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Abstra
t. | The goal of this paper is to des
ribe expli
itly all invariant �rst order

operators on manifolds equipped with paraboli
 geometries. Both the results and the

methods present an essential generalization of Fegan's des
ription of the �rst order

invariant operators on 
onformal Riemannian manifolds, [21℄. On the way to the

results, we present a short survey on basi
 stru
tures and properties of paraboli


geometries, together with links to further literature.

R�esum�e. | Le but de l'arti
le est de
rire expli
itement tous operateurs di�eren-

tiaux invariantes, de order une sur les vari�etes muni ave
 la stru
ture de geometrie

paraboli
 (les espa
es generalis�ees de E. Cartan). Les resultats ansi que les methodes

presentes une generalisation essen
ial du resultat de Fegan sur le 
lassi�
ation les op-

erateurs di�erential d'order une sur vari�etes muni ave
 la stru
ture 
onforme ([21℄).

L'arti
le present un meme temps une resum�ee breve du proprietes fondamentaux de

les'espa
es generalis�ees de E. Cartan et une 
al
ul di�erentiel sur 
ettes espa
es.

1. Setting of the problem

Invariant operators appear in many areas of global analysis, geometry, mathemat-

i
al physi
s, et
. Their analyti
al properties depend very mu
h on the symmetry

groups, whi
h in turn determine the type of the ba
kground geometries of the under-

lying manifolds. The most appealing example is the so 
alled 
onformal invarian
e

of many distinguished operators like Dira
, twistor, and Yamabe operators in Rie-

mannian geometry whi
h lead to the study of all these operators in the framework of

the natural bundles for 
onformal Riemannian geometries. Of 
ourse, mathemati
ians

suggested a few s
hemes to 
lassify all su
h operators and to dis
uss their properties

from a universal point of view, usually 
onsisting of a 
ombination of geometri
 and

algebrai
 tools. See e.g. [41, 42, 43, 6, 7, 8, 33, 9, 28, 10℄. All of them 
ombine, in
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di�erent ways, ideas of representation theory of Lie algebras with di�erential geometry

and global analysis.

In the 
ontext of problems in twistor theory and its various generalizations, the

more general framework of representation theory of paraboli
 subgroups in semisimple

Lie groups was suggested and links to the in�nite dimensional representation theory

were exploited, see e.g. the pioneering works [4, 5℄. The 
lose relation to the Tanaka's

theory (
f. [39, 40, 17, 44, 32, 13℄) was established and we may witness a fruitful

intera
tion of all these ideas and the 
lassi
al representation theory nowadays, see e.g.

[2, 3, 12, 14, 15, 16, 18, 22, 23, 24, 25℄.

1.1. Paraboli
 geometries. | The name paraboli
 geometry was introdu
ed in

[26℄, following Fe�erman's 
on
ept of paraboli
 invariant theory, 
f. [19, 20℄, and

it seems to be 
ommonly adopted now. The general ba
kground for these geometries

goes ba
k to Klein's de�nition of geometry as the study of homogeneous spa
es, whi
h

play the role of the 
at models for geometries in the Cartan's point of view. Thus,

following Cartan, the (
urved) geometry in question on a manifold M is given by a

�rst order obje
t on a suitable bundle of frames, an absolute parallelism ! : TG ! g

for a suitable Lie algebra g de�ned on a prin
ipal �ber bundle G !M with stru
ture

group P whose Lie algebra is 
ontained in g. On the Klein's homogeneous spa
es

themselves, there is the 
anoni
al 
hoi
e | the left{invariant Maurer{Cartan form !

while on general G, ! has to be equivariant with respe
t to the adjoint a
tion and to

re
over the fundamental ve
tor �elds. These obje
ts are 
alled Cartan 
onne
tions and

they play the role of the Levi{Civita 
onne
tions in Riemannian geometry in 
ertain

extent. A readable introdu
tion to this ba
kground in a modern setting is to be found

in [35℄. The paraboli
 geometries, real or 
omplex, are just those 
orresponding to

the 
hoi
es of paraboli
 subgroups in real or 
omplex Lie groups, respe
tively.

Ea
h linear representation E of the (paraboli
) stru
ture group P gives rise to the

homogeneous ve
tor bundle E(G=P ) over the 
orresponding homogeneous spa
eG=P ,

and similarly there are the natural ve
tor bundles G�

P

E asso
iated to ea
h paraboli


geometry on a manifold M . Analogously, more general natural bundles G �

P

S are

obtained from a
tions of P on manifolds S.

Morphisms ' : (G; !) ! (G

0

; !

0

) are prin
ipal �ber bundle morphisms with the

property '

�

!

0

= !. Obviously, the 
onstru
tion of the natural bundles is fun
torial

and so we obtain the well de�ned a
tion of morphisms of paraboli
 geometries on

the sheaves of lo
al se
tions of natural bundles. In parti
ular, the invariant operators

on manifolds with paraboli
 geometries are then de�ned as those operators on su
h

se
tions 
ommuting with the above a
tions.

1.2. First order linear operators. | The mere existen
e of the absolute paral-

lelism ! among the de�ning data for a paraboli
 geometry on M yields an identi�-


ation of all �rst jet prolongations J

1

EM of natural bundles with natural bundles

G �

P

J

1

E for suitable representations J

1

E of P , see 2.4 below. Moreover, there is

the well known general relation between invariant di�erential operators on homoge-

neous ve
tor bundles and the intertwining morphisms between the 
orresponding jet

modules. Thus, we see immediately that ea
h �rst order invariant operator between
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homogeneous ve
tor bundles over G=P extends 
anoni
ally to the whole 
ategory of

paraboli
 geometries of type (G;P ). We may say that they are given expli
itly by

their symbols (whi
h are visible on the 
at model G=P ) and by the de�ning Cartan


onne
tions !.

On the other hand, the invariants of the geometries may enter into the expressions

of the invariant operators, i.e. we should 
onsider also all possible 
ontributions from

the 
urvature of the Cartan 
onne
tion !. This leads either to operators whi
h are

not visible at all on the (lo
ally) 
at models, or to those whi
h share the symbols

with the above ones and again the di�eren
e 
annot be seen on the 
at models.

In this paper we shall not deal with su
h 
urvature 
ontributions and all 
lassi-

�
ation 
laims below have to be understood `up to the possible 
urvature terms'.

In this sense we des
ribe all �rst order operators for all paraboli
 geometries by ex-

pli
it formulae and the existen
e part of our problem is solved 
ompletely dealing

only with the homogeneous models and in purely algebrai
 way. At same time, there

are stri
t analogies to the Weyl 
onne
tions from 
onformal Riemannian geometries

available for all paraboli
 geometries and so we shall also be able to provide expli
it

universal formulae for all operators from the 
lassi�
ation lists in terms of these linear


onne
tions on the underlying manifolds.

This was exa
tly the output of Fegan's approa
h in the spe
ial 
ase of G = SO(m+

1; 1), P the Poin
ar�e 
onformal group, whi
h 
orrespond to the 
onformal Riemannian

geometries, [21℄. We have re
overed and vastly extended his approa
h to higher order

operators for all j1j{graded Lie algebras g in the third part of [15℄. Here we fo
us

again on the �rst order operators only, but we show that 
ompared to the 
omplexity

of the so 
alled standard operators of all orders in the Bernstein{Gelfand{Gelfand

sequen
es, 
onstru
ted �rst in [16℄ and developed mu
h further in [11℄, the original

Fegan's approa
h to �rst order operators is surprisingly powerful in the most general


ontext. We should also like to mention that a 
omplete line of arguments for our

results is given during the general survey{like exposition of the general theory of

paraboli
 geometries.

