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Abstrat. Motivated by the rih geometry of onformal Riemannian mani-

folds and by the reent development of geometries modeled on homogeneous

spaes G=P with G semisimple and P paraboli, Weyl strutures and preferred

onnetions are introdued in this general framework. In partiular, we extend

the notions of sales, losed and exat Weyl onnetions, and Rho{tensors, we

haraterize the lasses of suh objets, and we use the results to give a new

desription of the Cartan bundles and onnetions for all paraboli geometries.

1. Introdution

Cartan's generalized spaes are urved analogs of the homogeneous spaes G=P

de�ned by means of an absolute parallelism on a prinipal P{bundle. This very

general framework was originally built in onnetion with the equivalene problem

and Cartan's general method for its solution, f. e.g. [11℄. Later on, however, these

ideas got muh more attention. In partiular, several well known geometries were

shown to allow a anonial objet of that type with suitable hoie of semisimple

G and paraboli P , see e.g. [21℄. Cartan's original approah was generalized and

extended for all suh groups, f. [31, 25, 35, 8℄, and links to other areas were disov-

ered, see e.g. [4, 3, 12℄. The best known examples are the onformal Riemannian,

projetive, almost quaternioni, and CR strutures and the ommon name adopted

is paraboli geometries .

The relation to twistor theory renewed the interest in a good alulus for suh

geometries, whih had to improve the tehniques in onformal geometry and to

extend them to other geometries. Many steps in this diretion were done, see for

example [32, 33, 34, 16℄ for lassial methods in onformal geometry, and [2, 1, 15,

17, 18℄ for generalizations.

A new approah to this topi, motivated mainly by [26, 3, 4℄, was started in

[9, 10℄. The novelty onsists in the ombination of Lie algebrai tools with the

frame bundle approah to all objets and we ontinue in this spirit here. Our general

setting for Weyl strutures and sales has been also inspired by [1, 14℄.

In Setion 2 we �rst outline some general aspets of paraboli geometries and then

we present the basi objets like tangent and otangent bundles and the urvature

of the geometry in a somewhat new perspetive. This will pave our way to the Weyl

strutures in the rest of the paper. Our basi referenes for Setion 2 are [8℄ and [29℄,

the reader may also onsult [10℄. For the lassial point of view of over{determined

systems, we refer to [31, 35℄ and the referenes therein.

The Weyl strutures are introdued in the beginning of Setion 3. Exatly as in

the onformal Riemannian ase, the lass of Weyl strutures underlying a paraboli

geometry on a manifold M is always an aÆne spae modeled on one{forms on M

and eah of them determines a linear onnetion on M . Moreover, the di�erene

between the linear onnetion indued by a Weyl struture and the anonial Car-

tan onnetion is enoded in the so alled Rho{tensor (used heavily in onformal

geometry sine the beginning of the entury). Next, we de�ne the bundles of sales

as ertain aÆne line bundles generalizing the distinguished bundles of onformal
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metris, and we desribe the orrespondene between onnetions on these line bun-

dles and the Weyl strutures, see Theorem 3.12. On the way, we ahieve expliit

formulae for the deformation of Weyl strutures and the related objets in Propo-

sition 3.9, whih o�ers a generalization for the basi ingredients of various aluli.

The exat Weyl geometries are given by sales, i.e. by (global) setions of the bun-

dles of sales, thus generalizing the lass of Levi{Civita onnetions for onformal

geometries. At the same time, this point of view leads to a new presentation of

the anonial Cartan bundle as the bundle of onnetions on the bundle of sales

(pulled bak to the de�ning in�nitesimal ag struture, f. 2.7 and 3.12). In the end

of Setion 3, we de�ne another lass of distinguished loal Weyl strutures whih

ahieve the best possible approximation of the anonial Cartan onnetions, see

Theorem 3.16. In the onformal ase, these normal Weyl strutures improve the

onstrution of the Graham's normal oordinates, f. [24℄.

The last setion is devoted to haraterizations of all the objets related to a

hoie of a Weyl struture. More expliitly, the ultimate goal is to give a reipe how

to deide whih soldering forms and linear onnetions on a manifold M equipped

with a regular in�nitesimal ag struture are obtained from a Weyl{struture and

to ompute the orresponding Rho{tensor. For this purpose, we de�ne the general

Weyl forms and their Weyl urvatures and the main step towards our aim is ahieved

in Theorem 4.4. Next, we introdue the total urvature of a Weyl form whih

is easier to interpret on the underlying manifold than the Weyl urvature. The

haraterization is then obtained by arefully analyzing the relation between these

two urvatures.

This entire paper fouses on the introdution of new strutures and their nie

properties. We should like to mention that essential use of these new onepts has

appeared already in [10℄ and [5℄.

Aknowledgements. The initial ideas for this researh evolved during the stay of

the seond author at the University of Adelaide in 1997, supported by the Australian

Researh Counil. The �nal work and writing was done at the Erwin Shr�odinger

Institute for Mathematial Physis in Vienna. The seond author also aknowledges

the support from GACR, Grant Nr. 201/99/0296. Our thanks are also due to our

olleagues for many disussions.

2. Some bakground on paraboli geometries

2.1. jkj{graded Lie algebras. Let G be a real or omplex semisimple Lie group,

whose Lie algebra g is equipped with a grading of the form

g = g

�k

� � � � � g

0

� � � � � g

k

:

Suh algebras g are alled jkj{graded Lie algebras.

Throughout this paper we shall further assume that no simple ideal of g is

ontained in g

0

and that the (nilpotent) subalgebra g

�

= g

�k

�� � ��g

�1

is generated

by g

�1

. Suh algebras are sometimes alled e�etive semisimple graded Lie algebras

of k-th type, f. [19, 31℄. By p

+

we denote the subalgebra g

1

�� � �� g

k

and by p the

subalgebra g

0

� p

+

. We also write g

�

= g

�k

� � � � � g

�1

, and g

j

= g

j

� � � � � g

k

,

j = �k; : : : ; k.

It is well known that then p is a paraboli subalgebra of g, and atually the

grading is ompletely determined by this subalgebra, see e.g. [35℄, Setion 3. Thus

all omplex simple jkj{graded g are lassi�ed by subsets of simple roots of omplex

simple Lie algebras (i.e. arbitrary plaement of rosses over the Dynkin diagrams

in the notation of [4℄), up to onjugation. The real jkj{graded simple Lie algebras

are lassi�ed easily by means of Satake diagrams: the jkj{grading of the omplex

simple g indues a jkj{grading on a real form if and only if (i) only `white' nodes
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in the Satake diagram have been rossed out, and, (ii) if a node is rossed out,

then all nodes onneted to this one by the double arrows in the Satake diagram

have to be rossed out too, see [19℄ or [35℄ for more details. Very helpful notational

onventions and omputational reipes an be found in [4℄.

2.2. Let us reall basi properties of Lie groups G with (e�etive) jkj{graded Lie

algebras g. First of all, there is always a unique element E 2 g

0

with the property

[E; Y ℄ = jY for all Y 2 g

j

, j = �k; : : : ; k, the grading element. Of ourse, E belongs

to the enter z of the redutive part g

0

of p � g.

The Killing form provides isomorphisms g

�

i

' g

�i

for all i = �k; : : : ; k and, in

partiular, its restritions to the enter z and the semisimple part g

ss

0

of g

0

are

non{degenerate.

Now, there is the losed subgroup P � G of all elements whose adjoint ations

leave the p{submodules g

j

= g

j

�� � ��g

k

invariant, j = �k; : : : ; k. The Lie algebra

of P is just p and there is the subgroup G

0

� P of elements whose adjoint ation

leaves invariant the grading by g

0

{modules g

i

, i = �k; : : : ; k. This is the redutive

part of the paraboli Lie subgroup P , with Lie algebra g

0

. We also de�ne subgroups

P

j

+

= exp(g

j

� � � � � g

k

), j = 1; : : : ; k, and we write P

+

instead of P

1

+

. Obviously

P=P

+

= G

0

and P

+

is nilpotent. Thus P is the semidiret produt of G

0

and the

nilpotent part P

+

. More expliitly, we have (f. [8℄, Proposition 2.10, or [31, 35℄)

2.3. Proposition. For eah element g 2 P , there exist unique elements g

0

2 G

0

and Z

i

2 g

i

, i = 1; : : : ; k, suh that

g = g

0

expZ

1

expZ

2

: : : expZ

k

:

2.4. Paraboli geometries. Following Elie Cartan's idea of generalized spaes

(see [28℄ for a reent reading), a urved analog of the homogeneous spae G=P is a

right invariant absolute parallelism ! on a prinipal P{bundle G whih reprodues

the fundamental vetor �elds. In our approah, a (real) paraboli geometry (G; !)

of type G=P is a prinipal �ber bundle G with struture group P , equipped with a

smooth one{form ! 2 


1

(G; g) satisfying

(1) !(�

Z

)(u) = Z for all u 2 G and fundamental �elds �

Z

, Z 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

In partiular, eah X 2 g de�nes the onstant vetor �eld !

�1

(X) de�ned by

!(!

�1

(X)(u)) = X , u 2 G. In this paper, we shall deal with smooth real par-

aboli geometries only. The one forms with properties (1){(3) are alled Cartan

onnetions, f. [28℄.

The morphisms between paraboli geometries (G; !) and (G

0

; !

0

) are prinipal

�ber bundle morphisms ' whih preserve the Cartan onnetions, i.e. ' : G ! G

0

and '

�

!

0

= !.

2.5. The urvature. The struture equations de�ne the horizontal smooth form

K 2 


2

(G; g) alled the urvature of the Cartan onnetion !:

d! +

1

2

[!; !℄ = K:

The urvature funtion � : G ! ^

2

g

�

�


g is then de�ned by means of the parallelism

�(u)(X;Y ) = K(!

�1

(X)(u); !

�1

(Y )(u)) = [X;Y ℄� !([!

�1

(X); !

�1

(Y )℄):

In partiular, the urvature funtion is valued in the ohains for the seond oho-

mology H

2

(g

�

; g). Moreover, there are two ways how to split �. We may onsider

the target omponents �

i

aording to the values in g

i

. The whole g

�

{omponent
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�

is alled the torsion of the Cartan onnetion !. The other possibility is to

onsider the homogeneity of the bilinear maps �(u), i.e.

