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Abstrat. | The goal of this paper is to desribe expliitly all invariant �rst order

operators on manifolds equipped with paraboli geometries. Both the results and the

methods present an essential generalization of Fegan's desription of the �rst order

invariant operators on onformal Riemannian manifolds, [21℄. On the way to the

results, we present a short survey on basi strutures and properties of paraboli

geometries, together with links to further literature.

R�esum�e. | Le but de l'artile est derire expliitement tous operateurs di�eren-

tiaux invariantes, de order une sur les vari�etes muni ave la struture de geometrie

paraboli (les espaes generalis�ees de E. Cartan). Les resultats ansi que les methodes

presentes une generalisation essenial du resultat de Fegan sur le lassi�ation les op-

erateurs di�erential d'order une sur vari�etes muni ave la struture onforme ([21℄).

L'artile present un meme temps une resum�ee breve du proprietes fondamentaux de

les'espaes generalis�ees de E. Cartan et une alul di�erentiel sur ettes espaes.

1. Setting of the problem

Invariant operators appear in many areas of global analysis, geometry, mathemat-

ial physis, et. Their analytial properties depend very muh on the symmetry

groups, whih in turn determine the type of the bakground geometries of the under-

lying manifolds. The most appealing example is the so alled onformal invariane

of many distinguished operators like Dira, twistor, and Yamabe operators in Rie-

mannian geometry whih lead to the study of all these operators in the framework of

the natural bundles for onformal Riemannian geometries. Of ourse, mathematiians

suggested a few shemes to lassify all suh operators and to disuss their properties

from a universal point of view, usually onsisting of a ombination of geometri and

algebrai tools. See e.g. [41, 42, 43, 6, 7, 8, 33, 9, 28, 10℄. All of them ombine, in
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di�erent ways, ideas of representation theory of Lie algebras with di�erential geometry

and global analysis.

In the ontext of problems in twistor theory and its various generalizations, the

more general framework of representation theory of paraboli subgroups in semisimple

Lie groups was suggested and links to the in�nite dimensional representation theory

were exploited, see e.g. the pioneering works [4, 5℄. The lose relation to the Tanaka's

theory (f. [39, 40, 17, 44, 32, 13℄) was established and we may witness a fruitful

interation of all these ideas and the lassial representation theory nowadays, see e.g.

[2, 3, 12, 14, 15, 16, 18, 22, 23, 24, 25℄.

1.1. Paraboli geometries. | The name paraboli geometry was introdued in

[26℄, following Fe�erman's onept of paraboli invariant theory, f. [19, 20℄, and

it seems to be ommonly adopted now. The general bakground for these geometries

goes bak to Klein's de�nition of geometry as the study of homogeneous spaes, whih

play the role of the at models for geometries in the Cartan's point of view. Thus,

following Cartan, the (urved) geometry in question on a manifold M is given by a

�rst order objet on a suitable bundle of frames, an absolute parallelism ! : TG ! g

for a suitable Lie algebra g de�ned on a prinipal �ber bundle G !M with struture

group P whose Lie algebra is ontained in g. On the Klein's homogeneous spaes

themselves, there is the anonial hoie | the left{invariant Maurer{Cartan form !

while on general G, ! has to be equivariant with respet to the adjoint ation and to

reover the fundamental vetor �elds. These objets are alled Cartan onnetions and

they play the role of the Levi{Civita onnetions in Riemannian geometry in ertain

extent. A readable introdution to this bakground in a modern setting is to be found

in [35℄. The paraboli geometries, real or omplex, are just those orresponding to

the hoies of paraboli subgroups in real or omplex Lie groups, respetively.

Eah linear representation E of the (paraboli) struture group P gives rise to the

homogeneous vetor bundle E(G=P ) over the orresponding homogeneous spaeG=P ,

and similarly there are the natural vetor bundles G�

P

E assoiated to eah paraboli

geometry on a manifold M . Analogously, more general natural bundles G �

P

S are

obtained from ations of P on manifolds S.

Morphisms ' : (G; !) ! (G

0

; !

0

) are prinipal �ber bundle morphisms with the

property '

�

!

0

= !. Obviously, the onstrution of the natural bundles is funtorial

and so we obtain the well de�ned ation of morphisms of paraboli geometries on

the sheaves of loal setions of natural bundles. In partiular, the invariant operators

on manifolds with paraboli geometries are then de�ned as those operators on suh

setions ommuting with the above ations.

1.2. First order linear operators. | The mere existene of the absolute paral-

lelism ! among the de�ning data for a paraboli geometry on M yields an identi�-

ation of all �rst jet prolongations J

1

EM of natural bundles with natural bundles

G �

P

J

1

E for suitable representations J

1

E of P , see 2.4 below. Moreover, there is

the well known general relation between invariant di�erential operators on homoge-

neous vetor bundles and the intertwining morphisms between the orresponding jet

modules. Thus, we see immediately that eah �rst order invariant operator between
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homogeneous vetor bundles over G=P extends anonially to the whole ategory of

paraboli geometries of type (G;P ). We may say that they are given expliitly by

their symbols (whih are visible on the at model G=P ) and by the de�ning Cartan

onnetions !.

On the other hand, the invariants of the geometries may enter into the expressions

of the invariant operators, i.e. we should onsider also all possible ontributions from

the urvature of the Cartan onnetion !. This leads either to operators whih are

not visible at all on the (loally) at models, or to those whih share the symbols

with the above ones and again the di�erene annot be seen on the at models.

In this paper we shall not deal with suh urvature ontributions and all lassi-

�ation laims below have to be understood `up to the possible urvature terms'.

In this sense we desribe all �rst order operators for all paraboli geometries by ex-

pliit formulae and the existene part of our problem is solved ompletely dealing

only with the homogeneous models and in purely algebrai way. At same time, there

are strit analogies to the Weyl onnetions from onformal Riemannian geometries

available for all paraboli geometries and so we shall also be able to provide expliit

universal formulae for all operators from the lassi�ation lists in terms of these linear

onnetions on the underlying manifolds.

This was exatly the output of Fegan's approah in the speial ase of G = SO(m+

1; 1), P the Poinar�e onformal group, whih orrespond to the onformal Riemannian

geometries, [21℄. We have reovered and vastly extended his approah to higher order

operators for all j1j{graded Lie algebras g in the third part of [15℄. Here we fous

again on the �rst order operators only, but we show that ompared to the omplexity

of the so alled standard operators of all orders in the Bernstein{Gelfand{Gelfand

sequenes, onstruted �rst in [16℄ and developed muh further in [11℄, the original

Fegan's approah to �rst order operators is surprisingly powerful in the most general

ontext. We should also like to mention that a omplete line of arguments for our

results is given during the general survey{like exposition of the general theory of

paraboli geometries.

