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Abstrat. This is a survey along the lines of the talk at the onferene Lie

III, held in Clausthal in July 1999. The aim is to present amazing problems

related to the invariant operators whih are not urved analogues of the so

alled standard operators in the Bernstein{Gelfand{Gelfand resolutions. On

the way, we provide some bakground and reent ahievements, as well as a

guide to some of the old and new bibliography.

The leture is based on a long time projet of the author joint with Andreas

�

Cap

and Vladim��r Sou�ek, and further joint papers with Mike Eastwood, Rod Gover,

and Gerd Shmalz. The main referene is [22℄ and muh more information an be

found in the reent researh papers [7, 8, 9, 10, 11, 14, 27℄ and expository works

[13, 29, 30℄.

1. Quaternioni geometry | an example of Paraboli geometries. The

origin of various types of geometries goes bak to the Cartan's idea of generalized

spaes, i.e. ertain deformations of the homogeneous spaes G=P de�ned by means

of an absolute parallelism on a prinipal P{bundle. Cartan developed these onepts

in lose relation to his general equivalene problem. The quaternioni geometry

belongs to many geometries known to allow a anonial objet of suh type with a

suitable hoie of semisimple G and paraboli P , f. the theory of non{degenerate

CR{strutures of hypersurfae type due to [31, 12℄, and the pioneering series of

papers by Tanaka, see [32, 33, 25, 8℄ and referenes therein for more details and more

reent results. The urrent name paraboli geometry has been adopted in onnetion

to the paraboli invariants program initiated by Fe�erman, [15℄. There is a striking

relation to the twistor theory in the best known ase of paraboli geometries, the

onformal Riemannian ones. This relation suggested to seek for a new alulus for

all similar geometries, with the aim to improve the tehniques even in onformal

geometry, see e.g. the papers by Eastwood, Baston, Bailey, Gover,

�

Cap, and the

author in the enlosed bibliography. For a di�erent approah to similar questions

see [16, 17℄.

As well known, the quaternioni geometry is de�ned as a lassial torsion free

G{struture on a 4m{dimensional manifold with struture group

G

0

= S(GL(p=2; H ) �GL(q=2; H )) � GL(4m;R)

where 4m = pq, 2 = p � q even, f. [26℄. These geometries �t into a larger lass of

G{strutures with quaternioni forms of the omplexi�ed group G

C

0

= S(GL(p; C )�

GL(q; C )) as struture groups and, more generally, other real forms with 1 � p � q.

On the level of the Lie algebras, these struture groups are distinguished by the

requirement that g

0

is the omponent in a real graded Lie algebra g = g

�1

�g

0

�g

1

where the omplexi�ation is g

C

= sl(p+ q; C ).

There is a nie geometri way to desribe these strutures, whih mimis the sit-

uation in the four{dimensional onformal spin geometry: The omplexi�ed tangent
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bundle is identi�ed as a tensor produt of two auxiliary omplex vetor bundles of

�ber dimensions p and q, in the realm of the Penrose's abstrat index notation

(TM)

C

= E

A


 E

A

0

;

together with the �xed identi�ation of the top degree forms

�

p

E

A

0

' �

q

E

A

:

Of ourse, the way how this tensorial deomposition is reeted on the real level

depends on the spei� real form. In partiular, we have suh a real deomposition

of TM for the so alled almost Grassmannian strutures orresponding to the real

split form SL(p+ q;R) of G

C

.

In the general ase, all these geometries (exept p = 1 and p = q = 2) have

two irreduible omponents of the total urvature and one of them is the anonial

torsion. The quaternioni geometries are distinguished by the proper hoie of G,

as above, and the vanishing of the torsion. In a remarkable extent, they generalize

the notion of the self dual four{dimensional onformal geometries.

