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Abstra
t. This survey follows the le
ture presented at the 
onferen
e \100

years after Sophus Lie", RIMS Kyoto, De
ember 12, 1999. The aim is to de-

s
ribe the re
ent geometri
 treatment of the distinguished 
omplexes of invari-

ant di�erential operators between homogeneous ve
tor bundles, known under

the name Bernstein{Gelfand{Gelfand resolutions, in the realm of the so 
alled

paraboli
 geometries. The basi
 referen
e for this paper is [12℄, the exposition

has been in
uen
ed essentially by [14, 10℄.

The talk presents some results of a long time joint e�ort with Andreas

�

Cap

and Vladim��r Sou�
ek. Further essential in
uen
e 
omes from the re
ent extensive


ooperation with Mi
hael Eastwood, Rod Gover, and Gerd S
hmalz.

1. General ba
kground

1.1. Klein's geometries. We shall deal with invariant operators for 
ertain ge-

ometries. First we dis
uss su
h operators in the 
ases where the underlying geometry

is that of a homogeneous spa
e G=P for some Lie subgroup P in a Lie group G.

This leads to problems studied for several de
ades in representation theory in terms

of Verma module homomorphisms. Later on, we pass to the so 
alled paraboli
 ge-

ometries and the homogeneous 
ases play then the rôles of the 
at models. Our


onsiderations apply to both smooth and holomorphi
 
ategories and we shall not

distinguish these two 
ases expli
itly. (The main di�eren
e is the lo
al existen
e of

the holomorphi
 se
tions.) On the other hand, we shall deal with 
omplex repre-

sentations only in order not to have to distinguish between many real forms of the


omplex groups.

In order to enjoy the general features in terms of expli
it examples, we shall pay

spe
ial attention to several 
at models: four di�erent geometries on the three{sphere

(proje
tive, 
onformal Riemannian, proje
tive 
onta
t, and CR{
onta
t), a

om-

plished with the 
onformal Riemannian four{sphere. In the two proje
tive 
ases,

the sphere is 
onsidered as the spa
e of the rays emanating from the origin, but with

di�erent group a
tions: SL(4;R) and Sp(4;R), respe
tively. The 
onformal spheres

are regarded as proje
tive quadri
s in R

n+2

, n = 3; 4, and the 
orresponding sym-

metry groups are O(n+1; 1). The CR{sphere is understood as the non{degenerate

real quadri
 in C

2

, and the symmetry group is SU(2; 1). The isotropy groups of

distinguished �xed points form the subgroups P in all 
ases.

For ea
h Kleinian geometry G=P , there are the homogeneous ve
tor bundles

E(G=P ) 
orresponding to P{modules E . More expli
itly, we 
onsider G ! G=P

as the prin
ipal P{bundles and E(G=P ) is the asso
iated ve
tor bundle G �

P

E .

This is a fun
torial 
onstru
tion and, in parti
ular, the left a
tion of G on the

homogeneous spa
e indu
es the a
tion on the (sheaf of lo
al) se
tions of E(G=P ).

Moreover, ea
h (lo
al) se
tion s : G=P ! E(G=P ) is expressed (in its frame form)

as a P{equivariant fun
tion G! E and, in this pi
ture, the a
tion of G on se
tions

is given by the left shifts: g � s = s Æ `

g

�1 . The invariant di�erential operators are

those operators between se
tions of homogeneous bundles whi
h intertwine these

a
tions.

1
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1.2. Cartan's geometries. The 
urved version of these 
onsiderations was sug-

gested by Cartan in 
onen
tion with his exterior 
al
ulus. In this approa
h, the

main obje
t des
ribing all features of the Kleinian geometry is the Maurer{Cartan

form ! 2 


1

(G; g) whi
h is right{invariant (with respe
t to the whole G), repro-

du
es the fundamental ve
tor �elds (even all left invariant �elds), and o�ers an

absolute parallelism (with vanishing 
urvature | the Maurer{Cartan equations).