� =

3k

X

`=�k+2

�

(`)

; �

(`)

: g

i

� g

j

! g

i+j+`

:

Sine we deal with semisimple algebras only, there is the odi�erential �

�

whih

is ajoint to the Lie algebra ohomology di�erential �, see e.g. [23℄. Consequently,

there is the Hodge theory on the ohains whih enables to deal very e�etively

with the urvatures. In partiular, we may use several restritions on the values of

the urvature whih turn out to be quite useful.

2.6. De�nition. The paraboli geometry (G; !) with the urvature funtion � is

alled at if � = 0, torsion{free if �

�

= 0, normal if �

�

Æ � = 0, and regular if it is

normal and �

(j)

= 0 for all j � 0.

Obviously, the morphisms of paraboli geometries preserve the above types and

so we obtain the orresponding full subategories of regular, normal, torsion free,

and at paraboli geometries of a �xed type G=P . See [10℄, Setion 2, for more

details.

2.7. Flag strutures. The homogeneous models for paraboli geometries are the

real generalized ag manifolds G=P . Curved paraboli geometries look like G=P

in�nitesimally. Indeed, the �ltration of g by the p{submodules g

j

is transfered to

the right invariant �ltration T

j

G on the tangent spae TG by the parallelism !. The

tangent projetion Tp : TG ! TM then provides the �ltration TM = T

�k

M �

T

�k+1

M � � � � � T

�1

M of the tangent spae of the underlying manifold M .

Moreover, the struture group of the assoiated graded tangent spae GrTM =

(T

�k

M=T

�k+1

M) � � � � � (T

�2

M=T

�1

M) � T

�1

M redues automatially to G

0

sine G

0

= G=P

+

learly plays the role of its frame bundle. The following lemma is

not diÆult to prove, see e.g. [27℄, Lemma 2.11.

Lemma. Let (G; !) be a paraboli geometry, � its urvature funtion. Then �

(j)

= 0

for all j < 0 if and only if the Lie braket of vetor �elds on M is ompatible with

the �ltration, i.e. [�; �℄ is a setion of T

i+j

M for all setions � of T

i

M , and �

of T

j

M . Hene it de�nes an algebrai braket f ; g

Lie

on GrTM . Moreover, this

braket oinides with the algebrai braket f ; g

g

0

de�ned on GrTM by means of

the G

0

{struture if and only if �

(j)

= 0 for all j � 0.

We all the �ltrations of TM with redution of GrTM to G

0

satisfying the very

last ondition of the lemma the regular in�nitesimal ag strutures of type g=p. In

fat, the strutures learly depend on the hoie of the Lie group G with the given

Lie algebra g. This hoie is always enoded already in G

0

. On the other hand,

there are always several distinguished hoies, e.g. the full automorphism group of

g, the adjoint group, and the unique onneted and simply onneted group. In

the onformal geometries these hoies lead to onformal Riemannian manifolds,

oriented onformal menifolds, and (oriented) onformal spin manifolds, respetively.

Obviously, the various hoies of G do not matter muh loally and we shall not

disuss them expliitly in this paper.

The G

0

strutures on GrTM are equivalent to the frame forms of length one

de�ned and used in [8℄ while the ondition �

(j)

= 0 for all j � 0 is equivalent to the

struture equations for these frame forms imposed in the onstrution of [8℄. In view

of this relation, we also all our bundles G

0

equipped with the regular in�nitesimal

ag strutures the P{frame bundles of degree one. In partiular, we obtain (see [8℄,

Setion 3)
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2.8. Theorem. There is the bijetive orrespondene between the isomorphism

lasses of regular paraboli geometries of type G=P and the regular in�nitesimal

ag strutures of type g=p on M , exept for one series of one{graded, and one se-

ries of two{graded Lie algebras g for whih H

1

(g

�

; g) is nonzero in homogeneous

degree one.

Both types of the exeptional geometries from the Theorem will be mentioned

in the examples below.

2.9. Example. The paraboli geometries with j1j{graded Lie algebras g are alled

irreduible. Their tangent bundles do not arry any nontrivial natural �ltration

and this irreduibility of TM is reeted in the name. The lassi�ation of all suh

simple real Lie algebras is well known (f. [22℄ or 2.1 above). We may list all the

orresponding geometries, up to the possible hoies of the groups G

0

, roughly as

follows:

A

`

the split form, ` > 2 | the almost Grassmannian strutures with homoge-

neous models of p{planes in R

`+1

, p = 1; : : : ; `. The hoie p = 1 yields the

projetive strutures whih represent one of the two exeptions in 2.8.

A

`

the quaternioni form, ` = 2p + 1 > 2 | the almost quaternioni geome-

tries in dimensions 4p, and more general geometries modeled on quaternioni

Grassmannians.

A

`

one type of geometry for the algebra su(p; p), ` = 2p� 1.

B

`

the (pseudo) onformal geometries in all odd dimensions 2m+ 1 � 3.

C

`

the split form, ` > 2 | the almost Lagrangian geometries modeled on the

Grassmann manifold of maximal Lagrangian subspaes in the sympleti R

2`

.

C

`

another type of geometry orresponding to the algebra sp(p; p), ` = 2p.

D

`

the (pseudo) onformal geometries in all even dimensions m � 4.

D

`

the real almost spinorial geometries with g = so(p; 2`� p), p = 1; : : : ; `� 2.

D

`

the quaternioni almost spinorial geometries with g = u

�

(`; H ).

E

6

the split form EI | exatly one type with g

0

= so(5; 5)� R and g

�1

= R

16

.

E

6

the real form EIV | exatly one type with g

0

= so(1; 9)�R and g

�1

= R

16

.

E

7

the split form EV | exatly one type with g

0

= EI � R and g

�1

= R

27

.

E

7

the real form EV II { exatly one type with g

0

= EIV � R and g

�1

= R

27

.

2.10. Example. The paraboli ontat geometries form another important lass.

They orrespond to j2j{graded Lie algebras g with one{dimensional top omponents

g

2

. Thus the regular in�nitesimal strutures are equivalent to ontat geometri

strutures, together with the redution of the graded tangent spae to the subgroup

G

0

in the group of ontat transformations. The only exeptions are the so alled

projetive ontat strutures (C

`

series of algebras) where more struture has to be

added, see e.g. [8℄. The general lassi�ation sheme allows a simple formulation for

the ontat ases: The dimension one ondition on g

2

yields the presription whih

simple roots have to be rossed while the presribed length two of the grading gives

further restritions. The outome may be expressed as (see [19, 35℄):

Proposition. Eah non{ompat real simple Lie algebra g admits a unique grad-

ing of ontat type (up to onjugay lasses), exept g is one of sl(2;R), sl(`; H ),

sp(p; q), so(1; q), EIV , FII and in these ases no suh gradings exist.

The best known examples are the non{degenerate hypersurfae type CR ge-

ometries (with signature (p; q) of the Levi form) whih are exatly the torsion free

regular paraboli geometries with g = su(p+1; q+1), see e.g. [8℄, Setion 4.14{4.16.

The real split forms of the same omplex algebras give rise to the so alled almost

Lagrangian ontat geometries, f. [30℄.
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2.11. Example. The previous two lists of geometries inlude those with most sim-

ple in�nitesimal ag strutures. The other extreme is provided by the real paraboli

geometries with most ompliated ags in eah tangent spae, i.e. those orrespond-

ing to the Borel subgroups P � G. Here we need to ross out all nodes in the Satake

diagram and so there must not be any blak ones. Thus all real split forms, su(p; p),

so(`� 1; `+ 1), and EII list all real forms whih admit the right grading.

2.12. Natural bundles. Consider a �xed paraboli geometry (G; !) over a man-

ifold M . Then eah P{module V de�nes the assoiated bundle VM = G �

P

V

over M . In fat, this is a funtorial onstrution whih may be restrited to all

subategories of paraboli geometries mentioned in 2.6.

Similarly, we may treat bundles assoiated to any ation P ! Di�(S) on a

manifold S, the standard �ber for SM = G�

P

S. We shall meet only natural vetor

bundles de�ned by P{modules in this paper, however.

There is a speial lass of natural (vetor) bundles de�ned byG{modules W . Suh

natural bundles are alled trator bundles, see [2, 7℄ for historial remarks. We shall

distinguish them by the sript letters here and often omit the base manifold M

from the notation. We may view eah suh trator bundleWM as assoiated to the

extended prinipal �ber bundle

~

G = G �

P

G, i.e. W =

~

G �

G

W . Now, the Cartan

onnetion ! on G extends uniquely to a prinipal onnetion form ~! on

~

G, and

so there is the indued linear onnetion on eah suh W . With some more areful

arguments, this onstrution may be extended to all (g; P ){modules W , i.e. P{

modules with a �xed extension of the indued representation of p to a representation

of g ompatible with the P{ation, see [7℄, Setion 2. One of the ahievements of

the latter paper is the equivalent treatment of the regular paraboli geometries

entirely within the framework of the trator bundles, inlusive the disussion of the

anonial onnetions.

2.13. Adjoint trators. It seems that the most important natural bundle is the

adjoint trator bundle A = G �

P

g with respet to the adjoint ation Ad of G on g.

The P{submodules g

j

� g give rise to the �ltration

A = A

�k

� A

�k+1

� � � � � A

0

� A

1

� � � � � A

k

by the natural subbundles A

j

= G �

P

g

j

. Moreover, the assoiated graded natural

bundle (often denoted by the abuse of notation by the same symbol again)

GrA = A

�k

� � � � � A

�1

�A

0

�A

1

� � � � � A

k

with A

j

= A

j

=A

j+1

is available. By the very de�nition, there is the algebrai

braket on A de�ned by means of the Lie braket in g (sine the Lie braket is

Ad-equivariant), whih shows up on the graded bundle as

f ; g : A

i

�A

j

! A

i+j

:

For the same reason, the Killing form de�nes a pairing on GrA suh that A

�

i

= A

�i

,

and the algebrai odi�erential �

�

, f. 2.5, de�nes natural algebrai mappings

�

�

: ^

k+1

A

1


A ! ^

k

A

1


A

whih are homogeneous of degree zero with respet to the gradings in GrA.