2. General paraboli geometries. Let G be a semisimple real Lie group and

P � G its paraboli subgroup. On the level of the Lie algebras, this amounts to the

existene of the jkj{grading

g = g

�k

� � � � � g

0

� � � � � g

k

:

We assume that no simple ideal of g is ontained in g

0

and that the (nilpotent)

subalgebra g

�

= g

�k

� � � � � g

�1

is generated by g

�1

. We write p

+

= g

1

� � � � � g

k

and p = g

0

� p

+

. We also write g

�

= g

�k

� � � � � g

�1

, and g

j

= g

j

� � � � � g

k

,

j = �k; : : : ; k. Then p is a paraboli subalgebra of g, and atually the grading is

ompletely determined by this subalgebra, see e.g. [33, Setion 3℄.

A (real) paraboli geometry (G; !) of type G=P is a smooth prinipal �ber bundle

G with struture group P , equipped by a smooth one{form ! 2 


1

(G; g) satisfying

(1) !(�

Z

)(u) = Z for all u 2 G and fundamental �elds �

Z

, Z 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

In partiular, eah X 2 g de�nes the onstant vetor �eld !

�1

(X) de�ned by

!(!

�1

(X)(u)) = X , u 2 G. The one{forms with properties (1){(3) are alled

(smooth) Cartan onnetions, f. [28℄. The homogeneous spae G! G=P , together

with the left Maurer{Cartan form is the at model of the geometries of type G=P .

The morphisms between paraboli geometries (G; !) and (G

0

; !

0

) are prinipal

�ber bundle morphisms ' (over the identity on P ) whih preserve the Cartan

onnetions, i.e. ' : G ! G

0

and '

�

!

0

= !.

The struture equations de�ne the prinipal obstrution against the loal at-

ness, the horizontal smooth form K 2 


2

(G; g) alled the urvature of the Cartan

onnetion !:

d! +

1

2

[!; !℄ = K:

The urvature funtion � : G ! ^

2

g

�

�


g is then de�ned by means of the parallelism

�(u)(X;Y ) = K(!

�1

(X)(u); !

�1

(Y )(u)) = [X;Y ℄� !(u)([!

�1

(X); !

�1

(Y )℄):

In partiular, the urvature funtion is valued in the ohains for the seond oho-

mology H

2

(g

�

; g). Moreover, there are two ways how to split �. We may onsider

the target omponents �

i

aording to the values in g

i

. The whole g

�

{omponent

�

�

is alled the torsion of the Cartan onnetion !. The other possibility is to

onsider the homogeneity of the two forms �(u).

Sine we deal with semisimple algebras only, there is the adjoint odi�erential

�

�

to the Lie algebra ohomology di�erential �, see e.g. [24℄. Consequently, there
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is the Hodge theory on the ohains whih allows to deal very e�etively with

the urvatures. In partiular, we may use several restritions on the values of the

urvature whih turn out to be quite useful: The paraboli geometry (G; !) with

the urvature funtion � is alled at if � = 0, torsion{free if �

�

= 0, normal if

�

�

Æ � = 0, and regular if normal and �

(j)

= 0 for all j � 0. In partiular, the

normality ensures that the urvature is in ertain sense minimal and is governed

by the Lie algebra ohomology H

2

(g

�

; g) in a nie way, see [33, 8℄ for more details.

For eah paraboli geometry (G; !) over M , the �ltration of g by the p{submo-

dules g

j

is transferred to the right invariant �ltration T

j

G on the tangent spae TG

by the parallelism !. The tangent projetion Tp : TG ! TM then provides the

�ltration

TM = T

�k

M � T

�k+1

M � � � � � T

�1

M

of the tangent spae of the underlying manifold M . Moreover, the struture group

of the assoiated graded tangent spae

GrTM = (T

�k

M=T

�k+1

M)� � � � � (T

�2

M=T

�1

M)� T

�1

M

redues automatially to G

0

sine G

0

= G=P

+

learly plays the role of its frame

bundle. With some further simple onditions imposed, we talk about regular in�n-

itesimal ag strutures of type g=p and then a universal onstrution reovers both

the anonial Cartan bundle and the anonial normal Cartan onnetion, see [8, 9℄

for details, [27℄ for some new appliations.