The 
urved geometry of type G=P (generalized spa
e in Cartan's terminology) is

then given by a prin
ipal �ber bundle G ! M with stru
ture group P , and abso-

lute parallelism ! 2 


1

(G; g) whi
h is again right{invariant (with respe
t to P ),

and reprodu
es the fundamental ve
tor �elds. The stru
ture equations

d! = �

1

2

[!; !℄ +K

de�ne then the horizontal two{form K 2 


2

(G; g), the 
urvature. By means of

the absolute parallelism, the 
urvature is given by the 
urvature fun
tion � : G !

�

2

(g=h)

�


 g.

We talk about Cartan geometries (G; !), and Cartan 
onne
tions !. Morphisms

' : (G; !) ! (G

0

; !

0

) between Cartan geometries are those prin
ipal bundle mor-

phisms (over identity on P ) whi
h preserve the Cartan 
onne
tions, i.e. '

�

!

0

= !. In

parti
ular, the automorhpisms of the 
at model are just the left shifts by elements

of G, 
f. [25℄, Theorem 3.5.2.

Ea
h P{module E de�nes a fun
tor on the 
ategory of Cartan geometries of type

G=P , (G !M;!) 7! G�

P

E =: E(M) with the obvious a
tion of morphisms. These

fun
tors are 
alled natural ve
tor bundles and the invariant operators are those

systems of di�erential operators D

G

: �(E(M)) ! �(F(M)) whi
h intertwine the

a
tion of morphisms.

The Cartan geometry (G; !) is lo
ally isomorphi
 to its 
at model G=P if and

only if the 
urvature K vanishes. In parti
ular, there is the full sub
ategory of

lo
ally 
at Cartan geometries of type G=P .

A readable modern introdu
tion to this approa
h to di�erential geometry is

o�ered in [25℄.

2. Bernstein{Gelfand{Gelfand resolutions

2.1. jkj{graded Lie algebras. In the rest of the paper, we shall assume that

G is a semi{simple Lie group (real or 
omplex) and P its paraboli
 subgroup. In

parti
ular this implies that g 
omes equipped by the grading

g = g

�k

� � � � � g

�1

� g

0

� g

1

� � � � � g

k

;

k > 0, p = g

0

� � � � � g

k

, the redu
tive part of p is g

0

and the nilponent part is

p

+

= g

1

� � � � � g

k

. We also write g

�

for the negative 
omponents and we identify

this spa
e with the P{module g=p. We say that g is jkj{graded .

The Killing form provides the isomorphisms g

�

i

' g

�i

for all 
omponents of the

jkj{graded semisimple Lie algebra g, i = �k; : : : ; k. In parti
ular, its restri
tions to

the 
enter z and the semisimple part g

ss

0

of g

0

are non{degenerate. Now, for ea
h Lie

group G with the jkj{graded Lie algebra g, there is the 
losed subgroup P � G of all

elements whose adjoint a
tions leave the p{submodules g

j

= g

j

�� � ��g

k

invariant,

j = �k; : : : ; k. The Lie algebra of P is just p and there is the subgroup G

0

� P

of elements whose adjoint a
tion leaves invariant the grading by g

0

{modules g

i

,

i = �k; : : : ; k. This is the redu
tive part of the paraboli
 Lie subgroup P , with Lie

algebra g

0

. We also de�ne subgroups P

j

+

= exp(g

j

� � � � � g

k

), j = 1; : : : ; k, and

we write P

+

instead of P

1

+

. Obviously P=P

+

= G

0

and P

+

is nilpotent. Thus P

is the semisimple produ
t of G

0

and the nilpotent part P

+

. More expli
itly (
f. [8,
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Proposition 2.10℄, or [27, 29℄), ea
h element g 2 P is expressed in the unique way

as g = g

0

expZ

1

expZ

2

: : : expZ

k

, with g

0

2 G

0

and Z

i

2 g

i

, i = 1; : : : ; k.

2.2. Jet{modules. In this se
tion, we shall deal with operators between homo-

geneous ve
tor bundles and we shall write brie
y F instead of F(G=P ), for any

P{module F. The next step in our exposition 
onsists in a few standard observa-

tions.