Similarly to the notation for g, we also write A

+

= A

1

, A

�

= A=A

0

for bundles

assoiated either to G or G

0

. Thus A = A

�

+ A

0

+ A

+

, understood either as

omposition series indued by the �ltration, or diret sum of invariant subbundles,

respetively.
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2.14. Tangent and otangent bundles. For eah paraboli geometry (G; !),

p : G !M , the absolute parallelism de�nes the identi�ation

G �

P

(g=p) ' TM; G � g

�

3 (u;X) 7! Tp(!

�1

(X)(u)):

In other words, the tangent spaes TM are natural bundles equipped with the

�ltrations whih orrespond to the Lie algebras g

�

viewed as the P{modules g=p

with the indued Ad{ations. Equivalently, the tangent spaes are the quotients

TM = A=A

0

of the adjoint trator bundles. Therefore, the indued graded tangent spaes GrTM

are exatly the negative parts of the graded adjoint trator bundles

GrTM = A

�k

� � � � � A

�1

:

Moreover, the de�nition of the algebrai braket on A implies immediately that the

braket indued by the Lie braket of vetor �elds on GrTM for regular in�nitesimal

ag strutures on M oinides with f ; g.

Now, the otangent bundles learly orrespond to

T

�

M = G �

P

p

+

' A

1

and so the graded otangent spae is identi�ed with

GrT

�

M = A

1

� � � � � A

k

:

Finally, the pairing of a one{form and a vetor �eld is given exatly by the anonial

pairing of A=A

1

and A

1

indued by the Killing form.

2.15. The �rst important observation about the adjoint trators and their links

to tangent and otangent spaes is that the urvature K of the paraboli geometry

(G; !) is in fat a setion of �

2

(A=A

0

)

�


 A whose frame form is the urvature

funtion �. Thus, the urvature is a two{form on the underlying manifoldM valued

in the adjoint trators and all the onditions on the urvature disussed in 2.6 are

expressed by natural algebrai operations on the adjoint trators.

The remarkable relation of both tangent and otangent spaes to the positive and

negative parts of the adjoint trators is the most important tool in what follows.

In partiular, let us notie already here that one we are given a redution of the

struture group P of G to its redutive part G

0

, the adjoint trator bundles are

identi�ed with their graded versions and both tangent and otangent bundles are

embedded inside of A.

3. Weyl{strutures

3.1. De�nition. Let (p : G !M;!) be a paraboli geometry on a smooth manifold

M , and onsider the underlying prinipalG

0

{bundle p

0

: G

0

!M and the anonial

projetion � : G ! G

0

. A Weyl{struture for (G; !) is a global G

0

{equivariant

smooth setion � : G

0

! G of �.

3.2. Proposition. For any paraboli geometry (p : G ! M;!), there exists a

Weyl{struture. Moreover, if � and �̂ are two Weyl{strutures, then there is a

unique smooth setion � = (�

1

; : : : ;�

k

) of A

1

� � � � � A

k

suh that

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)):

Finally, eah Weyl-struture � and setion � de�ne another Weyl-struture �̂ by

the above formula.
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Proof. We an hoose a �nite open overing fU

1

; : : : ; U

N

g of M suh that both G

and G

0

are trivial over eah U

i

. Sine by Proposition 2.3 P is the semidiret produt

of G

0

and P

+

it follows immediately that there are smooth G

0

{equivariant setions

�

i

: p

�1

0

(U

i

) ! p

�1

(U

i

). Moreover, we an �nd open subsets V

i

suh that

�

V

i

� U

i

and suh that fV

1

; : : : ; V

N

g still is a overing of M .

Now from Proposition 2.3 and the Baker{Campbell{Hausdor� formula it fol-

lows that there is a smooth mapping 	 : p

�1

0

(U

1

\ U

2

) ! p

+

suh that �

2

(u) =

�

1

(u) exp(	(u)). Equivariane of �

1

and �

2

immediately implies that 	(u�g) =

Ad(g

�1

)(	(u)) for all g 2 G

0

. Now let f : M ! [0; 1℄ be a smooth funtion with

support ontained in U

2

, whih is identially one on V

2

and de�ne � : p

�1

0

(U

1

[V

2

)!

p

�1

(U

1

[ V

2

) by �(u) = �

1

(u) exp(f(p

0

(u))	(u)) for u 2 U

1

and by �(u) = �

2

(u)

for u 2 V

2

. Then obviously these two de�nitions oinide on U

1

\V

2

, so � is smooth.

Moreover, from the equivariane of the �

i

and of 	 one immediately onludes that

� is equivariant. Similarly, one extends the setion next to U

1

[ V

2

[ V

3

and by

indution one reahes a globally de�ned smooth equivariant setion.

If �̂ and � are two global equivariant setions, then applying Proposition 2.3

diretly, we see that there are smooth maps �

i

: G

0

! g

i

for i = 1; : : : ; k suh that

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)). As above, equivariane of �̂ and � implies

that �

i

(u�g) = Ad(g

�1

)(�

i

(u)) for all g 2 G

0

. Hene, �

i

orresponds to a smooth

setion of A

i

. The last statement of the Proposition is obvious now.

3.3. Weyl onnetions. We an easily relate a Weyl{struture � : G

0

! G to

objets de�ned on the manifold M by onsidering the pullbak �

�

! of the Cartan

onnetion ! along the setion �. Clearly, �

�

! is a g{valued one{form on G

0

, whih

by onstrution is G

0

{equivariant, i.e. (r

g

)

�

(�

�

!) = Ad(g

�1

) Æ �

�

! for all g 2 G

0

.

Sine Ad(g

�1

) preserves the grading of g, in fat eah omponent �

�

!

i

of �

�

! is a

G

0

{equivariant one form with values in g

i

.

Now onsider a vertial tangent vetor on G

0

, i.e. the value �

A

(u) of a funda-

mental vetor �eld orresponding to some A 2 g

0

. Sine � is G

0

{equivariant, we

onlude that T

u

���

A

(u) = �

A

(�(u)), where the seond fundamental vetor �eld is

on G. Consequently, we have �

�

!(�

A

) = !(�

A

) = A 2 g

0

. Thus, for i 6= 0 the form

�

�

!

i

is horizontal, while �

�

!

0

reprodues the generators of fundamental vetor

�elds.

From this observation, it follows immediately, that for i 6= 0, the form �

�

!

i

desends to a smooth one form on M with values in A

i

, whih we denote by the

same symbol, while �

�

!

0

de�nes a prinipal onnetion on the bundle G

0

. This

onnetion is alled the Weyl onnetion of the Weyl struture �.

3.4. Soldering forms and Rho-tensors. We view the positive omponents of

�

�

! as a one{form

P = �

�

(!

+

) 2 


1

(M ;A

1

� � � � � A

k

)

with values in the bundle A

1

� � � � � A

k

. We all it the Rho{tensor of the Weyl{

struture �. This is a generalization of the tensor P

ab

well known in onformal

geometry.

Sine ! restrits to a linear isomorphism in eah tangent spae of G, we see that

the form

�

�

!

�

= (�

�

!

�k

; : : : ; �

�

!

�1

) 2 


1

(M;A

�k

� � � � � A

�1

)

indues an isomorphism

TM

�

=

A

�k

� � � � � A

�1

�

=

GrTM:

We will denote this isomorphism by

� 7! (�

�k

; : : : ; �

�1

) 2 A

�k

� � � � � A

�1
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for � 2 TM . In partiular, eah �xed u 2 G

0

provides the identi�ation of T

p

0

(u)

M

�

=

g

�

ompatible with the grading. Thus, the hoie of a Weyl struture � provides

a redution of the struture group of TM to G

0

(by means of the soldering form

�

�

!

�

on G

0

), the linear onnetion on M (the Weyl onnetion �

�

!

0

), and the

Rho{tensor P.

3.5. Remarks. As disussed in 2.7{2.8 above, there is the underlying frame form

of length one on G

0

whih is the basi struture from whih the whole paraboli

geometry (G; !) may be reonstruted, with exeptions mentioned expliitly in 2.9

and 2.10. By de�nition, for i < 0 and � 2 T

i

G

0

this frame form an be omputed by

hoosing any lift of � to a tangent vetor on G and then taking the g

i

{omponent of

the value of ! on this lift. In partiular, we an use T��� as the lift, whih implies

that the restrition of �

�

!

i

(viewed as a form on G

0

) to T

i

G

0

oinides with the g

i

{

omponent of the frame form of length one. This in turn implies that the restrition

of �

�

!

i

(viewed as a form on M) to T

i

M oinides with the anonial projetion

T

i

M ! A

i

= T

i

M=T

i+1

M .

There is also another interpretation of the objets onM indued by the hoie of

a Weyl{struture that will be very useful in the sequel. Namely, onsider the form

�

�

!

�0

= �

�

!

�k

� � � � � �

�

!

0

2 


1

(G

0

; g

�k

� � � � � g

0

):

We have seen above that this form is G

0

{equivariant, it reprodues the generators

of fundamental vetor �elds, and restrited to eah tangent spae, it is a linear

isomorphism. Thus �

�

!

�0

de�nes a Cartan onnetion on the prinipal G

0

{bundle

p

0

: G

0

!M . In the ase of the irreduible paraboli geometries, these onnetions

are lassial aÆne onnetions on the tangent spae TM belonging to its redued

struture group G

0

.

3.6. Bundles of sales. As we have seen in 3.3, 3.4 above, hoosing a Weyl{

struture � : G

0

! G leads to several objets on the manifold M . Now the next

step is to show that in fat a small part of these data is suÆient to ompletely

�x the Weyl{struture. More preisely, we shall see below that even the linear

onnetions indued by the Weyl onnetion �

�

!

0

on ertain oriented line bundles

suÆe to pin down the Weyl{struture. Equivalently, one an use the orresponding

frame bundles, whih are prinipal bundles with struture group R

+

. The prinipal

bundles appropriate for this purpose are alled bundles of sales .