2. Paraboli
 geometries, Weyl 
onne
tions, and jet modules

2.1. Regular in�nitesimal 
ag stru
tures. | The homogeneous models for

paraboli
 geometries are the (real or 
omplex) generalized 
ag manifolds G=P with

G semisimple, P paraboli
. It is well known that on the level of the Lie algebras, the


hoi
e of su
h a pair (g; p) is equivalent to a 
hoi
e of the

so 
alled jkj{grading of a semisimple g

g = g

�k

� � � � � g

�1

� g

0

� � � � � g

k

p = g

0

� � � � � g

k

g

�

= g

�k

� � � � � g

�1

' g=p:

Then the Cartan{Killing form provides the identi�
ation g

�

i

= g

�i

and there is the

Hodge theory on the 
ohomologyH

�

(g

�

;W ) for any g{module W , 
f. [40, 44, 13, 16℄.
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Now, the Maurer{Cartan form ! distributes these gradings to all frames u 2 G

and all P{equivariant data are proje
ted down to the 
ag manifolds G=P . This 
on-

stru
tion goes through for ea
h Cartan 
onne
tion of type (G;P ) and so there is the

�ltration

TM = T

�k

M � T

�k+1

M � � � � � T

�1

M(1)

on the tangent bundle TM of ea
h manifold M underlying the prin
ipal �ber bundle

G ! M with Cartan 
onne
tion ! 2 


1

(G; g), indu
ed by the inverse images of the

P{invariant �ltration of g. Moreover, the same absolute parallelism ! indu
es the

redu
tion of the stru
ture group of the asso
iated graded tangent bundle

GrTM = (T

�k

M=T

�k+1

)� � � � � (T

�2

M=T

�1

M)� T

�1

M

to the redu
tive part G

0

of P . In parti
ular, this redu
tion introdu
es an algebrai


bra
ket on GrTM whi
h is the transfer of the G

0

{equivariant Lie bra
ket in g

�k

�

� � � � g

�1

.

Next, let M be any manifold, dimM = dim g

�

. An in�nitesimal 
ag stru
ture of

type (G;P ) onM is given by a �ltration (1) on TM together with the redu
tion of the

asso
iated graded tangent bundle to the stru
ture group G

0

of the form GrT

x

M '

Gr g

�

, with the freedom in G

0

, at ea
h x 2M .

Let us write f ; g

g

0

for the indu
ed algebrai
 bra
ket on GrTM . The in�nitesimal


ag stru
ture is 
alled regular if [T

i

M;T

j

M ℄ � T

i+j

M for all i; j < 0 and the algebrai


bra
ket f ; g

Lie

on GrTM indu
ed by the Lie bra
kets of ve
tor �elds onM 
oin
ides

with f ; g

g

0

. It is not diÆ
ult to observe that the in�nitesimal stru
tures underlying

Cartan 
onne
tions ! are regular if and only if there are only positive homogeneous


omponents of the 
urvature � of !, 
f. [34, 14℄.

The remarkable 
on
lusion resulting from the general theory 
laims that for ea
h

regular in�nitesimal 
ag stru
ture of type (G;P ) on M , under suitable normalization

of the 
urvature � (its 
o{
losedness), there is a unique Cartan bundle G !M and a

unique Cartan 
onne
tion ! on G of type (G;P ) whi
h indu
es the given in�nitesimal


ag stru
ture, up to isomorphisms of paraboli
 geometries and with a few ex
eptions,

see [40, 32, 13℄ or [14℄, se
tions 2.7{2.11., for more details.

2.2. Examples. | The simplest and best known situation o

urs for j1j{graded

algebras, i.e. g = g

�1

� g

0

� g

1

. Then the �ltration is trivial, TM = T

�1

M , and

the regular in�nitesimal 
ag stru
tures 
oin
ide with standard G

0

{stru
tures, i.e.

redu
tions of the stru
ture group of TM to G

0

. The examples in
lude the 
onformal,

almost Grassmannian, and almost quaternioni
 stru
tures. The proje
tive stru
tures


orrespond to g = sl(m+1;R), g

0

= gl(m;R), and this is one of the ex
eptions where

some more stru
ture has to be 
hosen in order to 
onstru
t the 
anoni
al Cartan


onne
tion !. The series of papers [15℄ is devoted to all these geometries.

Next, the j2j{graded examples in
lude the so 
alled paraboli
 
onta
t geometries

and, in parti
ular, the hypersurfa
e type non{degenerate CR-stru
tures. See e.g. [44,

14℄ for more detailed dis
ussions. Further examples of geometries are given by the

Borel subalgebras in semisimple Lie algebras, and they are modeled on the full 
ag

manifolds G=P .
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2.3. The invariant di�erential. | The Cartan 
onne
tion ! de�nes the 
onstant

ve
tor �elds !

�1

(X) on G, X 2 g. They are de�ned by !(!

�1

(X)(u)) = X , for all

u 2 G. In parti
ular, !

�1

(Z) is the fundamental ve
tor �eld if Z 2 p. The 
onstant

�elds !

�1

(X) with X 2 g

�

are 
alled horizontal.

Now, let us 
onsider any natural ve
tor bundle EM = G �

P

E . Its se
tions may be

viewed as P{equivariant fun
tions s : G ! E and the Lie derivative of fun
tions with

respe
t to the 
onstant horizontal ve
tor �elds de�nes the invariant derivative (with

respe
t to !)

r

!

: C

1

(G; E) ! C

1

(G; g

�

�


 E)

r

!

s(u)(X) = L

!

�1

(X)

s(u):

We also write r

!

X

s for values with the �xed argument X 2 g

�

.

The invariant di�erentiation is a helpful substitute for the Levi{Civita 
onne
tions

in Riemannian geometry, but it has an unpleasant drawba
k: it does not produ
e P{

equivariant fun
tions even if restri
ted to equivariant s 2 C

1

(G; E)

P

. One possibility

how to deal with that is to extend the derivative to all 
onstant �elds, i.e. to 
onsider

r : C

1

(G; E) ! C

1

(G; g

�


 E) whi
h preserves the equivarian
e. This is a helpful

approa
h in the the so 
alled twistor and tra
tor 
al
ulus, see e.g. [12, 11℄. In this

paper, however, we shall sti
k to horizontal arguments only.

An easy 
omputation reveals the (generalized) Ri

i and Bian
hi identities and a

quite simple 
al
ulus is available, 
f. [16, 14, 11℄.

2.4. Jet modules. | Let us 
onsider a �xed P{module E and write � for the a
tion

of p on E . The a
tion of g 2 G on the se
tions of E(G=P ) is given by s 7! s Æ `

g

�1
,

where ` is the left multipli
ation on G, and this de�nes also the a
tion of P on the

one{jets j

1

o

s at the origin. A simple 
he
k reveals the formula for the indu
ed a
tion

of the Lie algebra p on the ve
tor spa
e J

1

E = E � (g

�

�


 E) of all su
h jets:

Z � (v; ') =

�

�(Z)(v); �(Z) Æ '� ' Æ ad

�

(Z) + �(ad

p

(Z)( ))(v)

�

(2)

where the subs
ripts at the adjoint operator indi
ate the splitting of the values a
-


ording to the 
omponents of g. In parti
ular, the a
tion of the redu
tive part G

0

of

P is given by the obvious tensor produ
t, while the nilpotent part mixes the values

with the derivatives. We 
all the resulting P{module J

1

E the �rst jet prolongation

of the module E . Moreover, ea
h P{module homomorphism � : E ! F extends to a

P{module homomorphism J

1

� : J

1

E ! J

1

F by 
omposition on values.

Another simple 
omputation shows that the invariant di�erentiation r

!

de�nes

the mapping � : C

1

(G; E

�

)

P

! C

1

(G; J

1

E

�

)

P

�(s)(u) = (s(u); (X 7! r

!

s(u)(X)))

whi
h yields di�eomorphisms J

1

EM ' G �

P

J

1

E , for all paraboli
 geometries (G; !).

Moreover, for ea
h �ber bundle morphism f : EM ! FM given by a P{module

homomorphism � : E ! F, the �rst jet prolongation J

1

f 
orresponds to the P{

module homomorphism J

1

�. See e.g. [16, 37℄ for more detailed exposition.

Iteration of the above 
onsideration leads to the 
ru
ial identi�
ation of semi{

holonomi
 prolongations

�

J

k

EM of natural ve
tor bundles with natural ve
tor bundles
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asso
iated to semi{holonomi
 jet modules

�

J

k

E . Thus, P{module homomorphisms

	 :

�

J

k

E ! F always provide invariant operators by 
omposition with the iterated

invariant derivative r

!