First, ea
h kth order di�erential operator is given as a mapping J

k

E ! F on

the jet prolongation and the a
tion of G on se
tions of F indu
es an a
tion on

J

k

E(G=P ). Moreover, there is the obvious identi�
ation J

k

E ' G �

P

J

k

E where

the P{module J

k

E is the �ber over the origin of G=P with the indu
ed a
tion of P .

Thus, the invariant operators are given by P{module homomorphisms J

k

E ! F.

Se
ond, seeking for P{module homomorphisms J

k

E ! F is equivalent to seeking

for the dual homomorphisms F

�

! (J

k

E)

�

, or better F

�

! (J

1

E)

�

where the latter

module is the inverse limit of the kth order ones. For irredu
ible P{modules, these

inverse limits are (g; P ){modules known (in representation theory) under the name

generalized Verma modules. These modules are highest weight modules with the

highest weights 
ontained in F. Thus we obtain the so 
alled Frobenius re
ipro
ity

theorem 
laiming the bije
tive 
orresponden
e

�

P{module homomorphisms

J

k

E ! F

�

oo //

8

<

:

generalized Verma

module homomorphisms

(J

1

F)

�

! (J

1

E)

�

9

=

;

:

2.3. Verma module homomorphisms. The homomorphisms of Verma modules

have been studied for many years. The �rst breakthrough was a
hieved in [5℄. It

turned out, that for Borel subgroups P all homomorphisms group ni
ely into equal

patterns, starting by a G{module V and being des
ribed by suitable 
ombinato-

rial properties of the Weyl group of g. In view of the Kostant's Bott{Borel{Weil

theorem, we may state the �nal result roughly as follows: Ea
h P{module with a

regular 
entral 
hara
ter (i.e. sharing the 
entral 
hara
ter with some G{module

V

�

) appears in the Lie algebra 
ohomology H

�

(p

+

;V

�

) with multipli
ity one and all

Verma module homomorphisms are then in
luded in the pattern (in
luding non{zero


ompositions)

V

� oo
H

0

(p

+

;V

�

)

oo
: : :

oo
H

max

(p

+

;V

�

) :

Moreover, the sequen
e always forms a 
omplex whi
h is 
alled the Bernstein{

Gelfand{Gelfand resolution of V

�

(shortened to BGG in what follows).

Let us remark that the 
ohomologies are always 
ompletely redu
ible and, of


ourse, the non{zero 
ompositions may appear only in the pi
ture of the individual


omponents of the horizontal arrows between the irredu
ible 
omponents of the


ohomologies (and they have to 
an
el properly ea
h other in the sum).

In terms of the homogeneous ve
tor bundles and invariant operators, we obtain

the resolution of the 
onstant sheaf 
orresponding to V:

V

//
�(H

0

V

)

//
: : :

//
�(H

max

V

)
(1)

where H

j

V

are the homogeneous bundles 
orrespoding to the P{modules H

j

V

=

H

j

(g=p;V). This resolution is 
alled again the BGG resolution of V.

Similar problems for arbitrary G{modules and paraboli
 subgroups P have been

studied 
arefully in representation theory for many years, 
f. [23℄ and the referen
es

therein. There are two types of homomorphisms in general, those 
oming as dire
t

images of the Borel 
ase, whi
h 
reate again resolutions of the 
onstant sheaves,

but also new ones appearing on pla
es where the dire
t images vanish but non{zero
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homomorphisms still exist. The former ones are 
alled standard homomorphisms ,

the latter ones non{standard.

The general theorem due to [23℄ 
laims that all standard operators appear again

in patterns (1), while the non{standard ones appear as additional arrows in the

same patterns. The expli
it form of these resolutions 
an be en
oded ni
ely in terms

of highest weights of the modules and Dynkin diagrams. For the relevant re
ipes,

in
luding the 
omputation of the irredu
ible 
omponents in the 
ohomologies, see

[3℄. An algorithm for the determination of all non{zero homomorphisms is available

in [6℄ (and the Brian Boe's 
omputer implementation of this algorithm is very

useful).

