there is the natural embedding

J

r

VM !

�

J

r

VM ' G �

P

�

J

r

V

j

r

s(u) 7! fu; (s(u);r

!

s(u); : : : ; (r

!

)

r

s(u))g:

Proof. The �rst part of the statement has been already shown. What re-

mains is to disuss the equivariany properties of the invariant di�erentials.

However also this follows from the �rst order ase easily by indution, using

only the de�nition of the semi{holonomi prolongations.

3.5. Strongly invariant operators. The problem, why we annot work

with true (holonomi) r{jets but have to use the semi{holonomi ones, is that

absolutely invariant derivatives ommute only for at Cartan onnetions.

More preisely, from the de�nition of the absolutely invariant derivative and

the properties of the urvature, one immediately onludes the so alled

general Rii{identity

(r

!

r

!

s)(u)(X 
 Y � Y 
X) = r

!

s(u)([X;Y ℄) + �

p

(X;Y )�(s(u))

�r

!

s(u)(�

�

(X;Y ))

for all X;Y 2 g

�

. This also shows that the torsion{part of � has a quite

di�erent geometri meaning than the omponent valued in p. Thus, the

identi�ation from proposition 3.4 has values in the P{submodule J

r

(V) of

symmetri elements �

r

i=0

(S

i

g

�

�


 V) in the at ase. Consequently we have

reovered the standard identi�ation of the r{th holonomi jet prolongation

of a homogeneous bundle with an assoiated bundle for at geometries, but

this does not work in the urved ase.

Nevertheless, one an well use the semi{holonomi jet prolongations to

generate invariant operators. Suppose that V and W are representations of

P and suppose that � :

�

J

r

(V) ! W is a homomorphism of P{modules.

Then for any paraboli geometry (G; !) we an de�ne a di�erential operator

�(VM) ! �(WM) as follows: For a setion s viewed as an equivariant

funtion G ! V de�ne

D

(G;!)

(s)(u) = �(s(u);r

!

s(u); : : : ; (r

!

)

r

s(u)):

From Proposition 3.4 above it follows that this gives a setion of the bundle

WM and that eah D

(G;!)

is a di�erential operator of order � r. Moreover,

by onstrution the operators D

(G;!)

form a natural operator on the ate-

gory of all paraboli geometries in the sense of 2.11. Operators arising in

this way will be alled strongly invariant operators in the sequel. We will

often not distinguish arefully between a strongly invariant operator and

the orresponding homomorphism

�

J

r

(V) ! W . Thus, the semi{holonomi

jet modules give a possibility to onstrut natural operators for a paraboli
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geometry in a ompletely algebrai way, sine one only has to onstrut a

homomorphism between two �nite dimensional P{modules.

There is a slight problem about strongly invariant operators, however.

Namely, even if a homomorphism

�

J

r

(V) ! W does not fator over

�

J

r�1

(V),

the orresponding operators may be of order stritly less than r or even

identially zero. To see this, note that we an easily ompute the symbol of

a strongly invariant operator. This symbol is a vetor bundle homomorphism

S

r

T

�

M 
 VM ! WM , whih is indued by a homomorphism S

r

g

�

�


V !

W . Using Proposition 3.4 it is lear that this homomorphism is given by

restriting � to S

r

g

�

�


 V, viewed as a submodule of 


r

g

�

�


 V, whih in

turn an be viewed as a submodule of

�

J

r

(V). Thus, if a homomorphism

restrits to zero on the symmetri part of the top omponent of the jet{

module, then the orresponding operator atually is of lower order (and

ontains terms involving the urvature of the Cartan onnetion).

There is an important situation in whih this problem does not play any

role. Suppose that we have an operator of order r in the at ase with

nontrivial symbol, and suppose that we an �nd a homomorphism

�

J

r

(V) !

W whih indues this operator (in the at ase). Then this gives a urved

analog of the operator in question, and there is no problem with the symbol

at all. This will always be the ase for the operators we are going to study.

In partiular, sine

�

J

1

(V) = J

1

(V), any �rst order invariant operator on

the ategory of at paraboli geometries is automatially strongly invariant,

and thus has a anonial urved analog.

3.6. Remark. There are operators whih are natural (invariant) in the

sense of 2.11 but are not strongly invariant. Basially, there is only one

example of suh an operator known: It is shown in [21℄ that on onformal

manifolds of dimension 2m there exists a onformally invariant m{th power

of the Laplaian on smooth funtions. In [16℄ it is shown that this operator

is not strongly invariant. It an, however, be written in terms of absolutely

invariant derivatives, and thus it is also natural. In fat, it is shown in

[32℄ that for AHS{strutures, i.e. paraboli geometries orresponding to j1j{

graded Lie algebras, naturality of (even non-linear) operators is equivalent

to the possibility to express them by means of the absolute invariant deriv-

ative and urvature of the de�ning Cartan onnetion, and this, in turn, is

equivalent to the existene of a universal formula in terms of all underlying

aÆne onnetions, f. 2.13.

The existene of invariant operators whih are not strongly invariant is

due to symmetries of the urvature of a Cartan onnetion. Suppose that we

write an expression in terms of absolutely invariant derivatives and hek

whether the result is P{equivariant. Otherwise put, we an ompute the

obstrution against being equivariant whih usually ontains expressions in-

volving the urvature of the Cartan onnetion and its derivatives. In the

ase of a strongly invariant operator, these obstrutions vanish algebraially.

But the jets of the urvature of any Cartan onnetion have ertain symme-

tries, basially due to the Bianhi identity, see e.g. [7, 4.9℄. This implies that

expressions that do not vanish algebraially, still may vanish whenever the

jet of the urvature of a Cartan onnetion is inserted, and this is preisely

what happens in the ase of the ritial powers of the Laplaian.
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3.7. Twisted invariant operators. Besides the ompletely reduible rep-

resentations (whih ome from the redutive subgroup G

0

) there is a seond

lass of partiularly simple representations of the group P . Namely one an

take a representation of the full (semisimple) group G and restrit it to P .

These representations have partiularly nie features in the ase of the at

model sine they give rise to trivial homogeneous bundles. There are many

ways to see that, but the most appropriate one for our purposes is to asso-

iate to any element v in a representation V of G a global nonzero setion

of the assoiated bundle G�

P

V. To do this, we just have to speify a P{

equivariant map G! V, and we de�ne this map simply by g 7! g

�1

�v. This

map is even G{equivariant and not only P{equivariant.

There is a simple generalization of this result. Suppose that W is any

representation of P . Then setions of W (G=P ) are in bijetive orrespon-

dene with P{equivariant maps G! W . Now we de�ne a map on setions

of homogeneous bundles

�(W (G=P ))
 V ! �

�

W (G=P )
 V (G=P )

�

s
 v 7! (g 2 G 7! s(g)
 g

�1

�v)

and one immediately veri�es that this is an isomorphism of G{modules.

In partiular, this implies that if W

0

is another P{representation and D :

�(W (G=P )) ! �(W

0

(G=P )) is an invariant di�erential operator, then we

an pull bak

D 
 id

V

: �(W (G=P ))
 V ! �(W

0

(G=P ))
 V

along these isomorphisms to get an invariant operator

D

V

: �

�

W (G=P )
 V (G=P )

�

! �

�

W

0

(G=P )
 V (G=P )

�

:

This operator is alled the twisted invariant operator orresponding to D

and V.

Now, let us notie that the above isomorphism between the spaes of se-

tions of the assoiated bundles indues a P{module isomorphism

�

J

r

(W ) 


V '

�

J

r

(W 
 V) for all P{modules W and G{modules V and all orders r.

Thus, for strongly invariant operators D, we may extend the onstrution of

the twisted invariant operators to natural operators D

V

ating on all geome-

tries (G; !) of the type (G;P ) and the resulting operators are again strongly

invariant. Let us remark that a ompletely algebrai treatment of this on-

strution has been worked out (in the speial ase of the AHS-strutures) in

[6℄.

In partiular, we obtain the strongly invariant twisted operators D

V

for

all �rst order invariant operators D on the homogeneous vetor bundles and

all G{modules V.

3.8. Twisted exterior derivatives. The standard exterior derivatives d

on the di�erential forms on G=P are �rst order invariant operators (sine

they are even invariant under the ation of all di�eomorphisms of G=P ), so

we an apply the onstrution above to get the twisted exterior derivatives

d

V

: �

�

�

n

T

�

(G=P )
 V (G=P )

�

! �

�

�

n+1

T

�

(G=P )
 V (G=P )

�

for n = 0; : : : ;dim(G=P ). Moreover, the operators d

V

are strongly invariant,

sine they are of �rst order, and so there are the orresponding P{module
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homomorphisms on the semi{holonomi jet modules. Sine we will need it

later, we will ompute these homomorphisms expliitly.

Let us start with the ordinary exterior derivative. We have already noted

in 3.1 that the exterior derivative of funtions equals the absolutely invariant

derivative. To ompute the exterior derivative for general di�erential forms,

we �rst have to desribe niely the identi�ation of n{forms with smooth

equivariant funtionsG! �

n

p

+

. Throughout, we are going to identify �

n

p

+

with the spae of n{linear alternating maps from g

�

�

=

g=p to K . Now using

the identi�ation of the tangent bundle of G=P with G�

P

g

�

desribed in

3.1, one easily veri�es that the relation between a form ' 2 


k

(G=P ) and

the orresponding funtion s : G! �

n

p

+

is given by

(p

�

')(g)(!

�1

g

(X

1

); : : : ; !

�1

g

(X

n

)) = s(g)(X

1

; : : : ;X

n

);

where p

�

' is the pullbak of ' along the projetion p : G! G=P , and the X

i

are in g

�

. Note that this formula remains orret for X

i

2 g if one interprets

s(g) as an n{linear map on g whih vanishes if at least one argument lies in

p.

Lemma. Let s and ds be the funtions on G orresponding to di�erential

forms ' and d' on G=P , respetively. Then the formula for the exterior

derivative reads as

ds(X

0

; : : : ;X

n

) =

n

X

i=0

(�1)

i

(r

!

s)(g)(X

i

)(X

0

; : : : ;

^

i; : : : ;X

n

) +

X

i<j

(�1)

i+j

s(g)([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

n

)

where ! is the left Maurer-Cartan form on G and, as usual, the hat denotes

omission.

Proof. To ompute the funtion orresponding to d', we just have to evalu-

ate p

�

(d')(g) = d(p

�

')(g) on vetor �elds of the form

~

X(g) = !