. Su
h operators are 
alled strongly invariant, 
f. [16℄. This

is at the 
ore of the general 
onstru
tion of the invariant operators of all orders in

[15, 16℄. In this paper, however, only �rst order operators are treated and so we skip

more expli
it des
ription of the higher order jet modules.

2.5. Weyl 
onne
tions. | Let (G; !) be a paraboli
 geometry on a smooth mani-

fold M , P the stru
ture group of G and G

0

its redu
tive part. Let us write P

+

for the

exponential image of p

+

= g

1

�� � ��g

k

and 
onsider the quotient bundle G

0

= G=P

+

.

Thus we have the tower of prin
ipal �ber bundles

G

�

����! G

0

p

0

����! M

with stru
ture groups P

+

and G

0

and, of 
ourse, there is the a
tion of G

0

on the total

spa
e of G.

For ea
h smooth paraboli
 geometry, there exist global G

0

{equivariant se
tions �

of � and the spa
e of all of them is an aÆne spa
e modeled on 


1

(M), the one forms

on the underlying manifold, see [14℄. Ea
h su
h se
tion � is 
alled a Weyl stru
ture

for the paraboli
 geometry on M .

Ea
h Weyl stru
ture � provides the redu
tion of the stru
ture group P to its

redu
tive part G

0

and the pullba
k of the Cartan 
onne
tion, whi
h splits a

ording

to the values:

�

�

! = �

�

(!

�

) + �

�

(!

0

) + �

�

(!

+

):

The negative part �

�

!

�

yields the identi�
ation of TM and GrTM and may be also

viewed as the soldering form of G

0

. The g

0


omponent is a linear 
onne
tion on M

and we 
all it the Weyl 
onne
tion. Let us also noti
e that the non{positive parts

provide a Cartan 
onne
tion of the type (G=P

+

; P=P

+

). In parti
ular, the usual Weyl


onne
tions are re
overed for the 
onformal Riemannian geometries.

Now, 
onsider a P{module E and the natural bundle EM . Chosen a Weyl stru
ture

�, we obtain EM = G

0

�

G

0

E and we have introdu
ed two di�erentials on se
tions:

the invariant di�erential

(r

!

s) Æ � : (u;X) 7! L

!

�1

(X)

s(�(u))

and the 
ovariant di�erential of the Weyl 
onne
tion

r

�

(s Æ �) : (u;X) 7! L

(�

�

(!

�

+!

0

))

�1

(X)

(s Æ �)(u):

If the a
tion of the nilpotent part P

+

on E is trivial (in parti
ular if E is irredu
ible),

then the restri
tion of the invariant di�erential to the image of � 
learly 
oin
ides

with the 
ovariant di�erential with respe
t to the Weyl 
onne
tion.

Obviously, ea
h �rst order di�erential operator C

1

(EM) ! C

1

(FM) may be

written down by means of the invariant di�erential. If it is invariant, then it 
omes

from a P{module homomorphism J

1

E ! F, but then it must be given by the same

formula in terms of all Weyl 
onne
tions. On the other hand, a 
hange of the Weyl

stru
ture � implies also the 
hange of the Weyl 
onne
tion. The general formula

for the di�eren
e in terms of the one{forms modeling the spa
e of Weyl stru
tures

is given in [14℄, Proposition 3.9. We shall need a very spe
ial 
ase only whi
h will



INVARIANT OPERATORS OF THE FIRST ORDER 7

be easily dedu
ed below. In parti
ular, we shall see that if a formula for �rst order

operator in terms of the Weyl 
onne
tions does not depend on the 
hoi
e, then it is

given by a homomorphism. This shows that the usual de�nition of the invarian
e in


onformal Riemannian geometry 
oin
ides with our general 
ategori
al de�nition in

the �rst order 
ase. There are strong indi
ations that this observation is valid even

for non{linear operators of all orders, 
f. [36℄.

3. Algebrai
 
hara
terization of �rst order operators

3.1. Restri
ted jets. | The distinguished subspa
es T

�1

M in the tangent spa
es

of manifolds with paraboli
 geometries suggest to deal with partially de�ned deriva-

tives | those in dire
tions in T

�1

M only.

In 
omputations below, we shall often use a
tions of p on various modules. To avoid

an awkward notation, the a
tion will be denoted by the symbol �; it is easy to see

from the 
ontext what are the modules 
onsidered. We shall also write E

�

for the

p{module 
orresponding to the representation � : p ! GL(E

�

), and E

�

M !M will

be the 
orresponding natural ve
tor bundle over M . (In some 
ontext, � may also be

the highest weight determining an irredu
ible module.)

First we rewrite slightly the p{a
tion (2) on J

1

E

�

= E

�

�(g

�

�


E

�

). Re
all that the

Killing form provides the dual pairing g

�

�

' p

+

and so we have for all Y 
v 2 p

+


E

�

,

X 2 g

�

, Z 2 p

(Y 
 v)(ad

�

(Z)(X)) = had

�

(Z)(X); Y iv =

= h[Z;X ℄; Y iv = �hX; [Z; Y ℄iv = �([Z; Y ℄
 v)(X):

For a �xed dual linear basis �

�

2 g

�

, �

�

2 p

+

we 
an also rewrite the term

�(ad

p

(Z)(X))(v) =

X

�

�

�


 [Z; �

�

℄

p

� v:

Thus the 1{jet a
tion of Z 2 p on J

1

E

�

= E

�

� (p

+


 E

�

) is

J

1

�(Z)(v

0

; Y

1


 v

1

) = (Z � v

0

; Y

1


 Z � v

1

+ [Z; Y

1

℄
 v

1

+

X

�

�

�


 [Z; �

�

℄

p

� v

0

):

Let p

2

+

denote the subspa
e [p

+

; p

+

℄ in p. There is the p{invariant ve
tor subspa
e

f0g � (p

2

+


 E

�

) � J

1

E

�

and we de�ne the p-module

J

1

R

E

�

= J

1

E

�

=(f0g � (p

2

+


 E

�

)) ' E

�

� ((p

+

=p

2

+

)
 E

�

) ' E

�

� (g

�

�1


 E

�

):

The indu
ed a
tion of Z 2 p on J

1

R

E is

J

1

R

�(Z)(v

0

; Y

1


 v

1

) = (Z:v

0

; Y

1


 Z:v

1

+ [Z; Y

1

℄

g

1


 v

1

+

X

�

0

�

�

0


 [Z; �

�

0

℄

p

� v

0

)

where �

�

0

and �

�

0

are dual bases of g

�1

and Y 2 g

1

; v

0

; v

1

2 E

�

: The latter formula

gets mu
h simpler if � is a G

0

-representation extended trivially to the whole P . Then
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for ea
h W 2 g

0

, Z 2 g

1

J

1

R

�(W )(v

0

; Y

1


 v

1

) = (W � v

0

; Y

1


W � v

1

+ [W;Y

1

℄
 v

1

)

J

1

R

�(Z)(v

0

; Y

1


 v

1

)(0;

X

�

0

�

�

0


 [Z; �

�

0

℄ � v

0

)

while the a
tion of [p

+

; p

+

℄ is trivial. Exa
tly as with the fun
tor J

1

, the a
tion of J

1

R

on (G

0

; p){module homomorphisms is given by the 
omposition.

The asso
iated �ber bundle J

1

R

EM : G �

P

J

1

R

E

�

is 
alled the restri
ted �rst jet

prolongation of the natural bundle EM . The invariant di�erential provides a natural

mapping J

1

EM ! J

1

R

EM .

The indu
tive 
onstru
tion of the semi{holonomi
 jet prolongations of (G

0

; p){

modules 
an be now repeated with the fun
tor J

1

R

. The resulting p{modules are the

equalizers of the two natural proje
tions J

1

R

(

�

J

k

R

E

�

)!

�

J

k

R

E

�

and, as g

0

-modules, they

are equal to

�

J

k

R

E

�

k

M

i0

(


i

g

1


 E

�

):

This 
onstru
tion leads to restri
ted semi-holonomi
 prolongations of E

�

M and E

�

but we shall need only the �rst order 
ase here.