The highest weights of all 
omplex irredu
ible representations of p � g are de-

s
ribed as integral linear 
ombinations of the fundamental weights for g and their


oeÆ
ients 
an be depi
ted as labels asso
iated to the 
orresponding nodes in the

Dynkin diagrams. The 
hoi
e of the paraboli
 subalgebra is des
ribed by 
rossing

out those nodes, whi
h 
orrespond to simple negative roots whi
h are not in p. Fi-

nally, p{dominant weights are given by those labeled diagrams with non{negative


oeÆ
ients over the un
rossed nodes.

2.4. Examples. Let us illustrate this notation on the adjoint representations of the

symmetry groups of �ve geometries mentioned in the introdu
tory part (proje
tive

3{sphere, 
onformal 3{sphere, proje
tive 
onta
t 3{sphere, CR{
onta
t 3{sphere,

and 
onformal 4{sphere). The adjoint representations g, viewed as P{modules, are

never irredu
ible, and their highest weights generate the only irredu
ible 
ompo-

nents g

k

(in the same order as above):

�

1

�

0 1

�
�

0 2+3
�

�

ks2 0

�
�

1 1

�
�

1

�

0 1

�

For the sake of simpli
ity, the standard notational 
onvention for the homo-

geneous bundles in the BGG{resolutions uses the dual modules (i.e. the high-

est weights for the 
orresponding Verma modules). A straightforward 
omputa-

tion yields for all general 
omplex g{modules V (i.e. arbitrary integral 
oeÆ
ients

a; b; 
 � 0) the sequen
es of invariant operators whi
h are indi
ated by r

j

where j

refers to the order:

3{dimensional proje
tive:

�

a

�

b




�

r

(a+1)

//
�

�a�2

�

a+b+1




�

r

(b+1)

//
�

�a�b�3

�

b

b+
+1

�

r

(
+1)

//
�

a�b�
�4

�

a

b

�

(2)

3{dimensional 
onformal Riemannian:

�

a

b

+3
�

r

(a+1)

//
�

�a�2

2a+b+2

+3
�

r

(b+1)

//
�

�a�b�3

2a+b+2

+3
�

r

(a+1)

//
�

�a�b�3

b

+3
�

(3)

3{dimensional proje
tive 
onta
t:

�

ksa
b

�

r

(a+1)

//
�

ks�a�2

a+b+1

�

r

(2b+2)

//
�

ks�a�2b�4

a+b+1

�

r

(a+1)

//
�

ks�a�2b�4

b

�

(4)

3{dimensional CR{
onta
t:

�

�a�2

a+b+1

�

r

(a+b+2)

//

r

(2b+2)

##HHHHHHHHHHHHH

�

b

�a�b�3

�

r

(b+1)

''OOOOO

�

a b

�

r

(a+1) 88qqqqq

r

(b+1)

&&MMMMM
�

�b�2

�a�2

�

�

a+b+1

�b�2

�

r

(a+b+1)

//

r

(2a+2)

;;vvvvvvvvvvvvv

�

�a�b�3

a

�

r

(a+1)

77ooooo

(5)



BERNSTEIN{GELFAND{GELFAND SEQUENCES 5

4{dimensional 
onformal:

�

b

�

�a�b�3

a+b+
+2

�

r

(
+1)

((PPP

�

a

�

b




�

r

(b+1)

//
�

a+b+1

�

�b�2

b+
+1

�

r

(a+1) 66nnn

r

(
+1)

((PPP

�

b+
+1

�

�a�b�
�4

a+b+1

�

r

(b+1)

//
�




�

�a�b�
�4

a

�

�

a+b+
+2

�

�b�
�3

b

�

r

(a+1)

66nnn

(6)

2.5. de Rham 
omplexes. The simplest examples are the trivial representations,

i.e. the 
hoi
e a = b = 
 = 0. For the j1j{graded algebras, these are exa
tly the

(
omplexi�ed) de Rham 
omplexes, see (2), (3), (6). Surprisingly enough, the re-

maining two sequen
es in
lude bundles of lower dimensions. Indeed, instead of the

standard one{forms the se
ond 
olumn 
ontains the dual spa
e to the (
omplexi�ed)


onta
t distribution (whi
h splits in the CR{
ase into the holomorphi
 and anti-

holomorphi
 parts), et
. Another surprising fa
t is that the order of the operators

is not always one. More generally, there is the so 
alled twisted de Rham seuqen
e


orresponding to a G{module V and the striking feature of the BGG{resolution is

that they 
ompute the same 
ohomology as the twisted de Rham 
omplexes, but

they have mu
h smaller dimensions.

