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Abstrat. This is an enlarged abstrat of the talk with the same title, pre-

sented at the Fourth International Workshop on Di�erential Geometry and its

Appliations in Brasov, 1999. The goal is to provide a brief survey on the bak-

ground and reent ahievements in this newly expanding area of di�erential

geometry, as well as a guide to some of the old and new bibliography. More

detailed information in all aspets an be found in [8, 9, 10, 11, 12, 14, 28, 30℄.

My talk aims to review the reent development of the general theory of geo-

metrial strutures modeled over the homogeneous spaes G=P with G omplex

semisimple and P paraboli, or any real form of this situation. The leture is based

on a long time projet of the author joint with Andreas

�

Cap and Vladim��r Sou�ek,

and further joint papers with Mike Eastwood, Rod Gover, and Gerd Shmalz.

1. Comments on the bakground. Let us �rst say a few words about the history

of the subjet. The origin of all suh geometries goes bak to the Cartan's idea of

generalized spaes, i.e. ertain deformations of the homogeneous spaesG=P de�ned

by means of an absolute parallelism on a prinipal P{bundle. These onepts are

losely related to the Cartan's general method for the equivalene problem. Many

well known geometries have been shown to allow a anonial objet of suh type

with a suitable hoie of simple G and paraboli P , f. the theory of non{degenerate

CR{strutures of hypersurfae type due to [32, 13℄, and the pioneering series of

papers by Tanaka, see [33, 37, 26, 9℄ and referenes therein for more details and

more reent results. Nowadays, the name paraboli geometry has been adopted,

reeting the relation to the paraboli invariants program initiated by Fe�erman,

[15℄. Some years ago, the relation to the twistor theory aused the general interest

in a new alulus for suh geometries, with the aim to improve the tehniques in

onformal geometry and to extend them to the whole lass of paraboli geometries,

or at least to some of those. See e.g. the papers by Eastwood, Baston, Gover,

�

Cap,

and the author in the enlosed bibliography. The important soure of inspiration

was the lassial theory of the onformal invariants, see e.g. [34, 35, 36℄ and also

the di�erential geometry of onformal Riemannian manifolds (see e.g. [17, 16℄). The

most reent results are presented in [9, 10℄.

Here we shall disuss the �rst essential appliation of a new approah to this

topi, ombining the Lie algebrai tools with the frame bundle approah. This

researh started in [11℄ and the basi referene for this leture is [12℄.

The Bernstein-Gelfand-Gelfand resolutions of arbitrary G{modules have been

studied arefully in representation theory for many years, f. [25℄ and referenes

therein. An important feature of our approah is the exlusive usage of the ele-

mentary (�nite dimensional) representation theory. One ould even say that the

representation theory enters rather as a language and the way of thinking. Some

more involved representational theoretial aspets were indiated in [14℄.
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2. jkj{graded Lie algebras. Let G be a real or omplex semisimple Lie group

with a jkj-graded Lie algebra g, i.e.

g = g

�k

� � � � � g

0

� � � � � g

k

and assume that no simple ideal of g is ontained in g

0

and that the (nilpotent)

subalgebra g

�

= g

�k

� � � � � g

�1

is generated by g

�1

. We write p

+

= g

1

� � � � � g

k

and p = g

0

� p

+

. We also write g

�

= g

�k

� � � � � g

�1

, and g

j

= g

j

� � � � � g

k

,

j = �k; : : : ; k. Then p is a paraboli subalgebra of g, and atually the grading is

ompletely determined by this subalgebra, see e.g. [37, Setion 3℄. In partiular, all

omplex simple jkj{graded g are lassi�ed by subsets of simple roots of omplex

simple Lie algebras, up to onjugation. The real jkj{graded simple Lie algebras are

lassi�ed easily by means of Satake diagrams, see [22℄ or [37℄ for more details. Very

helpful notational onventions and omputational reipes may be found in [4℄.

For eah our jkj{graded Lie algebra g, there is the unique element E 2 g

0

with

the property [E; Y ℄ = jY for all Y 2 g

j

, j = �k; : : : ; k, the grading element. Of

ourse, E belongs to the enter z of the redutive part g

0

of p � g. Moreover,

the Killing form provides isomorphisms g

�

i

' g

�i

for all i = �k; : : : ; k and, in

partiular, its restritions to the enter z and the semisimple part g

ss

0

of g

0

are

non{degenerate. Now, for eah Lie group G with the jkj{graded Lie algebra g,

there is the losed subgroup P � G of all elements whose adjoint ations leave the

p{submodules g

j

= g

j

� � � � � g

k

invariant, j = �k; : : : ; k. The Lie algebra of P is

just p and there is the subgroup G

0

� P of elements whose adjoint ation leaves

invariant the grading by g

0

{modules g

i

, i = �k; : : : ; k. This is the redutive part

of the paraboli Lie subgroup P , with Lie algebra g

0

. We also de�ne subgroups

P

j

+

= exp(g

j

� � � � � g

k

), j = 1; : : : ; k, and we write P

+

instead of P

1

+

. Obviously

P=P

+

= G

0

and P

+

is nilpotent. Thus P is the semisimple produt of G

0

and

the nilpotent part P

+

. More expliitly (f. [9, Proposition 2.10℄, or [33, 37℄), eah

element g 2 P is expressed in the unique way as g = g

0

expZ

1

expZ

2

: : : expZ

k

,

with g

0

2 G

0

and Z

i

2 g

i

, i = 1; : : : ; k.