2. Paraboli geometries, Weyl onnetions, and jet modules

2.1. Regular in�nitesimal ag strutures. | The homogeneous models for

paraboli geometries are the (real or omplex) generalized ag manifolds G=P with

G semisimple, P paraboli. It is well known that on the level of the Lie algebras, the

hoie of suh a pair (g; p) is equivalent to a hoie of the

so alled jkj{grading of a semisimple g

g = g

�k

� � � � � g

�1

� g

0

� � � � � g

k

p = g

0

� � � � � g

k

g

�

= g

�k

� � � � � g

�1

' g=p:

Then the Cartan{Killing form provides the identi�ation g

�

i

= g

�i

and there is the

Hodge theory on the ohomologyH

�

(g

�

;W ) for any g{module W , f. [40, 44, 13, 16℄.
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Now, the Maurer{Cartan form ! distributes these gradings to all frames u 2 G

and all P{equivariant data are projeted down to the ag manifolds G=P . This on-

strution goes through for eah Cartan onnetion of type (G;P ) and so there is the

�ltration

TM = T

�k

M � T

�k+1

M � � � � � T

�1

M(1)

on the tangent bundle TM of eah manifold M underlying the prinipal �ber bundle

G ! M with Cartan onnetion ! 2 


1

(G; g), indued by the inverse images of the

P{invariant �ltration of g. Moreover, the same absolute parallelism ! indues the

redution of the struture group of the assoiated graded tangent bundle

GrTM = (T

�k

M=T

�k+1

)� � � � � (T

�2

M=T

�1

M)� T

�1

M

to the redutive part G

0

of P . In partiular, this redution introdues an algebrai

braket on GrTM whih is the transfer of the G

0

{equivariant Lie braket in g

�k

�

� � � � g

�1

.

Next, let M be any manifold, dimM = dim g

�

. An in�nitesimal ag struture of

type (G;P ) onM is given by a �ltration (1) on TM together with the redution of the

assoiated graded tangent bundle to the struture group G

0

of the form GrT

x

M '

Gr g

�

, with the freedom in G

0

, at eah x 2M .

Let us write f ; g

g

0

for the indued algebrai braket on GrTM . The in�nitesimal

ag struture is alled regular if [T

i

M;T

j

M ℄ � T

i+j

M for all i; j < 0 and the algebrai

braket f ; g

Lie

on GrTM indued by the Lie brakets of vetor �elds onM oinides

with f ; g

g

0

. It is not diÆult to observe that the in�nitesimal strutures underlying

Cartan onnetions ! are regular if and only if there are only positive homogeneous

omponents of the urvature � of !, f. [34, 14℄.

The remarkable onlusion resulting from the general theory laims that for eah

regular in�nitesimal ag struture of type (G;P ) on M , under suitable normalization

of the urvature � (its o{losedness), there is a unique Cartan bundle G !M and a

unique Cartan onnetion ! on G of type (G;P ) whih indues the given in�nitesimal

ag struture, up to isomorphisms of paraboli geometries and with a few exeptions,

see [40, 32, 13℄ or [14℄, setions 2.7{2.11., for more details.

2.2. Examples. | The simplest and best known situation ours for j1j{graded

algebras, i.e. g = g

�1

� g

0

� g

1

. Then the �ltration is trivial, TM = T

�1

M , and

the regular in�nitesimal ag strutures oinide with standard G

0

{strutures, i.e.

redutions of the struture group of TM to G

0

. The examples inlude the onformal,

almost Grassmannian, and almost quaternioni strutures. The projetive strutures

orrespond to g = sl(m+1;R), g

0

= gl(m;R), and this is one of the exeptions where

some more struture has to be hosen in order to onstrut the anonial Cartan

onnetion !. The series of papers [15℄ is devoted to all these geometries.

Next, the j2j{graded examples inlude the so alled paraboli ontat geometries

and, in partiular, the hypersurfae type non{degenerate CR-strutures. See e.g. [44,

14℄ for more detailed disussions. Further examples of geometries are given by the

Borel subalgebras in semisimple Lie algebras, and they are modeled on the full ag

manifolds G=P .
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2.3. The invariant di�erential. | The Cartan onnetion ! de�nes the onstant

vetor �elds !

�1

(X) on G, X 2 g. They are de�ned by !(!

�1

(X)(u)) = X , for all

u 2 G. In partiular, !

�1

(Z) is the fundamental vetor �eld if Z 2 p. The onstant

�elds !

�1

(X) with X 2 g

�

are alled horizontal.

Now, let us onsider any natural vetor bundle EM = G �

P

E . Its setions may be

viewed as P{equivariant funtions s : G ! E and the Lie derivative of funtions with

respet to the onstant horizontal vetor �elds de�nes the invariant derivative (with

respet to !)

r

!

: C

1

(G; E) ! C

1

(G; g

�

�


 E)

r

!

s(u)(X) = L

!

�1

(X)

s(u):

We also write r

!

X

s for values with the �xed argument X 2 g

�

.

The invariant di�erentiation is a helpful substitute for the Levi{Civita onnetions

in Riemannian geometry, but it has an unpleasant drawbak: it does not produe P{

equivariant funtions even if restrited to equivariant s 2 C

1

(G; E)

P

. One possibility

how to deal with that is to extend the derivative to all onstant �elds, i.e. to onsider

r : C

1

(G; E) ! C

1

(G; g

�


 E) whih preserves the equivariane. This is a helpful

approah in the the so alled twistor and trator alulus, see e.g. [12, 11℄. In this

paper, however, we shall stik to horizontal arguments only.

An easy omputation reveals the (generalized) Rii and Bianhi identities and a

quite simple alulus is available, f. [16, 14, 11℄.

2.4. Jet modules. | Let us onsider a �xed P{module E and write � for the ation

of p on E . The ation of g 2 G on the setions of E(G=P ) is given by s 7! s Æ `

g

�1
,

where ` is the left multipliation on G, and this de�nes also the ation of P on the

one{jets j

1

o

s at the origin. A simple hek reveals the formula for the indued ation

of the Lie algebra p on the vetor spae J

1

E = E � (g

�

�


 E) of all suh jets:

Z � (v; ') =

�

�(Z)(v); �(Z) Æ '� ' Æ ad

�

(Z) + �(ad

p

(Z)( ))(v)

�

(2)

where the subsripts at the adjoint operator indiate the splitting of the values a-

ording to the omponents of g. In partiular, the ation of the redutive part G

0

of

P is given by the obvious tensor produt, while the nilpotent part mixes the values

with the derivatives. We all the resulting P{module J

1

E the �rst jet prolongation

of the module E . Moreover, eah P{module homomorphism � : E ! F extends to a

P{module homomorphism J

1

� : J

1

E ! J

1

F by omposition on values.

Another simple omputation shows that the invariant di�erentiation r

!

de�nes

the mapping � : C

1

(G; E

�

)

P

! C

1

(G; J

1

E

�

)

P

�(s)(u) = (s(u); (X 7! r

!

s(u)(X)))

whih yields di�eomorphisms J

1

EM ' G �

P

J

1

E , for all paraboli geometries (G; !).

Moreover, for eah �ber bundle morphism f : EM ! FM given by a P{module

homomorphism � : E ! F, the �rst jet prolongation J

1

f orresponds to the P{

module homomorphism J

1

�. See e.g. [16, 37℄ for more detailed exposition.

Iteration of the above onsideration leads to the ruial identi�ation of semi{

holonomi prolongations

�

J

k

EM of natural vetor bundles with natural vetor bundles
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assoiated to semi{holonomi jet modules

�

J

k

E . Thus, P{module homomorphisms

	 :

�

J

k

E ! F always provide invariant operators by omposition with the iterated

invariant derivative r

!

. Suh operators are alled strongly invariant, f. [16℄. This

is at the ore of the general onstrution of the invariant operators of all orders in

[15, 16℄. In this paper, however, only �rst order operators are treated and so we skip

more expliit desription of the higher order jet modules.