3.2. Lemma. | Let E and F be irredu
ible P{modules. Then a G

0

module homo-

morphism 	 : J

1

E ! F is a P{module homomorphism if and only if 	 fa
tors through

J

1

R

E and for all Z 2 g

1

	

 

X

�

0

�

�

0


 [Z; �

�

0

℄ � v

0

!

= 0;(3)

where �

�

0

, �

�

0

is a dual basis of g

�1

.

Proof. | Sin
e both E and F are irredu
ible, the a
tion of p

+

on both is trivial.

Thus, ea
h P{homomorphism 	 must vanish on the image of the P{a
tion on J

1

E .

Moreover, either E is isomorphi
 to F (and then 	 is given by the proje
tion to values


omposed with the identity), or 	 is supported in the G

0

{submodule p

+


E . Further,

re
all there is the grading element E in the 
enter of g

0

whi
h a
ts by j on ea
h g

j

� g.

The intertwining with the grading element implies that 	 is in fa
t supported in g

j


E

for suitable j > 0.

Now, let us �x dual basis �

�

, �

�

of p

+

and g

�

. For all Z 2 g

i

, i > 0, and (v

0

; Y 


v

1

) 2 J

1

E

�

, the formula (2) yields the 
ondition

0 = 	

 

[Z; Y ℄
 v

1

+

X

�

�

�


 [Z; �

�

℄

g

0

� v

0

!

:

In parti
ular, let us insert v

0

= 0 and re
all that the whole p

+

is spanned by g

1

. Thus

we obtain 	(g

j


 E) = 00 for all j > 1 and this means that 	 fa
tors through the

restri
ted jets, as required.
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Now, looking again at the jet{a
tion (2), we derive the 
ondition (3). On the

other hand, ea
h G

0

{homomorphism whi
h fa
tors through the derivative part of the

restri
ted jets and satis�es (3) 
learly is a P{module homomorphism.

In the Lemma above, we have 
onsidered an endomorphism of � from g

1


 E

�

de�ned by

�(Z 
 v) :=

X

�

0

�

�

0


 [Z; �

�

0

℄ � v:(4)

The Lemma is saying that the G

0

-homomorphism 	 is a P -module homomorphism

if and only if it annihilates the image of �: By the S
hur lemma, the map � is

a multiple of identity on any irredu
ible pie
e in the tensor produ
t. In the next

se
tion, we shall 
ompute the 
orresponding values of � on irredu
ible 
omponents

using known formulae for Casimir operators.

3.3. The expli
it formulae. | The above expli
it des
ription of the P{module

homomorphisms 	 represent at the same time expli
it formulae for the invariant

operators in terms of the Weyl 
onne
tions. Indeed, we have simply to write down

the 
omposition 	 Æ r using the frame form of the 
ovariant derivative with respe
t

to any of the Weyl 
onne
tions. By the general theory dis
ussed in Se
tion 2, su
h

formula does not depend on the 
hoi
e of the Weyl 
onne
tion r and all invariant

�rst order operators have this form, up to possible 
urvature 
ontributions.

4. Casimir 
omputations

In Lemma 3.2, we derived an algebrai
 
ondition for �rst order invariant operators

on se
tions of natural bundles for a given paraboli
 geometry. Here we want to trans-

late this algebrai
 
ondition into an expli
it formula for highest weights of 
onsidered

modules using Casimir 
omputations.

4.1. Representations of redu
tive groups. | Irredu
ible representations of a

(
omplex) semisimple Lie algebra g are 
lassi�ed by their highest weights � 2 h

�

;

where h is a 
hosen Cartan subalgebra of g:

A redu
tive algebra g

0

= a � g

s

0

is a dire
t sum of a 
ommutative algebra a and

a semisimple algebra g

s

0

(whi
h 
an be trivial). Irredu
ible representations of g

0

are

tensor produ
ts of irredu
ible representations of both summands, irredu
ible repre-

sentations of a are 
hara
terized by an element of a

�

:

In the paper, we shall 
onsider the situation where g is a jkj-graded (
omplex)

semisimple Lie algebra and g

0

is its redu
tive part. The grading element E has eigen-

values j on g

j

and a Cartan algebra h and the set � of simple roots 
an be 
hosen

in su
h a way that E 2 h � g

0

and all positive root spa
es of g are 
ontained in the

paraboli
 subalgebra p = g

0

� p

+

: In this situation, irredu
ible representations of g

0

are 
hara
terized by an element � 2 h

�

with the property that � restri
ted to h \ g

s

0

is a dominant integral weight for g

s

0

: Su
h a highest weight � will be 
alled dominant

weight for p: Moreover, we have at our disposal invariant (nondegenerate) forms (:; :)
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for g; their restri
tions to h are nondegenerated as well. It will be 
onvenient (see e.g.

[9, 15℄) to normalize the 
hoi
e of the invariant form by the requirement (E;E) = 1

(so that it is the Killing form s
aled by the fa
tor (2 dim g

+

)

�1

). The restri
tion of

this form to g

0

is nondegenerate and the spa
es g

j

are dual to g

�j

; j > 0:

4.2. A formula for the Casimir operator. | Let us suppose that a paraboli


subalgebra p in a (
omplex) semisimple Lie algebra g is given. We need below a formula

for the value of the quadrati
 Casimir element 
 on an irredu
ible representation of

the redu
tive part g

0

of p 
hara
terized by a weight � 2 h

�

: Su
h a formula is well

known for the 
ase of semisimple Lie algebra and 
an be easily adapted for our 
ase.

Lemma. | Let g

0

be the redu
tive part of a (
omplex) graded semisimple Lie algebra

g: Let �

0

is the set of all positive roots � 2 h

�

for g for whi
h g

�

� g

0

and let us

de�ne �

0

by �

0

=

1

2

P

�2�

0

� (for the Borel 
ase �

0

= 0).

Let 
 be the quadrati
 Casimir element in the universal enveloping algebra of g

0

(with respe
t to the 
hosen invariant form (�; �) on g) and let E

�

; � 2 h

�

be an irre-

du
ible representation of g

0

: Then the value of 
 on E

�

is given by


 = (�; � + 2�

0

):

Proof. | Due to the fa
t that g

0

is the redu
tive part of g and that we use the invari-

ant form (�; �) for the whole algebra g; the proof follows the same lines of argument

as in the semisimple 
ase (see [27℄, p.118℄).

Let fh

a

g; resp. f

~

h

a

g will be dual bases for h and let for any positive root with

g

�

� g

0

; elements x

�

; resp. z

�

be generators of g

�

; resp. g

��

dual with respe
t to

(�; �): Then the Casimir element 
 for g

0

is given by


 =

X

a

~

h

a

h

a

+

X

�2�

0

(x

�

z

�

+ z

�

x

�

):

Let v

�

be a highest weight ve
tor in E

�

: The a
tion of the �rst summand

P

a

~

h

a

h

a

on v

�

is multipli
ation by the element (�; �) and the a
tion of x

�

z

�

+ z

�

x

�

is given

by multipli
ation by (�; �): The a
tion of 
 on the whole spa
e is the same as on v

�

by the S
hur lemma.

4.3. Casimir 
omputations. | In the algebrai
 
ondition for invariant �rst order

operators (see Se
tion 3), the operator � de�ned by the formula

�(Z 
 v)(X) = [Z;X ℄ � v =

 

X

�

0

�

�

0


 [Z; �

�

0

℄v

!