To de�ne these bundles, we have to make a few observations: A prinipal R

+

{

bundle assoiated to G

0

is determined by a homomorphism � : G

0

! R

+

. The

derivative of this homomorphism is a linear map �

0

: g

0

! R. Now g

0

splits as the

diret sum z(g

0

) � g

ss

0

of its enter and its semisimple part, and �

0

automatially

vanishes on the semisimple part. Moreover, as disussed in 2.2 the restrition of the

Killing form B of g to the subalgebra g

0

is non{degenerate, and one easily veri�es

that this restrition respets the above splitting. In partiular, the restrition of B

to z(g

0

) is still non{degenerate and thus there is a unique element E

�

2 z(g

0

) suh

that �

0

(A) = B(E

�

; A) for all A 2 g

0

.

Next, the ation of the element E

�

2 z(g

0

) on any G

0

{irreduible representation

ommutes with the ation of G

0

, and thus is given by a salar multiple of the

identity by Shur's lemma.

De�nition. An element E

�

of z(g

0

) is alled a saling element if and only if E

�

ats

by a nonzero real salar on eah G

0

{irreduible omponent of p

+

. A bundle of sales

is a prinipal R

+

bundle L

�

! M whih is assoiated to G

0

via a homomorphism

� : G

0

! R

+

, whose derivative is given by �

0

(A) = B(E

�

; A) for some saling

element E

�

2 z(g

0

).
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Having given a �xed hoie of a bundle L

�

of sales, a (loal) sale on M is a

(loal) smooth setion of L

�

.

3.7. Proposition. Let G be a �xed semisimple Lie group, whose Lie algebra g is

endowed with a jkj{grading. Then the following holds:

(1) There are saling elements in z(g

0

).

(2) Any saling element E

�

2 z(g

0

) gives rise to a anonial bundle L

�

of sales

over eah manifold endowed with a paraboli geometry of the given type.

(3) Any bundle of sales admits global smooth setions, i.e. there always exist global

sales.

Proof. (1) The grading element E 2 z(g

0

), f. 2.2, ats on g

i

by multipliation

with i, so it is a saling element. More generally, one an onsider the subspae of

z(g

0

) of all elements whih at by real salars on eah irreduible omponent of p

+

.

Then eah irreduible omponent determines a real valued funtional and thus a

hyperplane in that spae, and the omplement of these �nitely many hyperplanes

(whih is open and dense) onsists entirely of saling elements.

(2) Let p

+

= �p

�

be the deomposition of p

+

into G

0

{irreduible omponents,

and for a �xed grading element E

�

denote by a

�

the salar by whih E

�

ats

on p

�

. The adjoint ation de�nes a smooth homomorphism G

0

!

Q

�

GL(p

�

),

whose omponents we write as g 7! Ad

�

(g). Then onsider the homomorphism

� : G

0

! R

+

de�ned by

�(g) :=

Y

�

j det(Ad

�

(g))j

2a

�

:

The derivative of this homomorphism is given by �

0

(A) =

P

�

2a

�

tr(ad(A)j

p

�

).

Now g

�

= �

�

(p

�

)

�

, and E

�

ats on (p

�

)

�

by �a

�

and on g

0

by zero, and thus

B(E

�

; A) = tr(ad(A) Æ ad(E

�

)) =

P

�

a

�

tr(ad(A)j

p

�

) �

P

�

a

�

tr(ad(A)j

(p

�

)

�

) =

�

0

(A).

(3) This is just due to the fat that orientable real line bundles and thus prinipal

R

+

{bundles are automatially trivial and hene admit global smooth setions.

3.8. Lemma. Let � : G

0

! G be a Weyl{struture for paraboli geometry (G !

M;!) and let L

�

be a bundle of sales.

(1) The Weyl onnetion �

�

!

0

2 


1

(G

0

; g

0

) indues a prinipal onnetion on the

bundle of sales L

�

.

(2) L

�

is naturally identi�ed with G

0

= ker(�), the orbit spae of the free right ation

of the normal subgroup ker(�) � G

0

on G

0

.

(3) The form �

0

Æ �

�

!

0

2 


1

(G

0

) desends to the onnetion form of the indued

prinipal onnetion on L

�

= G

0

= ker(�).

(4) The omposition of �

0

with the urvature form of �

�

!

0

desends to the urvature

of the indued onnetion on L

�

.

Proof. All laims are straightforward onsequenes of the de�nitions.

To see that the Weyl{struture � is atually uniquely determined by the indued

prinipal onnetion on L

�

(f. Theorem 3.12 below), we have to ompute how the

prinipal onnetion �

�

!

0

hanges when we hange �. For later use, we also ompute

how the other objets indued by � hange under the hange of the Weyl{strutures.

So let us assume that �̂ is another Weyl{struture and � = (�

1

; : : : ;�

k

) is the

setion of A

1

� � � � � A

k

haraterized by �̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)).

We shall use the onvention that we simply denote quantities orresponding to �̂

by hatted symbols and quantities orresponding to � by unhatted symbols. Conse-

quently, (�

�k

; : : : ; �

�1

) and (

^

�

�k

; : : : ;

^

�

�1

) denote the splitting of � 2 TM aording

to �, respetively �̂, and P and

^

P are the Rho{tensors. Finally, let us onsider any

vetor bundle E assoiated to the prinipal bundle G

0

. Then for any Weyl{struture
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the orresponding prinipal onnetion on G

0

indues a linear onnetion on E,

whih is denoted by r for � and by

^

r for �̂.

To write the formulae eÆiently, we need some further notation. By j we denote

a sequene (j

1

; : : : ; j

k

) of nonnegative integers, and we put kjk = j

1

+2j

2

+� � �+kj

k

.

Moreover, we de�ne j! = j

1

! : : : j

k

! and (�1)

j

= (�1)

j

1

+���+j

k

, and we de�ne (j)

m

to be the subsequene (j

1

; : : : ; j

m

) of j. By 0 we denote sequenes of any length

onsisting entirely of zeros.

3.9. Proposition. Let � and �̂ be two Weyl{strutures related by

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u));

where � = (�

1

; : : : ;�

k

) is a smooth setion of A

1

� � � � � A

k

. Then we have:

^

�

i

=

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

);(1)

^

P

i

(�) =

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

) +(2)

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(P

`

(�)) +

k

X

m=1

X

(j)

m�1

=0

m+kjk=i

(�1)

j

(j

m

+ 1)j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

m

)

j

m

(r

�

�

m

);

where ad denotes the adjoint ation with respet to the algebrai braket f ; g.

If E is an assoiated vetor bundle to the prinipal bundle G

0

, then we have:

^

r

�

s = r

�

s+

X

kjk+`=0

(�1)

j

j!

(ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

)) � s;(3)

where � denotes the map A

0

�E ! E indued by the ation of g

0

on the standard

�ber of E.

Proof. The essential part of the proof is to ompute the tangent map T

u

�̂ in a

point u 2 G

0

. By de�nition, �̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)). Thus, we an

write the evaluation of the tangent map, T

u

�̂��, as the sum of T

�(u)

r

g

�T

u

���, where

g = exp(�

1

(u)) : : : exp(�

k

(u)) 2 P

+

, and the derivative at t = 0 of

�(u) exp(�

1

((t))) : : : exp(�

k

((t)));

where  : R ! G

0

is a smooth urve with (0) = u and 

0

(0) = �. By onstrution,

the latter derivative lies in the kernel of T�, where � : G ! G

0

is the projetion, so

we an write it as �

�(�)

(�̂(u)) for suitable �(�) 2 p

+

.

Now, for � 2 T

u

G

0

, we have �̂

�

!(�) = !(�̂(u))(T

u

�̂��). By equivariane of the

Cartan onnetion !, we get !(�(u)�g)(Tr

g

�T���) = Ad(g

�1

)(!(u)(T���)). Conse-

quently,

�̂

�

!(�) = Ad(g

�1

)(�

�

!(�)) + �(�):

Sine �(�) 2 p

+

, this term a�ets only the transformation of the Rho{tensor, and

does not inuene the hanges of �

�

!

i

for i � 0. In partiular, for the omponents

�̂

�

!

i

with i < 0, we only have to take the part of the right degree in

e

ad(��

k

(u))

Æ : : : Æ e

ad(��

1

(u))

(�

�

!(u)(�));(4)

and expanding the exponentials, this immediately leads to formula (1).
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To ompute the hange in the onnetion, we have to notie that �̂

�

!

0

(�) is

the omponent of degree zero in (4) above. Consequently, if we apply �̂

�

!

0

to the

horizontal lift of a tangent vetor on M , the outome is just this degree zero part.

Otherwise put, the horizontal lift with respet to �̂

�

!

0

is obtained by subtrating

the fundamental vetor �eld orresponding to the degree zero part of (4) from

the horizontal lift with respet to �

�

!

0

. Applying suh horizontal vetor �eld to a

smooth G

0

{equivariant funtion with values in any G

0

{representation and taking

into aount that a fundamental vetor �elds ats on suh funtions by the negative

of its generator ating on the values, this immediately leads to formula (3) by

expanding the exponentials.

Finally, we have to deal with the hange of the Rho{tensor. Reall that we view

this as a tensor on the manifold M , so we an ompute

^

P

i

(�) by applying �̂

�

!

i

to

any lift of �. In partiular, we may use the horizontal lift �

h

with respet to �

�

!

0

,

so we may assume �

�

!

0

(�) = 0. But then expanding the exponentials in (4) and

taking the part of degree i we see that we exatly get the �rst two summands in

formula (2). Thus we are left with proving that the last summand orresponds to

�(�). For this aim, let us rewrite the urve that we have to di�erentiate as

�̂(u) exp(��

k

(u)) : : : exp(��

1

(u)) exp(�

1

((t))) : : : exp(�

k

((t))):

Di�erentiating this using the produt rule we get a sum of terms in whih one �

i

is di�erentiated, while all others have to be evaluated at t = 0, i.e. in u. So eah of

these terms reads as the derivative at t = 0 of

�̂(u)�onj

exp(��

k

(u))

Æ : : : Æ onj

exp(��

i+1

(u))

�

exp(��

i

(u)) exp(�

i

((t)))

�

;

where onj

g

denotes the onjugation by g, i.e. the map h 7! ghg

�1

. This expression

is just the prinipal right ation by the value of a smooth urve in P whih maps zero

to the unit element, so its result is exatly the value at �̂(u) of the fundamental

vetor �eld generated by the derivative at zero of this urve. This derivative is

learly obtained by applying

e

ad(��

k

(u))

Æ : : : Æ e

ad(��

i+1

(u))

to the derivative at zero of t 7! exp(��

i

(u)) exp(�

i

((t))). By [20℄, 4.26, and the

hain rule, the latter derivative equals the left logarithmi derivative of exp applied

to the derivative at zero of t 7! �

i

((t)). Moreover, the proof of [20℄, Lemma 4.27,

an be easily adapted to the left logarithmi derivative, showing that this gives

1

X

p=0

(�1)

p

(p+ 1)!

ad(�

i

(u))

p

(�

h

��

i

):

Finally, we have to observe that �

h

��

i

orresponds to r

�

�

i

and to sort out the

terms of the right degree in order to get the remaining summand in (2).