We shall not pay any attention to the so 
alled singular in�nitesimal 
hara
ters

and the half{integral weights, although they involve many important operators, see

e.g. [15℄ for a 
omplete dis
ussion in the spe
ial 
ase of the 
onformal Riemannian

geometries.

3. Paraboli
 geometries

Even for the (
urved) 
onformal Riemannian and proje
tive geometries, the

general dis
ussion on the invariant operators o

upies mathemati
ians for many

de
ades. Sin
e the beginning of the 20th 
entury, a few similar geometri
al stru
-

tures were known to �t within the framework of the Cartan geometries, i.e. they

were shown to allow a 
anoni
al Cartan 
onne
tion under suitable normalizations.

See e.g. Kobayashi's treatment of groups of geometri
 transformations in [21℄, the

generalization of Cartan's des
ription of 3{dimensional CR{geometry to all non{

degenerate CR{stru
tures of hypersurfa
e type due to [26, 13℄, and the pioneering

series of papers by Tanaka, 
f. [27℄ and the referen
es therein, as well as [29, 24, 8℄.

The name paraboli
 geometry has been 
ommonly adopted for the general 
lass of

all Cartan geometries with G semisimple and P paraboli
. There is also the 
losely

related paraboli
 invariants program initiated by Fe�erman, [16℄, see also [17, 4℄.

Tanaka's motivation 
ame from pfaÆan systems of PDE's, while the relation to

twistor theory renewed the interest in a good 
al
ulus for su
h geometries, with the

aim to improve the te
hniques in 
onformal geometry and to extend them to other

geometries. See e.g. [3℄ for links to twistor theory and representation theory, [28℄ for


lassi
al methods in 
onformal geometry, and [1, 2, 4, 19℄ and referen
es therein,

for generalizations. One of the main obje
tives was the 
onstru
tion of invariant

di�erential operators.

Motivated by the remarkable (but quite un
lear) papers [1, 2℄, the systemati



ombination of Lie algebrai
 tools with the frame bundle approa
h was developed in

[11℄ and the �rst strong appli
ations for all paraboli
 geometries were given in [12℄.

The main aim of this le
ture is to des
ribe roughly the results of the latter paper.

For further essential development of both the abstra
t 
al
ulus and the di�erential

geometry in the general setting see [7, 9℄, and in parti
ular [10℄.
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3.1. Semi{holonomi
 jet{modules. The algebrai
 
ore of our appora
h are the

semi{holonomi
 jet{modules. While the standard jet prolongations of homogeneous

ve
tor bundles are again homogeneous ve
tor bundles 
orresponding to 
ertain jet{

modules, this 
onstru
tion does not extend out of lo
ally 
at geometries, i.e. those

without 
urvature. On the other hand, the de�ning absolute parallelism allows su
h

a 
onstru
tion for one{jets and a simple 
he
k shows that we 
an pro
eed to all

orders with the semi{holonomi
 prolongations.

Let us 
onsider a representation E of P , the 
orresponding homogeneous bundle

E(G=P ) = G �

P

E and its �rst jet prolongation J

1

(E(G=P )) ! G=P . The a
tion

of P on its standard �ber

J

1

(E) := J

1

(E(G=P ))

o

= E � (g

�

�


 E)

is de�ned by means of the a
tion of fundamental ve
tor �elds on the equivariant

fun
tions s 2 C

1

(G; E)

P

. The formula for the a
tion of Z 2 p

+

on elements of

J

1

(E) viewed as pairs (v; '), where v 2 E and ' is a linear map from g

�

to E , is

given by

Z � (v; ') = (Z � v;X 7! Z � ('(X))� '(ad

�

(Z)(X)) + ad

p

(Z)(X) � v);

i.e. we get the tensorial a
tion plus one additional term mapping the value{part to

the derivative{part.

By iteration, we obtain the semi{holonomi
 jet modules

�

J

k

E = E � (g

�

�


 E) � � � � � (


k

g

�

�


 E)

with the appropriate a
tion of P as the equalizers of the natural proje
tions

J

1

(

�

J

k�1

E) !

