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Abstrat. This survey follows the leture presented at the onferene \100

years after Sophus Lie", RIMS Kyoto, Deember 12, 1999. The aim is to de-

sribe the reent geometri treatment of the distinguished omplexes of invari-

ant di�erential operators between homogeneous vetor bundles, known under

the name Bernstein{Gelfand{Gelfand resolutions, in the realm of the so alled

paraboli geometries. The basi referene for this paper is [12℄, the exposition

has been inuened essentially by [14, 10℄.

The talk presents some results of a long time joint e�ort with Andreas

�

Cap

and Vladim��r Sou�ek. Further essential inuene omes from the reent extensive

ooperation with Mihael Eastwood, Rod Gover, and Gerd Shmalz.

1. General bakground

1.1. Klein's geometries. We shall deal with invariant operators for ertain ge-

ometries. First we disuss suh operators in the ases where the underlying geometry

is that of a homogeneous spae G=P for some Lie subgroup P in a Lie group G.

This leads to problems studied for several deades in representation theory in terms

of Verma module homomorphisms. Later on, we pass to the so alled paraboli ge-

ometries and the homogeneous ases play then the rôles of the at models. Our

onsiderations apply to both smooth and holomorphi ategories and we shall not

distinguish these two ases expliitly. (The main di�erene is the loal existene of

the holomorphi setions.) On the other hand, we shall deal with omplex repre-

sentations only in order not to have to distinguish between many real forms of the

omplex groups.

In order to enjoy the general features in terms of expliit examples, we shall pay

speial attention to several at models: four di�erent geometries on the three{sphere

(projetive, onformal Riemannian, projetive ontat, and CR{ontat), aom-

plished with the onformal Riemannian four{sphere. In the two projetive ases,

the sphere is onsidered as the spae of the rays emanating from the origin, but with

di�erent group ations: SL(4;R) and Sp(4;R), respetively. The onformal spheres

are regarded as projetive quadris in R

n+2

, n = 3; 4, and the orresponding sym-

metry groups are O(n+1; 1). The CR{sphere is understood as the non{degenerate

real quadri in C

2

, and the symmetry group is SU(2; 1). The isotropy groups of

distinguished �xed points form the subgroups P in all ases.

For eah Kleinian geometry G=P , there are the homogeneous vetor bundles

E(G=P ) orresponding to P{modules E . More expliitly, we onsider G ! G=P

as the prinipal P{bundles and E(G=P ) is the assoiated vetor bundle G �

P

E .

This is a funtorial onstrution and, in partiular, the left ation of G on the

homogeneous spae indues the ation on the (sheaf of loal) setions of E(G=P ).

Moreover, eah (loal) setion s : G=P ! E(G=P ) is expressed (in its frame form)

as a P{equivariant funtion G! E and, in this piture, the ation of G on setions

is given by the left shifts: g � s = s Æ `

g

�1 . The invariant di�erential operators are

those operators between setions of homogeneous bundles whih intertwine these

ations.

1



2 JAN SLOV

�

AK

1.2. Cartan's geometries. The urved version of these onsiderations was sug-

gested by Cartan in onention with his exterior alulus. In this approah, the

main objet desribing all features of the Kleinian geometry is the Maurer{Cartan

form ! 2 


1

(G; g) whih is right{invariant (with respet to the whole G), repro-

dues the fundamental vetor �elds (even all left invariant �elds), and o�ers an

absolute parallelism (with vanishing urvature | the Maurer{Cartan equations).

The urved geometry of type G=P (generalized spae in Cartan's terminology) is

then given by a prinipal �ber bundle G ! M with struture group P , and abso-

lute parallelism ! 2 


1

(G; g) whih is again right{invariant (with respet to P ),

and reprodues the fundamental vetor �elds. The struture equations

d! = �

1

2

[!; !℄ +K

de�ne then the horizontal two{form K 2 


2

(G; g), the urvature. By means of

the absolute parallelism, the urvature is given by the urvature funtion � : G !

�

2

(g=h)

�


 g.

We talk about Cartan geometries (G; !), and Cartan onnetions !. Morphisms

' : (G; !) ! (G

0

; !

0

) between Cartan geometries are those prinipal bundle mor-

phisms (over identity on P ) whih preserve the Cartan onnetions, i.e. '

�

!