2.5. Weyl onnetions. | Let (G; !) be a paraboli geometry on a smooth mani-

fold M , P the struture group of G and G

0

its redutive part. Let us write P

+

for the

exponential image of p

+

= g

1

�� � ��g

k

and onsider the quotient bundle G

0

= G=P

+

.

Thus we have the tower of prinipal �ber bundles

G

�

����! G

0

p

0

����! M

with struture groups P

+

and G

0

and, of ourse, there is the ation of G

0

on the total

spae of G.

For eah smooth paraboli geometry, there exist global G

0

{equivariant setions �

of � and the spae of all of them is an aÆne spae modeled on 


1

(M), the one forms

on the underlying manifold, see [14℄. Eah suh setion � is alled a Weyl struture

for the paraboli geometry on M .

Eah Weyl struture � provides the redution of the struture group P to its

redutive part G

0

and the pullbak of the Cartan onnetion, whih splits aording

to the values:

�

�

! = �

�

(!

�

) + �

�

(!

0

) + �

�

(!

+

):

The negative part �

�

!

�

yields the identi�ation of TM and GrTM and may be also

viewed as the soldering form of G

0

. The g

0

omponent is a linear onnetion on M

and we all it the Weyl onnetion. Let us also notie that the non{positive parts

provide a Cartan onnetion of the type (G=P

+

; P=P

+

). In partiular, the usual Weyl

onnetions are reovered for the onformal Riemannian geometries.

Now, onsider a P{module E and the natural bundle EM . Chosen a Weyl struture

�, we obtain EM = G

0

�

G

0

E and we have introdued two di�erentials on setions:

the invariant di�erential

(r

!

s) Æ � : (u;X) 7! L

!

�1

(X)

s(�(u))

and the ovariant di�erential of the Weyl onnetion

r

�

(s Æ �) : (u;X) 7! L

(�

�

(!

�

+!

0

))

�1

(X)

(s Æ �)(u):

If the ation of the nilpotent part P

+

on E is trivial (in partiular if E is irreduible),

then the restrition of the invariant di�erential to the image of � learly oinides

with the ovariant di�erential with respet to the Weyl onnetion.

Obviously, eah �rst order di�erential operator C

1

(EM) ! C

1

(FM) may be

written down by means of the invariant di�erential. If it is invariant, then it omes

from a P{module homomorphism J

1

E ! F, but then it must be given by the same

formula in terms of all Weyl onnetions. On the other hand, a hange of the Weyl

struture � implies also the hange of the Weyl onnetion. The general formula

for the di�erene in terms of the one{forms modeling the spae of Weyl strutures

is given in [14℄, Proposition 3.9. We shall need a very speial ase only whih will
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be easily dedued below. In partiular, we shall see that if a formula for �rst order

operator in terms of the Weyl onnetions does not depend on the hoie, then it is

given by a homomorphism. This shows that the usual de�nition of the invariane in

onformal Riemannian geometry oinides with our general ategorial de�nition in

the �rst order ase. There are strong indiations that this observation is valid even

for non{linear operators of all orders, f. [36℄.

3. Algebrai haraterization of �rst order operators

3.1. Restrited jets. | The distinguished subspaes T

�1

M in the tangent spaes

of manifolds with paraboli geometries suggest to deal with partially de�ned deriva-

tives | those in diretions in T

�1

M only.

In omputations below, we shall often use ations of p on various modules. To avoid

an awkward notation, the ation will be denoted by the symbol �; it is easy to see

from the ontext what are the modules onsidered. We shall also write E

�

for the

p{module orresponding to the representation � : p ! GL(E

�

), and E

�

M !M will

be the orresponding natural vetor bundle over M . (In some ontext, � may also be

the highest weight determining an irreduible module.)

First we rewrite slightly the p{ation (2) on J

1

E

�

= E

�

�(g

�

�


E

�

). Reall that the

Killing form provides the dual pairing g

�

�

' p

+

and so we have for all Y 
v 2 p

+


E

�

,

X 2 g

�

, Z 2 p

(Y 
 v)(ad

�

(Z)(X)) = had

�

(Z)(X); Y iv =

= h[Z;X ℄; Y iv = �hX; [Z; Y ℄iv = �([Z; Y ℄
 v)(X):

For a �xed dual linear basis �

�

2 g

�

, �

�

2 p

+

we an also rewrite the term

�(ad

p

(Z)(X))(v) =

X

�

�

�


 [Z; �

�

℄

p

� v:

Thus the 1{jet ation of Z 2 p on J

1

E

�

= E

�

� (p

+


 E

�

) is

J

1

�(Z)(v

0

; Y

1


 v

1

) = (Z � v

0

; Y

1


 Z � v

1

+ [Z; Y

1

℄
 v

1

+

X

�

�

�


 [Z; �

�

℄

p

� v

0

):

Let p

2

+

denote the subspae [p

+

; p

+

℄ in p. There is the p{invariant vetor subspae

f0g � (p

2

+


 E

�

) � J

1

E

�

and we de�ne the p-module

J

1

R

E

�

= J

1

E

�

=(f0g � (p

2

+


 E

�

)) ' E

�

� ((p

+

=p

2

+

)
 E

�

) ' E

�

� (g

�

�1


 E

�

):

The indued ation of Z 2 p on J

1

R

E is

J

1

R

�(Z)(v

0

; Y

1


 v

1

) = (Z:v

0

; Y

1


 Z:v

1

+ [Z; Y

1

℄

g

1


 v

1

+

X

�

0

�

�

0


 [Z; �

�

0

℄

p

� v

0

)

where �

�

0

and �

�

0

are dual bases of g

�1

and Y 2 g

1

; v

0

; v

1

2 E

�

: The latter formula

gets muh simpler if � is a G

0

-representation extended trivially to the whole P . Then
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for eah W 2 g

0

, Z 2 g

1

J

1

R

�(W )(v

0

; Y

1


 v

1

) = (W � v

0

; Y

1


W � v

1

+ [W;Y

1

℄
 v

1

)

J

1

R

�(Z)(v

0

; Y

1


 v

1

)(0;

X

�

0

�

�

0


 [Z; �

�

0

℄ � v

0

)

while the ation of [p

+

; p

+

℄ is trivial. Exatly as with the funtor J

1

, the ation of J

1

R

on (G

0

; p){module homomorphisms is given by the omposition.

The assoiated �ber bundle J

1

R

EM : G �

P

J

1

R

E

�

is alled the restrited �rst jet

prolongation of the natural bundle EM . The invariant di�erential provides a natural

mapping J

1

EM ! J

1

R

EM .

The indutive onstrution of the semi{holonomi jet prolongations of (G

0

; p){

modules an be now repeated with the funtor J

1

R

. The resulting p{modules are the

equalizers of the two natural projetions J

1

R

(

�

J

k

R

E

�

)!

�

J

k

R

E

�

and, as g

0

-modules, they

are equal to

�

J

k

R

E

�

k

M

i0

(


i

g

1


 E

�

):

This onstrution leads to restrited semi-holonomi prolongations of E

�

M and E

�

but we shall need only the �rst order ase here.

3.2. Lemma. | Let E and F be irreduible P{modules. Then a G

0

module homo-

morphism 	 : J

1

E ! F is a P{module homomorphism if and only if 	 fators through

J

1

R

E and for all Z 2 g

1

	

 

X

�

0

�

�

0


 [Z; �

�

0

℄ � v

0

!

= 0;(3)

where �

�

0

, �

�

0

is a dual basis of g

�1

.