�1

g

(X). We

have

d(p

�

')(

~

X

0

; : : : ;

~

X

n

) =

n

X

i=0

(�1)

i

~

X

i

�(p

�

')(

~

X

0

; : : : ;

^

i; : : :

~

X

n

) +

+

X

i<j

(�1)

i+j

(p

�

')([

~

X

i

;

~

X

j

℄;

~

X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;

~

X

n

):

Inserting p

�

' from above and evaluating at g, we see diretly that the �rst

summand agrees with the �rst summand in the laimed formula, whih

learly equals n+1 times the alternation of (r

!

s)(g) evaluated at (X

0

; : : : ;X

n

).

For the seond summand, we just have to note that by the Maurer{Cartan

equation for ! we have [

~

X

i

;

~

X

j

℄ =

^

[X

i

;X

j

℄. Thus, this summand gives exatly

the other part of the required formula.

Now let us pass to the general ase of a V (G=P ){valued n{form, where

V is a representation of the whole group G. Any suh form an be written

as a �nite sum of expressions of the form '
 ~v, where ' 2 


n

(G=P ) and ~v

is the global setion of V (G=P ) orresponding to v 2 V as in 3.7 above. By

de�nition, the twisted exterior derivative is given by d

V

(' 
 ~v) = (d') 
 ~v.
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Now let s be the funtion orresponding to ' and denote by ~v also the

funtion orresponding to the global setion. From above, we thus see that

d

V

('
 ~v) is represented by the funtion whih maps (X

0

; : : : ;X

n

) to

(�)

n

X

i=0

(�1)

i

(r

!

s)(g)(X

i

)(X

0

; : : : ;

^

i; : : : ;X

n

)~v(g) +

+

X

i<j

(�1)

i+j

s(g)([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

n

)~v(g):

By de�nition of the absolutely invariant derivative, we have

r

!

(s
 ~v)(X) = r

!

s(X)
 ~v + s
 (r

!

~v(X))

and the in�nitesimal version of G{invariane of ~v says that

r

!

~v(g)(X) = �X�(~v(g)):

Thus we may rewrite the �rst summand in (�) as

(��)

n

X

i=0

(�1)

i

r

!

(s
 ~v)(g)(X

i

)(X

0

; : : : ;

^

i; : : : ;X

n

) +

+

n

X

i=0

(�1)

i

X

i

�(s(g)(X

0

; : : : ;

^

i; : : : ;X

n

)~v(g)):

Finally note that the seond term in (��) adds up with the seond term

in (�) to the value of the standard Lie algebra di�erential � : C

n

(g

�

;V) =

�

n

g

�

�


 V ! C

n+1

(g

�

;V) (f. 4.1 for the expliit formula) applied to the

map s(g)
 ~v(g) evaluated on (X

0

; : : : ;X

n

). Thus we may summarize:

3.9. Proposition. The twisted exterior derivative d

V

on G=P is a strongly

invariant operator indued by the P{module homomorphism

�

J

1

(�

n

p

+




V) ! �

n+1

p

+


 V, whih is given by the formula

(f

0

; Z 
 f

1

) 7! �(f

0

) + (n+ 1)Z ^ f

1

;

where we view elements of �

n

p

+


 V as n{linear alternating maps from

g

�

to V and Z ^ f

1

denotes the alternation of the map (X

0

; : : : ;X

n

) 7!

B(Z;X

0

)f

1

(X

1

; : : : ;X

n

).

3.10. Corollary. The Lie algebra di�erential � satis�es

(W ��(f)� �(W �f)) = (n+ 1)

X

j�

�

j�jW j

�

�

^ [W; �

�

℄�f

for f 2 �

n

p

+


V and W 2 p

+

, where �

�

and �

�

are homogeneous dual bases

of g

�

and p

+

with respet to the Killing form.

Proof. The laim an be veri�ed by a nie and elementary, but tedious al-

gebrai omputation. However, the previous proposition o�ers the following

simple argument:

We know that the formula for the strongly invariant operator

d

V

(f

0

; Z 
 f

1

) = �(f

0

) + (n+ 1)Z ^ f

1
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is P{equivariant. Thus for all f

0

, f

1

2 V, Z 2 p

+

, W 2 p

+

we obtain the

equality of the following two expressions

d

V

(W �(f

0

;Z 
 f

1

)) = d

V

((W �f

0

;W �(Z 
 f

1

) +

X

�

�


 [W; �

�

℄�f

0

) =

= �(W �f

0

) + (n+ 1)W �(Z ^ f

1

) + (n+ 1)

X

�

�

^ [W; �

�

℄�f

0

W �(�(f

0

) + (n+ 1)Z ^ f

1

) =W �(�f

0

) + (n+ 1)W �(Z ^ f

1

):

This yields the required formula.

3.11. The ovariant exterior derivatives. Proposition 3.9 o�ers a anon-

ial urved analog of the twisted exterior derivatives on all manifolds with a

paraboli geometry of the type (G;P ). It should be remarked that we may

obtain another urved analog as follows. For any paraboli geometry (G; !)

on M , we onsider the extended bundle

~

G = G �

P

G, whih is a prinipal

G{bundle over M . It is a lassial observation that the Cartan onnetion

! indues a prinipal onnetion ~! on

~

G. Now if V is a representation of G,

then we an view the orresponding natural bundle VM = G �

P

V also as

VM =

~

G�

G

V, and thus we have the indued linear onnetion on this bun-

dle. The ovariant exterior derivative with respet to this onnetion gives

a natural operator on VM{valued forms on M . If s :

~

G ! �

k

p

+


 V is the

equivariant funtion orresponding to a k-form ' on M , then the value of

the latter operator is a (k + 1)-form on M , given by the formula

d

~!

s(u)(X

0

; : : : ;X

n

) =

k

X

i=0

(�1)

i

r

~!

X

i

s(u)(X

0

; : : : ;

^

i; : : : ;X

k

) +

+

X

i<j

(�1)

i+j

s(u)([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

k

)

where X

0

; : : : ;X

k

2 g

�

, u 2

~

G, r

~!

X

i

s(u) means the derivative of s in the

diretion of the horizontal vetor at u determined by X

i

, and there are

the standard omissions of arguments in the expressions on the right hand

side. Indeed, d

~!

is de�ned as the pullbak of the standard d on

~

G by the

horizontal projetion of ~!, applied to the pullbak of the k-form ' on M by

the projetion p :

~

G ! M . Sine the urvature of ~! produes vertial �elds

on

~

G, the above formula equals to the standard evaluation of d(p

�

') on the

horizontal lifts of vetor �elds on M .

These operators oinide with the twisted exterior derivatives on the ho-

mogeneous spae but they di�er in general. The expliit general omparison

is as follows:

Lemma. Let V be a G-module, VM the orresponding natural vetor bundle

over a manifold M equipped with a paraboli geometry (G; !). The ovariant

exterior derivative d

~!

on �

k

T

�

M 
 VM , k > 0, and the twisted exterior

derivative d

V

on the same spae satisfy

d

~!

' = d

V

'+ i

�

�

'

where �

�

is the torsion{omponent of the urvature of ! and i

�

�

' is the

usual insertion operator evaluated on �

�

and ', i.e. the alternation of '(�

�

(X

0

;X

1

);X

2

; : : : ;X

k

)

over the arguments.
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Proof. The key to the required formula is in the expressions (�) and (��) in

3.8. Namely, the latter expressions whih were derived on the homogeneous

spaes desribe also the twisted exterior derivatives in general, but we have

to be aware that instead of the braket [X

i

;X

j

℄ in (�) we have to plug in

!(u)([!

�1

(X

i

); !

�1

(X

j

)℄) = [X

i

;X

j

℄� �(u)(X

i

;X

j

):

At the same time, for all u 2 G �

~

G, the ovariant derivative r

~!

of a setion

s :

~

G ! V relates to the absolute invariant derivative as

r

~!

s(u)(X) = r

!

s(u)(X) +X�s(u)

(sine the horizontal �elds given by ~! equal to !

�1

(X) minus the funda-

mental �eld �

X

).

Combining the latter two fats, we see that exatly the expression

i

�

�

'(u)(X

0

; : : : ;X

k

) =

X

i<j

(�1)

i+j

'(u)(�

�

(X

i

;X

j

);X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

k

)

has to be added to d

V

(u)'(X

0

; : : : ;X

k

) in order to obtain the ovariant

derivative. This is exatly the evaluation of the insertion operator, f. [24,

8.2℄.

The latter lemma shows that our twisted exterior di�erentials d

V

are er-

tain torsion adjusted versions of the standard ovariant exterior derivatives.

In partiular, even in the ase V = R the twisted derivative d

R

equals to the

usual exterior derivative d if and only if the geometry is torsion{free.

3.12. Remarks. (1) As we saw in 3.8, the isomorphism

�(W (G=P ))
 V

�

=

�(W (G=P )
 V (G=P ))

of G{modules indues an isomorphism of P{modules

�

J

r

(W )
V

�

=

�

J

r

(W 


V) for any P{representation W and G{representation V. This an also be

proved algebraially along the lines of [6℄. This isomorphism an then be

used to de�ne twisted versions of any strongly invariant operators in a om-

pletely algebrai way. Using this piture, the subsequent developments in

this paper an be viewed as a urved analog of the Jantzen{Zukermann

translation priniple in representation theory. The �rst version of suh a

urved translation proedure appeared in the ontext of 4{dimensional on-

formal geometry in [15℄, see also [12℄.

(2) The twisted exterior derivatives give a sequene

�(VM)! 


1

(M ;VM)! � � � ! 


max

(M ;VM)! 0;

of invariant di�erential operators, where setions and forms are smooth in

the real ase and holomorphi in the omplex ase. In the ase of the at

model, this sequene is just the pullbak of the tensor produt of the (smooth

or holomorphi) de Rham sequene with V, so it is a resolution of the on-

stant sheaf V. In the ase of a general paraboli geometry, it fails to be a

omplex. Atually, it is easy to verify that the omposition d

V

Æ d

V

is just

given by the ation of the urvature of !. Thus, in the ase of a at paraboli

geometry, we still get a omplex, whih by Lemma 3.11 oinides with the

omplex given by the ovariant exterior derivative with respet to the at
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linear onnetion indued by the Cartan onnetion. Note however, that on

a at paraboli geometry bundles orresponding to representation of G are

no more trivial in general.

(3) As a G

0

{module, one an split any representation W of P as �W

j

aording to eigenvalues of the grading element E 2 g

0

. Clearly, the ation of

p

+

maps g

i


W

j

to W

j+i

. In partiular, we an apply this to �

n

p

+


V to split

the spae 


n

(M ;VM) into homogeneous omponents, and analyze how the

twisted exterior derivative behaves with respet to this splitting. From the

formula in Proposition 3.9 it is obvious that d

V

never lowers homogeneous

degree and the omponent of the same homogeneous degree as the input

is just the Lie algebra di�erential � omposed with the given form. Thus,

the homogeneous omponent of degree zero of d

V

is algebrai and equals �.