3. Natural bundles and operators. Eah P{module V de�nes for all paraboli

geometries (G ! M;!) of type G=P over a manifold M the assoiated bundle

VM = G �

P

V over M . In fat, this is a funtorial onstrution whih may be

restrited to all subategories of paraboli geometries mentioned above and we all

suh bundles natural (vetor) bundles. Similarly, we may treat bundles assoiated

to any representation P ! Di�(S) on a manifold S, the standard �ber for SM =

G �

P

S. The lass of all natural (vetor) bundles de�ned by G{modules W is alled

trator bundles, see [2, 7℄ for historial remarks. The remarkable feature of trator

bundles is that the extension of the Cartan onnetion ! to the prinipal onnetion

form ~! on the extended Cartan bundle

~

G indues on them the anonial linear

onnetions, see [22, 7, 9℄ for muh more information. The distinguished bundles

E

A

, E

A

0

, their duals E

A

, E

A

0

, and invariant omponents of their tensor produts are

alled, by analogy to the onformal geometry, the (generalized) spinor bundles.

The natural operators, for paraboli geometries of a �xed type G=P , are sys-

tems of di�erential operators D

M

: �(VM) ! �(V

0

M) between setions of the

natural bundles, whih intertwine the indued ations of the morphisms. Of ourse,

we obtain exatly the (translational) invariant operators D

G=P

between the ho-

mogeneous bundles on the at model. At the same time, eah invariant operator

D

G=P

extends uniquely to a natural operator on the full subategory of loally at

paraboli geometries.

As we shall disuss below, the natural operators may be expressed by means of a

universal operation, the invariant di�erential de�ned as the derivative of funtions

on G with respet to the onstant vetor �elds !

�1

(X) on G. Thus, for eah setion

s of a natural bundle VM , i.e. s 2 C

1

(G;V)

P

, there is the di�erential r

!

s 2

C

1

(G; g

�

�


V). Thoughr

!

s is not P{equivariant, as a rule, it provides an extremely

useful tool for the study of natural operators.

4. Semi{holonomi jet{modules. While the standard jet prolongations of ho-

mogeneous vetor bundles are again homogeneous vetor bundles orresponding to

ertain jet{modules, this onstrution does not extend out of loally at geome-

tries, i.e. those without urvature. On the other hand, the invariant di�erential

yields suh a onstrution for one{jets and so we an go on to all orders with
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the semi{holonomi prolongations. This is the ore of our approah to invariant

operators in [10, 11℄ and a straightforward iterative onstrution of suitable ho-

momorphisms between semi{holonomi jet{modules provides all the distinguished

operators in the BGG{sequenes.

Let us onsider a representation V of P , the orresponding homogeneous bundle

V (G=P ) = G�

P

V and its �rst jet prolongation J

1

(V (G=P ))! G=P . This is again

a homogeneous bundle, and the orresponding ation of P on its standard �ber

J

1

(V) := J

1

(V (G=P ))

o

= V � (g

�

�


 V)

is de�ned by means of the ation of fundamental vetor �elds on the equivariant

funtions s 2 C

1

(G;V)

P

. The formula for the ation of Z 2 p

+

on elements of

J

1

(V) viewed as pairs (v; '), where v 2 V and ' is a linear map from g

�

to V, is

given by

Z�(v; ') = (Z�v;X 7! Z�('(X)) � '(ad

�

(Z)(X)) + ad

p

(Z)(X)�v);

i.e. we get the tensorial ation plus one additional term mapping the value{part to

the derivative{part.

By iteration, we obtain the semi{holonomi jet modules

J

k

V = V � (g

�

�


 V) � � � � � (


k

g

�

�


 V)

with the appropriate ation of P . Now, the semi{holonomi jet prolongations of

natural bundles with standard �ber V turn out to be natural bundles orrespond-

ing to P{modules J

k

V and, moreover, the iterated invariant di�erential provides

the natural operator s 7! (s;r

!

s; : : : ; (r

!

)

k

s) valued in the semi{holonomi jet

prolongation. This is just an expliit version of the embedding of holonomi jets

into the semi{holonomi ones, whih restrits to the the usual embedding in the

at ase but involves the urvatures in general.