Proof. | Sine both E and F are irreduible, the ation of p

+

on both is trivial.

Thus, eah P{homomorphism 	 must vanish on the image of the P{ation on J

1

E .

Moreover, either E is isomorphi to F (and then 	 is given by the projetion to values

omposed with the identity), or 	 is supported in the G

0

{submodule p

+


E . Further,

reall there is the grading element E in the enter of g

0

whih ats by j on eah g

j

� g.

The intertwining with the grading element implies that 	 is in fat supported in g

j


E

for suitable j > 0.

Now, let us �x dual basis �

�

, �

�

of p

+

and g

�

. For all Z 2 g

i

, i > 0, and (v

0

; Y 


v

1

) 2 J

1

E

�

, the formula (2) yields the ondition

0 = 	

 

[Z; Y ℄
 v

1

+

X

�

�

�


 [Z; �

�

℄

g

0

� v

0

!

:

In partiular, let us insert v

0

= 0 and reall that the whole p

+

is spanned by g

1

. Thus

we obtain 	(g

j


 E) = 00 for all j > 1 and this means that 	 fators through the

restrited jets, as required.
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Now, looking again at the jet{ation (2), we derive the ondition (3). On the

other hand, eah G

0

{homomorphism whih fators through the derivative part of the

restrited jets and satis�es (3) learly is a P{module homomorphism.

In the Lemma above, we have onsidered an endomorphism of � from g

1


 E

�

de�ned by

�(Z 
 v) :=

X

�

0

�

�

0


 [Z; �

�

0

℄ � v:(4)

The Lemma is saying that the G

0

-homomorphism 	 is a P -module homomorphism

if and only if it annihilates the image of �: By the Shur lemma, the map � is

a multiple of identity on any irreduible piee in the tensor produt. In the next

setion, we shall ompute the orresponding values of � on irreduible omponents

using known formulae for Casimir operators.

3.3. The expliit formulae. | The above expliit desription of the P{module

homomorphisms 	 represent at the same time expliit formulae for the invariant

operators in terms of the Weyl onnetions. Indeed, we have simply to write down

the omposition 	 Æ r using the frame form of the ovariant derivative with respet

to any of the Weyl onnetions. By the general theory disussed in Setion 2, suh

formula does not depend on the hoie of the Weyl onnetion r and all invariant

�rst order operators have this form, up to possible urvature ontributions.

4. Casimir omputations

In Lemma 3.2, we derived an algebrai ondition for �rst order invariant operators

on setions of natural bundles for a given paraboli geometry. Here we want to trans-

late this algebrai ondition into an expliit formula for highest weights of onsidered

modules using Casimir omputations.

4.1. Representations of redutive groups. | Irreduible representations of a

(omplex) semisimple Lie algebra g are lassi�ed by their highest weights � 2 h

�

;

where h is a hosen Cartan subalgebra of g:

A redutive algebra g

0

= a � g

s

0

is a diret sum of a ommutative algebra a and

a semisimple algebra g

s

0

(whih an be trivial). Irreduible representations of g

0

are

tensor produts of irreduible representations of both summands, irreduible repre-

sentations of a are haraterized by an element of a

�

:

In the paper, we shall onsider the situation where g is a jkj-graded (omplex)

semisimple Lie algebra and g

0

is its redutive part. The grading element E has eigen-

values j on g

j

and a Cartan algebra h and the set � of simple roots an be hosen

in suh a way that E 2 h � g

0

and all positive root spaes of g are ontained in the

paraboli subalgebra p = g

0

� p

+

: In this situation, irreduible representations of g

0

are haraterized by an element � 2 h

�

with the property that � restrited to h \ g

s

0

is a dominant integral weight for g

s

0

: Suh a highest weight � will be alled dominant

weight for p: Moreover, we have at our disposal invariant (nondegenerate) forms (:; :)
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for g; their restritions to h are nondegenerated as well. It will be onvenient (see e.g.

[9, 15℄) to normalize the hoie of the invariant form by the requirement (E;E) = 1

(so that it is the Killing form saled by the fator (2 dim g

+

)

�1

). The restrition of

this form to g

0

is nondegenerate and the spaes g

j

are dual to g

�j

; j > 0:

4.2. A formula for the Casimir operator. | Let us suppose that a paraboli

subalgebra p in a (omplex) semisimple Lie algebra g is given. We need below a formula

for the value of the quadrati Casimir element  on an irreduible representation of

the redutive part g

0

of p haraterized by a weight � 2 h

�

: Suh a formula is well

known for the ase of semisimple Lie algebra and an be easily adapted for our ase.

Lemma. | Let g

0

be the redutive part of a (omplex) graded semisimple Lie algebra

g: Let �

0

is the set of all positive roots � 2 h

�

for g for whih g

�

� g

0

and let us

de�ne �

0

by �

0

=

1

2

P

�2�

0

� (for the Borel ase �

0

= 0).

Let  be the quadrati Casimir element in the universal enveloping algebra of g

0

(with respet to the hosen invariant form (�; �) on g) and let E

�

; � 2 h

�

be an irre-

duible representation of g

0

: Then the value of  on E

�

is given by

 = (�; � + 2�

0

):

Proof. | Due to the fat that g

0

is the redutive part of g and that we use the invari-

ant form (�; �) for the whole algebra g; the proof follows the same lines of argument

as in the semisimple ase (see [27℄, p.118℄).

Let fh

a

g; resp. f

~

h

a

g will be dual bases for h and let for any positive root with

g

�

� g

0

; elements x

�

; resp. z

�

be generators of g

�

; resp. g

��

dual with respet to

(�; �): Then the Casimir element  for g

0

is given by

 =

X

a

~

h

a

h

a

+

X

�2�

0

(x

�

z

�

+ z

�

x

�

):

Let v

�

be a highest weight vetor in E

�

: The ation of the �rst summand

P

a

~

h

a

h

a

on v

�

is multipliation by the element (�; �) and the ation of x

�

z

�

+ z

�

x

�

is given

by multipliation by (�; �): The ation of  on the whole spae is the same as on v

�

by the Shur lemma.

4.3. Casimir omputations. | In the algebrai ondition for invariant �rst order

operators (see Setion 3), the operator � de�ned by the formula

�(Z 
 v)(X) = [Z;X ℄ � v =

 

X

�

0

�

�

0


 [Z; �

�

0

℄v

!

(X); Z 2 g

1

; X 2 g

�1

; v 2 E

�

was used. We shall now give an expliit desription of the ation of the operator �:

Lemma. | Let E

�

be an irreduible representation of g

0

haraterized by � 2 h

�

and let g

1

=

P

j

g

j

1

be a deomposition of g

1

into irreduible g

0

-submodules. Highest

weights of individual omponents g

j

1

will be denoted by �

j

: Suppose that g

1


 E

�

=

P

j

P

�

j

E

j

�

j

be a deomposition of the produt into irreduible g

0

-modules and �

�;�

j

be the orresponding projetions. Let �

0

be the half sum of positive roots for g

s

0

as

de�ned in the previous lemma.
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Then for all v 2 E

�

,

�(Z 
 v)(X) = [Z;X ℄ � v =

X

j

X

�

j



��

j

�

��

j

(Z 
 v)(X);

where



��

j

=

1

2

[(�

j

; �

j

+ 2�

0

)� (�; � + 2�

0

)� (�

j

; �

j

+ 2�

0

)℄:

Proof. | It is suÆient to prove the laim for eah individual omponent g

j

1

sepa-

rately, hene we shall onsider one of these omponents and we shall drop the index

j everywhere. Let f�

�

g; resp. f�

�

g be dual bases of g

�1

; resp. g

1

: Similarly, let fY

a

g;

resp. f

~

Y

a

g be dual bases of g

0

: The invariane of the salar produt implies

[Z; �

�

℄ =

X

a

(

~

Y

a

; [Z; �

�

℄)Y

a

=

X

a

([

~

Y

a

; Z℄; �

�

)Y

a

;

and

�(Z
v) =

X

i

�

�


 [Z; �

�

℄ �v =

X

i

�

�




 

X

a

([

~

Y

a

; Z℄; �

�

)Y

a

!