(X); Z 2 g

1

; X 2 g

�1

; v 2 E

�

was used. We shall now give an expli
it des
ription of the a
tion of the operator �:

Lemma. | Let E

�

be an irredu
ible representation of g

0


hara
terized by � 2 h

�

and let g

1

=

P

j

g

j

1

be a de
omposition of g

1

into irredu
ible g

0

-submodules. Highest

weights of individual 
omponents g

j

1

will be denoted by �

j

: Suppose that g

1


 E

�

=

P

j

P

�

j

E

j

�

j

be a de
omposition of the produ
t into irredu
ible g

0

-modules and �

�;�

j

be the 
orresponding proje
tions. Let �

0

be the half sum of positive roots for g

s

0

as

de�ned in the previous lemma.
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Then for all v 2 E

�

,

�(Z 
 v)(X) = [Z;X ℄ � v =

X

j

X

�

j




��

j

�

��

j

(Z 
 v)(X);

where




��

j

=

1

2

[(�

j

; �

j

+ 2�

0

)� (�; � + 2�

0

)� (�

j

; �

j

+ 2�

0

)℄:

Proof. | It is suÆ
ient to prove the 
laim for ea
h individual 
omponent g

j

1

sepa-

rately, hen
e we shall 
onsider one of these 
omponents and we shall drop the index

j everywhere. Let f�

�

g; resp. f�

�

g be dual bases of g

�1

; resp. g

1

: Similarly, let fY

a

g;

resp. f

~

Y

a

g be dual bases of g

0

: The invarian
e of the s
alar produ
t implies

[Z; �

�

℄ =

X

a

(

~

Y

a

; [Z; �

�

℄)Y

a

=

X

a

([

~

Y

a

; Z℄; �

�

)Y

a

;

and

�(Z
v) =

X

i

�

�


 [Z; �

�

℄ �v =

X

i

�

�




 

X

a

([

~

Y

a

; Z℄; �

�

)Y

a

!

�v =

X

a

[

~

Y

a

; Z℄
Y

a

�v:

The same formula holds also in the 
ase when the role of bases fY

a

g and f

~

Y

a

g is

ex
hanged.

Using the de�nition of the Casimir operator 
 and the previous Lemma, it is suÆ-


ient to note that

X

a

~

Y

a

Y

a

� (Z 
 s) =

=

X

a

(

~

Y

a

Y

a

� Z)
 s+

X

a

Z 
 (

~

Y

a

Y

a

� s) +

X

a

(

~

Y

a

� Z)
 (Y

a

� s) + (Y

a

� Z)
 (

~

Y

a

� s)

(as before, the symbol � here means the a
tion on di�erent modules used in the

formula, for example Y

a

� Z � [Y

a

; Z℄).

4.4. A 
hara
terization of invariant �rst order operators. | Now it is possi-

ble to give the promised 
hara
terization of the �rst order operators (up to 
urvature

terms in the sense explained in Se
tion 1).

Theorem. | Let g be a (real) graded Lie algebra and g

C

its graded 
omplexi�
ation.

Then g

j

= g \ g

C

j

:

Let E

�

be a (
omplex) irredu
ible representation of g

0

with highest weight � and let

g

C

1

P

j

g

j

1

be a de
omposition of g

C

1

into irredu
ible g

0

-submodules and let �

j

be highest

weights of g

j

1

: Suppose that

g

1




R

E

�

= g

C

1




C

E

�

=

X

j

X

�

j

E

j

�

j

be a de
omposition of the produ
t into irredu
ible g

0

-modules and let �

�;�

j

be the


orresponding proje
tions. Let us denote (as in Lemma 4.2) the half sum of positive
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roots for g

0

by �

0

and let us de�ne 
onstants 


�;�

j

by




��

j

=

1

2

[(�

j

; �

j

+ 2�

0

)� (�; � + 2�

0

)� (�

j

; �

j

+ 2�

0

)℄:

Then the operator D

j;�

j

: �

�;�

j

Ær

!

is an invariant �rst order di�erential operator

if and only if 


�;�

j

= 0: Moreover, all �rst order invariant operator a
ting on se
tions

of E

�

are obtained (modulo a s
alar multiple and 
urvature terms) in su
h way.

Proof. | The �rst part of the 
laim follows from the previous Lemmas and results of

Se
tion 3. If D is any �rst order invariant di�erential operator, then its restri
tion to

the homogeneous model is given by a P{homomorphism from the spa
e of restri
ted

jets of order one to a P{module. This homomorphism then de�nes a strongly invariant

�rst order operator

~

D on any manifold with a given paraboli
 stru
ture. The operators

D and

~

D 
an di�er only by a s
ale or possible 
urvature terms.

4.5. The Borel 
ase. | There are two extreme 
ases of the paraboli
 subalgebras

| maximal ones and the Borel subalgebra. We shall �rst dis
uss one of these extremal


ases. In this subse
tion, symbol g will denote the 
omplex graded Lie algebra whi
h

is the 
omplexi�
ation of the real graded Lie algebra in question.

Corollary. | Let � denote the set of simple roots for g: Let � be the highest weight

of an irredu
ible g

0

-module. An invariant �rst order operator between se
tions of E

�

and E

�

exists if and only if the following two 
onditions are satis�ed:

1) There exists a simple root � 2 � su
h that � = �+ �:

2) (�; �) = 0:

Proof. | Note �rst that the set of all roots � with g

�

� g

1

is exa
tly the set of all

simple roots. Hen
e g

1

in the Borel 
ase is a dire
t sum of irredu
ible one dimen-

sional subspa
es g

�

with � 2 �: The tensor produ
t of E

�

with g

�

is irredu
ible

and isomorphi
 to E

�+�

(be
ause g

�

is one dimensional), hen
e no proje
tions are

involved.

In the Borel 
ase, the 
orresponding element �

0

is trivial. Hen
e the 
ondition in

Theorem 4.4 redu
es to the 
ondition

0 = (�+ �; � + �)� (�; �) � (�; �) = 2(�; �):

4.6. The 
ase of a maximal algebra. | Let us now 
onsider an opposite extreme


ase, where the paraboli
 subalgebra of g is maximal, i.e. it 
orresponds to a one-

point subset of the set of simple roots for g (there is just one node 
rossed in the

usual Dynkin notation for paraboli
 subalgebras). Then g

0

= a� g

s

0

; h = a� h

s

with

h

s

= h \ g

s

0

and the 
ommutative subalgebra a is generated by the grading element

E: Moreover, it is easy to see that the de
omposition above is orthogonal. Indeed, the

spa
e h

s

is generated by 
ommutators [x

�

; z

�

℄; where x

�

; resp. z

�

are generators of

the root spa
e g

�

� g

0

; resp. g

��

� g

0

and we have (E; [x

�

; z

�

℄) = ([E; x

�

℄; z

�

) = 0:

Let �

E

be the element of h

�

representing the grading element E under the duality

given by the invariant bilinear form. Note that �

E

belongs (inside the original real
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graded Lie algebra) to the non
ompa
t part of g; hen
e representations of g

0

with the

highest weight w:�

E

integrate to representations of P for any w 2 R:

The orthogonal de
omposition h = a� h

s

indu
es the dual orthogonal de
omposi-

tion h

�

= a

�

�(h

s

)

�

; where the embedding of both summands is de�ned by requirement

that a

�

; resp. (h

s

)

�

annihilates h

s

; resp. a: The one dimensional spa
e a

�

is generated

by �

E

: Any weight � 2 h

�


an be then written as � = �

E

+�

0

with w 2 C ; �

0

2 (h

s

)

�

:

In this 
ase, we shall 
onsider (
omplex) irredu
ible representations of g

0

; whi
h

are tensor produ
ts of one dimensional representation with highest w:�

E

; w 2 R (w is

a generalized 
onformal weight) with an irredu
ible representation V

�

0

; where �

0

is a

dominant integral weight for g

s

0

: Any su
h representation integrates to a representation

of P (nilpotent part a
ting trivially) and we shall denote su
h representation by

E

�

0

(w):

In [15℄, the 
ase of almost Hermitean symmetri
 stru
ture was 
onsidered. This is

just a spe
ial 
ase of maximal paraboli
 subalgebras, whi
h are moreover j1j-graded

Lie algebras (but note that there is a lot of 
ases of jkj-graded Lie algebras with

k > 1 whi
h are maximal). In the j1j-graded 
ase (see [15℄, Part III; see also [21℄ for

the 
onformal 
ase), it was proved that for any proje
tion to an irredu
ible pie
e of

the g

s

0

-module E

�


 g

1

; there is a unique 
onformal weight w su
h that the resulting

�rst order operator is invariant. The value of w was 
omputed using suitable Casimir

expressions. We are going to show that 
omputations and formulae proved there 
an

be extended without any substantial 
hange to the general 
ase of jkj-graded Lie

algebra.