A straightforward onsequene of the naturality of the semi{holonomi jet pro-

longation is that eah P{module homomorphism

� : J

k

V ! W

gives rise to a natural di�erential operator between the orresponding natural bun-

dles. Of ourse, the invariant di�erential provides expliit formulae for suh opera-

tors.

5. The BGG{resolutions and the standard natural operators. In general,

the latter orrespondene is not bijetive as in the ase of homogeneous bundles

and standard jets, i.e. a non{zero homomorphism may lead to a trivial operator and

there are natural operators whih are not ahieved in this way, f. [23, 14℄. However,

if we manage to express an invariant operator between homogeneous vetor bundles

by means of a homomorphism � of semi{holonomi jet modules (instead of the

holonomi ones as in the lassial representation theoretial approah), then the

symbol of the resulting operator will remain always the same. In partiular, the

whole operator is of the same order as in the at ase and we talk about the urved

analogue of the given invariant operator on the at model.

As well known, the invariant di�erential operators between the homogeneous ve-

tor bundles are desribed in terms of the homomorphisms between the (generalized)

Verma modules (just dualization and the so alled Frobenius reiproity priniple).

In the ase of the Borel subgroup P � G, all these operators are ompositions of

some basi ones, whih form the so alled Bernstein{Gelfand{Gelfand resolutions

of onstant sheaves orresponding to G{modules. A remarkable feature of more

general parabolis appears: there are again some basi operators establishing the

(generalized) Bernstein-Gelfand{Gelfand resolutions, the standard operators, but

apart from these and their non{zero ompositions whih all ome in ertain sense



NON{STANDARD INVARIANT OPERATORS FOR QUATERNIONIC GEOMETRIES 5

from the Borel ase, there are also the so{alled non{standard operators. The latter

operators appear in situations where the prospetive ompositions of the standard

ones vanish and they have been studied in quite detail in onformal Riemannian

geometries.

While all standard invariant operators admit a distinguished urved analogue,

�rst onstruted in full generality in [11℄, the problem of the existene of urved

analogues of the non{standard ones still remains open, partly even in the onformal

ase, f. [23, 14℄.

6. Bak to quaternioni geometries { loal twistor alulus. Let us �x one

of the real forms of G

C

= SL(p + q; C ) mentioned in Setion 1, for instane the

quaternioni one. We shall follow the notation established in [22℄ whih extends the

standard onventions used in the twistor theory.

The standard representation of G on C

p+q

yields the �ltered P{modules (reall

the notation used for the basi spinor bundles E

A

, E

A

0

in Setion 1 and write V

A

and V

A

0

, or V

A

, V

A

0

for the orresponding P{modules and their duals)

V

�

= V

A

+ V

A

0

; V

�

= V

A

0

+ V

A

:

This notational onvention means that the `right ends' in the formal sums are

submodules while the `left ends' are quotients. These �ltrations determine �ltrations

of the orresponding speial ase of trator bundles, alled twistor bundles

E

�

= E

A

+ E

A

0

; E

�

= E

A

0

+ E

A

:

We also write X

�

A

0

for the anonial setion of E

�

A

0

whih gives the injeting mor-

phism E

A

0

! E

�

via v

A

0

7! X

�

A

0

v

A

0

, et. More generally, tensor produts of the

twistor bundles and salar densities (the latter ones are no more oming from G{

modules) are alled the weighted twistor bundles. We denote them by E

�:::�

:::�

[w℄

where w is the weight oming from the densities. Let us notie that the irreduible

omponents at the right hand ends of the �ltrations of weighted twistor bundles

are invariant subbundles while those at the left hand ends are irreduible quotients.

In partiular, all irreduible natural bundles are easily aommodated as both sub-

bundles and quotients of the weighted twistor bundles.