3.10. Example. For all irreduible paraboli geometries, the formulae from Propo-

sition 3.9 beome extremely simple. In fat they oinide ompletely with the known

ones in the onformal Riemannian geometry: The grading of TM is trivial, the on-

netion transforms as

^

r

�

s = r

�

s� f�; �g � s;

where � is a setion of A

1

= T

�

M , and the braket of � and � is a �eld of

endomorphisms of TM ating on s in an obvious way. Indeed, there are no more

terms on the right{hand side of 3.9(3) whih make sense. Next, the Rho{tensor

transforms as

^

P(�) = P(�) +r

�

�+

1

2

f�; f�; �gg:
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The formulae for the j2j{graded examples are a bit more ompliated. The splitting

of TM and the onnetion and Rho{tensors hange as follows

^

�

�2

= �

�2

^

�

�1

= �

�1

� f�

1

; �

�2

g

^

r

�

s = r

�

s+

�

1

2

f�

1

; f�

1

; �

�2

gg � f�

2

; �

�2

g � f�

1

; �

�1

g) � s;

^

P

1

(�) = P

1

(�)�

1

6

f�

1

; f�

1

; f�

1

; �

�2

ggg+ f�

2

; f�

1

; �

�2

gg+

1

2

f�

1

; f�

1

; �

�1

gg � f�

2

; �

�1

g+r

�

�

1

^

P

2

(�) = P

2

(�)� f�

1

;P

1

(�)g+r

�

�

2

�

1

2

f�

1

;r

�

�

1

g+

1

24

ad(�

1

)

4

(�

�2

)�

1

2

f�

2

; f�

1

; f�

1

; �

�2

ggg+

1

2

f�

2

; f�

2

; �

�2

gg �

1

6

ad(�

1

)

3

(�

�1

) + f�

2

; f�

1

; �

�1

gg:

3.11. Remark. In appliations, one is often interested in questions about the de-

pendene of some objets on the hoie of the Weyl{strutures and then the in-

�nitesimal form of the available hange of the splittings, Rho's and onnetions is

important. In our terms, this amounts to sorting out the terms in formulae 3.9(1){

(3) whih are linear in upsilons. Thus, the in�nitesimal version of Proposition 3.9

for the variations Æ�

i

, Ær, and ÆP

i

reads

Æ�

i

= � f�

1

; �

i�1

g � � � � � f�

k+i

; �

�k

g(1)

ÆP

i

(�) = r

�

�

i

� f�

1

;P

i�1

(�)g � � � � � f�

i�1

;P

1

(�)g �(2)

f�

i+1

; �

�1

g � � � � � f�

k

; �

�k+i

g

Ær

�

s = � (f�

1

; �

�1

g+ � � �+ f�

k

; �

�k

g) � s:(3)

3.12. Proposition 3.9 not only allows us to show that a Weyl{struture is uniquely

determined by the indued onnetion on any bundle of sales, but it also leads to

a desription of the Cartan bundle p : G ! M . To get this desription, reall that

for any prinipal bundle E ! M there is a bundle QE ! M whose setions are

exatly the prinipal onnetions on E, see [20℄, 17.4.

Theorem. Let p : G ! M be a paraboli geometry on M , and let L

�

! M be a

bundle of sales.

(1) Eah Weyl{struture � : G

0

! G determines the prinipal onnetion on L

�

in-

dued by the Weyl onnetion �

�

!

0

. This de�nes a bijetive orrespondene between

the set of Weyl{strutures and the set of prinipal onnetions on L

�

.

(2) There is a anonial isomorphism G

�

=

p

�

0

QL

�

, where p

0

: G

0

! M is the pro-

jetion. Under this isomorphism, the hoie of a Weyl struture � : G

0

! G is the

pullbak of the prinipal onnetion on the bundle of sales L

�

, viewed as a setion

M ! QL

�

. Moreover, the prinipal ation of G

0

is the anonial ation on p

�

0

QL

�

indued from the ation on G

0

, while the ation of P

+

is desribed by equation (3)

from Proposition 3.9.

Proof. (1) Consider the map �

0

: g

0

! R de�ning the bundle L

�

of sales. Take

elements Z 2 p

+

and X 2 g

�

, and onsider �

0

([Z;X ℄). By assumption, this is given

by B(E

�

; [Z;X ℄) = B([E

�

; Z℄; X) for some saling element E

�

2 z(g

0

). Hene if

we assume that Z lies in a G

0

{irreduible omponent of p

+

this is just a nonzero

real multiple of B(Z;X). In partiular, this implies that for eah 0 6= Z 2 p

i

, we

an �nd an element X 2 g

�i

, suh that �

0

([Z;X ℄) 6= 0. Moreover, sine E

�

2 z(g

0

)

we get Ad(g)(E

�

) = E

�

for all g 2 G

0

and this immediately implies that mapping

Z 2 g

i

to X 7! �

0

([Z;X ℄) indues an isomorphism g

i

�

=

g

�

�i

of G

0

{modules.
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Cartan onnetion !

G

//

��

QL

�

��
G

0

= G=P

+

Weyl-struture �

@@

//
M

prinipal onnetion

indued by �

�

!

0

^^

soldering form �

�

!

�

2 


1

(G

0

; g

�

)

Weyl onnetion �

�

!

0

2 


1

(G

0

; g

0

)

Rho{tensor P = �

�

!

+

2 


1

(G

0

:p

+

)

�

�

!

�

2 


1

(M ;A

�

)

P 2 


1

(M ;A

+

)

Figure 1. Pullbak diagram with further objets related to Weyl{strutures

To prove (1), we may as well use the indued linear onnetion on the line bundle

L

�

= L

�

�

R

+
R orresponding to the standard representation. For this bundle, the

map � from Proposition 3.9 is learly given by (A � s)(x) = �

0

(A(x))s(x), where we

denote by �

0

: A

0

!M � R also the mapping indued by �

0

: g

0

! R.

We �rst laim that the map from Weyl{strutures to linear onnetions is in-

jetive. So assume that � and �̂ indue the same linear onnetion on L

�

and

let � be the setion of A

1

� � � � � A

k

desribing the hange from � to �̂. For

� 2 T

�1

M , we have �

i

= 0 for all i < �1, hene formula (3) of 3.9 redues

to

^

r

�

s = r

�

s + �

0

(f�

1

; �g)s in this ase. If �

1

would be nonzero, then by the

above argument we ould �nd � suh that �

0

(f�

1

; �g) 6= 0, whih would ontradit

^

r = r, so �

1

must be identially zero. But then for � in T

�2

M , the hange redues

to

^

r

�

s = r

�

s + �

0

(f�

2

; �

�2

g)s and as above, we onlude that �

2

is identially

zero. Indutively, we get � = 0 and thus �̂ = �.

To see surjetivity, assume that

^

r is any linear onnetion on L

�

, and let �

be any Weyl{struture with indued linear onnetion r on L

�

. Then there is a

one{form � 2 


1

(M) suh that

^

r

�

s = r

�

s+ �(�)s. Restriting � to T

�1

M , we an

�nd a unique smooth setion �

1

of A

1

suh that �(�) = ��

0

(f�

1

; �g) for all � in

T

�1

M . Next, onsider the map T

�2

M !M � R given by

� 7! �(�) + �

0

(f�

1

; �

�1

g)�

1

2

�

0

(f�

1

; f�

1

; �

�2

gg);

where the �

i

are the omponents of � with respet to the Weyl{struture �. By

onstrution, this vanishes on T

�1

M , so it fators to a map de�ned onA

�2

, and thus

there is a unique setion �

2

of A

2

suh that it equals ��

0

(f�

2

; �

�2

g). Indutively,

we �nd a setion � suh that the Weyl{struture �̂ orresponding to � and �

indues the linear onnetion

^

r, f. formula 3.9(3).

(2) Consider any point u 2 G. Proposition 3.2 implies that there is a Weyl{struture

� : G

0

! G suh that u = �(�(u)). If r is the linear onnetion on L

�

indued by �,

then we see from Proposition 3.9 that the value of r

�

s(p(u)) for a vetor �eld � on

M and a setion s of L

�

depends only on �(p(u)), sine its hange under a hange of

the Weyl{struture depends only on the value of � in p(u). Thus, mapping u to the

value at p(u) of the prinipal onnetion on L

�

indued by �

�

!

0

is independent of

the hoie of �, so we get a well de�ned bundle map from the bundle G ! G

0

to the

bundle QL

�

!M overing the projetion p

0

: G

0

!M . Moreover, from part (1) of

this proof it follows that this map indues isomorphisms in eah �ber, so it leads
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to an isomorphism G ! p

�

0

QL

�

of bundles over G

0

. Obviously, the G

0

{equivariant

setions of p

�

0

QL

�

! G

0

orrespond exatly to the indued prinipal onnetions

on L

�

, i.e. the setions of QL

�

!M .

In order to desribe the prinipal ation of P on p

�

0

QL

�

obtained by the above

isomorphism, one just has to note that for u 2 G

0

and g 2 G

0

the �bers of p

�

0

QL

�

over u and u�g are anonially isomorphi sine p

0

(u) = p

0

(u�g). Thus, the prinipal

right ation of G

0

is simply given by ating on G

0

. On the other hand, �x u 2 G

0

and

an element exp(Z

1

) : : : exp(Z

k

) 2 P

+

for Z

i

2 g

i

. Via u, the element Z

i

orresponds

to an element �

i

2 A

i

at the point p

0

(u). Then the prinipal right ation of P

+

is

desribed by the formula (3) of Proposition 3.9 as required.