�v =

X

a

[

~

Y

a

; Z℄
Y

a

�v:

The same formula holds also in the ase when the role of bases fY

a

g and f

~

Y

a

g is

exhanged.

Using the de�nition of the Casimir operator  and the previous Lemma, it is suÆ-

ient to note that

X

a

~

Y

a

Y

a

� (Z 
 s) =

=

X

a

(

~

Y

a

Y

a

� Z)
 s+

X

a

Z 
 (

~

Y

a

Y

a

� s) +

X

a

(

~

Y

a

� Z)
 (Y

a

� s) + (Y

a

� Z)
 (

~

Y

a

� s)

(as before, the symbol � here means the ation on di�erent modules used in the

formula, for example Y

a

� Z � [Y

a

; Z℄).

4.4. A haraterization of invariant �rst order operators. | Now it is possi-

ble to give the promised haraterization of the �rst order operators (up to urvature

terms in the sense explained in Setion 1).

Theorem. | Let g be a (real) graded Lie algebra and g

C

its graded omplexi�ation.

Then g

j

= g \ g

C

j

:

Let E

�

be a (omplex) irreduible representation of g

0

with highest weight � and let

g

C

1

P

j

g

j

1

be a deomposition of g

C

1

into irreduible g

0

-submodules and let �

j

be highest

weights of g

j

1

: Suppose that

g

1




R

E

�

= g

C

1




C

E

�

=

X

j

X

�

j

E

j

�

j

be a deomposition of the produt into irreduible g

0

-modules and let �

�;�

j

be the

orresponding projetions. Let us denote (as in Lemma 4.2) the half sum of positive
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roots for g

0

by �

0

and let us de�ne onstants 

�;�

j

by



��

j

=

1

2

[(�

j

; �

j

+ 2�

0

)� (�; � + 2�

0

)� (�

j

; �

j

+ 2�

0

)℄:

Then the operator D

j;�

j

: �

�;�

j

Ær

!

is an invariant �rst order di�erential operator

if and only if 

�;�

j

= 0: Moreover, all �rst order invariant operator ating on setions

of E

�

are obtained (modulo a salar multiple and urvature terms) in suh way.

Proof. | The �rst part of the laim follows from the previous Lemmas and results of

Setion 3. If D is any �rst order invariant di�erential operator, then its restrition to

the homogeneous model is given by a P{homomorphism from the spae of restrited

jets of order one to a P{module. This homomorphism then de�nes a strongly invariant

�rst order operator

~

D on any manifold with a given paraboli struture. The operators

D and

~

D an di�er only by a sale or possible urvature terms.

4.5. The Borel ase. | There are two extreme ases of the paraboli subalgebras

| maximal ones and the Borel subalgebra. We shall �rst disuss one of these extremal

ases. In this subsetion, symbol g will denote the omplex graded Lie algebra whih

is the omplexi�ation of the real graded Lie algebra in question.

Corollary. | Let � denote the set of simple roots for g: Let � be the highest weight

of an irreduible g

0

-module. An invariant �rst order operator between setions of E

�

and E

�

exists if and only if the following two onditions are satis�ed:

1) There exists a simple root � 2 � suh that � = �+ �:

2) (�; �) = 0:

Proof. | Note �rst that the set of all roots � with g

�

� g

1

is exatly the set of all

simple roots. Hene g

1

in the Borel ase is a diret sum of irreduible one dimen-

sional subspaes g

�

with � 2 �: The tensor produt of E

�

with g

�

is irreduible

and isomorphi to E

�+�

(beause g

�

is one dimensional), hene no projetions are

involved.

In the Borel ase, the orresponding element �

0

is trivial. Hene the ondition in

Theorem 4.4 redues to the ondition

0 = (�+ �; � + �)� (�; �) � (�; �) = 2(�; �):

4.6. The ase of a maximal algebra. | Let us now onsider an opposite extreme

ase, where the paraboli subalgebra of g is maximal, i.e. it orresponds to a one-

point subset of the set of simple roots for g (there is just one node rossed in the

usual Dynkin notation for paraboli subalgebras). Then g

0

= a� g

s

0

; h = a� h

s

with

h

s

= h \ g

s

0

and the ommutative subalgebra a is generated by the grading element

E: Moreover, it is easy to see that the deomposition above is orthogonal. Indeed, the

spae h

s

is generated by ommutators [x

�

; z

�

℄; where x

�

; resp. z

�

are generators of

the root spae g

�

� g

0

; resp. g

��

� g

0

and we have (E; [x

�

; z

�

℄) = ([E; x

�

℄; z

�

) = 0:

Let �

E

be the element of h

�

representing the grading element E under the duality

given by the invariant bilinear form. Note that �

E

belongs (inside the original real
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graded Lie algebra) to the nonompat part of g; hene representations of g

0

with the

highest weight w:�

E

integrate to representations of P for any w 2 R:

The orthogonal deomposition h = a� h

s

indues the dual orthogonal deomposi-

tion h

�

= a

�

�(h

s

)

�

; where the embedding of both summands is de�ned by requirement

that a

�

; resp. (h

s

)

�

annihilates h

s

; resp. a: The one dimensional spae a

�

is generated

by �

E

: Any weight � 2 h

�

an be then written as � = �

E

+�

0

with w 2 C ; �

0

2 (h

s

)

�

:

In this ase, we shall onsider (omplex) irreduible representations of g

0

; whih

are tensor produts of one dimensional representation with highest w:�

E

; w 2 R (w is

a generalized onformal weight) with an irreduible representation V

�

0

; where �

0

is a

dominant integral weight for g

s

0

: Any suh representation integrates to a representation

of P (nilpotent part ating trivially) and we shall denote suh representation by

E

�

0

(w):

In [15℄, the ase of almost Hermitean symmetri struture was onsidered. This is

just a speial ase of maximal paraboli subalgebras, whih are moreover j1j-graded

Lie algebras (but note that there is a lot of ases of jkj-graded Lie algebras with

k > 1 whih are maximal). In the j1j-graded ase (see [15℄, Part III; see also [21℄ for

the onformal ase), it was proved that for any projetion to an irreduible piee of

the g

s

0

-module E

�


 g

1

; there is a unique onformal weight w suh that the resulting

�rst order operator is invariant. The value of w was omputed using suitable Casimir

expressions. We are going to show that omputations and formulae proved there an

be extended without any substantial hange to the general ase of jkj-graded Lie

algebra.

4.7. The general ase. | In the general ase, it is possible again to onsider the

orthogonal deomposition g

0

= hEi

C

� g

0

0

; and h

�

= h�

E

i

C

� (h

0

)

�

; where elements of

(h

0

)

�

annihilate E. Hene again any weight � 2 h

�

an be deomposed as � = �

E

+�

0

with w 2 C ; �

0

2 (h

0

)

�

(note that g

0

0

is again redutive but not neessarily semisimple).