This observation is ruial for the subsequent development. Using the fat

that the Lie algebra ohomology of g

�

with oeÆients in g admits a Hodge

theory (whih we will disuss in the next setion), we will show that we an

replae the sequene of remark (2) above by a di�erent sequene in whih

only setions of ompletely reduible bundles our, and whih is a omplex

omputing the same ohomology if the original sequene was a omplex.

4. Curved analogs of Bernstein{Gelfand{Gelfand resolutions

In this setion, we �rst disuss the Hodge{struture on the standard om-

plex for the ohomology H

�

(g

�

;V) for a g{module V. Then we ome to the

ore of the paper, the onstrution of a huge lass of distinguished natural

operators on all paraboli geometries.

4.1. We have already mentioned the standard omplex for the ohomol-

ogy H

�

(g

�

;V) in 3.8. The hain groups in this omplex are the groups

C

n

(g

�

;V) = �

n

g

�

�


V, whih are viewed as the spaes of n{linear alternat-

ing maps from g

�

to V. The di�erential

� : C

n

(g

�

;V) ! C

n+1

(g

�

;V)

is de�ned by

�(f)(X

0

; : : : ;X

n

) =

n

X

i=0

(�1)

i

X

i

�f(X

0

; : : : ;

^

i; : : : ;X

n

) +

+

X

i<j

(�1)

i+j

f([X

i

;X

j

℄;X

0

; : : : ;

^

i; : : : ;

^

j; : : : ;X

n

);

where the hats denote omission. Clearly, if we start with a representation

V of the group G, then � is a homomorphism of G

0

{modules, and it is well

known that � Æ � = 0.

The ruial fat for us is that on this standard omplex there is a Hodge

theory, whih was �rst introdued for omplex simple Lie algebras in [25℄.

The most oneptual way to desribe this Hodge struture is to use the

natural duality between g

�

and p

+

via the Killing form. This is a dual-

ity of G

0

{modules, but if we onsider g

�

as a P{module via the adjoint

ation and the identi�ation with g=p, then it even is a duality of P{

modules by invariane of the Killing form. Thus, given a representation

V of g and its dual V

�

, we an naturally identify C

n

(p

+

;V

�

) with the dual
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P{module of C

n

(g

�

;V). Thus, the dual map to the Lie algebra di�erential

� : C

n

(p

+

;V

�

)! C

n+1

(p

+

;V

�

) an be viewed as a linear map

�

�

: C

n+1

(g

�

;V) ! C

n

(g

�

;V)

whih is alled the odi�erential . From the above, it is obvious that the odif-

ferential is a G

0

{homomorphism and �

�

Æ�

�

= 0. Moreover, one immediately

veri�es that the Lie algebra di�erential for p

+

is even a P{homomorphism

and thus the same is true for �

�

.

A formula for �

�

an be easily omputed for elements of the form Z

0

^

� � � ^Z

n


 v, where the Z

i

are in p

+

and v is in V. Pairing this element with

a multilinear map  2 C

n+1

(p

+

;V

�

), we simply get  (Z

0

; : : : ; Z

n

)(v). Using

this, one immediately omputes that

�

�

(Z

0

^ � � � ^ Z

n


 v) =

n

X

i=0

(�1)

i+1

Z

0

^ � � �

^

i � � � ^ Z

n


 Z

i

�v +

+

X

i<j

(�1)

i+j

[Z

i

; Z

j

℄ ^ � � �

^

i � � �

^

j � � � ^ Z

n


 v:

From this formula, it is again obvious that �

�

is a P{homomorphism.

Using Lie theory, one onstruts an inner produt on the spaes of ohains,

with respet to whih � and �

�

are adjoint operators. The proof for this fat

in the generality we need it is only a rather simple extension of results avail-

able in the literature, see e.g. [34, 35℄. For the sake of ompleteness and the

onveniene of the reader, we give a omplete proof in Appendix Appendix

B.

4.2. This adjointness result has a number of important onsequenes: First

of all one gets a harmoni theory for the ohomology H

�

(g

�

;V). We de�ne

the Laplaian

� = � Æ �

�

+ �

�

Æ �:

Then for eah n this is a G

0

{endomorphism of C

n

(g

�

;V). Moreover, the ad-

jointness implies that ker(�) = ker(�)\ker(�

�

) and we have a G

0

{invariant

splitting

C

n

(g

�

; V ) = im(�)� ker(�)� im(�

�

):

This implies then that the ohomology group H

n

(g

�

;V) is isomorphi (as

a G

0

{module) to the subspae ker(�) � C

n

(g

�

;V). Moreover, the situa-

tion between � and �

�

is ompletely symmetri, so we an as well om-

pute the ohomology groups H

�

(g

�

;V) as ker(�

�

)= im(�

�

). This is more

suitable for our purposes, sine, as we have notied above, �

�

is even a

P{homomorphism. This also implies that (even as a G

0

{module) the oho-

mology group H

n

(g

�

;V) is dual to H

n

(p

+

;V

�

).

Thus, we get a anonial ation of P on the ohomology groupsH

n

(g

�

;V).

We laim, that this module is ompletely reduible, i.e. a diret sum of

irreduibles. To prove this, we only have to show that p

+

ats trivially on the

ohomology groups. Fortunately, there is the following simple observation

Lemma. Let Z 2 p

+

and f 2 C

n

(g

�

;V)

�

=

�

n

p

+


 V. Consider Z�f 2

C

n

(g

�

;V) and Z ^ f 2 C

n+1

(g

�

;V), as de�ned in 3.9. Then

�

�

(Z ^ f) = �Z�f � Z ^ �

�

(f):
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Proof. This is a diret onsequene of the general formula for �

�

in 4.1.

Now, one immediately onludes that the p

+

{ation maps ker(�

�

) to im(�

�

),

and thus in partiular the indued ation on the ohomology groups is trivial.

In [25℄, B. Kostant omputed the ohomology groups H

�

(p

+

;V) in the

ase when g is omplex and simple and V is a omplex irreduible represen-

tation. The basi idea in the proof is to analyze the ation of the Laplaian

� in terms of Casimir operators.

In fat, our onstrution of the sequenes of natural operators will not

need the expliit knowledge of the ohomologies. On the other hand, the full

power of Kostant's theorem is neessary in order to ompare the resulting

sequenes with the standard BGG{resolutions in representation theory.

Let us also remark here, that the knowledge of the seond ohomologies

with values in g determines niely the struture of the urvature of normal

paraboli geometries, see e.g. [35, 30℄.

4.3. A sketh of the onstrution. Let us return to the twisted de Rham

sequene

�(VM)! 


1

(M ;VM)! � � � ! 


max

(M ;VM)! 0

on a manifold M equipped with a paraboli geometry (G; !). For eah i,




i

(M ;VM) is the spae of setions (smooth in the real ase, holomorphi in

the omplex setting) of the natural bundle assoiated to the representation

�

i

p

+


V. The maps �, �

�

, and � de�ned above indue maps on the spaes of

setions, whih we denote by the same symbols. Moreover, sine these maps

are indued by pointwise operations the Hodge deomposition of �

i

p

+


 V

gives rise to a Hodge deomposition




i

(M ;V M) = im(�)� ker(�)� im(�

�

):

One has to be areful, however, that this deomposition is not P{invariant

but just G

0

{invariant, sine �

�

is a P{homomorphism but � and � are not.

Thus the latter deomposition makes expliit geometrial sense only after a

redution of G to G

0

, f. the disussion in 2.13.

Sine �

�

is a P{homomorphism, the kernel ker(�

�

) and the image im(�

�

)

are the spaes of setions of natural subbundles of �

n

T

�

M
VM . Moreover,

from 4.2 we know that the quotient ker(�

�

)= im(�

�

) an be identi�ed with

the spae of setions of the bundle assoiated to the (ompletely reduible)

representation H

n

V

= H

n

(g

�

;V) of P , so we get an algebrai natural operator

from the subset ker(�

�

) of 


n

(M ;VM) to the spae of smooth setions of the

natural bundle orresponding to the representation H

n

V

. If E is an irreduible

omponent of H

n

V

, then we an further projet onto this omponent to get

an algebrai natural operator ker(�

�

)! �(EM).

On the other hand, H

n

V

an be identi�ed with ker(�) � �

n

p

+


 V as a

G

0

{module, so we may view any setion of the orresponding bundle as a

VM{valued n{form, but this is not a natural operator. The main point of

the following will be that one an onstrut a natural di�erential operator

L from setions of the bundle orresponding to H

n

V

to VM{valued n{forms

in ker(�

�

), whih has this inlusion as the lowest homogeneous omponent.

Otherwise put, one an split the algebrai projetion � onstruted above

by a natural di�erential operator L. Moreover, it will turn out that this
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operator is fully determined by the following surprising fat: For eah setion

� 2 �(H

n

V

M) there exists the unique setion L(�) 2 ker(�

�

) � 


n

(M ;VM)

suh that � Æ L(�) = � and d

V

(L(�)) 2 ker(�

�

) � 


n+1

(M ;VM).

ker(�

�

)

�

��

ker(�

�

)

�

��
: : :

//

d

V

ÆL

;;vvvvvvvvvvv
�(H

i

V

M)

L

OO
d

V

ÆL

88qqqqqqqqqqq

//
�(H

i+1

V

M)

L

OO

//
: : :

Summarizing the prospetive ahievement, the twisted exterior derivatives

will produe plenty of natural di�erential operators indiated by the dotted

arrows in the diagram.

The idea for the onstrution of this natural di�erential operator L is fairly

simple. Reall from 3.9 that the lowest homogeneous omponent of d

V

equals

the Lie algebra di�erential �. Suppose we have a setion s in the bundle

orresponding to H

n

V

, whih is homogeneous of some degree i. Then it lies in

ker(�) and thus in partiular in ker(�), so the homogeneous omponent of

degree i of d

V

(s) is automatially zero. The idea is now to extend s to ~s in

suh a way that d

V

(~s) is as small as possible. The homogeneous omponent

of degree i+ 1 of d

V

(s) an be split into omponents in im(�), ker(�), and

im(�

�

), and the best we an do to kill it is to add to s an element s

i+1

whih

is homogeneous of degree i+1 suh that �(s

i+1

) is the negative of the im(�){

omponent of d

V

(s) in degree i+1. There is a freedom in the hoie of s

i+1

whih an be �xed by requiring that s

i+1

2 im(�

�

) (whih is a omplement

to ker(�) by the adjointness). But this allows us already to ompute s

i+1

:

Sine �

�

(s

i+1

) = 0 we see that �(s

i+1

) = �

�

(�(s

i+1

)). But �(s

i+1

) is just the

negative of the im(�){part of the homogeneous omponent of degree i + 1

of d

V

(s), so this is known. Moreover, by de�nition � ommutes both with

� and �

�

, and ker(�) \ im(�

�

) = f0g. Thus � restrits to an isomorphism

im(�

�

) ! im(�

�

). Hene we an ompute s

i+1

by applying �

�1

Æ �

�

to the

homogeneous omponent of degree i+1 of d

V

(s). Similarly we an ontinue

to add an appropriate homogeneous omponent of degree i+ 2 and so on.