�

J

k�1

E � J

1

(

�

J

k�2

E):

Now, the semi{holonomi
 jet prolongations of natural bundles with standard �ber

E turn out to be natural bundles 
orresponding to P{modules

�

J

k

E .

This has a striking 
onsequen
e: P{module homomorhpisms 	 :

�

J

k

E !! F give

rise to invariant operators D : �(E)! �(F).

3.2. Setting of the problem. Still two essential questions are obviously left.

First, how to re
ognize the non{zero operators? Se
ond, are all invariant operators

of this type? Unfortunately, the answer to the se
ond question is no, while the �rst

one provides an unpleasant 
hallenge. We 
all the operators whi
h 
ome this way

strongly invariant and the 
onformally invariant square of the Lapla
ian on fun
-

tion on four{dimensional 
onformal Riemannian manifolds (the so 
alled Paneitz

operator) is an example of an invariant operator whi
h is not strongly invariant, 
f.

[20℄, or see [15℄ for more examples.

On the other hand, ea
h invariant operator on the lo
ally 
at geometries has an

invariant symbol. This is a tensor and thus it exists as an invariant on all 
urved

geometries as well. Thus we have a simple problem to deal with: Given invariant

operator D

G=P

between homogeneous bundles, is there an invariant operator on all

paraboli
 geometries whi
h restri
ts to D

G=P

? We shall deal with this problem in

the rest of the paper and we 
all su
h operators 
urved versions of the invariant

operators on G=P . The �rst observation to make is that if an invariant operator

on G=P is given by a homomorphism of the semi{holonomi
 jet{modules, then its

symbol (i.e. the symmetrized part of the restri
tion to the highest order 
omponent)

does not vanish and so the resulting strongly invariant operator de�nitly does not

vanish too. Moreover, this operator 
learly is the 
urved version of its restri
tion

to G=P .
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3.3. Remarks. Let us also noti
e that the de�ning Cartan 
onne
tion ! deter-

mines a well de�ned di�erential operator on fun
tions on G. First, re
all that ! is a

absolute parallelism and so it de�nes the 
onstant ve
tor �elds !

�1

(X) on G for all

X 2 g, !(!

�1

(X)(u)) = X , for all u 2 G. In parti
ular, !

�1

(Z) is the fundamental

ve
tor �eld if Z 2 p. The 
onstant �elds !

�1

(X) with X 2 g

�

are 
alled horizontal.

Now, let us 
onsider any natural ve
tor bundle EM = G �

P

E . Its se
tions are

P{equivariant fun
tions s : G ! E and the Lie derivative of fun
tions with respe
t

to the 
onstant horizontal ve
tor �elds de�nes the invariant derivative

r

!

: C

1

(G; E) ! C

1

(G; g

�

�


 E)

r

!

s(u)(X) = L

!

�1

(X)

s(u):

We also write r

!

X

s for values with the �xed argument X 2 g

�

.

The invariant derivative is a helpful substitute for the Levi{Civita 
onne
tions

in Riemannian geometry, but there a problem: it does not produ
e P{equivariant

fun
tions even if restri
ted to equivariant s 2 C

1

(G; E)

P

. One good way how to

avoid this drawba
k is to extend the derivative to all 
onstant �elds, i.e. to 
onsider

r : C

1

(G; E) ! C

1

(G; g

�


 E) whi
h preserves the equivarian
e. This is a helpful

approa
h in the the so 
alled twistor and tra
tor 
al
ulus, see e.g. [7, 10℄. An

easy 
omputation reveals also the (generalized) Ri

i and Bian
hi identities and a

quite simple 
al
ulus is available, 
f. [12, 9, 10℄. Moreover, this 
al
ulus involves

a 
lass of distinguished 
onne
tions underlying ea
h paraboli
 geometry, always

parametrized by one{forms. In the 
onformal 
ase, these are the Weyl 
onne
tions

of the 
onformal Riemannian maifolds. The general theory extends surprisingly

many features of the 
onformal geometry and it has been worked out re
ently in

[9℄.