We are now able to prove a generalization of fats proved �rst by Fegan in onformal

ase and then extended to j1j-graded ase in [15℄.

Corollary. | Let p be a maximal paraboli subalgebra of g: Let E

�

be an irreduible

representation of g

0

haraterized by � 2 h

�

and let g

1

=

P

j

g

j

1

be a deomposition of

g

1

into irreduible g

0

-submodules. Highest weights of individual omponents g

j

1

will be

denoted by �

j

: Suppose that g

1


 E

�

=

P

j

P

�

j

E

j

�

j

be a deomposition of the produt

into irreduible g

0

-modules and �

�;�

j

be the orresponding projetions. Let �

0

be the

half sum of positive roots for g

s

0

as de�ned in Lemma 4.3.

Suppose that weights �; �

j

and �

j

are split as

� = �

E

+ �

0

; �

j

= �

E

+ �

0

j

; �

j

= (w + 1)�

E

+ �

0

j

:

Then for all v 2 E

�

(w); Z 2 g

1

�(Z 
 v)(X) = [Z;X ℄ � v =

X

�

0

(w � 

�

0

�

0

)�

�

0

�

0

(Z 
 v)(X);

where
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�

0

�

0

= �

1

2

[(�

0

; �

0

+ 2�

0

)� (�

0

; �

0

+ 2�

0

)� (�

0

; �

0

+ 2�

0

)℄:

Hene the operator D

��

�

��

Æ r

!

is invariant �rst order operator if and only if

w = 

�

0

�

0

:

Proof. | For simpliity of notation, we shall drop subsripts j everywhere. We have

(�

0

+w�

E

; �

0

+w�

E

+2�

0

) = (�

0

; �

0

+2�

0

)+2w(�

E

; �

0

)+w

2

; similar formulae hold for

terms with � (with weight w+1) and for � (with weight 1). Using (w+1)

2

�w

2

�1 =

2w; we get

(�; �+2�

0

)�(�; �+2�

0

)�(�; �+2�

0

) = 2w+(�

0

; �

0

+2�

0

)�(�

0

; �

0

+2�

0

)�(�

0

; �

0

+2�

0

)

and the laim follows.

In general ase, the redutive algebra g

0

is redutive and may be split into its

ommutative and semisimple part. Suppose that g

0

= a � g

0

0

is suh an orthogonal

splitting. It indues the splitting h = a� h

0

of the Cartan subalgebra. Every weight

� 2 h

�

an be hene again split into a sum � = �

0

+ �

0

with �

0

2 (a)

�

; �

0

2 (h

0

)

�

:

The Corollary above is saying that we an, for a given � and � to shift �; resp. �

by a multiple of �

E

to

~

�; resp. ~� in suh a way that there is an invariant �rst order

operator from E

~

�

to E

~�

:

It is possible to onsider more general hanges of �; resp. � by adding to them

an arbitrary element � 2 (a)

�

and to ask whether we an have an invariant operator

between spaes with shifted values of highest weights. It is an easy alulation to

see that the relation 

��

j

= 0 in Theorem 4.4 yields one linear relation for � (the

quadrati terms anel eah other). Hene we have a linear subspae of odimension

1 in a

�

of suh elements �:

5. Multipliity one result

A tensor produt of two irreduible representations of the redutive group g

0

de-

omposes into irreduible omponents and the projetions to these omponents are

key tools in the onstrution of invariant �rst order operators. Important informa-

tion onerning suh deompositions is multipliity of individual omponents in their

isotopi omponents. The best situation is when all multipliities are one, then all ir-

reduible omponents (as well as the orresponding projetions) are de�ned uniquely,

without any ambiguity. In this setion, we are going to prove suh multipliity one

result for the tensor produt used in the de�nition of invariant operators and we are

going to give full information on highest weights of individual omponents in suh

deompositions for any lassial graded Lie algebra.

5.1. Simple fators of g

0

. | Our starting point for a hoie of struture in ques-

tion is a real graded Lie algebra g: For the disussion of (omplex) �nite dimensional

representations, we an simplify the situation and to work with the omplexi�ation

g

C

: There are two main ases to be onsidered. Either g is a real form of g

C

; or it is
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a omplex graded Lie algebra onsidered as a real one. In the latter ase, there is no

need to go through omplexi�ation in subsequent disussions. So we shall onentrate

in this setion to the former ase.

So let us suppose that g is a real form of a omplex graded Lie algebra of lassial

type and that (g

0

)

C

is just (g

C

)

0

: Hene any (omplex) irreduible g

0

{module is at

the same time (g

C

)

0

{module and vie versa. Consequently, the disussion of deom-

position of the tensor produts of irreduible g

0

{modules with irreduible omponents

of (g

C

)

1

' (g

1

)

C

an be done ompletely in the setting of omplex graded Lie alge-

bras. Hene we shall hange the notation and we shall denote in this setion by g a

omplex simple graded Lie algebra given by its Dynkin diagram with orresponding

rosses. There is a simple and very intuitive way how to �nd simple omponents of

the semisimple part of g

0

from the orresponding Dynkin diagrams. Delete all rossed

nodes and lines emanating from them. The rest will onsist of several onneted

omponents whih will be again Dynkin diagrams for simple Lie algebras. Then the

orresponding semisimple part of g

C

0

is isomorphi to the produt of these fators. We

shall give more details (inluding explanation why this is true) in the disussion of

individual ases below.

We are going to study in more details the tensor produts g

1


 E

�

of g

0

{modules

and their deompositions into irreduible omponents. In general, only the semisimple

part of g

0

is playing a role in the deomposition. Having a better information on the

number and types of simple fators of g

0

, we shall desribe then the number and the

highest weights of irreduible piees of the g

0

{module g

1

: Even if there is a lot of

ommon features, full details di�er substantially in individual ases and we have to

disuss all four of them separately.

Most of the simple fators of g

0

will be of type A

j

, exeptionally also B

j

, C

j

and

D

j

appear. A general irreduible representation of a produt of ertain number of

simple Lie algebras is a tensor produt of irreduible representations of th individual

fators in g

0

: Hene to desribe a g

0

{module, it is suÆient to give a list of highest

weights of the individual fators. For omponents of g

1

; we shall need only very small

number of quite simple representations. We shall now give the list of them and we

introdue a notation for their highest weights.

For A

n

, we shall need:

{ the de�ning representation C

n+1

with the highest weight denoted by �

1

;

{ its symmetri power �

2

(C

n+1

) with the highest weight 2�

1

;

{ its exterior power �

2

(C

n+1

) with the highest weight denoted by �

11

.

For B

n

, C

n

and D

n

; we shall need only their de�ning representations, their highest

weights will be denoted by �

1

, 

1

and Æ

1

.

It will also help a lot to use the symbol A

0

for the trivial Lie algebra f0g of

dimension 0: All its irreduible representations are trivial. Its presene in the produt

will be just a notational onveniene, (these fators an be dropped out, they have no

signi�ane in the struture of the algebra but they will be substantial for a desription

of irreduible piees of the module g

1

).

A general method used below to larify these questions is a very nie and expliit

desription of gradings in terms of blok matries, whih an be found in the paper
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by Yamaguhi ([44℄), we refer to this paper for further details. It makes also possible

to give expliitly the form of all irreduible piees in the module g

1

.