From this desription it is not at all obvious that this onstrution pro-

dues a natural operator, sine the map �

�1

involved in the onstrution is

not a P{homomorphism, and the subsequent steps of the onstrution use

d

V

� � whih is not natural either. Below we will manage, however, to work

out the proedure skethed above within the framework of homomorphisms

between semi{holonomi jet modules. Thus the resulting operators L will

be even strongly invariant.

4.4. Eah P{module V enjoys a deomposition

V = V

i

0

� V

i

0

+1

� � � � � V

i

0

+k

as a G

0

{module, where the submodules V

i

are distinguished by the require-

ment that the grading element E 2 g

0

(f. 2.1) ats by salar multipliation

by i. The ation of the elements Z 2 g

j

then maps V

i

into V

i+j

and so for

eah j = 0; : : : ; k the subspae V

j

:= V

i

0

+j

�� � ��V

i

0

+k

is a P{submodule of

V. In partiular, this deomposition of an irreduible G{module V, viewed

as P -module, runs from V

�k

to V

k

, where V

k

is the P{submodule generated

by the highest weight of V.
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Now, let E

i

0

be an irreduible omponent of H

n

(g

�

;V), on whih the

grading element ats by multipliation by i

0

. Then we an view E

i

0

as a G

0

submodule of ker(�) � �

n

p

+


 V and we write E for the P{submodule in

�

n

p

+


 V generated by E

i

0

. Let

E = E

i

0

� � � � � E

i

0

+r

be the above G

0

{module deomposition aording to eigenvalues of the grad-

ing element. Then the ation of g

`

maps eah E

i

0

+i

to E

i

0

+i+`

. For eah

i = 1; : : : ; r + 1 we have the P{submodule E

i

as above, so we an form the

quotient E=E

i

, whih is as a G

0

{module isomorphi to E

i

0

� � � � � E

i

0

+i�1

.

In partiular, E=E

1

is again the irreduible module E

i

0

we started with but

now viewed as a P{module, and E=E

r+1

= E .

Lemma. (1) E � ker(�

�

) and E

1

� im(�

�

).

(2) The Laplaian � restrits to a G

0

{isomorphism E

i

0

+i

! E

i

0

+i

for eah

i = 1; : : : ; r.

Proof. (1) The �rst part is lear, sine ker(�

�

) is a P{submodule whih by

onstrution ontains E

i

0

. Sine we have already seen in Lemma 4.2 that

the ation of p

+

maps ker(�

�

) to im(�

�

), the seond part is also lear.

(2) We have already noted in 4.3 above that � restrits to an automorphism

on im(�

�

). Hene it suÆes to prove that �(E

i

0

+i

) � E

i

0

+i

. By Corollary

3.10, we have for all e 2 E , Z 2 g

1

�(Z�e) = Z��(e) � (n+ 1)

X

j�

�

j=1

�

�

^ [Z; �

�

℄�e:

Applying �

�

to the �rst term we get Z��(e).

Let us �rst take e

0

2 E

i

0

, and onsider �(Z�e

0

) = �

�

(�(Z�e

0

)). Then the

�rst term vanishes while eah summand in the seond term is ontained in

�

�

(g

1

^ g

0

�E

i

0

) � �

�

(g

1

^ E

i

0

). Sine E

i

0

� ker(�

�

), Lemma 4.2 implies that

�

�

(g

1

^E

i

0

) � g

1

�E

i

0

� E

i

0

+1

. Thus, we see that �(E

i

0

+1

) � E

i

0

+1

. Now one

an proeed indutively in the same way to show that �(E

i

0

+i

) � E

i

0

+i

.

4.5. The atual onstrution of the splitting operators is a little triky. The

problem is that the individual steps in the onstrution skethed in 4.3 are

indued by maps on jet{modules whih are not P{module homomorphisms

but only restrit to P{module homomorphisms on appropriate submodules,

whih also have to be onstruted during the proedure.

For j � i � 0 we denote by �

j

i

the anonial projetion E=E

j

! E=E

i

,

whih is a homomorphism of P{modules. Clearly, �

i

i

is the identity and

�

j

i

Æ �

k

j

= �

k

i

for i � j � k. By p

i

: J

1

(E=E

i

) ! E=E

i

we denote the

footpoint projetion, whih is a P{homomorphism, too. For any element  

in a general G

0

{module, we denote by  

i

the omponent of  on whih the

grading element E ats by multipliation by i

0

+ i. Note that the mapping

 7!  

i

is only a G

0

{homomorphism and not a P{homomorphism. Finally,

let us denote by j

i

: E=E

i

! E=E

i+1

the G

0

{homomorphism given by the

inlusion E

i

0

�� � ��E

i

0

+i�1

! E

i

0

�� � ��E

i

0

+i

. Again, this is obviously not a

P{homomorphism. Finally, let Alt : p

+


�

n

p

+


V ! �

n+1

p

+


V denote the

alternation mapping. This is a P{homomorphism preserving homogeneous

degrees.
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For i = 1; : : : ; r+1 onsider now the module J

1

(E=E

i

). A typial element

of this module is a pair (e;  ), with e 2 E=E

i

and

 2 p

+


 E=E

i

� p

+


 �

n

p

+


 V:

Now we de�ne a mapping L

i

: J

1

(E=E

i

)! E=E

i+1

by

L

i

(e;  ) = j

i

(e) � (n+ 1)�

�1

�

�

((Alt( ))

i

):

In partiular, if  = Z 
 f for Z 2 p

+

and f 2 E=E

i

, then L

i

(e; Z 


f) = j

i

(e) � (n + 1)�

�1

�

�

((Z ^ f)

i

). Now the main tehnial step in the

onstrution is the following

4.6. Proposition. The maps L

i

: J

1

(E=E

i

) ! E=E

i+1

have the following

properties:

(1) L

i

is a G

0

{homomorphism and �

i+1

i

Æ L

i

= p

i

.

(2) For 	 2 J

1

(E=E

i

) and W 2 g

1

, we have

L

i

(W �	)�W �L

i

(	) = �

�1

�

W �(� Æ j

i

Æ (L

i�1

Æ J

1

(�

i

i�1

)� p

i

)(	))

�

:

In partiular, L

1

is a P{homomorphism.

Proof. (1) The fat that L

i

is a G

0

{homomorphism follows immediately from

the fat that J

1

(E=E

i

)

�

=

E=E

i

�(p

+


E=E

i

) as a G

0

{module, see 3.2 and the

de�nition of L

i

. Moreover, sine Alt, �

�

, and � all preserve homogeneities,

the last term in the de�nition of L

i

is homogeneous of degree i

0

+ i, so it

lies in the kernel of �

i+1

i

and the seond part follows.

(2) Clearly, it suÆes to hek this for elements 	 of the form (e; Z 
 f)

with e; f 2 E=E

i

and Z 2 p

+

. By de�nition of the ation on jets, see 3.2,

we see that W �(e; Z 
 f) has footpoint W �e, while the homogeneous part of

degree i

0

+ i of the seond omponent is given by

X

j�

�

j=1

�

�


 [W; �

�

℄�e

i�1

+W �(Z 
 f)

i�1

:

Consequently,

L

i

(W �(e; Z 
 f)) = j

i

(W �e)� (n+ 1)�

�1

�

�

(

X

j�

�

j=1

�

�

^ [W; �

�

℄�e

i�1

)�

� (n+ 1)�

�1

�

�

(W �(Z ^ f)

i�1

):

By Corollary 3.10 the seond term on the right hand side of this equation

just gives

�

�1

�

�

(�(W �e

i�1

)�W ��(e

i�1

)) =W �e

i�1

��

�1

(W ��(e

i�1

));

where we have used that �

�

is a P{homomorphism, e

i�1

and W �e

i�1

lie

in the kernel of �

�

, and that we are in a region where the Laplaian is

invertible. On the other hand, we learly have j

i

(W �e) +W �e

i�1

=W �j

i

(e),

sine W 2 g

1

and e

i�1

is the highest nonzero homogeneous omponent of

e. Finally, we learly have W �L

i

(e; Z 
 f) = W �j

i

(e), sine the rest lies in

the omponent of maximal homogeneity, on whih p

+

ats trivially. Thus,

we have arrived at

L

i

(W �(e; Z 
 f))�W �L

i

(e; Z 
 f) =

= ��

�1

(W ��(e

i�1

))� (n+ 1)�

�1

(W ��

�

((Z ^ f)

i�1

));



BERNSTEIN{GELFAND{GELFAND SEQUENCES 31

where we have used one more the fat that �

�

is a P{homomorphism.

On the other hand, onsider J

1

(�

i

i�1

)(e; Z 
 f). The footpoint of this

element is just �

i

i�1

(e), while in the jet part, the omponent of maximal

homogeneity must oinide with (Z 
 f)

i�1

. Consequently, we get

L

i�1

(J

1

(�

i

i�1

)(e; Z 
 f)) = j

i�1

(�

i

i�1

(e)) � (n+ 1)�

�1

�

�

((Z ^ f)

i�1

):

Subtrating e = p

i

(e; Z 
 f) from this, we get

�e

i�1

� (n+ 1)�

�1

�

�

((Z ^ f)

i�1

);

and the formula follows. In the ase i = 1, we get L

1

(W �	) �W �L

1

(	) =

��

�1

(W �(� Æ j

1

Æ p

1

)(	)), whih vanishes, sine E

i

0

� Ker(�). Hene, L

1

is equivariant for the ation of g

1

and thus a P{homomorphism by (1) and

2.4.