4.7. The general 
ase. | In the general 
ase, it is possible again to 
onsider the

orthogonal de
omposition g

0

= hEi

C

� g

0

0

; and h

�

= h�

E

i

C

� (h

0

)

�

; where elements of

(h

0

)

�

annihilate E. Hen
e again any weight � 2 h

�


an be de
omposed as � = �

E

+�

0

with w 2 C ; �

0

2 (h

0

)

�

(note that g

0

0

is again redu
tive but not ne
essarily semisimple).

We are now able to prove a generalization of fa
ts proved �rst by Fegan in 
onformal


ase and then extended to j1j-graded 
ase in [15℄.

Corollary. | Let p be a maximal paraboli
 subalgebra of g: Let E

�

be an irredu
ible

representation of g

0


hara
terized by � 2 h

�

and let g

1

=

P

j

g

j

1

be a de
omposition of

g

1

into irredu
ible g

0

-submodules. Highest weights of individual 
omponents g

j

1

will be

denoted by �

j

: Suppose that g

1


 E

�

=

P

j

P

�

j

E

j

�

j

be a de
omposition of the produ
t

into irredu
ible g

0

-modules and �

�;�

j

be the 
orresponding proje
tions. Let �

0

be the

half sum of positive roots for g

s

0

as de�ned in Lemma 4.3.

Suppose that weights �; �

j

and �

j

are split as

� = �

E

+ �

0

; �

j

= �

E

+ �

0

j

; �

j

= (w + 1)�

E

+ �

0

j

:

Then for all v 2 E

�

(w); Z 2 g

1

�(Z 
 v)(X) = [Z;X ℄ � v =

X

�

0

(w � 


�

0

�

0

)�

�

0

�

0

(Z 
 v)(X);

where
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�

0

�

0

= �

1

2

[(�

0

; �

0

+ 2�

0

)� (�

0

; �

0

+ 2�

0

)� (�

0

; �

0

+ 2�

0

)℄:

Hen
e the operator D

��

�

��

Æ r

!

is invariant �rst order operator if and only if

w = 


�

0

�

0

:

Proof. | For simpli
ity of notation, we shall drop subs
ripts j everywhere. We have

(�

0

+w�

E

; �

0

+w�

E

+2�

0

) = (�

0

; �

0

+2�

0

)+2w(�

E

; �

0

)+w

2

; similar formulae hold for

terms with � (with weight w+1) and for � (with weight 1). Using (w+1)

2

�w

2

�1 =

2w; we get

(�; �+2�

0

)�(�; �+2�

0

)�(�; �+2�

0

) = 2w+(�

0

; �

0

+2�

0

)�(�

0

; �

0

+2�

0

)�(�

0

; �

0

+2�

0

)

and the 
laim follows.

In general 
ase, the redu
tive algebra g

0

is redu
tive and may be split into its


ommutative and semisimple part. Suppose that g

0

= a � g

0

0

is su
h an orthogonal

splitting. It indu
es the splitting h = a� h

0

of the Cartan subalgebra. Every weight

� 2 h

�


an be hen
e again split into a sum � = �

0

+ �

0

with �

0

2 (a)

�

; �

0

2 (h

0

)

�

:

The Corollary above is saying that we 
an, for a given � and � to shift �; resp. �

by a multiple of �

E

to

~

�; resp. ~� in su
h a way that there is an invariant �rst order

operator from E

~

�

to E

~�

:

It is possible to 
onsider more general 
hanges of �; resp. � by adding to them

an arbitrary element � 2 (a)

�

and to ask whether we 
an have an invariant operator

between spa
es with shifted values of highest weights. It is an easy 
al
ulation to

see that the relation 


��

j

= 0 in Theorem 4.4 yields one linear relation for � (the

quadrati
 terms 
an
el ea
h other). Hen
e we have a linear subspa
e of 
odimension

1 in a

�

of su
h elements �:

5. Multipli
ity one result

A tensor produ
t of two irredu
ible representations of the redu
tive group g

0

de-


omposes into irredu
ible 
omponents and the proje
tions to these 
omponents are

key tools in the 
onstru
tion of invariant �rst order operators. Important informa-

tion 
on
erning su
h de
ompositions is multipli
ity of individual 
omponents in their

isotopi
 
omponents. The best situation is when all multipli
ities are one, then all ir-

redu
ible 
omponents (as well as the 
orresponding proje
tions) are de�ned uniquely,

without any ambiguity. In this se
tion, we are going to prove su
h multipli
ity one

result for the tensor produ
t used in the de�nition of invariant operators and we are

going to give full information on highest weights of individual 
omponents in su
h

de
ompositions for any 
lassi
al graded Lie algebra.

5.1. Simple fa
tors of g

0

. | Our starting point for a 
hoi
e of stru
ture in ques-

tion is a real graded Lie algebra g: For the dis
ussion of (
omplex) �nite dimensional

representations, we 
an simplify the situation and to work with the 
omplexi�
ation

g

C

: There are two main 
ases to be 
onsidered. Either g is a real form of g

C

; or it is
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a 
omplex graded Lie algebra 
onsidered as a real one. In the latter 
ase, there is no

need to go through 
omplexi�
ation in subsequent dis
ussions. So we shall 
on
entrate

in this se
tion to the former 
ase.

So let us suppose that g is a real form of a 
omplex graded Lie algebra of 
lassi
al

type and that (g

0

)

C

is just (g

C

)

0

: Hen
e any (
omplex) irredu
ible g

0

{module is at

the same time (g

C

)

0

{module and vi
e versa. Consequently, the dis
ussion of de
om-

position of the tensor produ
ts of irredu
ible g

0

{modules with irredu
ible 
omponents

of (g

C

)

1

' (g

1

)

C


an be done 
ompletely in the setting of 
omplex graded Lie alge-

bras. Hen
e we shall 
hange the notation and we shall denote in this se
tion by g a


omplex simple graded Lie algebra given by its Dynkin diagram with 
orresponding


rosses. There is a simple and very intuitive way how to �nd simple 
omponents of

the semisimple part of g

0

from the 
orresponding Dynkin diagrams. Delete all 
rossed

nodes and lines emanating from them. The rest will 
onsist of several 
onne
ted


omponents whi
h will be again Dynkin diagrams for simple Lie algebras. Then the


orresponding semisimple part of g

C

0

is isomorphi
 to the produ
t of these fa
tors. We

shall give more details (in
luding explanation why this is true) in the dis
ussion of

individual 
ases below.

We are going to study in more details the tensor produ
ts g

1


 E

�

of g

0

{modules

and their de
ompositions into irredu
ible 
omponents. In general, only the semisimple

part of g

0

is playing a role in the de
omposition. Having a better information on the

number and types of simple fa
tors of g

0

, we shall des
ribe then the number and the

highest weights of irredu
ible pie
es of the g

0

{module g

1

: Even if there is a lot of


ommon features, full details di�er substantially in individual 
ases and we have to

dis
uss all four of them separately.

Most of the simple fa
tors of g

0

will be of type A

j

, ex
eptionally also B

j

, C

j

and

D

j

appear. A general irredu
ible representation of a produ
t of 
ertain number of

simple Lie algebras is a tensor produ
t of irredu
ible representations of th individual

fa
tors in g

0

: Hen
e to des
ribe a g

0

{module, it is suÆ
ient to give a list of highest

weights of the individual fa
tors. For 
omponents of g

1

; we shall need only very small

number of quite simple representations. We shall now give the list of them and we

introdu
e a notation for their highest weights.

For A

n

, we shall need:

{ the de�ning representation C

n+1

with the highest weight denoted by �

1

;

{ its symmetri
 power �

2

(C

n+1

) with the highest weight 2�

1

;

{ its exterior power �

2

(C

n+1

) with the highest weight denoted by �

11

.

For B

n

, C

n

and D

n

; we shall need only their de�ning representations, their highest

weights will be denoted by �

1

, 


1

and Æ

1

.

It will also help a lot to use the symbol A

0

for the trivial Lie algebra f0g of

dimension 0: All its irredu
ible representations are trivial. Its presen
e in the produ
t

will be just a notational 
onvenien
e, (these fa
tors 
an be dropped out, they have no

signi�
an
e in the stru
ture of the algebra but they will be substantial for a des
ription

of irredu
ible pie
es of the module g

1

).

