PARABOLIC GEOMETRIES AND
BERNSTEIN-GELFAND-GELFAND SEQUENCES

JAN SLOVAK

ABSTRACT. This is an enlarged abstract of the talk with the same title, pre-
sented at the Fourth International Workshop on Differential Geometry and its
Applications in Brasov, 1999. The goal is to provide a brief survey on the back-
ground and recent achievements in this newly expanding area of differential
geometry, as well as a guide to some of the old and new bibliography. More
detailed information in all aspects can be found in [8, 9, 10, 11, 12, 14, 28, 30].

My talk aims to review the recent development of the general theory of geo-
metrical structures modeled over the homogeneous spaces G/P with G complex
semisimple and P parabolic, or any real form of this situation. The lecture is based
on a long time project of the author joint with Andreas Cap and Vladimir Soucek,
and further joint papers with Mike Eastwood, Rod Gover, and Gerd Schmalz.

1. Comments on the background. Let us first say a few words about the history
of the subject. The origin of all such geometries goes back to the Cartan’s idea of
generalized spaces, i.e. certain deformations of the homogeneous spaces G/ P defined
by means of an absolute parallelism on a principal P-bundle. These concepts are
closely related to the Cartan’s general method for the equivalence problem. Many
well known geometries have been shown to allow a canonical object of such type
with a suitable choice of simple GG and parabolic P, cf. the theory of non—degenerate
CR-structures of hypersurface type due to [32, 13], and the pioneering series of
papers by Tanaka, see [33, 37, 26, 9] and references therein for more details and
more recent results. Nowadays, the name parabolic geometry has been adopted,
reflecting the relation to the parabolic invariants program initiated by Fefferman,
[15]. Some years ago, the relation to the twistor theory caused the general interest
in a new calculus for such geometries, with the aim to improve the techniques in
conformal geometry and to extend them to the whole class of parabolic geometries,
or at least to some of those. See e.g. the papers by Eastwood, Baston, Gover, Cap,
and the author in the enclosed bibliography. The important source of inspiration
was the classical theory of the conformal invariants, see e.g. [34, 35, 36] and also
the differential geometry of conformal Riemannian manifolds (see e.g. [17, 16]). The
most recent results are presented in [9, 10].

Here we shall discuss the first essential application of a new approach to this
topic, combining the Lie algebraic tools with the frame bundle approach. This
research started in [11] and the basic reference for this lecture is [12].

The Bernstein-Gelfand-Gelfand resolutions of arbitrary G—modules have been
studied carefully in representation theory for many years, cf. [25] and references
therein. An important feature of our approach is the exclusive usage of the ele-
mentary (finite dimensional) representation theory. One could even say that the
representation theory enters rather as a language and the way of thinking. Some
more involved representational theoretical aspects were indicated in [14].
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2. |k|-graded Lie algebras. Let G be a real or complex semisimple Lie group
with a |k|-graded Lie algebra g, i.e.

0=04O DD By

and assume that no simple ideal of g is contained in gy and that the (nilpotent)
subalgebra g =g _r ®--- P g_1 is generated by g_;. We write py = g1 ®--- D gg
and p = go @ py. We also write g_ = g, @ -~ D g1, and ¢/ = g; & - & gg,
j = —k,...,k. Then p is a parabolic subalgebra of g, and actually the grading is
completely determined by this subalgebra, see e.g. [37, Section 3]. In particular, all
complex simple |k|-graded g are classified by subsets of simple roots of complex
simple Lie algebras, up to conjugation. The real |k|-graded simple Lie algebras are
classified easily by means of Satake diagrams, see [22] or [37] for more details. Very
helpful notational conventions and computational recipes may be found in [4].