It is remarkable that the general 
al
ulus shows that ea
h invariant operator is

given by a uniform formula in terms of the (generalized) Weyl 
onne
tions. Even in

the lo
ally 
at 
ases, these formulae involve the 
urvatures of the Weyl 
onne
tions.

Their expli
it and 
losed forms for the 
urved versions of all BGG{resolutions for

j1j{graded algebras have been 
omputed in [11℄, Part III.

Another essential part of the general theory is the 
onstru
tion of the normalized

Cartan 
onne
tion out of some more elementary underlying stru
tures. We do not

tou
h this problem here and refer the reader to [27, 29, 24, 8℄. In fa
t, our 
onstru
-

tions of the 
urved BGG{sequen
es work for all Cartan 
onne
tions, without any

normalization.

3.4. Twisted invariant operators. A useful observation reveals that for ea
h

P{module E and ea
h G{module V, the mapping

s
 v 7! (g 7! s(g)
 g

�1

� v)

de�nes the identi�
ation �(E)
V ' �(E 
V). This implies that for ea
h invariant

operator D : �(E)! �(F) on the 
at model, there is the twisted invariant operator

D

V

: �(E 
 V) ' �(E) 
 V

D
id

V //
�(F)
 V ' �(F 
 V):

Now, reading o� the information on level of the semi{holonomi
 jet modules, we


on
lude: For ea
h strongly invariant operator D and ea
h G{module V, there is

the twisted strongly invariant operator D

V

.

The easiest, but most important, example is the exterior di�erential d : 


j

(M)!




j+1

(M) whi
h is 
learly strongly invariant. For ea
h G{module V, the twisted

operator d

V

is given by the homomorphism J

1

(�

j

p
 V) ! �

j+1

p

(v

0

; Z 
 v

1

) 7! �v

0

+ (j + 1)(Z ^ v

1

)
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where Z 2 p

+

and Z ^ v

1

means the obvious alternation and � is the Lie algebra


ohomology di�erential.

There are two 
ru
ial remarks in order: First, 


j

(M ;V(M)) splits into irredu
ible


omponents on
e a redu
tion of the stru
ture group P to its redu
tive part is 
hosen.

The above formula shows, that only the di�erential � preserves the homogeneity,

while the rest in
reases the homogeneity. Se
ond, the exterior 
ovariant derivative

d

!

with respe
t to the Cartan 
onne
tion ! (whi
h a
ts on V{valued forms on G),

relates to d

V

as d

V

' = d

!

'� i

�

' where � is the 
urvature fun
tion of (G; !).

3.5. Main 
onstru
tion. Sin
e our jkj{graded g is semisimple, there is the ad-

joint 
odi�erential �

�

to the Lie algebra 
ohomology di�erential �, see e.g. [22℄.

Consequently, there is the Hodge theory on the 
o
hains whi
h allows to deal very

e�e
tively with the 
urvatures. Moreover �

�

is a P{module homomorphism and so

there are the well de�ned proje
tions

� : 


j

(M ;VM) � ker�

�

! H

j

V

M:

Next, 
onsider an irredu
ible G

0

{ 
omponent E

0

of the P{module H

j

V

. Of 
ourse,

E

0

is in the kernel of the algebrai
 Lapla
ian, but this is not P{invariant. Thus

we 
onsider the P{submodule E generated by E

0

and we try to de�ne a suitable

homomorphism

�

J

`

E

0

! E , i.e. a di�erential operator, splitting �. There is the

surprising te
hni
al result:

Lemma. There is a unique di�erential operator

L : �(H

j

V

! ker�

�

) � 


j

(M ;VM)

su
h that � Æ L(s) = s and d

V

ÆL(s) 2 ker�

�

� 


j+1

(M ;VM).

The proof is 
onsists of an iterative pro
edure and represents the te
hni
al 
ore

of [12℄. At the same time, it provides an expli
it 
onstru
tion of the operator L. On

the level of the operators, we obtain the diagram

ker(�

�

)

�

��

ker(�

�

)

�

��
: : :

//

d

V

ÆL

;;wwwwwwwwww
�(H

i

V

M)

L

OO
d

V

ÆL

88qqqqqqqqqq

//
�(H

i+1

V

M)

L

OO

//
: : :

where the dotted horizontal arrows are the newly 
onstru
ted operators D

V

.