The invariant di�erential provides the formulae for the anonial linear onne-

tions on these bundles. For example on E

�

and E

�

r

P

0

A

�

v

B

v

B

0

�

=

 

r

P

0

A

v

B

+ Æ

B

A

v

P

0

r

P

0

A

v

B

0

� P

P

0

B

0

AB

v

B

!

r

P

0

A

(u

B

u

B

0

) = (r

P

0

A

u

B

+ P

P

0

B

0

AB

u

B

0

r

P

0

A

u

B

0

� Æ

P

0

B

0

u

A

);

where the nablas and P on the right hand side indiate the usual spinor onne-

tion and the so alled Rho{tensor determined by a hoie of (generalized) Weyl

struture, i.e. a hoie of a redution of the struture group P to its redutive (or

even semi{simple) part. Thus, we have extended the well known formulae from

the four{dimensional onformal Riemannian geometry. Of ourse, the formulae are

independent of any of these hoies.

The de�nition of very important objets in our loal twistor alulus, the D-

operators, is based on the observation that the spinor{twistor objet

D

A

0

�

f := (r

A

0

B

f wÆ

A

0

B

0

f)

is invariant for all weighted twistors f 2 �(E)[w℄. We regard this as an injeting part

of the invariant twistor objet D

�

�

f := X

�

A

0

D

A

0

�

f . More generally, the operator D

�

�

is well de�ned and invariant on setions of the weighted twistor bundles E

�����

����

[w℄

(here we exploit the anonial twistor onnetion r).
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E

-

�

�

�R

E

A

0


 E

A

?

�

�

�	

�

�

�R

( E

A

)[�1℄

�

�

�R

-

E

A

0


 E

A

�

�

�R

�

�

�	

?

(E

A

0


 E

A

)[�1℄

�

�

�	

�

�

�R

?

E

A

0


 E

A

�

�

�	

�

�

�R

?

( E

A

)[�2℄

-

�

�

�R

E

A

0


 E

A

�

�

�	

�

�

�R

?

( E

A

0

)[�1℄

�

�

�	

(E

A

0


 E

A

)[�2℄

�

�

�	

�

�

�R

?

( E

A

0


 E

A

)[�2℄

�

�

�	

( E

A

)[�3℄

�

�

�R

( E

A

0


 E

A

)[�3℄

�

�

�	

(E

A

0


 E

A

)[�4℄

�

�

�	

E [�6℄

Figure 1

The latter onstrution yields natural operators whih admit ompositions, but

they are highly redundant. The next step is to make their targets smaller and

symmetrized enough to kill many ontrations. This is essentially the ore of the

de�nition of the operators D

����Æ

�����

as a sort of symmetrized onatenations of D

�

�

in

[22℄.

7. The non{standard operators. The general results in [22℄ tell us that all

natural operators an be obtained via the latter operators D

����Æ

�����

but a �rst good

test of the atual power of this alulus is to try to onstrut some of the non{

standard operators. This task seems to be quite hard and a straightforward use of

representation theoretial tools for �nding the homomorphisms of semi{holonomi

jet{modules has not brought a reasonable understanding yet.

We shall use the Young symmetrizers in order to desribe the individual irre-

duible omponents of the natural bundles. This notation should be lear from
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Figure 1, where the short arrows show the deomposition of the de Rham reso-

lution of (omplex) funtions into irreduible omponents, in the speial ase of

8{dimensional underlying manifolds M .

Now, the long arrows on the left{hand side desribe the non{standard invariant

operators on the at model. A quite lengthy veri�ation in [22℄ reveals that the

operators D

����Æ

�����

give rise to the fourth order operators

�

ABCD

: (

k

6

?

.

.

.

.

.

.

E

E

)[�k℄! (

k + 2

6

?

.

.

.

.

.

.

E

E

)[�k � 2℄;

for all quaternioni geometries, whih are urved analogues of the above mentioned

long arrows.

Let us observe that the operator emanating from E annot ome from a P{

module homomorphism on the orresponding semi{holonomi jet modules. Indeed,

this would imply the same property for the seond power of the Laplaian in the

four{dimensional onformal geometry, whih is exluded in [14℄. We do not know the

answer for the rest of them, although this is a very appealing question. Indeed, those

operators whih are given by the P{module homomorphisms on semi{holonomi

jets allow a urved version of the translation priniple.

There is a good hope to extend the tehnique from [14℄ to all quaternioni ge-

ometries.
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