For each our |k|-graded Lie algebra g, there is the unique element E € go with
the property [E,Y] = jY for all Y € g;, j = —k,...,k, the grading element. Of
course, E belongs to the center 3 of the reductive part gy of p C g. Moreover,
the Killing form provides isomorphisms g} ~ g_; for all i = —k,...,k and, in
particular, its restrictions to the center 3 and the semisimple part g§°® of gy are
non—degenerate. Now, for each Lie group G with the |k|-graded Lie algebra g,
there is the closed subgroup P C G of all elements whose adjoint actions leave the
p-submodules g/ = g; @ - - @ gy, invariant, j = —k,..., k. The Lie algebra of P is
just p and there is the subgroup Gy C P of elements whose adjoint action leaves
invariant the grading by go—modules g;, i = —k,..., k. This is the reductive part
of the parabolic Lie subgroup P, with Lie algebra go. We also define subgroups
P_{_ =exp(g; ®---®gk), j =1,...,k, and we write P, instead of P}. Obviously
P/P, = Gy and Py is nilpotent. Thus P is the semisimple product of Gy and
the nilpotent part P;. More explicitly (cf. [9, Proposition 2.10], or [33, 37]), each
element g € P is expressed in the unique way as g = goexp Z1 exp Zs ...exp Zg,
with go € Go and Z; € g;, i =1,... k.

3. Parabolic geometries. The (real or complex) parabolic geometry (G,w) of type
G/P is a (smooth or holomorphic) principal fiber bundle G with structure group
P, equipped by a (smooth or holomorphic) one-form w € Q'(G, g) satisfying

(1) w(¢z)(u) = Z for all u € G and fundamental fields (z, Z € p

(2) (r")*w=Ad(b ) owforallbe P

(3) w|r,¢ : TuG — g is a linear isomorphism for all u € G.
In particular, each X € g defines the constant vector field w='(X) defined by
ww™ ' (X)(u)) = X, u € G. The one-forms with properties (1)-(3) are called
(smooth or holomorphic) Cartan connections, cf. [29].

The morphisms between parabolic geometries (G,w) and (G',w’) are principal
fiber bundle morphisms ¢ (over the identity on P) which preserve the Cartan
connections, i.e. ¢ : G — G’ and p*w' = w.

The structure equations define the horizontal smooth form K € Q?(G,g) called
the curvature of the Cartan connection w:

dw + %[w,w] =K.
The curvature function k : G — A?g* ®g is then defined by means of the parallelism
k() (X,Y) = K (0™ (X)(u),w™ (V)() = [X, Y] - w(fw™ (X),0™ (V))).

In particular, the curvature function is valued in the cochains for the second coho-
mology H?(g_,g). Moreover, there are two ways how to split x. We may consider
the target components «; according to the values in g;. The whole g_—component
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k— is called the torsion of the Cartan connection w. The other possibility is to
consider the homogeneity of the two forms x(u), i.e.

3k
k= Z k0, kO g x 9 = Gitj+e
t=—k+2
Since we deal with semisimple algebras only, there is the adjoint codifferential
0* to the Lie algebra cohomology differential 0, see e.g. [24]. Consequently, there
is the Hodge theory on the cochains which allows to deal very effectively with
the curvatures. In particular, we may use several restrictions on the values of the
curvature which turn out to be quite useful: The parabolic geometry (G,w) with
the curvature function & is called flat if kK = 0, torsion—free if k_ = 0, normal if
9* ok = 0, and regular if normal and x(9) = 0 for all j < 0. In particular, the
normality ensures that the curvature is in certain sense minimal and is governed
by the Lie algebra cohomology H?(g—, g) in a nice way, see [37, 9] for more details.

4. Flag structures. The homogeneous models for parabolic geometries are the
real generalized flag structures G/P and we still observe such structures in their
infinitesimal forms on the curved structures. Indeed, the filtration of g by the p—
submodules g’ is transferred to the right invariant filtration 77G on the tangent
space TG by the parallelism w. The tangent projection Tp : TG — TM then
provides the filtration

TM=TF*M>T*'M>...oT'M

of the tangent space of the underlying manifold M. Moreover, the structure group
of the associated graded tangent space

GrTM = (T *M/T* M) - & (T2M/T'M)e T™'M

reduces automatically to G since Gy = G/P; clearly plays the role of its frame
bundle. With some further simple conditions imposed, we talk about regular in-
finitesimal flag structures of type g/p and then a universal construction recovers
both the canonical Cartan bundle and the canonical normal Cartan connection, see
[9, 10] for details, [28] for some new applications.