4.7. Now we indutively de�ne subspaes

~

J

1

(E=E

i

) � J

1

(E=E

i

) by

~

J

1

(E=E

1

) =

J

1

(E=E

1

) and

~

J

1

(E=E

i+1

) = J

1

(�

i+1

i

)

�1

(

~

J

1

(E=E

i

)) \Ker(L

i

Æ J

1

(�

i+1

i

)� p

i+1

):

Proposition. For eah i = 1; : : : ; r + 1 the spae

~

J

1

(E=E

i

) � J

1

(E=E

i

) is

a P{submodule and L

i

restrits to a homomorphism

~

J

1

(E=E

i

) ! E=E

i+1

of P{modules. Moreover, for eah k < i we have

J

1

(�

i

k

)

�

~

J

1

(E=E

i

)

�

�

~

J

1

(E=E

k

);

and on

~

J

1

(E=E

i

) we have �

i

k+1

Æ p

i

= L

k

Æ J

1

(�

i

k

).

Proof. For i = 1 the �rst two properties are satis�ed by de�nition of

~

J

1

(E=E

1

)

and Proposition 4.6(2), while the last two properties are trivially satis-

�ed. If we indutively assume that the result has been proved for i � 1,

then J

1

(�

i

i�1

)

�1

(

~

J

1

(E=E

i�1

)) is a P{submodule of J

1

(E=E

i

), and L

i�1

Æ

J

1

(�

i

i�1

) � p

i

de�nes a P{homomorphism from this submodule to E=E

i

,

so

~

J

1

(E=E

i

) is a P{submodule. Moreover, Proposition 4.6(2) immediately

implies that the restrition of L

i

to this submodule is equivariant under the

ation of g

1

and thus L

i

restrits to a P{homomorphism on that submodule

by Proposition 4.6(1) and 2.4. Moreover, we get the last two properties in

the ase k = i� 1.

For k < i � 1, note �rst that �

i

k

= �

i�1

k

Æ �

i

i�1

immediately implies that

J

1

(�

i

k

)

�

~

J

1

(E=E

i

)

�

�

~

J

1

(E=E

k

) by indution. Finally, we ompute

L

k

Æ J

1

(�

i

k

) = L

k

Æ J

1

(�

i�1

k

) Æ J

1

(�

i

i�1

) = �

i�1

k+1

Æ p

i�1

Æ J

1

(�

i

i�1

) =

= �

i�1

k+1

Æ �

i

i�1

Æ p

i

= �

i

k+1

Æ p

i

;

by funtoriality of J

1

, indution, and the de�nition of the jet prolongation

of a homomorphism.

For k � 2 and i = 1; : : : ; r + 1 we indutively de�ne

~

J

k

(E=E

i

) := J

1

(

~

J

k�1

(E=E

i

)) \

�

J

k

(E=E

i

):

By Proposition 4.7 and 3.4 it follows indutively that

~

J

k

(E=E

i

) is a P{

submodule in both modules on the right hand side of the de�nition. For i =

1, we obtain

~

J

k

(E=E

1

) =

�

J

k

(E=E

1

), so we simply get the full semiholonomi
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jet{module in this ase. Moreover, a simple indutive argument shows for

all ` < k, and i

~

J

k

(E=E

i

) �

�

J

`

(

~

J

k�`

(E=E

i

)) \

�

J

k

(E=E

i

):

For eah of the homomorphisms L

i

:

~

J

1

(E=E

i

)! E=E

i+1

we an now re-

strit the semiholonomi jet prolongation

�

J

k

(L

i

) to the submodule

~

J

k+1

(E=E

i

) �

�

J

k

(

~

J

1

(E=E

i

)) to obtain a P{homomorphism

�

J

k

(L

i

) :

~

J

k+1

(E=E

i

)!

�

J

k

(E=E

i+1

):

4.8. Theorem. Let E

i

0

be an irreduible omponent in the ohomology H

n

V

whih generates the P{submodule E in �

n

p

+


 V, f. 4.3. For eah k � 1

and i = 1; : : : ; r + 1 we have

�

J

k

(L

i

)

�

~

J

k+1

(E=E

i

)

�

�

~

J

k

(E=E

i+1

):

In partiular, the omposition

L := L

r

Æ

�

J

1

(L

r�1

) Æ : : : Æ

�

J

r�1

(L

1

)

de�nes a P{homomorphism L :

�

J

r

(E=E

1

) ! E . Sine by de�nition E is a

P{submodule of �

n

p

+


V, this homomorphism indues a strongly invariant

operator �(E

i

0

M) ! Ker(�

�

) � 


n

(M ;VM), whih splits the algebrai

projetion Ker(�

�

)! �(E

i

0

M) desribed in 4.3.

Proof. Let us �rst onsider the ase k = 1. So we have to show that

J

1

(L

i

)

�

~

J

2

(E=E

i

)

�

�

~

J

1

(E=E

i+1

). By de�nition of

~

J

1

(E=E

i+1

), we �rst

have to onsider the omposition J

1

(�

i+1

i

) Æ J

1

(L

i

) = J

1

(�

i+1

i

Æ L

i

). By

Proposition 4.6(1), this equals J

1

(p

i

). Sine

~

J

2

(E=E

i

) �

�

J

2

(E=E

i

), this pro-

jetion oinides with the restrition of the anonial projetion

�

J

2

(E=E

i

)!

J

1

(E=E

i

), and sine

~

J

2

(E=E

i

) � J

1

(

~

J

1

(E=E

i

)), this anonial projetion

has values in

~

J

1

(E=E

i

). Thus, we have veri�ed that J

1

(L

i

)

�

~

J

2

(E=E

i

)

�

�

J

1

(�

i+1

i

)

�1

�

~

J

1

(E=E

i

)

�

.

But then it also follows that L

i

Æ J

1

(�

i+1

i

) Æ J

1

(L

i

) oinides with the

omposition of L

i

with the anonial projetion

~

J

2

(E=E

i

) !

~

J

1

(E=E

i

),

whih by de�nition of the jet prolongation of a homomorphism (see 3.2)

oinides with p

i+1

Æ J

1

(L

i

) and the proof in the ase k = 1 is omplete.

The ase k � 2 now immediately follows from the de�nitions by indu-

tion. Thus, also the existene of L and the orresponding strongly invariant

operator is lear. The fat that this operator splits the algebrai projetion

follows from the fat that by Lemma 4.4(1) this algebrai projetion is in-

dued by the anonial projetion E ! E=E

1

and the fat that �

i+1

i

ÆL

i

= p

i

from Proposition 4.6(1).

Next, we onsider the omposition of d

V

with the operator orresponding

to L. The orresponding homomorphism on jet modules an be omputed

as the restrition to

�

J

r+1

(E=E

1

) of d

V

Æ J

1

(L).

4.9. Proposition. For eah irreduible G-module V, and irreduible G

0

{

submodule E

i

0

� H

n

V

= H

n

(g

�

;V), the omposition

d

V

Æ J

1

L :

�

J

r+1

(E=E

1

)! �

n+1

p

+


 V
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has values in ker �

�

. The omposition with the projetion to the ohomology

�

H

: (�

n

p

+


 V) \ (ker �

�

) ! H

n+1

V

= H

n+1

(g

�

;V) gives the P -module

homomorphism

�

H

Æ d

V

Æ J

1

L :

�

J

r+1

(E=E

1

)! H

n+1

V

:

For eah n = 0; : : : ;dimM � 1, there is the strongly invariant di�erential

operator

D

V

: �(H

n

V

M)! �(H

n+1

V

M)

whose restritions to the subbundles E

0

M are determined by the above P{

module homomorphisms

�

J

r+1

(E=E

1

)! H

n+1

V

.

Proof. Consider �rst the map �

�

Æ d

V

: J

1

(E ) ! �

n

p

+


 V. By de�nition

of d

V

, Lemma 4.2, and using the fat that E � Ker(�

�

), we see that this

maps (e; Z 
 f) 2 J

1

(E ) to �

�

�(e) + (n+1)�

�

(Z ^ f) = �(e)� (n+1)Z�f ,

so �

�

Æ d

V

: J

1

(E ) ! E . Now Theorem 4.8 applied to J

1

(L

r

) shows, that

J

1

(L) has values in the submodule

~

J

1

(E ) � J

1

(E ), and we laim that

�

�

Æ d

V

restrits to zero on that submodule.

To simplify notations, let us write p : J

1

(E ) ! E for the footpoint pro-

jetion p

r+1

and �

i

for �

r+1

i

. For i � r + 1 onsider the P{homomorphism

�

i

Æ�

�

Æd

V

: J

1

(E ) ! E=E

i

. By de�nition, this maps (e; Z
f) to �

i

(�(e))+

(n+1)�

i

(�

�

(Z^f)). Sine the Laplaian and �

�

both preserve homogeneous

degrees, we may rewrite the �rst summand as �(�

i

(e)) and the seond sum-

mand as (n+ 1)�

i

(�

�

(Z ^ �

i�1

(f))).

On the other hand, onsider J

1

(�

i�1

) : J

1

(E ) ! J

1

(E=E

i�1

). This maps

(e; Z
f) to (�

i�1

(e); Z
�

i�1

(f)), and applying L

i�1

to this element, we get

j

i�1

(�

i�1

(e))� (n+1)�

�1

�

�

((Z ^�

i�1

(f))

i

). Finally, �

i

Æ p maps (e; Z 
 f)

to �

i

(e). Consequently, � Æ (�

i

Æ p� L

i�1

Æ J

1

(�

i�1

)) maps (e; Z 
 f) to

�(�

i

(e)) � j

i�1

(�(�

i�1

(e))) + (n+ 1)�

�

((Z ^ �

i�1

(f))

i

);

and the last summand in this expression equals

(�

i

� j

i�1

Æ �

i�1

)((n+ 1)�

�

(Z ^ f));

sine �

�

preserves homogeneous degrees. Hene, we see that on J

1

(E ) we

get the equation

�

i

Æ �

�

Æ d

V

� j

i�1

Æ �

i�1

Æ �

�

Æ d

V

= � Æ

�

�

i

Æ p� L

i�1

Æ J

1

(�

i�1

)

�

:

In fat, this equation is exatly what we were aiming at in the motivation

for the whole onstrution in 4.3. But on the submodule

~

J

1

(E ), the right

hand side of the above formula vanishes identially by Proposition 4.7. Thus,

iterated appliation of this formula shows that on

~

J

1

(E ) we have

�

�

Æ d

V

= �

r+1

Æ �

�

Æ d

V

= j

r

Æ �

r

Æ �

�

Æ d

V

= � � � = j

1

Æ �

1

Æ �

�

Æ d

V

:

But �

1

Æ �

�

Æ d

V

maps (e; Z 
 f) to �(�

1

(e)), whih vanishes sine E

i

0

is

ontained in the kernel of the Laplaian, so we have proved �

�

Æd

V

ÆJ

1

(L) =

0. All the rest is now an immediate onsequene.
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4.10. De�nition. Let (G; !) be a (real or omplex) paraboli geometry on a

manifoldM . The onstrution above has given rise to a sequene of strongly

invariant operators D

V

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0 :

whih is alled the Bernstein{Gelfand{Gelfand sequene or BGG{sequene

determined by the G-module V.