5.2. A { series. | Suppose that g = A

n

= sl(n + 1; C ). This is the simplest

ase whih is partiularly intuitive when desribed using blok matries. First, it is

neessary to understand blok forms of maximal graded Lie algebras. In our ase,

they are spei�ed by their Dynkin diagram � � � �

�

� � � � with the ross at the

j-th node. The orresponding grading is indiated by the following diagram (where

numbers �1; 0; 1 indiate the grading of the algebra).

0

0

j

n+ 1� j

1

�1

The general ase with several rosses is then given by a simple superposition of the

diagrams. There is an example with three rosses:

0

0

1

�1

0

0

1

�1

0

0

�1

1

=)

0

0

0

0

1

1

1

2

2

3

�1

-1

�1

�2

-2

�3

Let the set I = fi

1

; : : : ; i

j

g; 1 � i

1

< : : : < i

j

� n denote the set of rossed nodes

in the Dynkin diagram of type A

n

. Then the orresponding semisimple part g

s

0

is

equal to the produt

A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�A

n�i

j

:

There are j + 1 fators in the produt (some of them possibly equal to A

0

; these an

be dropped as far as the struture of g

0

is onerned).

Using additional notation i

0

= 0, i

j+1

= n+ 1; we have g

s

0

= �

n+1

k1

A

i

k

�i

k�1

�1

:

Irreduible representations of g

0

are tensor produts of irreduible modules of in-

dividual fators, they are given by their highest weights. There is j irreduible om-

ponents of the g

0

{module g

1

; as is immediately seen from the orresponding blok

diagram. The (j + 1){tuples of their highest weights are learly:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

):

So eah omponent is just the tensor produt of two de�ning representations of

neighboring fators in g

0

:

5.3. B { series. | As in the previous ase, the key information is ontained in

the blok diagrams for maximal graded Lie algebra, desribed in [44℄. We shall not

reprodue them but we shall only desribe the form of the simple fators and highest

weights of irreduible parts of g

1

: The method used to get these fats is the same as

in the A

n

ase.
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Let again the set I = fi

1

; : : : ; i

j

g; 1 � i

1

< : : : < i

j

� n denote the set of rossed

nodes in the Dynkin diagram of type B

n

. We shall onsider three di�erent subases.

1)
�

� � �
�

� �

i

i

j

� n� 2 (here stars indiate nodes with either bullets or rosses).

Then the orresponding semisimple part g

s

0

is equal to the produt (j + 1 fators)

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�B

n�i

j

and there are j irreduible piees in g

1

with highest weights

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

):

(reall that �

1

denotes the highest weight of the de�ning representation of A

k

and �

1

denotes the highest weight of the de�ning representation of B

k

).

2)

� � � � �

�

�

i

i

j

= n� 1

Then g

s

0

has j + 1 fators

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�A

1

:

The last fator A

1

is isomorphi with B

1

: We shall need the de�ning representation

of B

1

; whih is just the seond symmetri power of the de�ning representation of A

1

:

Hene as a representation of A

1

; it has the highest weight 2�

1

:

There are j irreduible parts in g

1

. The list of their highest weights is:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

; 0); (0; : : : ; 0; �

1

; 2�

1

):

3)

� � � � � �

�i

i

j

= n

Then

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�A

0

:

There are j irreduible piees in g

1

with highest weights

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

):

5.4. C { series. | Let indies 1 � i

1

< : : : < i

j

� n again indiate the set of

rossed nodes in the Dynkin diagram of type C

n

in the standard ordering of nodes.

1)

� � � � � � �

h

i

j

� n� 1

Then g

s

0

has j + 1 fators

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

� C

n�i

j

:

(but note that C

1

� A

1

).

There are j irreduible parts in g

1

. The list of their highest weights is:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

; 0); (0; : : : ; 0; �

1

; 

1

):

2)

� � � � �

�h

i

j

= n

This ase brings a new feature, let us illustrate it in the ase of maximal paraboli

subalgebra with the last node rossed. This is a j1j{graded ase with the blok grading

as follows:
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0

0

�1

1
A

�A

0

C

B

where the symbol A

0

indiates the matrix transposed with respet to the antidiagonal

and the matries B and C satisfy B = B

0

, C = C

0

. Hene g

1

is the symmetri power

�

2

(C

n+1

) of the de�ning representation and its highest weight is 2�

1

:

In the general ase, we get in the same way that

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j�1

�i

j�2

�1

�A

n�i

j�1

(note that there are only j fators here).

There are j irreduible piees in g

1

with highest weights

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

)(0; : : : ; 0; 2�

1

):

5.5. D - series. | Let 1 � i

1

< : : : < i

j

� n indiate the set of rossed nodes in

the Dynkin diagram of type D

n

in the standard ordering of nodes.

1)

� � � � � �

�

i

j

� n� 2

Then

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j

�i

j�1

�1

�D

n�i

j

:

Note that if i

j�1

= n � 2; then the last fator is D

2

� A

1

� A

1

: The list of all j

irreduible piees of g

1

is again the standard list:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; Æ

1

):

The proof of the laim is again visible diretly from the blok forms of maximal

paraboli subalgebras given in [44℄.

2)

�
� � �

� �
�

�

or

�
� � �

� �
�

�

i

j�1

� n� 2; i

j

= n� 1 or i

j

= n

This is similar to the seond ase in the C

n

series. Let us illustrate it again in the

simplest j1j-graded ase. The graded algebra g has the following blok form:

0

0

�1

1

A

�A

0

C

B

where the symbol A

0

indiates again the matrix transposed with respet to the an-

tidiagonal and the matries B and C satisfy B = �B

0

, C = �C

0

. Hene g

1

is the

outer power �

2

(C

n+1

) of the de�ning representation of A

n

and its highest weight was

denoted by �

11

:
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In general ase

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j�1

�i

j�2

�1

�A

n�i

j�1

�1

(there are j fators only). The list of all j irreduible piees of g

1

is:

(�

1

; �

1

; 0; : : : ; 0); (0; �

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

); (0; : : : ; 0; �

11

):

3)

�
� � �

� �
�

�

i

j�1

= n� 1; i

j

= n

This is the most unusual ase. Let us illustrate it in the ase � � � � � �

�

�

; i.e.

I = (n� 1; n).

The orresponding matrix looks as follows:

n� 1

2

n� 1

0

0

0

1

1

2

�1

-1-2

In the middle, there is the 2 � 2 matrix, whih is antisymmetri with respet to

the antidiagonal (D

1

!). The module g

1

is a ((n� 1)� 2){matrix, whih is the tensor

produt of the de�ning representation for A

n�2

and D

1

. (Note that there are two

bloks in the 1 part of the blok matrix above but they are inverse transpose of eah

other.) But D

1

is ommutative and its orresponding fator in g

0

is the trivial algebra

A

0

: Or even better for our purposes, we an identify D

1

with the produt A

0

� A

0

:

The algebra g

0

is hene the produt A

n�2

�A

0

�A

0

:

Also in this ase, the module g

1

has j = 2 irreduible piees, i.e. both olumns of

(the left upper part) of g

1

:Their highest weights are equal to (�

1

; �

1

; 0) and (�

1

; 0; �

1

):

In general, for arbitrary I;

g

s

0

' A

i

1

�1

�A

i

2

�i

1

�1

� : : :�A

i

j�1

�i

j�2

�1

�A

0

�A

0

:

The list of all j irreduible piees of g

1

is as follows:

(�

1

; �

1

; 0; : : : ; 0); : : : ; (0; : : : ; 0; �

1

; �

1

; 0; 0); (0; : : : ; 0; �

1

; �

1

; 0); (0; : : : ; 0; �

1

; 0; �

1

):

5.6. Deomposition of tensor produts. | We have found above the form of

all irreduible piees of g

1

: They are quite simple modules, hene there is a hane

to get a better information on their produt with arbitrary other modules. Suh a

disussion was needed for the study of �rst order operators in the j1j{graded ase (see

[15℄, part III). We shall summarize now the fats proved there.