3.13. Closed and exat Weyl{strutures. Let us �x a bundle of sales L

�

for some paraboli geometry. Then the bijetive orrespondene between Weyl{

strutures and prinipal onnetions on L

�

immediately leads to two distinguished

sublasses of Weyl{strutures. Namely, we all a Weyl{struture � : G

0

! G losed ,

if the indued prinipal onnetion on L

�

(or equivalently the indued linear on-

netion r on L

�

) is at.

Moreover, by Proposition 3.7 the bundle L

�

of sales admits global smooth se-

tions, and any suh setion gives rise to a at prinipal onnetion on L

�

(whih

in addition has trivial holonomy) and hene to a losed Weyl{struture. The losed

Weyl{strutures indued by suh global setions are alled exat.

Note that in the ase of onformal strutures, the anonial hoie for the bundle

of sales is simply the R

+

{bundle whose smooth setions are the metris in the

onformal lass. Thus, the exat Weyl{strutures in onformal geometry orrespond

exatly to the Levi{Civita onnetions of the metris in the onformal lass.

The reason for the names \losed" and \exat" beomes apparent, one one

studies the aÆne strutures on the sets of losed and exat Weyl{strutures. So let

us assume that � is a losed Weyl{struture, and onsider any other Weyl{struture

�̂ orresponding to the setion � = (�

1

; : : : ;�

k

) of A

1

� � � � � A

k

. Now we an

reinterpret theorem 3.12(1) together with proposition 3.9 as showing that the set

of Weyl{strutures is an aÆne spae over 


1

(M), in suh a way that �xing � the

setion � orresponds to the one{form �

�;�

de�ned by

�

�;�

(�) =

X

kjk+`=0

(�1)

j

j!

�

0

�

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

)

�

:

This identi�ation is obtained simply by pulling bak the aÆne struture on the

spae of prinipal onnetions on L

�

to the spae of Weyl{strutures. In partiu-

lar, the hange of the prinipal onnetions � and �̂ on L

�

indued by � and �̂,

respetively, is just given by �̂ = � +�

�;�

. But then their urvatures hange simply

by �̂ = � + d�

�;�

, so in partiular if � is losed then �̂ is losed if and only if

d�

�;�

= 0. Thus, in the same way as Weyl{strutures are aÆne over all one{forms,

losed Weyl{strutures are aÆne over losed one{forms.

For exat Weyl{strutures, the situation is even simpler. If s and ŝ are two global

setions of L

�

, then there is a unique smooth funtion f suh that ŝ(x) = e

�f(x)

s(x).

It is then well known that the assoiated prinipal onnetions simply hange by

�̂ = � + df , so exat Weyl{strutures are aÆne over the spae of exat one{forms.

3.14. Remark. Another useful observation about exat Weyl geometries is related

to the identi�ation of L

�

with G

0

= ker� from 3.8(2). By the general properties of

lassial G{strutures, the setions of suh bundles are in bijetive orrespondene

with redutions of the struture groups to ker� � G

0

. Thus the holonomy of

the Weyl onnetions given by losed Weyl strutures is always at most ker�. In

partiular, in j1j{graded ases the saling element is unique up to salar multiples,



16 ANDREAS

�

CAP AND JAN SLOV

�

AK

and the kernel of � is exatly the semisimple part of G

0

. The same observation is

then true for the losed Weyl geometries loally.

3.15. Normal Weyl{strutures. Besides the rather obvious losed and exat

Weyl{strutures disussed above there is a seond kind of speial Weyl{strutures,

the so{alled normal Weyl{strutures . In several respets, they are quite di�erent

from losed and exat Weyl{strutures. On one hand, they are \more anonial"

sine their de�nition does not involve the hoie of a bundle of sales. On the other

hand, in ontrast to losed and exat Weyl{strutures, whih always exist globally,

normal Weyl{strutures in general exist only loally (over M). Their existene is

losely related to the existene of normal oordinates for paraboli geometries. This

subjet will be taken up elsewhere. We would like to point out at this plae that

the existene of normal Weyl{strutures seems to be a new result even in the ase

of onformal strutures, where it signi�antly improves the result on the existene

of Graham normal oordinates, see [24℄.

Sine the Rho tensors give the information about the di�erene of the ovariant

derivative with respet to the Weyl onnetion and the invariant derivative with

respet to ! along the image of the hosen Weyl{struture �, the \normality" we

have in mind will be desribed in terms of ertain minimality of P. More expliitly,

a Weyl{struture � will be alled normal at the point x 2 M if it satis�es the

properties imposed in Theorem 3.16. This Theorem also desribes ompletely the

freedom in the hoie.

Reall that one we have hosen a Weyl{struture, we get an identi�ation of the

tangent bundle with its assoiated graded vetor bundle. Thus TM is assoiated

to G

0

and so there is the indued linear Weyl onnetion on TM . Sine the Weyl{

struture indues ovariant derivatives on all omponents of the assoiated graded

of the tangent bundle, the Weyl onnetion on TM preserves the grading. For the

same reason, we an form ovariant derivatives of the Rho{tensor, viewed as a

one{form with values in T

�

M

�

=

A

1

� � � � � A

k

, whih again preserve the grading.

3.16. Theorem. Let p : G ! M be a paraboli geometry with underlying G

0

{

bundle p

0

: G

0

!M and let � : G ! G

0

be the anonial projetion. Let x 2M be a

point and let u

0

2 G

0

and u 2 G be points suh that �(u) = u

0

and p

0

(u

0

) = x. Then

there exists an open neighborhood U of x in M and a Weyl{struture � : p

�1

0

(U)!

p

�1

(U) suh that �(u

0

) = u and the Rho{tensor P of � has the property that for

all k 2 N the symmetrization over all �

i

of (r

�

k

: : :r

�

1

P)(�

0

) vanishes at x, so in

partiular P(x) = 0. Moreover, this ondition uniquely determines the in�nite jet

of � in u

0

.

Proof. Consider the Cartan onnetion ! on G. Sine ! restrits to a linear isomor-

phism, for eah element A 2 g we get the onstant vetor �eld

~

A 2 X(G) de�ned

by

~

A(v) = !(v)

�1

(A), f. 2.4. (Note that for A 2 p this is just the fundamental

vetor �eld.) In partiular, we may onsider the vetor �elds

~

X for X 2 g

�

. Now

we an �nd a neighborhood V of zero in g

�

, suh that for all X 2 V the ow of

X in the point u exists up to time t = 1. De�ne ' : V ! G by '(X) = Fl

~

X

1

(u).

Sine T

u

p Æ T

0

' : g

�

! T

x

M is obviously a linear isomorphism, we may assume

(possibly shrinking V ) that the maps ', � Æ ' and p Æ ' are all di�eomorphisms

onto their images, and we put U = p('(V )). For a point v

0

2 p

�1

0

(U) there learly

exist unique elements X 2 V and g 2 G

0

suh that v

0

= �('(X))�g, and we

de�ne �(v

0

) := '(X)�g. Obviously, this de�nes a smooth G

0

{equivariant setion

� : p

�1

0

(U)! p

�1

(U) and �(u

0

) = u.

Next, onsider a tangent vetor � 2 T

x

M , and its horizontal lift �

h

2 T

u

0

G

0

with

respet to the prinipal onnetion �

�

!

0

. Sine �

�

!

�0

de�nes a Cartan onne-

tion on p

�1

0

(U) (see 3.5) we an extend �

h

uniquely to a vetor �eld

~

�

h

suh that
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�

�

!

�0

(

~

�

h

) is onstantly equal to some X 2 g

�

. Moreover,

~

�

h

is projetable to a

vetor �eld

~

� on U and it is exatly the horizontal lift of

~

� (whih also justi�es the

notation).

Now onsider the ow line (t) = Fl

~

X

t

(u) = '(tX) in G, whih is de�ned for

suÆiently small t. By onstrution, we have �(�((t))) = (t) for all t. But this

implies that T��(� Æ )

0

(t) = 

0

(t), so �

�

(!)((� Æ )

0

(t)) is onstantly equal to X and

thus (� Æ )(t) = Fl

~

�

t

(u

0

). On the other hand, from the onstrution it is lear that

!(

0

(t)) = X 2 g

�

, so if we onsider the funtion P : G

0

! L(g

�

; p

+

) desribing

the Rho{tensor, then P(�((t)))(X) = 0 for all t. Consequently, all derivatives

of this urve in t = 0 vanish. But sine � Æ  is an integral urve of

~

�

h

these

iterated derivatives exatly orrespond to iterated ovariant derivatives of P in

diretion � evaluated at �. Thus, we obtain (r

�

: : :r

�

P)(�) = 0 for any number of

ovariant derivatives. Using polarization, this implies that the symmetrization of

(r

�

k

: : :r

�

1

P)(�

0

) over all �

i

vanishes at x.

To see that our ondition �xes the in�nite jet of the Weyl{struture suppose

that �̂ is another normal Weyl struture with �̂(u

0

) = u and let � = (�

1

; : : : ;�

k

)

be the setion of A

1

� � � � � A

k

desribing the hange from � to �̂. We want to

show that the in�nite jet of � vanishes at x = p(u). Sine both Weyl{strutures

map u

0

to u, we must have �(x) = 0. Next, we know that P(x) =

^

P(x) = 0.

Sine all �

i

vanish in x, formula (2) from Proposition 3.9 immediately shows that

this implies r�

i

(x) = 0 for all i = 1; : : : ; k, so r�(x) = 0. Now,

^

P = 0 and

� = 0. On one hand, it follows that

^

rP(x) = rP(x) and on the other hand that

(r

�

^

P)(�)(x) = r

�

(

^

P(�))(x). But hitting formula (2) from Proposition 3.9 with r

�

and symmetrizing over � and �, we always get terms involving some �

i

or r

�

�

i

or

r

�

P(�) whih all vanish at x, exept for one term in the very last line, in whih we

get a seond ovariant derivative of some �

i

. So we see that the symmetrizations

of

^

r

�

^

P(�) and r

�

r

�

� oinide. Thus vanishing of the symmetrization of the �rst

ovariant derivative implies that the symmetrized seond derivative of � is zero,

and thus the two{jet of � at x must be zero. Iteratively, one similarly sees that in

the expression of an symmetrized iterated ovariant derivative of P we always get

terms involving symmetrized iterated ovariant derivatives of �

i

's or P's exept for

one term oming from the very last line of the transformation formula. As above,

one then onludes that vanishing of the symmetrization of the k{fold ovariant

derivative of

^

P is equivalent to vanishing of the symmetrization of the (k + 1){fold

ovariant derivative of � and thus to the k + 1{jet of � in x being trivial.