All bundles in this sequene orrespond to ompletely reduible represen-

tations of P , so they all split into diret sums of bundles orresponding to

irreduible representations. Let us also remark that the onstrution applies

to both real and omplex settings. Next, we will show that in the at ase this

sequene is a resolution of the onstant sheaf V. Sine by Kostant's version

of the Bott{Borel{Weil theorem, the bundles ourring in this resolution in

the omplex ase are exatly the same bundles as in the Bernstein{Gelfand{

Gelfand resolution, we have obtained urved analogs of this resolution even

in the real ase.

The main step towards the proof that we often get a resolution is formu-

lated in the next lemma for the general real urved ase. For the omplex

analog see below.

4.11. Lemma. Let (G; !) be a real paraboli geometry on a manifold M

and let s 2 


n

(M ;VM) be a VM{valued n{form. Then:

(1) There is an element t 2 


n�1

(M ;VM) suh that s+d

V

(t) lies in ker(�

�

).

(2) If s and d

V

(s) both lie in ker(�

�

), then s = L(�

H

(s)).

(3) If d

2

V

(ker(�

�

)) � ker(�

�

), then the diagram




0

(M ;VM)

d

V //



1

(M ;VM)

d

V //
: : :

V

55kkkkkkk

))SSSSSSS

�(H

0

V

M)

L

OO

D

V

//
�(H

1

V

M)

L

OO

D

V

//
: : :

is ommutative. In partiular, D

V

ÆD

V

= 0 whenever d

V

Æ d

V

= 0.

Proof. (1) Put G

0

= G=P

+

and hoose a global G

0

{equivariant setion

� : G

0

! G as indiated in 2.13. Then we get a smooth map � : G ! P

+

haraterized by u = �(p(u))��(u) for all u 2 G, and u 7! (p(u); �(u)) is a

di�eomorphism G ! G

0

�P

+

. Using this, we get an isomorphism (depending

on �) between 


n

(M ;VM) and the spae of smooth G

0

{equivariant fun-

tions G

0

! �

n

p

+


 V. But �

�1

Æ �

�

is a G

0

{homomorphism �

n

p

+


 V !

�

n�1

p

+


 V suh that e� �(�

�1

Æ �

�

(e)) 2 ker(�

�

) for all e 2 �

n

p

+


 V.

Now, let s : G

0

! �

n

p

+


 V be the G

0

{equivariant map orrespond-

ing to the lowest homogeneous omponent s

j

of the given n{form s suh

that �

�

(s

j

) 6= 0. Passing from ��

�1

Æ �

�

Æ s bak to a P{equivariant map

t : G ! �

n�1

p

+


 V, we see that the homogeneous omponents up to de-

gree j of �

�

(s + d

V

(t)) vanish on the image of � and thus on the whole

G by equivariany. Indutively, we an �nd an element t with the required

properties.

(2) Put s

0

= �

H

(s). By onstrution of the operators L, we know that

L(s

0

) 2 ker(�

�

), �

H

(L(s

0

)) = s

0

, and d

V

(L(s

0

)) 2 ker(�

�

). Thus, we see that
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s�L(s

0

) 2 im(�

�

) and d

V

(s�L(s

0

)) 2 ker(�

�

). Let a

j

be the lowest possibly

nonzero homogeneous omponent of s � L(s

0

). Then the lowest possibly

nonzero omponent of d

V

(s�L(s

0

)) is �(a

j

). Sine ker(�

�

) is omplementary

to im(�) we must have �(a

j

) = 0. But on the other hand, we know that

a

j

2 im(�

�

) whih is omplementary to ker(�), so we must have a

j

= 0.

(3) For s 2 �(H

n

V

M), onsider the element d

V

(L(s)) 2 


n+1

(M ;VM). By

Proposition 4.9, this lies in ker(�

�

). Moreover, sine L(s) 2 ker(�

�

), our

assumption on d

2

V

implies that d

V

(d

V

(L(s))) 2 ker(�

�

). Hene from (2) we

get d

V

(L(s)) = L(�

H

(d

V

(L(s)))) = L(D

V

(s)).

The last laim is obvious.

4.12. Lemma. Let (G; !) be a omplex paraboli geometry on a omplex

manifold M . Then the seond and third assertion in Lemma 4.11 remain

valid with the same assumptions, while the laim 4.11(1) holds true under

the additional assumption that the holomorphi bundle G ! G

0

admits a

global holomorphi G

0

-equivariant setion. This additional requirement is

always ful�lled loally.

Proof. All arguments in the proof of (2) and (3) in 4.11 are on the level of

the P -modules and so they go equally through for both real and omplex

settings. The only di�erene in (1) is the argument whih onstruts the

global setion by means of the smooth partition of unity. One we assume

the existene of the global setion, the rest is lear again. Now, any point in

M has an open neighborhood U �M suh that both G and G

0

are trivial over

U . Sine G

0

� P

+

and P are di�eomorphi, and the map in one diretion is

obviously holomorphi, they are biholomorphi. Thus, the omplex paraboli

geometry Gj

U

! U admits appropriate global holomorphi G

0

{equivariant

setion.

4.13. Theorem. Let (G; !) be a real paraboli geometry of the type (G;P )

on a manifold M , V be a G{module. If the twisted de Rham sequene

0

//



0

(M ;VM)

d

V//



1

(M ;VM)

d

V//
: : :

d

V//



dim(G=P )

(M ;VM)

//
0 :

is a omplex, then also the Bernstein{Gelfand{Gelfand sequene

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0

de�ned in 4.10 is a omplex, and they both ompute the same ohomology.

The same statement is true for omplex paraboli geometries (G; !) under

the additional requirement that G ! G

0

= G=P

+

admits a global holomorphi

G

0

{equivariant setion.

Remark. In partiular, the omplex version of the Theorem may be refor-

mulated as follows: If the twisted de Rham sequene indues a omplex on

the sheaf level, then the same is true for the Bernstein{Gelfand{Gelfand se-

quene. In partiular, if the twisted de Rham sequene indues a resolution

of V, then so does the BGG{sequene.

Now, the original representation theoretial version of the (generalized)

BGG{resolution follows immediately by duality. Moreover, let us notie that

the global G

0

{equivariant setion as required in the Theorem always exists

over a dense open submanifold in the homogeneous spae G=P (the so alled

big ell).
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Proof. As we saw in Lemma 4.11, the BGG{sequene forms a omplex when-

ever the twisted de Rham does. So let us assume, we deal with omplexes.

Sine d

2

V

= 0, 4.11(3) implies that L is a morphism of the orresponding

omplexes, hene the mapping

�(H

n

V

M) 3 s

0

7! L(s

0

) 2 


n

(M ;VM)

indues a morphism between the ohomologies.

Next, suppose that s 2 


n

(M ;VM), n � 1 is suh that d

V

(s) = 0. Then

by 4.11(1) we �nd an element t 2 


n�1

(M ;VM) suh that s + d

V

(t) 2

ker(�

�

). But then d

V

(s+ d

V

(t)) = 0 so by 4.11(2) we know that s+ d

V

(t) =

L(�

H

(s+ d

V

(t))), and thus the mapping de�ned above is surjetive.

Finally, let us assume that s

0

2 �(H

n�1

V

M) is suh that there exists a

t 2 


n�1

(M ;VM) with d

V

(t) = L(s

0

). Then by 4.11(1) we may without loss

of generality assume that t 2 ker(�

�

). But by assumption d

V

(t) = L(s

0

), so

this is also ontained in ker(�

�

), and hene t = L(�

H

(t)) by 4.11(2), and thus

L(s

0

) = d

V

(L(�

H

(t))) and applying �

H

on both sides we get s

0

= D

V

(�

H

(t)),

and so we get an isomorphism in the ohomology groups.

4.14. Corollary. Let (G; !) be a torsion free real paraboli geometry of type

(G;P ) onM . Then the de Rham ohomology ofM with oeÆients in K = R

or C is omputed by the (muh smaller) omplex

0

//
�(H

0

K

M)

D

K

//
�(H

1

K

M)

D

K

//
: : :

D

K

//
�(H

dim(G=P )

K

M)

//
0 :

Proof. The ovariant exterior di�erential orresponding to the hoie of the

trivial P{module K oinides with the usual exterior di�erential d. Aord-

ing to Lemma 3.11, the exterior ovariant di�erential oinides with our

twisted exterior di�erential for all torsion{free geometries. Thus the state-

ment follows from 4.13.

4.15. Corollary. Let (G; !) be a at real paraboli geometry. Then for any

representation V of G the BGG{sequene

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0

is a omplex, whih omputes the twisted de Rham ohomology of M with

oeÆients in the bundle VM , whih is de�ned as the ohomology of the

omplex given by the ovariant exterior derivative with respet to the linear

onnetion on VM indued by the Cartan onnetion !, see 3.11.

The importane of this orollary lies in the fat that while at paraboli

geometries are loally isomorphi to the homogeneous model G=P , they may

be very di�erent from G=P from a global point of view. Just keep in mind

the broad variety of smooth manifolds admitting a loally onformally at

Riemannian metri. In partiular, the bundle VM is not trivial in general,

so the twisted de Rham ohomology is a less trivial objet than in the

homogeneous ase.

On the other hand, we may always onsider the obvious at paraboli

geometry on the trivial P{bundle over R

dim(G=P )

�

=

g

�

. In this ase, the

twisted de Rham ohomologies are obviously zero, so Corollary 4.15 provides

global resolutions of the onstant sheaf V in this ase. Simple instanes of
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suh sequenes are of basi importane in various areas of mathematis, see

for example [14℄.

4.16. Remark. As we have seen already, the P{modules H

n

V

are ompletely

reduible and so the natural bundles H

n

V

M deompose into diret sums of

irreduible bundles. Consequently, also the operators D

V

split into sums

of operators between the irreduible natural bundles. In the ase of the

homogeneous bundles, the latter operators (and sometimes also their non-

trivial ompositions) are usually referred to as standard invariant operators.

In partiular, our onstrution provides a distinguished urved analog for

eah of those standard operators.

As we have underlined already in the introdution, no deep representa-

tion theoretial results had to be applied in the onstrution of the BGG{

sequenes and in the proof of Theorem 4.13. On the other hand, the full

information of the Kostant's version of Bott{Borel{Weil theorem on the Lie

algebra ohomologies is stritly neessary in order to get more expliit infor-

mation about the individual standard operators and the overall struture of

the BGG{sequene in the at ase. Moreover, further non-trivial operators

with urvature ontributions in their symbols may appear in general.