In other words, the twisted exterior derivatives produ
e plenty of natural di�er-

ential operators in a purely algebrai
 way.

A few further arguments lead in [12℄ to

3.6. Theorem. Let (G; !) be a real paraboli
 geometry of the type (G;P ) on a

manifold M , V be a G{module. If the twisted de Rham sequen
e

0

//



0

(M ;VM)

d

V//



1

(M ;VM)

d

V//
: : :

d

V//



dim(G=P )

(M ;VM)

//
0 :

is a 
omplex, then also the Bernstein{Gelfand{Gelfand sequen
e

0

//
�(H

0

V

M)

D

V

//
�(H

1

V

M)

D

V

//
: : :

D

V

//
�(H

dim(G=P )

V

M)

//
0

de�ned above is a 
omplex, and they both 
ompute the same 
ohomology.

The same statement is true for 
omplex paraboli
 geometries (G; !) under the

additional requirement that G ! G=P

+

admits a global holomorphi
 G

0

{equivariant

se
tion.
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All these operators belong to the 
lass of standard operators . The name 
omes

from representation theory and it is related to the fa
t that the 
orresponding Verma

module homomorphisms for a general paraboli
s des
end from the homomorphisms

in the Borel 
ase. There are also natural operators whi
h are not standard, the so


alled non{standard ones, for whi
h our methods have not been e�e
tive enough

yet.

An important feature of our theory is the ex
lusive usage of the elementary (�nite

dimensional) representation theory. With a bit of exaggeration we 
ould say that

the representation theory enters rather as a language and the way of thinking. On

the other hand, there are also purely representation theoreti
al aspe
ts of interest

as indi
ated in [15℄.

3.7. Remarks. The 
omplex version of the Theorem may be understood as: If

the twisted de Rham sequen
e indu
es a 
omplex on the sheaf level, then the same

is true for the Bernstein{Gelfand{Gelfand sequen
e. In parti
ular, if the twisted

de Rham sequen
e indu
es a resolution of V, then so does the BGG{sequen
e. Now,

the original representation theoreti
al version of the (generalized) BGG{resolution

follows immediately by duality.

The Theorem also 
laims that all the BGG{resolutions on homogeneous spa
es

admit 
anoni
al 
urved analogs. In parti
ular, the examples (2), (3), (4), (5), and

(6) make sense for all 
urved gemetries of the 
orresponding types. Moreover, the

powers of the nablas refer to the iteration of the invariant derivative and we may

expand this derivative in terms of the underlying Weyl 
onne
tions. Partial results

in this dire
tion were a
hieved earlier in [1, 18℄

Next, 
onsider any torsion free real paraboli
 geometry of type (G;P ) on M .

Then the de Rham 
ohomology of M with 
oeÆ
ients in K = R or C is 
omputed

by the (mu
h smaller) 
omplex

0

//
�(H

0

K

M)

D

K

//
�(H

1

K

M)

D

K

//
: : :

D

K

//
�(H

dim(G=P )

K

M)

//
0 :

Similarly, if (G; !) is a 
at real paraboli
 geometry, then for any representation

V of G the BGG{sequen
e is a 
omplex, whi
h 
omputes the twisted de Rham


ohomology of M with 
oeÆ
ients in the bundle VM , whi
h is de�ned as the


ohomology of the 
omplex given by the 
ovariant exterior derivative d

!

indu
ed

by the Cartan 
onne
tion !.

3.8. Further development. The theory is developing very qui
kly and we do not

have pla
e here to mention all main re
ent a
hievements. But we 
annot miss the

paper [10℄ whi
h extends the de�nition of our operator L to the whole spa
es of

forms (and provides a ni
e alternative de�nition of L too). This enables the authors

to work out di�erential pairings whi
h restri
t to 
up produ
t on the 
ohomologies

in the homogeneous 
ase. Some appli
ations are in
luded as well, in parti
ular �rst

steps toward the deformation theory and an interpretation in terms of linearized

�eld theories.
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