4. Charaterization of Weyl{strutures

In the last setion, we started with a Weyl{struture for a paraboli geometry

(G !M;!) and we onstruted several underlying objets on the manifold M , see

Figure 1 for an illustration. Now we are going to haraterize when general objets

of that type atually ome from a Weyl struture. In the �nal stage, this will mean

expliit onditions relating the soldering form, linear onnetion and its torsion and

urvature, together with a proedure building the orresponding Rho{tensors. This

is quite simple for irreduible geometries, where the soldering form is �xed, and

the whole ondition presribes uniquely the torsion of a G

0

{onnetion. The Rho{

tensor is then given by a simple formula in terms of the urvature, see Example

4.8 below. Of ourse, the same story gets muh more ompliated for the general

jkj{graded ase. The main step is done in Theorem 4.4 and then a detailed analysis

of the urvature ful�lls our goal.
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Throughout this setion we restrit to the ase of regular paraboli geometries

assoiated to a jkj{graded semisimple Lie algebra g suh that H

1

(g

�

; g) is onen-

trated in homogeneous degrees � 0, i.e. suh that none of the simple jk

i

j{graded

ideals is of one of the two types mentioned in 2.8. In the ase that suh ideals are

present, a similar haraterization is possible, but the onditions are more ompli-

ated to formulate.

4.1. De�nition. Let p

0

: G

0

! M be a regular in�nitesimal ag struture, see

2.7. A Weyl{form for M is a one{form � 2 


1

(G

0

; g) whih is G

0

{equivariant,

i.e. (r

g

)

�

� = Ad(g

�1

) Æ � for all g 2 G

0

, reprodues the generators of fundamental

vetor �elds, i.e. �(�

A

) = A for all A 2 g

0

and has the property that for eah i < 0

the restrition of �

i

to T

i

G

0

oinides with the g

i

{omponent of the frame form of

degree one on G

0

indued by the regular in�nitesimal ag struture, see 2.7 and 3.5.

By 3.3 and 3.4, for any Weyl{struture � : G

0

! G, the pullbak �

�

! is a Weyl{

form for M . As in 3.4, the ondition of the restrition of �

i

to T

i

G

0

, i < 0, means

on M exatly that the restrition of �

i

to T

i

M oinides with the anonial pro-

jetion T

i

M ! A

i

. In partiular, this implies that �

�

= �

�k

� � � � � �

�1

indues a

linear isomorphism T

u

G

0

=V

u

G

0

�

=

g

�

, and thus �

�0

is a Cartan onnetion on G

0

.

Completely parallel to the development in 3.3{3.5 we an equivalently interpret a

Weyl{form for M as a one form �

�

2 


1

(M;A

�k

� � � � �A

�1

) induing an isomor-

phism between TM and its assoiated graded bundle, plus a prinipal onnetion

�

0

2 


1

(G

0

; g

0

) on G

0

, plus a Rho{tensor P = P

�

2 


1

(M;A

1

� � � � � A

k

), so a

Weyl{form essentially onsists of objets living on M .

4.2. Weyl{urvature. Next, for a Weyl{form � for M , we de�ne the Weyl{

urvature W of � . As a g{valued two form on G

0

, it is de�ned by

W (�; �) = d�(�; �) + [�(�); �(�)℄:

From the fat that � is G

0

{equivariant and reprodues the generators of funda-

mental vetor �elds, one immediately onludes that W is horizontal and G

0

{

equivariant, so it desends to an A{valued two form on M . Taking into aount the

identi�ation of TM with A

�

, we an also view W as a setion of L(�

2

A

�

;A).

Finally note that any setion � of L(�

2

A

�

;A) an be split aording to homoge-

neous degrees. We denote by �

(`)

the homogeneous part of degree `, i.e. �

(`)

(�; �) 2

A

i+j+`

for setions � of A

i

and � of A

j

with i; j < 0.

Lemma. Let p

0

: G

0

! M be a regular in�nitesimal ag struture. Then any

Weyl{form � 2 


1

(G

0

; g) has the property that W

(`)

= 0 for all ` � 0.

Proof. Consider � 2 �(A

i

) and � 2 �(A

j

), for i; j < 0. Then �

n

(�) = 0 for n < i

and �

m

(�) = 0 for m < j, so for ` < 0 if m+ n = i+ j + ` then [�

n

(�); �

m

(�)℄ = 0.

Thus, in this ase, the de�nition of W

(`)

(�; �) an be rewritten as W

(`)

(�; �) =

d�

i+j+`

(�; �) = ��

i+j+`

([�; �℄). By de�nition of a Weyl{form,W

(`)

(�; �) thus equals

the lass of the braket �[�; �℄ in T

i+j+`

M=T

i+j+`+1

M . But aording to 2.7, we

in partiular know that the braket of any setion of T

i

M with a setion of T

j

M

lies in T

i+j

M , so sine ` < 0, we must have W

(`)

= 0.

Next, for ` = 0, we an write

W

(0)

(�; �) = d�

i+j

(�; �) + f�; �g = ��

i+j

([�; �℄) + f�; �g:

Again, �

i+j

([�; �℄) is just the lass of the braket in T

i+j

M=T

i+j+1

M and so the

vanishing ofW

(0)

is just the remaining part of the de�nition of regular in�nitesimal

ag strutures, see 2.7.
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4.3. De�nition. Let p

0

: G

0

! M be a regular in�nitesimal ag struture. Then

a Weyl{form � 2 


1

(G

0

; g) is alled normal if and only if its Weyl{urvature W 2

�(L(�

2

A

�

;A)) satis�es �

�

(W ) = 0, where �

�

: L(�

2

A

�

;A)) ! L(A

�

;A) is the

bundle map indued by the Lie algebra odi�erential, see 2.13.

4.4. Theorem. Let (p : G ! M;!) be a regular paraboli geometry and let p

0

:

G

0

! M be the underlying regular in�nitesimal ag struture. Then a Weyl{form

� 2 


1

(G

0

; g) for M is oming from some Weyl{struture � : G

0

! G, i.e. � = �

�

!,

if and only if � is normal.

Proof. First we show that for any Weyl{struture � : G

0

! G the Weyl{form �

�

!

is normal. By the de�nition in 4.2 the Weyl{urvature W is a g{valued two{form

on G

0

, given by

W (�; �) = d�

�

!(�; �) + [�

�

!(�); �

�

!(�)℄ = �

�

(d! +

1

2

[!; !℄)(�; �):

Thus, W is simply the pullbak along � of the urvature of the Cartan onnetion

! on G

0

. By de�nition of a normal paraboli geometry, this urvature is �

�

{losed,

so the same is true for W .

Now, let us assume that we have given an arbitrary normal Weyl{form � 2




1

(G

0

; g). Moreover, let us hoose any bundle L

�

of sales for the paraboli geometry

in question. Sine �

0

is a prinipal onnetion on G

0

, it indues a prinipal onnetion

on L

�

, whih by Theorem 3.12 in turn gives rise to a unique Weyl{struture � : G

0

!

G suh that the onnetion on L

�

indued by �

�

!

0

oinides with the onnetion

indued by �

0

. We laim that � = �

�

!, whih will onlude the proof.

Consider the di�erene � � �

�

! 2 


1

(G

0

; g). For i < 0, we know from our

assumptions that both �

i

and �

�

!

i

oinide on T

i

G

0

with the frame form of degree

one. In partiular, the di�erene �

i

��

�

!

i

vanishes on T

i

G

0

for all i < 0. Sine T

0

G

0

is just the vertial bundle of G

0

and sine both �

0

and �

�

!

0

are prinipal onnetions

on G

0

, we see that �

0

� �

�

!

0

vanishes on T

0

G

0

, too. Finally, if we put T

i

G

0

to be

the zero setion for i > 0, then �

i

��

�

!

i

vanishes on T

i

G

0

for all i = �k; : : : ; k. Let

us indutively assume that �

i

� �

�

!

i

vanishes on T

i�n+1

G

0

for all i and some n.

Then onsider the restrition of �

i

� �

�

!

i

to T

i�n

G

0

, whih an be viewed as

a map T

i�n

G

0

=T

i�n+1

G

0

! g

i

. For eah i suh that i � n � 0, the forms �

i�n

and �

�

!

i�n

oinide on T

i�n

G

0

and indue an isomorphismT

i�n

G

0

=T

i�n+1

G

0

!

G

0

� g

i�n

. Consequently, we get a unique map � : G

0

! L(g

�

; g) whih has values

in maps homogeneous of degree n, suh that (�

i

� �

�

!

i

)(�) = �(�

i�n

(�)) for all

� 2 T

i�n

G

0

.

Next, letW

(n)

be the homogeneous omponent of degree n of the Weyl{urvature

of � viewed as a funtion G

0

! L(�

2

g

�

; g) (having values in the maps homogeneous

of degree n), and let

~

W

(n)

be the orresponding objet for �

�

!. We laim that for

all X , Y 2 g

�

~

W

(n)

(X;Y ) =W

(n)

(X;Y )� [X;�(Y )℄ + [Y;�(X)℄ + �([X;Y ℄) =(1)

=W

(n)

(X;Y )� (� Æ�)(X;Y ):

Let us postpone the proof of this laim and assume it is true for a while. Sine

bothW

(n)

and

~

W

(n)

are �

�

{losed, this implies �

�

Æ�Æ� = 0, whih implies �Æ� = 0

sine � and �

�

are adjoint, see 2.5. Sine H

1

(g

�

; g) is onentrated in non-positive

degrees of homogeneity, this implies � = 0 for n > k and �(X) = [Z;X ℄ for some

smooth Z : G

0

! g

n

for n � k. But in the latter ase, the proof of Theorem 3.12(1)

shows that sine �

0

and �

�

!