Let us also remark that the expliit formulae for the standard operators

were given in losed form in the terms of the underlying linear onnetions

on M in [10℄ for all paraboli geometries with irreduible tangent bundles,

i.e. for all ases with j1j{graded Lie algebra g. We believe that the tehnique

developed there should be extendible to the general ase, too.

4.17. Remark. In the at ase, the twisted de Rham omplex an be

viewed as a �ltered omplex with the �ltration given by homogeneous de-

grees. The fat that the lowest homogeneous omponent of d

V

is just �

implies that the di�erential on the assoiated graded omplex is exatly �.

Assoiated to this �ltration there is a spetral sequene whih obviously

onverges and omputes the twisted de Rham ohomology. Now from the

onstrution of the operators D

V

it is obvious that when passing to the

appropriate subquotients, they indue the higher di�erentials in this spe-

tral sequene. Usually, these higher di�erentials are only well de�ned on the

appropriate subquotients, but due to the fat that we have a (fairly sim-

ple) Hodge struture on the assoiated graded omplex, we an get a global

de�nition in our setting.

5. Example

We shall illustrate the power of our results in the simple ase of 5{

dimensional partially integrable almost CR{strutures, f. Example 2.9. We

believe that this simple geometry reets many of the general features of

paraboli geometries and we an still write down the whole BGG{sequenes

very expliitly at the same time. We hope that based on this example, the

reader is able to imagine the vast amount of invariant operators whih our

main theorems produe for all paraboli geometries.

Let M be a smooth manifold of odd dimension 2n + 1 together with a

distinguished rank n omplex subbundle T

CR

M of the tangent bundle TM .

Then the Lie braket of vetor �elds indues a skew{symmetri bundle map
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L

R

: T

CR

M � T

CR

M ! TM=T

CR

M , the real Levi{Form. (M;T

CR

M) is

alled a partially integrable almost CR{manifold if and only if L is non{

degenerate and totally real, i.e. L(J(�); J(�)) = L(�; �) for all �; � 2 T

CR

M ,

where J denotes the almost omplex struture on T

CR

M . In that ase,

hoosing a loal trivialization of TM=T

CR

M , L is the imaginary part of a

Hermitian form. Here we onsider the ase where n = 2, soM has dimension

5 and this Hermitian form is positive de�nite (for an appropriate hoie of

the loal trivialization).

Typial examples of suh manifolds are smooth hypersurfaes in a six{

dimensional smooth manifold N endowed with an almost omplex struture

~

J , whih satisfy a non{degeneray and an integrability ondition. In this

ase, we put T

CR

M = TM \

~

J(TM) and J =

~

J j

T

CR

M

. To understand the

non{degeneray and integrability onditions, it is more onvenient to pass to

omplexi�ed tangent bundles. Sine T

CR

M is a omplex bundle, its omplex-

i�ation T

CR

C

M splits into a diret sum T

1;0

M�T

0;1

M of a holomorphi and

an antiholomorphi part. Moreover, mapping �; � 2 �(T

1;0

M) to the lass

of �i[�; ��℄ de�nes a bundle valued Hermitian form L : T

1;0

M � T

1;0

M !

T

C

M=T

CR

C

M =: QM , the Levi form. The partial integrability ondition

from above is then equivalent to the fat that [�; �℄ 2 �(T

CR

C

M) for all se-

tions �; � of T

1;0

M , and the onditions of positive de�niteness is equivalent

to L being positive de�nite in an appropriate loal trivialization of QM .

(Certainly, these onditions also make sense for abstrat almost CR man-

ifolds). A partially integrable almost CR manifold is alled integrable or a

CR{manifold if and only if the subbundle T

1;0

M is involutive. In partiular,

this is the ase for hypersurfaes in omplex manifolds.

By [7, 4.14℄, 5{dimensional partially integrable almost CR{manifolds are

exatly the normal paraboli geometries orresponding to G = PSU(3; 1)

and the paraboli subalgebra of g = su(3; 1) orresponding to the Dynkin

diagram

�

�

�

. Let us also onsider

~

G = SU(3; 1) and let P , G

0

� G,

or

~

P ,

~

G

0

�

~

G be the orresponding subgroups as in 2.3. Then the semisimple

part of

~

G

0

is SU(2) and the enter of G

0

is C .

In the Dynkin diagram notation, eah (omplex) irreduible

~

G-module V

is given by the hoie of three non{negative integers a; b; 

V =
�

a

�

b

�



:

More expliitly,
�

a

�

b

�



is the highest weight omponent in S

a

C

4




S

b

(�

2

C

4

) 
 S



(C

4�

), where S

i

denotes the i{th symmetri power, and so

these representations integrate to representation of G if and only if a�  is

ongruent to 2b modulo four (the enter of

~

G onsist of �1 and �i times

the identity).

The irreduible

~

P{modules orrespond to hoies with b non{negative

while a and  may be arbitrary integers. Now, b determines the represen-

tation of SU(2) while the other two parameters desribe the ation of the

enter of

~

G

0

. We adopt the onvention used in [2℄, i.e. the parameters give

the linear ombination of the fundamental weights of

~

g whih is the high-

est weight of the dual module to V. In this way, the resulting weights for

our modules happen to be the same as those in the dual pitures known
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from representation theory. For our purposes, however, this has no impor-

tane and it is enough to say that the distinguished two subbundles T

1;0

M

and T

0;1

M in the omplexi�ed tangent spae and the omplexi�ed quotient

QM = T

C

M=T

CR

C

M have duals T

�

1;0

M , T

�

0;1

M (quotients of the omplexi�ed

otangent bundle), and Q

�

M , whih orrespond to the modules

T

�

1;0

=

�

�2

�

1

�

0

; T

�

0;1

=

�

0

�

1

�

�2

; Q

�

=

�

�1

�

0

�

�1

:

Now, all

~

P{modules are tensor produts of symmetri powers S

b

(T

�

1;0

) and

suitable one-dimensional representations E [a; ℄ orresponding to the Dynkin

diagram

�

a

�

0

�



. We shall write S

b

(T

�

1;0

)[a; ℄ for these modules and use

the shorthand S

b

[a;℄

for the orresponding natural bundles. In partiular,

S

b

[a;℄

= S

b

(T

�

1;0

)[a; ℄ =

�

a�2b

�

b

�



T

�

0;1

= T

�

1;0

[2;�2℄ = S

1

[2;�2℄

S

0

[�1;�1℄

= E[�1;�1℄ = Q

�

S

0

[�4;0℄

= �

2

T

�

1;0


Q

�

:

Another important bundle is the dual to the kernel of the bilinear Levi form

(kerL)

�

� T

�

1;0


 T

�

0;1

whih orresponds to S

2

[2;�2℄

.

All natural bundles S

b

[a;℄

exist on manifoldsM with the so alled SU(3; 1){

strutures, i.e. we have to hoose overings of the Cartan P{bundle G to the

struture group

~

P . This is learly equivalent to the hoie of a �xed line bun-

dle E[1; 0℄ suh that its fourth tensor power is �

2

T

1;0

M 
 QM . This is an

analogous situation to natural bundles and natural operators in onformal

Riemannian geometry whih often depend on the hoie of a spin struture.

Using the expliit desription of the ohomology from Kostant's Bott{

Borel{Weil theorem we obtain expliitly all natural bundles appearing in

our main theorems. The omputations are done fairly simply in terms of the

Dynkin diagram notation, see [2℄ for the details. Furthermore, using elemen-

tary �nite dimensional representation theory one easily shows that there are

no homomorphisms between the semi{holonomi jet modules orresponding

to the items in the neighboring olumns of the BGG{sequenes, exept those

whih are indiated in Figure 1. Let us also notie that the orders of the

operators are easily read o� the homogeneities of the bundles with respet

to the ation of the grading element in G

0

and the homogeneity of S

b

[a;℄

is

a+ � b. Thus we an summarize:

5.1. Theorem. For eah SU(3; 1){module V =
�

a

�

b

�



, the BGG{sequene

of invariant di�erential operators shown on Figure 1 exists on all 5{dimensional

partially integrable almost CR{manifoldsM with a hosen SU(3; 1){struture.

The orders of the operators are indiated by the labels over the arrows.

Moreover, the sequene exists on all partially integrable CR{manifolds if

a � 2b +  � 0 mod4, and then all bundles in question an be onstruted

from T

�

1;0

M and Q

�

M . If M is at, then the BGG{sequene is a omplex

whih omputes the twisted de Rham ohomology of M with oeÆients in

the bundle VM orresponding to V.
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S
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Figure 1. Bernstein{Gelfand{Gelfand sequenes on par-

tially integrable 5{dimensional almost CR strutures

As a orollary, we immediately obtain

5.2. Theorem. For all (integrable) 5{dimensional CR{manifolds, there is

the resolution of the sheaf of onstant omplex funtions

�

2

T

�

1;0

//

##GGGGGGGGGGG
Q

�


 �

2

T

�

1;0

**UUUU

T

�

1;0

88qqqq

&&NNNN



2

Q

�


 T

�

1;0

((RRR
RR

C

//
E[0; 0℄

88rrrr

&&LL
LL

(kerL)

�

;;wwwwwwwwwww

//

##GGGGGGGGGGG
Q

�


 (kerL)

�

44iiii

**UUUU



3

Q

�

T

�

0;1

88pppp

&&MM
MM




2

Q

�


 T

�

0;1

66lllll

�

2

T

�

0;1

//

;;wwwwwwwwwww

Q

�


 �

2

T

�

0;1

44iiii

whih omputes the de Rham ohomology with omplex oeÆients. The or-

ders of the operators in the olumn in the middle of the diagram are two,

while all the other ones are of �rst order.

This omplex is a speial instane of the so alled Rumin omplex on on-

tat geometries, [28℄, see also [18℄ for a re�ned version for the CR{strutures.

In the homogeneous ase, this omplex was also mentioned in [2℄. Similar

questions were also studied by Lyhagin earlier, see e.g. [23℄ and the refer-

enes therein. Notie that the dimensions of the individual olumns are 1, 4,

5, 5, 4, 1 (opposed to dimensions 1, 5, 10, 10, 5, 1 in the de Rham omplex).
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Appendix A. Infinite jets and Verma modules

The aim of this appendix is to provide di�erential geometers with basi

information on the links between jets and Verma modules, and in partiular

to prove the orrespondene between invariant di�erential operators and

homomorphisms of generalized Verma modules used in 2.6.