3. Paraboli geometries. The (real or omplex) paraboli geometry (G; !) of type

G=P is a (smooth or holomorphi) prinipal �ber bundle G with struture group

P , equipped by a (smooth or holomorphi) one{form ! 2 


1

(G; g) satisfying

(1) !(�

Z

)(u) = Z for all u 2 G and fundamental �elds �

Z

, Z 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

In partiular, eah X 2 g de�nes the onstant vetor �eld !

�1

(X) de�ned by

!(!

�1

(X)(u)) = X , u 2 G. The one{forms with properties (1){(3) are alled

(smooth or holomorphi) Cartan onnetions, f. [29℄.

The morphisms between paraboli geometries (G; !) and (G

0

; !

0

) are prinipal

�ber bundle morphisms ' (over the identity on P ) whih preserve the Cartan

onnetions, i.e. ' : G ! G

0

and '

�

!

0

= !.

The struture equations de�ne the horizontal smooth form K 2 


2

(G; g) alled

the urvature of the Cartan onnetion !:

d! +

1

2

[!; !℄ = K:

The urvature funtion � : G ! ^

2

g

�

�


g is then de�ned by means of the parallelism

�(u)(X;Y ) = K(!

�1

(X)(u); !

�1

(Y )(u)) = [X;Y ℄� !([!

�1

(X); !

�1

(Y )℄):

In partiular, the urvature funtion is valued in the ohains for the seond oho-

mology H

2

(g

�

; g). Moreover, there are two ways how to split �. We may onsider

the target omponents �

i

aording to the values in g

i

. The whole g

�

{omponent
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�

�

is alled the torsion of the Cartan onnetion !. The other possibility is to

onsider the homogeneity of the two forms �(u), i.e.

� =

3k

X

`=�k+2

�

(`)

; �

(`)

: g

i

� g

j

! g

i+j+`

:

Sine we deal with semisimple algebras only, there is the adjoint odi�erential

�

�

to the Lie algebra ohomology di�erential �, see e.g. [24℄. Consequently, there

is the Hodge theory on the ohains whih allows to deal very e�etively with

the urvatures. In partiular, we may use several restritions on the values of the

urvature whih turn out to be quite useful: The paraboli geometry (G; !) with

the urvature funtion � is alled at if � = 0, torsion{free if �

�

= 0, normal if

�

�

Æ � = 0, and regular if normal and �

(j)

= 0 for all j � 0. In partiular, the

normality ensures that the urvature is in ertain sense minimal and is governed

by the Lie algebra ohomology H

2

(g

�

; g) in a nie way, see [37, 9℄ for more details.

4. Flag strutures. The homogeneous models for paraboli geometries are the

real generalized ag strutures G=P and we still observe suh strutures in their

in�nitesimal forms on the urved strutures. Indeed, the �ltration of g by the p{

submodules g

j

is transferred to the right invariant �ltration T

j

G on the tangent

spae TG by the parallelism !. The tangent projetion Tp : TG ! TM then

provides the �ltration

TM = T

�k

M � T

�k+1

M � � � � � T

�1

M

of the tangent spae of the underlying manifold M . Moreover, the struture group

of the assoiated graded tangent spae

GrTM = (T

�k

M=T

�k+1

M)� � � � � (T

�2

M=T

�1

M)� T

�1

M

redues automatially to G

0

sine G

0

= G=P

+

learly plays the role of its frame

bundle. With some further simple onditions imposed, we talk about regular in-

�nitesimal ag strutures of type g=p and then a universal onstrution reovers

both the anonial Cartan bundle and the anonial normal Cartan onnetion, see

[9, 10℄ for details, [28℄ for some new appliations.

5. Natural bundles. Eah P{module V de�nes for all paraboli geometries (G !

M;!) of type G=P over a manifoldM the assoiated bundle VM = G�

P

V overM .

In fat, this is a funtorial onstrution whih may be restrited to all subategories

of paraboli geometries mentioned above and we all suh bundles natural (vetor)

bundles. Similarly, we may treat bundles assoiated to any representation P !