5. Natural bundles. Each P-module V defines for all parabolic geometries (G —
M, w) of type G/P over a manifold M the associated bundle VM = G x pV over M.
In fact, this is a functorial construction which may be restricted to all subcategories
of parabolic geometries mentioned above and we call such bundles natural (vector)
bundles. Similarly, we may treat bundles associated to any representation P —
Diff(S) on a manifold S, the standard fiber for SM = G xp S. A special class of
natural (vector) bundles defined by G-modules W is called tractor bundles, see
[2, 8] for historical remarks. The remarkable feature of tractor bundles is that the
extension of the Cartan connection w to the principal connection form @ on the
extended Cartan bundle QN induces on them the canonical linear connections, see
[8] for a powerful calculus for these objects.

6. Semi—holonomic jet—modules. While the standard jet prolongations of ho-
mogeneous vector bundles are again homogeneous vector bundles corresponding to
certain jet—modules, this construction does not extend out of locally flat geometries,
i.e. those without curvature. On the other hand, the defining absolute parallelism
allows such a construction for one—jets and so we can go on to all orders with the
semi—holonomic prolongations. This is the core of our approach to invariant opera-
tors in [12] and a straightforward iterative construction of suitable homomorphisms
between semi-holonomic jet—modules provides all the distinguished operators in
the BGG—sequences.
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Let us consider a representation V of P, the corresponding homogeneous bundle
V(G/P) = G xpV and its first jet prolongation J*(V(G/P)) — G/P. This is again
a homogeneous bundle, and the corresponding action of P on its standard fiber

TJHV) = JYV(G/P) =V & (g ®@V)

is defined by means of the action of fundamental vector fields on the equivariant
functions s € C(G, V). The formula for the action of Z € py on elements of
JH(V) viewed as pairs (v, ), where v € V and ¢ is a linear map from g_ to V, is
given by

Z-(v,9) = (Z0,X = Z(p(X)) - plad_(2)(X)) + ady (2)(X) v),

i.e. we get the tensorial action plus one additional term mapping the value—part to
the derivative—part.
By iteration, we obtain the semi—holonomic jet modules

TV=Ve(@ oV)a - ¢ @ aV)

with the appropriate action of P. Now, the semi—holonomic jet prolongations of
natural bundles with standard fiber V turn out to be natural bundles corresponding
to P-modules J*V.

7. The BGG-resolutions. The straightforward consequence of the naturality of
the semi—holonomic jet prolongation is that each P-module homomorphism

d: 7V 5w

gives rise to a natural differential operator between the corresponding natural bun-
dles. Unfortunately, this correspondence is not bijective as in the case of homo-
geneous bundles and standard jets, i.e. a non—zero homomorphism may lead to
a trivial operator and there are natural operators which are not achieved in this
way. However, there is an iterative construction of homomorphisms based on the
relation between the Lie algebra cohomologies and the vector valued forms on man-
ifolds equipped with parabolic geometry, which yields the so called BGG—sequences
of differential operators, first constructed in [12].

In order to enjoy the flavor of the general result, let us look at the example of
the most trivial BGG—sequence on 5—dimensional CR—geometries of hypersurface
type, cf. [12, Theorem 5.2]. This example is a resolution of the sheaf of complex
smooth functions by means of the holomorphic and anti-holomorphic duals 77, M,
T4 M to the complexified CR-subspace TgRM, and the quotient Q = TCM/TER.

AQTI*,O . Q* ® AQTI*,O

7 T~
17y 22Q* ® 17,
C—¢& (ker £)* — Q* ® (ker £)* ®3Q*
T, >< 22°Q* ® 151
N —

A2T6*71 —Q*® A2T6*71

This complex always computes the same cohomology as the De Rham complex,
but it is of smaller dimension. The orders of all operators in the middle column are
two, all the other operators are of first order. Here G = SU(p + 1,¢ + 1), up to
some covering fenomena, and for all G-modules W, we obtain the nontrivial BGG—
sequences of the same shape. Moreover, these compute the same cohomology as
certain twisted De Rham complex on all locally flat manifolds. Let us also remark
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that each irreducible P-module with regular central character appears at exactly
one position in exactly one such sequence.

All these operators belong to the class of standard operators. The name comes
from representation theory and it is related to the fact that the corresponding Verma
module homomorphisms for a general parabolics descend from the homomorphisms
in the Borel case. There are also natural operators which are not standard, the so
called non—standard ones, for which our methods have not been effective enough

yet.
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