0

= !. In

partiular, the automorhpisms of the at model are just the left shifts by elements

of G, f. [25℄, Theorem 3.5.2.

Eah P{module E de�nes a funtor on the ategory of Cartan geometries of type

G=P , (G !M;!) 7! G�

P

E =: E(M) with the obvious ation of morphisms. These

funtors are alled natural vetor bundles and the invariant operators are those

systems of di�erential operators D

G

: �(E(M)) ! �(F(M)) whih intertwine the

ation of morphisms.

The Cartan geometry (G; !) is loally isomorphi to its at model G=P if and

only if the urvature K vanishes. In partiular, there is the full subategory of

loally at Cartan geometries of type G=P .

A readable modern introdution to this approah to di�erential geometry is

o�ered in [25℄.

2. Bernstein{Gelfand{Gelfand resolutions

2.1. jkj{graded Lie algebras. In the rest of the paper, we shall assume that

G is a semi{simple Lie group (real or omplex) and P its paraboli subgroup. In

partiular this implies that g omes equipped by the grading

g = g

�k

� � � � � g

�1

� g

0

� g

1

� � � � � g

k

;

k > 0, p = g

0

� � � � � g

k

, the redutive part of p is g

0

and the nilponent part is

p

+

= g

1

� � � � � g

k

. We also write g

�

for the negative omponents and we identify

this spae with the P{module g=p. We say that g is jkj{graded .

The Killing form provides the isomorphisms g

�

i

' g

�i

for all omponents of the

jkj{graded semisimple Lie algebra g, i = �k; : : : ; k. In partiular, its restritions to

the enter z and the semisimple part g

ss

0

of g

0

are non{degenerate. Now, for eah Lie

group G with the jkj{graded Lie algebra g, there is the losed subgroup P � G of all

elements whose adjoint ations leave the p{submodules g

j

= g

j

�� � ��g

k

invariant,

j = �k; : : : ; k. The Lie algebra of P is just p and there is the subgroup G

0

� P

of elements whose adjoint ation leaves invariant the grading by g

0

{modules g

i

,

i = �k; : : : ; k. This is the redutive part of the paraboli Lie subgroup P , with Lie

algebra g

0

. We also de�ne subgroups P

j

+

= exp(g

j

� � � � � g

k

), j = 1; : : : ; k, and

we write P

+

instead of P

1

+

. Obviously P=P

+

= G

0

and P

+

is nilpotent. Thus P

is the semisimple produt of G

0

and the nilpotent part P

+

. More expliitly (f. [8,
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Proposition 2.10℄, or [27, 29℄), eah element g 2 P is expressed in the unique way

as g = g

0

expZ

1

expZ

2

: : : expZ

k

, with g

0

2 G

0

and Z

i

2 g

i

, i = 1; : : : ; k.

2.2. Jet{modules. In this setion, we shall deal with operators between homo-

geneous vetor bundles and we shall write briey F instead of F(G=P ), for any

P{module F. The next step in our exposition onsists in a few standard observa-

tions.

First, eah kth order di�erential operator is given as a mapping J

k

E ! F on

the jet prolongation and the ation of G on setions of F indues an ation on

J

k

E(G=P ). Moreover, there is the obvious identi�ation J

k

E ' G �

P

J

k

E where

the P{module J

k

E is the �ber over the origin of G=P with the indued ation of P .

Thus, the invariant operators are given by P{module homomorphisms J

k

E ! F.

Seond, seeking for P{module homomorphisms J

k

E ! F is equivalent to seeking

for the dual homomorphisms F

�

! (J

k

E)

�

, or better F

�

! (J

1

E)

�

where the latter

module is the inverse limit of the kth order ones. For irreduible P{modules, these

inverse limits are (g; P ){modules known (in representation theory) under the name

generalized Verma modules. These modules are highest weight modules with the

highest weights ontained in F. Thus we obtain the so alled Frobenius reiproity

theorem laiming the bijetive orrespondene

�

P{module homomorphisms

J

k

E ! F

�

oo //

8

<

:

generalized Verma

module homomorphisms

(J

1

F)

�

! (J

1

E)

�

9

=

;

:

2.3. Verma module homomorphisms. The homomorphisms of Verma modules

have been studied for many years. The �rst breakthrough was ahieved in [5℄. It

turned out, that for Borel subgroups P all homomorphisms group niely into equal

patterns, starting by a G{module V and being desribed by suitable ombinato-

rial properties of the Weyl group of g. In view of the Kostant's Bott{Borel{Weil

theorem, we may state the �nal result roughly as follows: Eah P{module with a

regular entral harater (i.e. sharing the entral harater with some G{module

V

�

) appears in the Lie algebra ohomology H

�

(p

+

;V

�

) with multipliity one and all

Verma module homomorphisms are then inluded in the pattern (inluding non{zero

ompositions)

V

� oo
H

0

(p

+

;V

�

)

oo
: : :

oo
H

max

(p

+

;V

�

) :

Moreover, the sequene always forms a omplex whih is alled the Bernstein{

Gelfand{Gelfand resolution of V

�

(shortened to BGG in what follows).

Let us remark that the ohomologies are always ompletely reduible and, of

ourse, the non{zero ompositions may appear only in the piture of the individual

omponents of the horizontal arrows between the irreduible omponents of the

ohomologies (and they have to anel properly eah other in the sum).

In terms of the homogeneous vetor bundles and invariant operators, we obtain

the resolution of the onstant sheaf orresponding to V:

V

//
�(H

0

V

)

//
: : :

//
�(H

max

V

)
(1)

where H

j

V

are the homogeneous bundles orrespoding to the P{modules H

j

V

=

H

j

(g=p;V). This resolution is alled again the BGG resolution of V.

Similar problems for arbitrary G{modules and paraboli subgroups P have been

studied arefully in representation theory for many years, f. [23℄ and the referenes

therein. There are two types of homomorphisms in general, those oming as diret

images of the Borel ase, whih reate again resolutions of the onstant sheaves,

but also new ones appearing on plaes where the diret images vanish but non{zero
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homomorphisms still exist. The former ones are alled standard homomorphisms ,

the latter ones non{standard.

The general theorem due to [23℄ laims that all standard operators appear again

in patterns (1), while the non{standard ones appear as additional arrows in the

same patterns. The expliit form of these resolutions an be enoded niely in terms

of highest weights of the modules and Dynkin diagrams. For the relevant reipes,

inluding the omputation of the irreduible omponents in the ohomologies, see

[3℄. An algorithm for the determination of all non{zero homomorphisms is available

in [6℄ (and the Brian Boe's omputer implementation of this algorithm is very

useful).

The highest weights of all omplex irreduible representations of p � g are de-

sribed as integral linear ombinations of the fundamental weights for g and their

oeÆients an be depited as labels assoiated to the orresponding nodes in the

Dynkin diagrams. The hoie of the paraboli subalgebra is desribed by rossing

out those nodes, whih orrespond to simple negative roots whih are not in p. Fi-

nally, p{dominant weights are given by those labeled diagrams with non{negative

oeÆients over the unrossed nodes.

2.4. Examples. Let us illustrate this notation on the adjoint representations of the

symmetry groups of �ve geometries mentioned in the introdutory part (projetive

3{sphere, onformal 3{sphere, projetive ontat 3{sphere, CR{ontat 3{sphere,

and onformal 4{sphere). The adjoint representations g, viewed as P{modules, are

never irreduible, and their highest weights generate the only irreduible ompo-

nents g

k

(in the same order as above):

�

1

�

0 1

�
�

0 2+3
�

�

ks2 0

�
�

1 1

�
�

1

�

0 1

�

For the sake of simpliity, the standard notational onvention for the homo-

geneous bundles in the BGG{resolutions uses the dual modules (i.e. the high-

est weights for the orresponding Verma modules). A straightforward omputa-

tion yields for all general omplex g{modules V (i.e. arbitrary integral oeÆients

a; b;  � 0) the sequenes of invariant operators whih are indiated by r

j

where j

refers to the order:

3{dimensional projetive:

�

a

�

b



�

r

(a+1)

//
�

�a�2

�

a+b+1



�

r

(b+1)

//
�

�a�b�3

�

b

b++1

�

r

(+1)

//
�

a�b��4

�

a

b

�

(2)

3{dimensional onformal Riemannian:

�

a

b

+3
�

r

(a+1)

//
�

�a�2

2a+b+2

+3
�

r

(b+1)

//
�

�a�b�3

2a+b+2

+3
�

r

(a+1)

//
�

�a�b�3

b

+3
�

(3)

3{dimensional projetive ontat:

�

ksa
b

�

r

(a+1)

//
�

ks�a�2

a+b+1

�

r

(2b+2)

//
�

ks�a�2b�4

a+b+1

�

r

(a+1)

//
�

ks�a�2b�4

b

�

(4)

3{dimensional CR{ontat:

�

�a�2

a+b+1

�

r

(a+b+2)

//

r

(2b+2)

##HHHHHHHHHHHHH

�

b

�a�b�3

�

r

(b+1)

''OOOOO

�

a b

�

r

(a+1) 88qqqqq

r

(b+1)

&&MMMMM
�

�b�2

�a�2

�

�

a+b+1

�b�2

�

r

(a+b+1)

//

r

(2a+2)

;;vvvvvvvvvvvvv

�

�a�b�3

a

�

r

(a+1)

77ooooo

(5)
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4{dimensional onformal:

�

b

�

�a�b�3

a+b++2

�

r

(+1)

((PPP

�

a

�

b



�

r

(b+1)

//
�

a+b+1

�

�b�2

b++1

�

r

(a+1) 66nnn

r

(+1)

((PPP

�

b++1

�

�a�b��4

a+b+1

�

r

(b+1)

//
�



�

�a�b��4

a

�

�

a+b++2

�

�b��3

b

�

r

(a+1)

66nnn

(6)

2.5. de Rham omplexes. The simplest examples are the trivial representations,

i.e. the hoie a = b =  = 0. For the j1j{graded algebras, these are exatly the

(omplexi�ed) de Rham omplexes, see (2), (3), (6). Surprisingly enough, the re-

maining two sequenes inlude bundles of lower dimensions. Indeed, instead of the

standard one{forms the seond olumn ontains the dual spae to the (omplexi�ed)

ontat distribution (whih splits in the CR{ase into the holomorphi and anti-

holomorphi parts), et. Another surprising fat is that the order of the operators

is not always one. More generally, there is the so alled twisted de Rham seuqene

orresponding to a G{module V and the striking feature of the BGG{resolution is

that they ompute the same ohomology as the twisted de Rham omplexes, but

they have muh smaller dimensions.

We shall not pay any attention to the so alled singular in�nitesimal haraters

and the half{integral weights, although they involve many important operators, see

e.g. [15℄ for a omplete disussion in the speial ase of the onformal Riemannian

geometries.

3. Paraboli geometries

Even for the (urved) onformal Riemannian and projetive geometries, the

general disussion on the invariant operators oupies mathematiians for many

deades. Sine the beginning of the 20th entury, a few similar geometrial stru-

tures were known to �t within the framework of the Cartan geometries, i.e. they

were shown to allow a anonial Cartan onnetion under suitable normalizations.

See e.g. Kobayashi's treatment of groups of geometri transformations in [21℄, the

generalization of Cartan's desription of 3{dimensional CR{geometry to all non{

degenerate CR{strutures of hypersurfae type due to [26, 13℄, and the pioneering

series of papers by Tanaka, f. [27℄ and the referenes therein, as well as [29, 24, 8℄.

The name paraboli geometry has been ommonly adopted for the general lass of

all Cartan geometries with G semisimple and P paraboli. There is also the losely

related paraboli invariants program initiated by Fe�erman, [16℄, see also [17, 4℄.

Tanaka's motivation ame from pfaÆan systems of PDE's, while the relation to

twistor theory renewed the interest in a good alulus for suh geometries, with the

aim to improve the tehniques in onformal geometry and to extend them to other

geometries. See e.g. [3℄ for links to twistor theory and representation theory, [28℄ for

lassial methods in onformal geometry, and [1, 2, 4, 19℄ and referenes therein,

for generalizations. One of the main objetives was the onstrution of invariant

di�erential operators.

Motivated by the remarkable (but quite unlear) papers [1, 2℄, the systemati

ombination of Lie algebrai tools with the frame bundle approah was developed in

[11℄ and the �rst strong appliations for all paraboli geometries were given in [12℄.