A.1. We have seen in 2.6 that invariant operators �(E) ! �(F ) between

homogeneous vetor bundles over G=P are in bijetive orrespondene with

P{homomorphisms J

1

(E)

o

! F

o

, whih fatorize over some J

r

(E)

o

.

First note that setions of E an be identi�ed with smooth funtions G!

E , whih are P{equivariant. Sine this identi�ation is purely algebrai, it

gives an identi�ation of in�nite jets at o of setions of E with P{equivariant

in�nite jets of smooth funtions G ! E at e 2 G. Now it is easy to verify

that in the piture of smooth equivariant funtions, the ation of G is given

by (g�s)(g

0

) = s(g

�1

g

0

). The orresponding in�nitesimal ation of g is given

by (X�s)(g) = �(R

X

�s)(g), where R

X

denotes the right{invariant vetor

�eld on G generated by X 2 g = T

e

G. For X 2 p, the in�nitesimal version

of equivariany of s implies that (X�s)(g) = X�(s(g)), but for general X

the value (X�s)(g) depends on the one{jet of s at g. Thus we do not get an

indued ation of g on �nite jets, but for in�nite jets we get a well de�ned

ation of g. Sine this ation is learly ompatible with the ation of P , it

makes J

1

(E)

o

into a (g; P ){module.

On the other hand, mapping eah X 2 g to the left invariant vetor �eld

L

X

generated by X indues an isomorphism between the universal envelop-

ing algebra U(g) and the algebra of left invariant di�erential operators on

G. Now we get a bilinear map J

1

(E)

o

� (U(g) 
 E

�

) ! K by mapping

(j

1

s(e);D 
 �) to �(D(s)(e)), where D is a left invariant di�erential oper-

ator and � is an element of the dual representation E

�

to E , and as above

we view s as an equivariant funtion on G. By equivariany of s this fators

to a bilinear map J

1

(E)

o

� (U(g)


U(p)

E

�

)! K beause elements of U(p)

at algebraially and this an be expressed as an ation on �.

We laim that the above pairing is ompatible with the ations of both

g and P . For the ation of g, let us take a typial element X

1


 � � � 


X

n


 � 2 U(g)


U(p)

E

�

and X 2 g. From above, we know that X�j

1

s(e) =

�j

1

(R

X

�s)(e). Pairing this withX

1


� � �
X

n


�, we get��((L

X

1

: : : L

X

n

�R

X

�s)(e)).

Sine left invariant vetor �elds ommute with right invariant ones, this

equals ��((R

X

�L

X

1

: : : L

X

n

�s)(e)). But this depends only on R

X

(e), so we

may as well replae R

X

by L

X

, so this oinides with X
X

1


� � �
X

n


�

evaluated on j

1

s(e).

The ation of b 2 P on U(g) 


U(p)

E

�

is indued by mapping D 
 �

to b�D 
 b��, where (b�D)(s) = D(s Æ r

b

�1

) Æ r

b

and r

b

denotes the right

multipliation by b. This obviously maps the anihilator of the spae of P{

equivariant funtions to itself and thus desends to an ation on U(g)


U(p)

E

�

. If s is equivariant, then (s Æ r

b

�1

)(g) = b�(s(g)), and thus (b�D)(s)(g) =

b�(D(s)(gb)). But this implies that pairing j

1

s(e) with b�D 
 b�� we get

(b��)((b�D)(s)(e)) = �(D(s)(b)). On the other hand, the ation of b on
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J

1

(E)

o

is given by b�j

1

s(e) = j

1

(sÆ`

b

�1
)(e), where `

b

denotes the left mul-

tipliation by b. Thus pairing b

�1

�j

1

s(e) with D
 � we get �(D(s Æ `

b

)(e)),

whih by left invariane of D oinides with �(D(s)(b)).

Now for any k 2 N, we have the natural projetion J

1

(E)

o

! J

k

(E)

o

.

On the other hand, the universal enveloping algebra U(g) has a natural (in-

�nite) �ltration K = U

0

(g) � U

1

(g) � : : : suh that U(g) = [

i2N

U

i

(g).

In the piture of left invariant di�erential operators on G, this is just the

�ltration by the order of operators. This �ltration learly indues a �ltra-

tion F

i

on U(g) 


U(p)

E

�

, and eah �ltration omponent is a P{submodule

(but not a g{submodule). The pairing of an element of F

k

with an element

j

1

(s)(e) 2 J

1

(E)

o

learly depends only on j

k

s(e), so we get an indued

paring between F

k

and J

k

(E)

o

, and this indued pairing is obviously non{

degenerate and still ompatible with the P{ations, so sine both sides are

�nite dimensional, they are dual P{modules.

Let us remark at this point that it is also possible to put loally onvex

topologies on the spaes in question, suh that they beome topologially

dual (g; P ){modules. Namely, one has to view J

1

(E)

o

as the limit of the

system � � � ! J

k

(E)

o

! J

k�1

(E)

o

! : : : , while U(g) 


U(p)

E

�

has to be

topologized as a diret sum of �nite dimensional spaes.

A.2. Let E and F be P{representations, E and F the orresponding bun-

dles and ' : J

k

(E)

o

! F

o

= F a P{homomorphism. By the duality shown

above, we an view the dual map '

�

as a P{homomorphism F

�

! F

k

�

U(g)


U(p)

E

�

. Conversely, if we have a P{homomorphism F

�

! U(g)


U(p)

E

�

,

then this has values in some F

i

sine F

�

is �nite dimensional, so dualiz-

ing it orresponds to a P{homomorphism J

i

(E)

o

! F

o

. Consequently, we

see that the spae of invariant operators �(E) ! �(F ) is isomorphi to

Hom

P

(F

�

;U(g)


U(p)

E

�

).

By Frobenius reiproity the latter spae is isomorphi to

Hom

(g;P )

(U(g)


U(p)

F

�

;U(g)


U(p)

E

�

):

This isomorphism is quite simple to prove: If ' : F

�

! U(g) 


U(p)

E

�

is a

P{homomorphism, then

~

�(A
�) = A�'(�) de�nes a (g; P ){homomorphism

U(g)
 F

�

! U(g)


U(p)

E

�

, and sine ' is a P{homomorphism, this fators

to a (g; P ){homomorphism � between the required spaes. Conversely, we

put '(�) = �(1
�) and this learly is a P{homomorphism if � is a (g; P ){

homomorphism.

Appendix B. Adjointness of � and �

�

B.1. As promised in the beginning of Setion 4, we show that the operators

� and �

�

are adjoint operators with respet to a ertain inner produt on

C

n

(g

�

;V). To onstrut this inner produt, we have to distinguish between

the real and the omplex ase. Let us start with the ase where g and V

are omplex. Sine the grading element E 2 g

0

is semisimple, we an �nd

a Cartan subalgebra h � g whih ontains E. Then eah root spae for

this Cartan subalgebra is ontained in some g

i

. Let u be a ompat real

form of g with a Cartan subalgebra h

0

ontained in h, and let � be the

omplex onjugation with respet to this real form. By de�nition of E, the

map ad(E)Æad(E) ats on g

i

by multipliation by i

2

, so for the Killing form
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we have B(E;E) > 0. Consequently, we must have �(E) = �E, and thus

�(g

i

) = g

�i

for all i = �k; : : : ; k. Now one immediately veri�es diretly that

B

�

(X;Y ) := �B(X;�(Y )) is a positive de�nite Hermitian inner produt on

g, suh that the deomposition g = g

�k

� � � � � g

k

is an orthogonal diret

sum. In partiular, this indues a Hermitian inner produt on g

�

.

Next, sine u is a ompat real form, there is a positive de�nite Hermitian

inner produt h ; i on V suh that the elements of u at as skew{Hermitian

operators. But this immediately implies that for eah X 2 g and v

1

; v

2

2 V,

we have hX�v

1

; v

2

i = �hv

1

; �(X)�v

2

i. Together with the inner produt on

g

�

onstruted above we get a positive de�nite Hermitian inner produt on

C

n

(g

�

;V) for eah n.

In the real ase, the situation is slightly more ompliated. In this ase

we have to onstrut appropriate involutions � on the individual simple

fators separately, and we have to distinguish between the ase where the

omplexi�ation of a simple fator is again simple and the ase where it is

not. Note that the simple fators of a jkj{graded Lie algebra are themselves

j`j{graded for some ` � k and that the grading element of g is just the sum

of the grading elements of the simple fators.

If we have a real simple algebra g whose omplexi�ation is not simple,

then it is well known that g is atually the underlying real Lie algebra of a

omplex simple Lie algebra. In this ase, we an proeed as above to get a

ompat real form u � g and the orresponding involution �.

In the ase where both g and its omplexi�ation g

C

are simple, we hoose

a Cartan subalgebra h � g

C

whih ontains the element E 2 g. By [29,

Expos�e 11, Th�eor�eme 3℄ there is a ompat real form u � g

C

with Cartan

subalgebra h

0

� h suh that the omplex onjugation � with respet to u

ommutes with the omplex onjugation with respet to g, and thus �(g) =

g.

The involutions on the simple fator together de�ne an involution of g and

as above one uses the Killing form on g and � to get a positive de�nite inner

produt on g and on g

�

. If the representation V is not already omplex, then

we an pass to its omplexi�ation to get a Hermitian inner produt suh

that hX�v

1

; v

2

i = �hv

1

; �(X)�v

2

i as above, an in both ases the real part of

this Hermitian produt gives a positive de�nite inner produt on V whih

we use together with the inner produt on g

�

to get a positive de�nite inner

produt on C

n

(g

�

;V).

B.2. Proposition. The di�erential � : C

n

(g

�1

;V) ! C

n+1

(g

�1

;V) and

the odi�erential �

�

: C

n+1

(g

�1

;V) ! C

n

(g

�1

;V) are adjoint operators with

respet to the inner produts onstruted in B.1 above.

Proof. The point about this is that in eah ase the inner produt of f

1

; f

2

2

C

n

(g

�

;V) an be omputed as F(f

2

)(f

1

), where F is a linear (over the

reals) isomorphism C

n

(g

�

;V) ! C

n

(p

+

;V

�

). The map F is de�ned by

F(f)(Z

1

; : : : ; Z

n

)(v) := hf(�(Z

1

); : : : ; �(Z

n

)); vi for Z

i

2 p

+

and v 2 V,

where � is the involution onstruted in B.1 and the inner produt is in V.

But then the ompatibility of the inner produt on V with the ation of g
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implies that F(�(f)) = �(F(f)). Thus we an ompute:

h�

�

(f

1

); f

2

i = F(f

2

)(�

�

(f

1

)) = �(F(f

2

))(f

1

)

= F(�(f

2

))(f

1

) = hf

1

; �(f

2

)i
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