Basi tool for understanding tensor produts of irreduible modules of a simple Lie

algebra g is the Klimyk algorithm (see [27℄, Se.24, Ex.9).

Lemma. | Let h be a Cartan subalgebra of a simple Lie algebra g: For any weight

� 2 h

�

; let f�g denote the dominant weight lying on the orbit of � under the Weyl

group. Let � be the half sum of positive roots. If f�g belongs to the interior of the

dominant Weyl hamber, there is the unique w 2 W suh that f�g = w�. Let t(�) be

equal to the sign of w in this ase and zero otherwise.
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Suppose moreover that we know the list �(�) of all weights of the irreduible rep-

resentation V

�

with the highest weight �, inluding their multipliities m

�

(�), for

� 2 �(�). Let E

�

denote the irreduible representation of g with the highest weight �.

Then the formal sum

X

�2�(�)

m

�

(�)t(� + �+ �)V

f�+�+�g��

gives the deomposition of the tensor produt E

�


 E

�

into isotopi omponents. The

resulting oeÆients are always non{negative and give the multipliity of the orre-

sponding representation in the deomposition. Note that some anellations happen

often.

5.7. A

n

deompositions. | For representations of A

n

; we need to deompose

produts E

�


 E

�

1

, E

�


 E

�

11

and E

�


 E

2�

1

:

For the two �rst ases, we have the following information.

Lemma. | Let �

1

be the highest weight of the de�ning representation of A

n

and let

�

11

be the highest weight of its outer produt. Let � = �

1

; or � = �

11

: Let E

�

be an

irreduible A

n

{module with the highest weight �:

Then the deomposition of the produt E

�


 E

�

is multipliity free.

Moreover, V

�

appears with multipliity one if and only if � is dominant integral

and there exists a weight � of E

�

suh that � = �+ �:

Proof. | A diret hek shows (see e.g. Appendix 2 in [15℄, part III), that all weights

of E

�

appear with multipliity one and that for any weight � of E

�

; � + � belongs

to the dominant Weyl hamber. Then the same is true for �+ � + � and now ation

of Weyl group is needed in the Klimyk formula. Moreover, � + � + � belongs to the

interior of the dominant Weyl hamber if and only if � + � belongs to the dominant

Weyl hamber.

Remark. | Consider a general tensor produt of two modules E

�


 E

�

. There is a

general fat that E

�

appears in the deomposition only if � is of the form �+�; where

� is a weight of E

�

:

In our ase, we know more. The set A of all weights whih appear in the deom-

position is exatly given by

A = f� = �+ � j � is a weight of E

�

, �+ � is dominantg:(5)

It is more diÆult to deompose the tensor produt in the third ase whih we

need.

Lemma. | Let E

�

be the seond symmetri power of the de�ning representation of

A

n

; i.e � = �

11

. The list of all its weights is � = e

i

+ e

j

; 1 � i � j � n; where e

i

,

i = 1; : : : ; n; denotes elements of the anonial basis of R

n

. Let E

�

be an irreduible

representation of A

n

with the highest weight �:

Then

E

�


 E

�

=

X

�2AnA

0

E

�

;
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where A is de�ned in (5) and

A

0

= f� = �+ e

i

+ e

i+1

j �

i

= �

i+1

and either �

i�1

> �

i

or i = 1g:

Proof. | Suppose that one of the following ases is true:

1) � = e

i

+ e

j

with i < j;

2) � = 2e

1

;

3) � = 2e

i+1

; i = 1; : : : ; n� 1 and �

i

> �

i+1

:

Then we have again the property that �+Æ belongs to the dominant Weyl hamber.

Hene again (as in the proof of the previous lemma) we know that � + � appears in

the deomposition if and only if it is dominant (if and only if it belongs to A).

4) If � = 2e

i+1

; i = 2; : : : ; n� 1 and �

i�1

= �

i

= �

i+1

; then � + � + Æ belongs to

the boundary of the Weyl hamber and the summand will not appear in the Klimyk

formula.

5) If however either � = 2e

i+1

; i = 2; : : : ; n� 1 and �

i�1

> �

i

= �

i+1

; or � = 2e

2

and �

1

= �

2

; then �+�+Æ should be moved to the interior of the dominant hamber by

one reetion with respet to a simple root (permutation of neighboring omponents)

and f�+�+�g�� = �+e

i

+e

i+1

: This shows that these elements should be removed

from the set A.

5.8. B

n

deompositions. | For representations of B

n

; we need to deompose

produts E

�


 E

�

1

. It is well known (see e.g. [21℄) that the following is true.

Lemma. | Let � = �

1

be the highest weight of the de�ning representation of B

n

:

Let E

�

be an irreduible B

n

{module with the highest weight �:

Then the deomposition of the produt E

�


 E

�

is multipliity free and

E

�


 E

�

=

X

�2AnA

0

E

�

;

where A is de�ned in (5) and A

0

= f� = �j�

n

= 0g:

5.9. C

n

and D

n

deompositions. | For representations of C

n

; resp. D

n

; we need

to deompose produts E

�


 E

�

; where � = 

1

; resp. � = Æ

1

:

Lemma. | Let � = �

1

be the highest weight of the de�ning representation of B

n

:

Let E

�

be an irreduible B

n

{module with the highest weight �:

Then the deomposition of the produt E

�


 E

�

is multipliity free and

E

�


 E

�

=

X

�2A

E

�

;

where A is de�ned in (5).

Proof. | It is easy to hek diretly that again �+Æ is in the dominant Weyl hamber

of all weights of E

�

: Hene the same proof as above applies.
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5.10. Theorem. | Let g be a lassial semisimple graded Lie algebra (i.e. g belongs

to one of series A { D) and let g

0

be its redutive part. Suppose further that E

�

be an

irreduible g

0

{module with highest weight �:

Then all omponents in the tensor produt g

1


 E

�

have multipliity one.

Proof. | Let us onsider �rst an irreduible piee E

1

of g

1

. The detailed disussion of

the form of irreduible omponents of the g

0

{module g

1

presented above together with

the expliit information presented above) shows that for every fator in the produt

desribing the semisimple part of the algebra g

0

; the orresponding tensor produt

has a deomposition ontaining only piees with multipliity one. The same is hene

true for their produt.

If E

1

; resp. E

0

1

are di�erent irreduible piees of g

1

; we know from their expliit

desription above, that they are tensor produts of irreduible modules of di�erent

ouples of fators in the deomposition of g

0

into simple parts. Hene the piees in the

deomposition of E

1


 E

�

; resp. E

0

1


 E

�

; have di�erent highest weights and annot

be isomorphi.

Expliit desription of individual omponents of g

1

and of their tensor produts

desribed above gives hene the omplete information on irreduible omponents and

their highest weights.
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