The main aim of this leture is to desribe roughly the results of the latter paper.

For further essential development of both the abstrat alulus and the di�erential

geometry in the general setting see [7, 9℄, and in partiular [10℄.
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3.1. Semi{holonomi jet{modules. The algebrai ore of our apporah are the

semi{holonomi jet{modules. While the standard jet prolongations of homogeneous

vetor bundles are again homogeneous vetor bundles orresponding to ertain jet{

modules, this onstrution does not extend out of loally at geometries, i.e. those

without urvature. On the other hand, the de�ning absolute parallelism allows suh

a onstrution for one{jets and a simple hek shows that we an proeed to all

orders with the semi{holonomi prolongations.

Let us onsider a representation E of P , the orresponding homogeneous bundle

E(G=P ) = G �

P

E and its �rst jet prolongation J

1

(E(G=P )) ! G=P . The ation

of P on its standard �ber

J

1

(E) := J

1

(E(G=P ))

o

= E � (g

�

�


 E)

is de�ned by means of the ation of fundamental vetor �elds on the equivariant

funtions s 2 C

1

(G; E)

P

. The formula for the ation of Z 2 p

+

on elements of

J

1

(E) viewed as pairs (v; '), where v 2 E and ' is a linear map from g

�

to E , is

given by

Z � (v; ') = (Z � v;X 7! Z � ('(X))� '(ad

�

(Z)(X)) + ad

p

(Z)(X) � v);

i.e. we get the tensorial ation plus one additional term mapping the value{part to

the derivative{part.

By iteration, we obtain the semi{holonomi jet modules

�

J

k

E = E � (g

�

�


 E) � � � � � (


k

g

�

�


 E)

with the appropriate ation of P as the equalizers of the natural projetions

J

1

(

�

J

k�1

E) !

�

J

k�1

E � J

1

(

�

J

k�2

E):

Now, the semi{holonomi jet prolongations of natural bundles with standard �ber

E turn out to be natural bundles orresponding to P{modules

�

J

k

E .

This has a striking onsequene: P{module homomorhpisms 	 :

�

J

k

E !! F give

rise to invariant operators D : �(E)! �(F).

3.2. Setting of the problem. Still two essential questions are obviously left.

First, how to reognize the non{zero operators? Seond, are all invariant operators

of this type? Unfortunately, the answer to the seond question is no, while the �rst

one provides an unpleasant hallenge. We all the operators whih ome this way

strongly invariant and the onformally invariant square of the Laplaian on fun-

tion on four{dimensional onformal Riemannian manifolds (the so alled Paneitz

operator) is an example of an invariant operator whih is not strongly invariant, f.

[20℄, or see [15℄ for more examples.

On the other hand, eah invariant operator on the loally at geometries has an

invariant symbol. This is a tensor and thus it exists as an invariant on all urved

geometries as well. Thus we have a simple problem to deal with: Given invariant

operator D

G=P

between homogeneous bundles, is there an invariant operator on all

paraboli geometries whih restrits to D

G=P

? We shall deal with this problem in

the rest of the paper and we all suh operators urved versions of the invariant

operators on G=P . The �rst observation to make is that if an invariant operator

on G=P is given by a homomorphism of the semi{holonomi jet{modules, then its

symbol (i.e. the symmetrized part of the restrition to the highest order omponent)

does not vanish and so the resulting strongly invariant operator de�nitly does not

vanish too. Moreover, this operator learly is the urved version of its restrition

to G=P .
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3.3. Remarks. Let us also notie that the de�ning Cartan onnetion ! deter-

mines a well de�ned di�erential operator on funtions on G. First, reall that ! is a

absolute parallelism and so it de�nes the onstant vetor �elds !

�1

(X) on G for all

X 2 g, !(!

�1

(X)(u)) = X , for all u 2 G. In partiular, !

�1

(Z) is the fundamental

vetor �eld if Z 2 p. The onstant �elds !

�1

(X) with X 2 g

�

are alled horizontal.

Now, let us onsider any natural vetor bundle EM = G �

P

E . Its setions are

P{equivariant funtions s : G ! E and the Lie derivative of funtions with respet

to the onstant horizontal vetor �elds de�nes the invariant derivative

r

!