A general method used below to 
larify these questions is a very ni
e and expli
it

des
ription of gradings in terms of blo
k matri
es, whi
h 
an be found in the paper
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by Yamagu
hi ([44℄), we refer to this paper for further details. It makes also possible

to give expli
itly the form of all irredu
ible pie
es in the module g

1

.

5.2. A { series. | Suppose that g = A

n

= sl(n + 1; C ). This is the simplest


ase whi
h is parti
ularly intuitive when des
ribed using blo
k matri
es. First, it is

ne
essary to understand blo
k forms of maximal graded Lie algebras. In our 
ase,

they are spe
i�ed by their Dynkin diagram � � � �

�

� � � � with the 
ross at the

j-th node. The 
orresponding grading is indi
ated by the following diagram (where

numbers �1; 0; 1 indi
ate the grading of the algebra).

0

0

j

n+ 1� j

1

�1

The general 
ase with several 
rosses is then given by a simple superposition of the

diagrams. There is an example with three 
rosses:

0

0

1

�1

0

0

1

�1

0

0

�1

1

=)

0

0

0

0

1

1

1

2

2

3

�1

-1

�1

�2

-2

�3

Let the set I = fi

1

; : : : ; i

j

g; 1 � i

1

< : : : < i

j

� n denote the set of 
rossed nodes

in the Dynkin diagram of type A

n

. Then the 
orresponding semisimple part g

s

0

is

equal to the produ
t

A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�A

n�i

j

:

There are j + 1 fa
tors in the produ
t (some of them possibly equal to A

0

; these 
an

be dropped as far as the stru
ture of g

0

is 
on
erned).

Using additional notation i

0

= 0, i

j+1

= n+ 1; we have g

s

0

= �

n+1

k1

A

i

k

�i

k�1

�1

:

Irredu
ible representations of g

0

are tensor produ
ts of irredu
ible modules of in-

dividual fa
tors, they are given by their highest weights. There is j irredu
ible 
om-

ponents of the g

0

{module g

1

; as is immediately seen from the 
orresponding blo
k

diagram. The (j + 1){tuples of their highest weights are 
learly:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

):

So ea
h 
omponent is just the tensor produ
t of two de�ning representations of

neighboring fa
tors in g

0

:

5.3. B { series. | As in the previous 
ase, the key information is 
ontained in

the blo
k diagrams for maximal graded Lie algebra, des
ribed in [44℄. We shall not

reprodu
e them but we shall only des
ribe the form of the simple fa
tors and highest

weights of irredu
ible parts of g

1

: The method used to get these fa
ts is the same as

in the A

n


ase.
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Let again the set I = fi

1

; : : : ; i

j

g; 1 � i

1

< : : : < i

j

� n denote the set of 
rossed

nodes in the Dynkin diagram of type B

n

. We shall 
onsider three di�erent sub
ases.

1)
�

� � �
�

� �

i

i

j

� n� 2 (here stars indi
ate nodes with either bullets or 
rosses).

Then the 
orresponding semisimple part g

s

0

is equal to the produ
t (j + 1 fa
tors)

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�B

n�i

j

and there are j irredu
ible pie
es in g

1

with highest weights

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

):

(re
all that �

1

denotes the highest weight of the de�ning representation of A

k

and �

1

denotes the highest weight of the de�ning representation of B

k

).

2)

� � � � �

�

�

i

i

j

= n� 1

Then g

s

0

has j + 1 fa
tors

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�A

1

:

The last fa
tor A

1

is isomorphi
 with B

1

: We shall need the de�ning representation

of B

1

; whi
h is just the se
ond symmetri
 power of the de�ning representation of A

1

:

Hen
e as a representation of A

1

; it has the highest weight 2�

1

:

There are j irredu
ible parts in g

1

. The list of their highest weights is:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

; 0); (0; : : : ; 0; �

1

; 2�

1

):

3)

� � � � � �

�i

i

j

= n

Then

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�A

0

:

There are j irredu
ible pie
es in g

1

with highest weights

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

):

5.4. C { series. | Let indi
es 1 � i

1

< : : : < i

j

� n again indi
ate the set of


rossed nodes in the Dynkin diagram of type C

n

in the standard ordering of nodes.

1)

� � � � � � �

h

i

j

� n� 1

Then g

s

0

has j + 1 fa
tors

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

� C

n�i

j

:

(but note that C

1

� A

1

).

There are j irredu
ible parts in g

1

. The list of their highest weights is:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

; 0); (0; : : : ; 0; �

1

; 


1

):

2)

� � � � �

�h

i

j

= n

This 
ase brings a new feature, let us illustrate it in the 
ase of maximal paraboli


subalgebra with the last node 
rossed. This is a j1j{graded 
ase with the blo
k grading

as follows:
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0

0

�1

1
A

�A

0

C

B

where the symbol A

0

indi
ates the matrix transposed with respe
t to the antidiagonal

and the matri
es B and C satisfy B = B

0

, C = C

0

. Hen
e g

1

is the symmetri
 power

�

2

(C

n+1

) of the de�ning representation and its highest weight is 2�

1

:

In the general 
ase, we get in the same way that

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j�1

�i

j�2

�1

�A

n�i

j�1

(note that there are only j fa
tors here).

There are j irredu
ible pie
es in g

1

with highest weights

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

)(0; : : : ; 0; 2�

1

):

5.5. D - series. | Let 1 � i

1

< : : : < i

j

� n indi
ate the set of 
rossed nodes in

the Dynkin diagram of type D

n

in the standard ordering of nodes.

1)

� � � � � �

�

i

j

� n� 2

Then

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�D

n�i

j

:

Note that if i

j�1

= n � 2; then the last fa
tor is D

2

� A

1

� A

1

: The list of all j

irredu
ible pie
es of g

1

is again the standard list:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; Æ

1

):

The proof of the 
laim is again visible dire
tly from the blo
k forms of maximal

paraboli
 subalgebras given in [44℄.

2)

�
� � �

� �
�

�

or

�
� � �

� �
�

�

i

j�1

� n� 2; i

j

= n� 1 or i

j

= n

This is similar to the se
ond 
ase in the C

n

series. Let us illustrate it again in the

simplest j1j-graded 
ase. The graded algebra g has the following blo
k form:

0

0

�1

1

A

�A

0

C

B

where the symbol A

0

indi
ates again the matrix transposed with respe
t to the an-

tidiagonal and the matri
es B and C satisfy B = �B

0

, C = �C

0

. Hen
e g

1

is the

outer power �

2

(C

n+1

) of the de�ning representation of A

n

and its highest weight was

denoted by �

11

:
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In general 
ase

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j�1

�i

j�2

�1

�A

n�i

j�1

�1

(there are j fa
tors only). The list of all j irredu
ible pie
es of g

1

is:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

); (0; : : : ; 0; �

11

):

3)

�
� � �

� �
�

�

i

j�1

= n� 1; i

j

= n

This is the most unusual 
ase. Let us illustrate it in the 
ase � � � � � �

�

�

; i.e.

I = (n� 1; n).

The 
orresponding matrix looks as follows:

n� 1

2

n� 1

0

0

0

1

1

2

�1

-1-2

In the middle, there is the 2 � 2 matrix, whi
h is antisymmetri
 with respe
t to

the antidiagonal (D

1

!). The module g

1

is a ((n� 1)� 2){matrix, whi
h is the tensor

produ
t of the de�ning representation for A

n�2

and D

1

. (Note that there are two

blo
ks in the 1 part of the blo
k matrix above but they are inverse transpose of ea
h

other.) But D

1

is 
ommutative and its 
orresponding fa
tor in g

0

is the trivial algebra

A

0

: Or even better for our purposes, we 
an identify D

1

with the produ
t A

0

� A

0

:

The algebra g

0

is hen
e the produ
t A

n�2

�A

0

�A

0

:

Also in this 
ase, the module g

1

has j = 2 irredu
ible pie
es, i.e. both 
olumns of

(the left upper part) of g

1

:Their highest weights are equal to (�

1

; �

1

; 0) and (�

1

; 0; �

1

):

In general, for arbitrary I;

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j�1

�i

j�2

�1

�A

0

�A

0

:

The list of all j irredu
ible pie
es of g

1

is as follows:

(�

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

; 0; 0); (0; : : : ; 0; �

1

; �

1

; 0); (0; : : : ; 0; �

1

; 0; �

1

):

5.6. De
omposition of tensor produ
ts. | We have found above the form of

all irredu
ible pie
es of g

1

: They are quite simple modules, hen
e there is a 
han
e

to get a better information on their produ
t with arbitrary other modules. Su
h a

dis
ussion was needed for the study of �rst order operators in the j1j{graded 
ase (see

[15℄, part III). We shall summarize now the fa
ts proved there.