Di�(S) on a manifold S, the standard �ber for SM = G �

P

S. A speial lass of

natural (vetor) bundles de�ned by G{modules W is alled trator bundles, see

[2, 8℄ for historial remarks. The remarkable feature of trator bundles is that the

extension of the Cartan onnetion ! to the prinipal onnetion form ~! on the

extended Cartan bundle

~

G indues on them the anonial linear onnetions, see

[8℄ for a powerful alulus for these objets.

6. Semi{holonomi jet{modules. While the standard jet prolongations of ho-

mogeneous vetor bundles are again homogeneous vetor bundles orresponding to

ertain jet{modules, this onstrution does not extend out of loally at geometries,

i.e. those without urvature. On the other hand, the de�ning absolute parallelism

allows suh a onstrution for one{jets and so we an go on to all orders with the

semi{holonomi prolongations. This is the ore of our approah to invariant opera-

tors in [12℄ and a straightforward iterative onstrution of suitable homomorphisms

between semi{holonomi jet{modules provides all the distinguished operators in

the BGG{sequenes.
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Let us onsider a representation V of P , the orresponding homogeneous bundle

V (G=P ) = G�

P

V and its �rst jet prolongation J

1

(V (G=P ))! G=P . This is again

a homogeneous bundle, and the orresponding ation of P on its standard �ber

J

1

(V) := J

1

(V (G=P ))

o

= V � (g

�

�


 V)

is de�ned by means of the ation of fundamental vetor �elds on the equivariant

funtions s 2 C

1

(G;V)

P

. The formula for the ation of Z 2 p

+

on elements of

J

1

(V) viewed as pairs (v; '), where v 2 V and ' is a linear map from g

�

to V, is

given by

Z�(v; ') = (Z�v;X 7! Z�('(X)) � '(ad

�

(Z)(X)) + ad

p

(Z)(X)�v);

i.e. we get the tensorial ation plus one additional term mapping the value{part to

the derivative{part.

By iteration, we obtain the semi{holonomi jet modules

J

k

V = V � (g

�

�


 V) � � � � � (


k

g

�

�


 V)

with the appropriate ation of P . Now, the semi{holonomi jet prolongations of

natural bundles with standard �ber V turn out to be natural bundles orresponding

to P{modules J

k

V.

7. The BGG{resolutions. The straightforward onsequene of the naturality of

the semi{holonomi jet prolongation is that eah P{module homomorphism

� : J

k

V ! W

gives rise to a natural di�erential operator between the orresponding natural bun-

dles. Unfortunately, this orrespondene is not bijetive as in the ase of homo-

geneous bundles and standard jets, i.e. a non{zero homomorphism may lead to

a trivial operator and there are natural operators whih are not ahieved in this

way. However, there is an iterative onstrution of homomorphisms based on the

relation between the Lie algebra ohomologies and the vetor valued forms on man-

ifolds equipped with paraboli geometry, whih yields the so alled BGG{sequenes

of di�erential operators, �rst onstruted in [12℄.

In order to enjoy the avor of the general result, let us look at the example of

the most trivial BGG{sequene on 5{dimensional CR{geometries of hypersurfae

type, f. [12, Theorem 5.2℄. This example is a resolution of the sheaf of omplex

smooth funtions by means of the holomorphi and anti{holomorphi duals T

�

1;0

M ,

T

�

0;1

M to the omplexi�ed CR{subspae T

CR

C

M , and the quotient Q = T

C

M=T

CR

C

.

�

2

T

�

1;0

//

##HH
HH

HH
HH

HH
H

Q

�


 �

2

T

�

1;0

**UUUU

T

�

1;0

88qqqq

''NNNN



2

Q

�


 T

�

1;0

))RRR
RR

C

//
E

<<xxxx

""FF
FF

(kerL)

�

;;vvvvvvvvvv
//

##HH
HH

HH
HH

HH
H

Q

�


 (kerL)

�

44iiii

**UUUU



3

Q

�

T

�

0;1

77pppp

&&MM
MM




2

Q

�


 T

�

0;1

55lllll

�

2

T

�

0;1

//

;;vvvvvvvvvv

Q

�


 �

2

T

�

0;1

44iiii

This omplex always omputes the same ohomology as the De Rham omplex,

but it is of smaller dimension. The orders of all operators in the middle olumn are

two, all the other operators are of �rst order. Here G = SU(p + 1; q + 1), up to

some overing fenomena, and for all G{modules W , we obtain the nontrivial BGG{

sequenes of the same shape. Moreover, these ompute the same ohomology as

ertain twisted De Rham omplex on all loally at manifolds. Let us also remark
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that eah irreduible P{module with regular entral harater appears at exatly

one position in exatly one suh sequene.

All these operators belong to the lass of standard operators . The name omes

from representation theory and it is related to the fat that the orresponding Verma

module homomorphisms for a general parabolis desend from the homomorphisms

in the Borel ase. There are also natural operators whih are not standard, the so

alled non{standard ones, for whih our methods have not been e�etive enough

yet.
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