: C

1

(G; E) ! C

1

(G; g

�

�


 E)

r

!

s(u)(X) = L

!

�1

(X)

s(u):

We also write r

!

X

s for values with the �xed argument X 2 g

�

.

The invariant derivative is a helpful substitute for the Levi{Civita onnetions

in Riemannian geometry, but there a problem: it does not produe P{equivariant

funtions even if restrited to equivariant s 2 C

1

(G; E)

P

. One good way how to

avoid this drawbak is to extend the derivative to all onstant �elds, i.e. to onsider

r : C

1

(G; E) ! C

1

(G; g

�


 E) whih preserves the equivariane. This is a helpful

approah in the the so alled twistor and trator alulus, see e.g. [7, 10℄. An

easy omputation reveals also the (generalized) Rii and Bianhi identities and a

quite simple alulus is available, f. [12, 9, 10℄. Moreover, this alulus involves

a lass of distinguished onnetions underlying eah paraboli geometry, always

parametrized by one{forms. In the onformal ase, these are the Weyl onnetions

of the onformal Riemannian maifolds. The general theory extends surprisingly

many features of the onformal geometry and it has been worked out reently in

[9℄.

It is remarkable that the general alulus shows that eah invariant operator is

given by a uniform formula in terms of the (generalized) Weyl onnetions. Even in

the loally at ases, these formulae involve the urvatures of the Weyl onnetions.

Their expliit and losed forms for the urved versions of all BGG{resolutions for

j1j{graded algebras have been omputed in [11℄, Part III.

Another essential part of the general theory is the onstrution of the normalized

Cartan onnetion out of some more elementary underlying strutures. We do not

touh this problem here and refer the reader to [27, 29, 24, 8℄. In fat, our onstru-

tions of the urved BGG{sequenes work for all Cartan onnetions, without any

normalization.

3.4. Twisted invariant operators. A useful observation reveals that for eah

P{module E and eah G{module V, the mapping

s
 v 7! (g 7! s(g)
 g

�1

� v)

de�nes the identi�ation �(E)
V ' �(E 
V). This implies that for eah invariant

operator D : �(E)! �(F) on the at model, there is the twisted invariant operator

D

V

: �(E 
 V) ' �(E) 
 V

D
id

V //
�(F)
 V ' �(F 
 V):

Now, reading o� the information on level of the semi{holonomi jet modules, we

onlude: For eah strongly invariant operator D and eah G{module V, there is

the twisted strongly invariant operator D

V

.

The easiest, but most important, example is the exterior di�erential d : 


j

(M)!




j+1

(M) whih is learly strongly invariant. For eah G{module V, the twisted

operator d

V

is given by the homomorphism J

1

(�

j

p
 V) ! �

j+1

p

(v

0

; Z 
 v

1

) 7! �v

0

+ (j + 1)(Z ^ v

1

)
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where Z 2 p

+

and Z ^ v

1

means the obvious alternation and � is the Lie algebra

ohomology di�erential.

There are two ruial remarks in order: First, 


j

(M ;V(M)) splits into irreduible

omponents one a redution of the struture group P to its redutive part is hosen.

The above formula shows, that only the di�erential � preserves the homogeneity,

while the rest inreases the homogeneity. Seond, the exterior ovariant derivative

d

!

with respet to the Cartan onnetion ! (whih ats on V{valued forms on G),

relates to d

V

as d

V

' = d

!

'� i

�

' where � is the urvature funtion of (G; !).

3.5. Main onstrution. Sine our jkj{graded g is semisimple, there is the ad-

joint odi�erential �

�

to the Lie algebra ohomology di�erential �, see e.g. [22℄.

Consequently, there is the Hodge theory on the ohains whih allows to deal very

e�etively with the urvatures. Moreover �

�

is a P{module homomorphism and so

there are the well de�ned projetions

� : 


j

(M ;VM) � ker�

�

! H

j

V

M:

Next, onsider an irreduible G

0

{ omponent E

0

of the P{module H

j

V

. Of ourse,

E

0

is in the kernel of the algebrai Laplaian, but this is not P{invariant. Thus

we onsider the P{submodule E generated by E

0

and we try to de�ne a suitable

homomorphism

�

J

`

E

0

! E , i.e. a di�erential operator, splitting �. There is the

surprising tehnial result:

Lemma. There is a unique di�erential operator

L : �(H

j

V

! ker�

�

) � 


j

(M ;VM)

suh that � Æ L(s) = s and d

V

ÆL(s) 2 ker�

�

� 


j+1

(M ;VM).