Basi
 tool for understanding tensor produ
ts of irredu
ible modules of a simple Lie

algebra g is the Klimyk algorithm (see [27℄, Se
.24, Ex.9).

Lemma. | Let h be a Cartan subalgebra of a simple Lie algebra g: For any weight

� 2 h

�

; let f�g denote the dominant weight lying on the orbit of � under the Weyl

group. Let � be the half sum of positive roots. If f�g belongs to the interior of the

dominant Weyl 
hamber, there is the unique w 2 W su
h that f�g = w�. Let t(�) be

equal to the sign of w in this 
ase and zero otherwise.
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Suppose moreover that we know the list �(�) of all weights of the irredu
ible rep-

resentation V

�

with the highest weight �, in
luding their multipli
ities m

�

(�), for

� 2 �(�). Let E

�

denote the irredu
ible representation of g with the highest weight �.

Then the formal sum

X

�2�(�)

m

�

(�)t(� + �+ �)V

f�+�+�g��

gives the de
omposition of the tensor produ
t E

�


 E

�

into isotopi
 
omponents. The

resulting 
oeÆ
ients are always non{negative and give the multipli
ity of the 
orre-

sponding representation in the de
omposition. Note that some 
an
ellations happen

often.

5.7. A

n

de
ompositions. | For representations of A

n

; we need to de
ompose

produ
ts E

�


 E

�

1

, E

�


 E

�

11

and E

�


 E

2�

1

:

For the two �rst 
ases, we have the following information.

Lemma. | Let �

1

be the highest weight of the de�ning representation of A

n

and let

�

11

be the highest weight of its outer produ
t. Let � = �

1

; or � = �

11

: Let E

�

be an

irredu
ible A

n

{module with the highest weight �:

Then the de
omposition of the produ
t E

�


 E

�

is multipli
ity free.

Moreover, V

�

appears with multipli
ity one if and only if � is dominant integral

and there exists a weight � of E

�

su
h that � = �+ �:

Proof. | A dire
t 
he
k shows (see e.g. Appendix 2 in [15℄, part III), that all weights

of E

�

appear with multipli
ity one and that for any weight � of E

�

; � + � belongs

to the dominant Weyl 
hamber. Then the same is true for �+ � + � and now a
tion

of Weyl group is needed in the Klimyk formula. Moreover, � + � + � belongs to the

interior of the dominant Weyl 
hamber if and only if � + � belongs to the dominant

Weyl 
hamber.

Remark. | Consider a general tensor produ
t of two modules E

�


 E

�

. There is a

general fa
t that E

�

appears in the de
omposition only if � is of the form �+�; where

� is a weight of E

�

:

In our 
ase, we know more. The set A of all weights whi
h appear in the de
om-

position is exa
tly given by

A = f� = �+ � j � is a weight of E

�

, �+ � is dominantg:(5)

It is more diÆ
ult to de
ompose the tensor produ
t in the third 
ase whi
h we

need.

Lemma. | Let E

�

be the se
ond symmetri
 power of the de�ning representation of

A

n

; i.e � = �

11

. The list of all its weights is � = e

i

+ e

j

; 1 � i � j � n; where e

i

,

i = 1; : : : ; n; denotes elements of the 
anoni
al basis of R

n

. Let E

�

be an irredu
ible

representation of A

n

with the highest weight �:

Then

E

�


 E

�

=

X

�2AnA

0

E

�

;
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where A is de�ned in (5) and

A

0

= f� = �+ e

i

+ e

i+1

j �

i

= �

i+1

and either �

i�1

> �

i

or i = 1g:

Proof. | Suppose that one of the following 
ases is true:

1) � = e

i

+ e

j

with i < j;

2) � = 2e

1

;

3) � = 2e

i+1

; i = 1; : : : ; n� 1 and �

i

> �

i+1

:

Then we have again the property that �+Æ belongs to the dominant Weyl 
hamber.

Hen
e again (as in the proof of the previous lemma) we know that � + � appears in

the de
omposition if and only if it is dominant (if and only if it belongs to A).

4) If � = 2e

i+1

; i = 2; : : : ; n� 1 and �

i�1

= �

i

= �

i+1

; then � + � + Æ belongs to

the boundary of the Weyl 
hamber and the summand will not appear in the Klimyk

formula.

5) If however either � = 2e

i+1

; i = 2; : : : ; n� 1 and �

i�1

> �

i

= �

i+1

; or � = 2e

2

and �

1

= �

2

; then �+�+Æ should be moved to the interior of the dominant 
hamber by

one re
e
tion with respe
t to a simple root (permutation of neighboring 
omponents)

and f�+�+�g�� = �+e

i

+e

i+1

: This shows that these elements should be removed

from the set A.

5.8. B

n

de
ompositions. | For representations of B

n

; we need to de
ompose

produ
ts E

�


 E

�

1

. It is well known (see e.g. [21℄) that the following is true.

Lemma. | Let � = �

1

be the highest weight of the de�ning representation of B

n

:

Let E

�

be an irredu
ible B

n

{module with the highest weight �:

Then the de
omposition of the produ
t E

�


 E

�

is multipli
ity free and

E

�


 E

�

=

X

�2AnA

0

E

�

;

where A is de�ned in (5) and A

0

= f� = �j�

n

= 0g:

5.9. C

n

and D

n

de
ompositions. | For representations of C

n

; resp. D

n

; we need

to de
ompose produ
ts E

�


 E

�

; where � = 


1

; resp. � = Æ

1

:

Lemma. | Let � = �

1

be the highest weight of the de�ning representation of B

n

:

Let E

�

be an irredu
ible B

n

{module with the highest weight �:

Then the de
omposition of the produ
t E

�


 E

�

is multipli
ity free and

E

�


 E

�

=

X

�2A

E

�

;

where A is de�ned in (5).

Proof. | It is easy to 
he
k dire
tly that again �+Æ is in the dominant Weyl 
hamber

of all weights of E

�

: Hen
e the same proof as above applies.
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5.10. Theorem. | Let g be a 
lassi
al semisimple graded Lie algebra (i.e. g belongs

to one of series A { D) and let g

0

be its redu
tive part. Suppose further that E

�

be an

irredu
ible g

0

{module with highest weight �:

Then all 
omponents in the tensor produ
t g

1


 E

�

have multipli
ity one.

Proof. | Let us 
onsider �rst an irredu
ible pie
e E

1

of g

1

. The detailed dis
ussion of

the form of irredu
ible 
omponents of the g

0

{module g

1

presented above together with

the expli
it information presented above) shows that for every fa
tor in the produ
t

des
ribing the semisimple part of the algebra g

0

; the 
orresponding tensor produ
t

has a de
omposition 
ontaining only pie
es with multipli
ity one. The same is hen
e

true for their produ
t.

If E

1

; resp. E

0

1

are di�erent irredu
ible pie
es of g

1

; we know from their expli
it

des
ription above, that they are tensor produ
ts of irredu
ible modules of di�erent


ouples of fa
tors in the de
omposition of g

0

into simple parts. Hen
e the pie
es in the

de
omposition of E

1


 E

�

; resp. E

0

1


 E

�

; have di�erent highest weights and 
annot

be isomorphi
.

Expli
it des
ription of individual 
omponents of g

1

and of their tensor produ
ts

des
ribed above gives hen
e the 
omplete information on irredu
ible 
omponents and

their highest weights.
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