The proof is onsists of an iterative proedure and represents the tehnial ore

of [12℄. At the same time, it provides an expliit onstrution of the operator L. On

the level of the operators, we obtain the diagram

ker(�

�

)

�

��

ker(�

�

)

�

��
: : :

//

d

V

ÆL

;;wwwwwwwwww
�(H

i

V

M)

L

OO
d

V

ÆL

88qqqqqqqqqq

//
�(H

i+1

V

M)

L

OO

//
: : :

where the dotted horizontal arrows are the newly onstruted operators D

V

.

In other words, the twisted exterior derivatives produe plenty of natural di�er-

ential operators in a purely algebrai way.

A few further arguments lead in [12℄ to

3.6. Theorem. Let (G; !) be a real paraboli geometry of the type (G;P ) on a

manifold M , V be a G{module. If the twisted de Rham sequene

0

//



0

(M ;VM)

d

V//



1

(M ;VM)

d

V//
: : :

d

V//



dim(G=P )

(M ;VM)

//
0 :

is a omplex, then also the Bernstein{Gelfand{Gelfand sequene

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0

de�ned above is a omplex, and they both ompute the same ohomology.

The same statement is true for omplex paraboli geometries (G; !) under the

additional requirement that G ! G=P

+

admits a global holomorphi G

0

{equivariant

setion.
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All these operators belong to the lass of standard operators . The name omes

from representation theory and it is related to the fat that the orresponding Verma

module homomorphisms for a general parabolis desend from the homomorphisms

in the Borel ase. There are also natural operators whih are not standard, the so

alled non{standard ones, for whih our methods have not been e�etive enough

yet.

An important feature of our theory is the exlusive usage of the elementary (�nite

dimensional) representation theory. With a bit of exaggeration we ould say that

the representation theory enters rather as a language and the way of thinking. On

the other hand, there are also purely representation theoretial aspets of interest

as indiated in [15℄.

3.7. Remarks. The omplex version of the Theorem may be understood as: If

the twisted de Rham sequene indues a omplex on the sheaf level, then the same

is true for the Bernstein{Gelfand{Gelfand sequene. In partiular, if the twisted

de Rham sequene indues a resolution of V, then so does the BGG{sequene. Now,

the original representation theoretial version of the (generalized) BGG{resolution

follows immediately by duality.

The Theorem also laims that all the BGG{resolutions on homogeneous spaes

admit anonial urved analogs. In partiular, the examples (2), (3), (4), (5), and

(6) make sense for all urved gemetries of the orresponding types. Moreover, the

powers of the nablas refer to the iteration of the invariant derivative and we may

expand this derivative in terms of the underlying Weyl onnetions. Partial results

in this diretion were ahieved earlier in [1, 18℄

Next, onsider any torsion free real paraboli geometry of type (G;P ) on M .

Then the de Rham ohomology of M with oeÆients in K = R or C is omputed

by the (muh smaller) omplex

0

//
�(H

0

K

M)

D

K

//
�(H

1

K

M)

D

K

//
: : :

D

K

//
�(H

dim(G=P )

K

M)

//
0 :

Similarly, if (G; !) is a at real paraboli geometry, then for any representation

V of G the BGG{sequene is a omplex, whih omputes the twisted de Rham

ohomology of M with oeÆients in the bundle VM , whih is de�ned as the

ohomology of the omplex given by the ovariant exterior derivative d

!

indued

by the Cartan onnetion !.

3.8. Further development. The theory is developing very quikly and we do not

have plae here to mention all main reent ahievements. But we annot miss the

paper [10℄ whih extends the de�nition of our operator L to the whole spaes of

forms (and provides a nie alternative de�nition of L too). This enables the authors

to work out di�erential pairings whih restrit to up produt on the ohomologies

in the homogeneous ase. Some appliations are inluded as well, in partiular �rst

steps toward the deformation theory and an interpretation in terms of linearized

�eld theories.
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