0

indue the same prinipal onnetion on L

�

, we must

have Z = 0, and thus � = 0. Hene, �

i

and �

�

!

i

oinide on T

i�n

G

0

for all i < n,

for i = n this follows sine n > 0 and thus both �

n

and �

�

!

n

are horizontal, while

for i > n it is trivially satis�ed. Thus the result follows by indution.
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So we are left with the proof of (1) only. Let us �x X 2 g

i

, Y 2 g

j

, i; j < 0. By

de�nition,

W

(n)

(u)(X;Y ) = d�

i+j+n

(�

�1

�0

(X); �

�1

�0

(Y )) + [�(�

�1

�0

(X)); �(�

�1

�0

(Y ))℄

i+j+n

;

where the index in the braket means that we just have to take the omponent in

g

i+j+n

. For

~

W

(n)

we get the analogous formula with all � 's replaed by �

�

!.

Next, observe that both �

�1

�0

(X) and �

�

!

�1

�0

(X) lie in T

i

G

0

� T

i+j

G

0

and sim-

ilarly for Y . From above, we know that �

�

!

i+j+n

(�) = �

i+j+n

(�) � �(�

i+j

(�)) for

all � in T

i+j

G

0

. Taking the exterior derivative of this equation and keeping in mind

that �

i+j

vanishes on T

i

G

0

and T

j

G

0

, we see that for � 2 T

i

G

0

and � 2 T

j

G

0

we

get

d�

�

!

i+j+n

(�; �) = d�

i+j+n

(�; �)� �(d�

i+j

(�; �)):

Sine W

(0)

= 0, the seond term (inluding the � sign) an be rewritten as

�([�

i

(�); �

j

(�)℄), and we may as well replae � by �

�

! in this expression. Thus,

we see that

~

W

(n)

(X;Y ) = d�

i+j+n

(�

�

!

�1

�0

(X); �

�

!

�1

�0

(Y )) + �([X;Y ℄) +

+ [�

�

!(�

�

!

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

:

Now we have to distinguish a few ases: Let us �rst assume that i + n > 0. Then

�

�

!

�1

�0

(X) = �

�1

�0

(X), and �

�

!(�

�

!

�1

�0

(X)) = �(�

�1

�0

(X)) � �(X), and �(X) 2

g

i+n

� p

+

. In partiular, this implies that

[�

�

!(�

�

!

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

=

= [�(�

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

� [�(X); Y ℄:

Seondly, if i+n = 0 then �(X) 2 g

0

, and thus �

�

!

�1

�0

(X) = �

�1

�0

(X) + �

�(X)

. The

in�nitesimal version of equivariane of �

i+j+n

then implies that

d�

i+j+n

(�

�

!

�1

�0

(X); �

�

!

�1

�0

(Y )) = d�

i+j+n

(�

�1

�0

(X); �

�

!

�1

�0

(Y ))� [�(X); Y ℄;

sine i + j + n = j in this ase. On the other hand both �

�

!(�

�

!

�1

�0

(X)) and

�(�

�1

�0

(X)) in this ase are ongruent to X modulo p

+

, so

[�

�

!(�

�

!

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

= [�(�

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

:

Finally, suppose that i+n < 0, so �(X) 2 g

i+n

� g

�

. Then �

�

!

�1

�0

(X) is ongruent

to �

�1

�0

(X+�(X)) modulo T

i+n+1

G

0

. Sine the braket of a setion of this subbundle

with a setion of T

j

G

0

is a setion of T

i+j+n+1

G

0

and �

i+j+n

vanishes on the latter

subbundle, we onlude that

d�

i+j+n

(�

�

!

�1

�0

(X); �

�

!

�1

�0

(Y )) = d�

i+j+n

(�

�1

�0

(X); �

�

!

�1

�0

(Y )) +

+ d�

i+j+n

(�

�1

�0

(�(X)); �

�

!

�1

�0

(Y )):

Sine W

(0)

= 0, the last term an be rewritten as �[�(X); Y ℄. As above, both

�

�

!(�

�

!

�1

�0

(X)) and �(�

�1

�0

(X)) are ongruent toX modulo p

+

, so again the braket

term makes no problem.

Hene we see, that in any ase we get

~

W

(n)

(X;Y ) = d�

i+j+n

(�

�1

�0

(X); �

�

!

�1

�0

(Y )) + [�(�

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

�

� [�(X); Y ℄ + �([X;Y ℄):

Doing the same hanges to Y instead of X we obtain the required equality (1), and

the whole proof of the theorem is �nished.
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4.5. Remark. If one does not assume that H

1

(g

�

; g) is onentrated in non-

positive degrees, i.e. if one allows g to ontain one of the two simple fators men-

tioned in 2.8, then H

1

(g

�

; g) is onentrated in homogeneous degrees less or equal

to one. Thus, the above proof shows that � = �

�

! if � is normal and has the prop-

erty that the restritions of �

i

and �

�

!

i

to T

i�1

G

0

oinide for all i. This ondition

is then fairly simple to interpret for any onrete hoie of suh struture.

4.6. In the proof of Theorem 4.4, we observed that for aWeyl{struture � : G

0

! G

the Weyl{urvatureW of the Weyl{form �

�

! is exatly the pullbak along � of the

urvature � of the normal Cartan onnetion ! on G. This allows us to ompute

the hange of the Weyl{urvature under a hange of the Weyl{struture. Suppose

that �̂ is another Weyl{struture and � = (�

1

; : : : ;�

k

) is the smooth setion of

A

1

� � � � � A

k

desribing the hange from � to �̂, see Proposition 3.2, i.e.

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)):

Equivariane of the Cartan onnetion ! immediately implies that the urvature

� is equivariant, i.e. viewing � as a two form on G with values in g, we have

�(v�g)(Tr

g

��; T r

g

��) = Ad(g

�1

)(�(v)(�; �)) for g 2 P and �; � 2 T

v

G. Putting

v = �(u) and g = exp(�

1

(u)) : : : exp(�

k

(u)), we see from the proof of Proposition

3.9 that for � 2 T

u

G

0

the element T

u

�̂�� is ongruent to Tr

g

T

u

��� modulo vertial

elements, whih are killed by the urvature anyhow. Thus, viewing W and

^

W as

g{valued two forms on G

0

, we get

^

W (�; �) = Ad(g

�1

)(W (�; �)). Moreover, to get

the interpretation of our two Weyl urvatures W and

^

W as A{valued two forms on

M , we just have to apply the above de�nition to lifts of vetor �elds on M , and

the result is independent of the hoie of the lifts sine W is horizontal. Keeping

in mind that the Lie{braket in g orresponds to the algebrai braket of setions

of A and expanding the exponentials in Ad(g

�1

) as in the proof of Proposition 3.9

we arrive (with notation as in 3.9) at

^

W

i

(�; �) =

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(W

`

(�; �)):(1)

From this formula, one an also derive a formula desribing the hange ofW viewed

as a setion of L(�

2

A

�

;A) taking into aount the hange of the identi�ation

of TM with A

�

desribed by (1) in Proposition 3.9, and thus a formula for the

hange of the individual homogeneous omponents W

(`)

. The only point that is

important for us here is that the homogeneous omponent W

(1)

of degree one is

atually independent of �. This an be immediately veri�ed from the above formula,

taking into aount that W

(`)

= 0 for all ` � 0.

4.7. Remark. The results obtained so far in priniple allow to give a desription

of the Cartan bundle and the Cartan onnetion ompletely in terms of data on the

manifold M . More preisely, if we start from a regular in�nitesimal ag struture

underlying some paraboli geometry, then we may proeed as follows: Choose a

saling element E

�

2 z(g

0

), and onsider the orresponding homomorphism � :

G

0

! R

+

desribed in the proof of Proposition 3.8. Then form L

�

= G

0

�

G

0

R

+

.

From Theorem 3.12(2) we then know that the Cartan bundle G is just the pullbak

of the bundle of prinipal onnetions on L

�

, and we have a desription of the

prinipal ation. Moreover, a hoie of a prinipal onnetion on L

�

is just the

hoie of a global setion of the bundle of onnetions, so its pullbak is a smooth

G

0

{equivariant setion � : G

0

! G. Any Cartan onnetion ! on G is uniquely

determined by its pullbak �

�

! by equivariane. Thus, desribing the anonial

normal Cartan onnetion on G is equivalent to �nding a normal Weyl{form on G

0

whih indues a given onnetion on L

�

.



22 ANDREAS

�

CAP AND JAN SLOV

�

AK

4.8. Example. Let us look more losely at the irreduible paraboli geometries.

Here the regular in�nitesimal ag strutures are just G

0

{strutures on M in the

sense of lassial G{strutures. The Weyl forms are � = �

�1

+ �

0

+ �

1

where �

�1

:

TG

0

! g

�1

is the �xed soldering form for M , �

0

is any linear onnetion on M

belonging to the �xed G

0

{struture and �

1

is any one{form in 


1

(M ;T

�

M). Now,

W

�1

= d�

�1

+ [�

�1

; �

0

℄;

i.e. the torsion of the onnetion �

0

. The individual omponents of W have ho-

mogeneities one, two, and three and so they have to be �

�

{losed separately. The

ondition �

�

W

�1

= 0 means that the torsion of �

0

is harmoni and this is the part

of W independent of the hoie of the Weyl{struture. Next,

W

0

= d�

0

+

1

2

[�

0

; �

0

℄ + [�

�1

; �

1

℄

whih is the urvature R of the onnetion �

0

plus some additional term. The

o{losedness of W

0

imposes a ondition on the hoie of �

1

, while �

�

W

1

always

vanishes sine its values are in the trivial vetor spae.

We shall see later that the resulting system of equations for the tensor �

1

is

always solvable, exept for the projetive strutures (where the �rst ohomology is

onentrated in degree one). Moreover, we shall prove an expliit algebrai formula

for the neessary hoie for the Rho{tensor: �

1

= �

�1

�

�

R. Expanding this formula

in the ase of the onformal (pseudo) Riemannian geometry, we obtain the well

known Rho{tensor used heavily by many authors sine the beginning of this entury,

while d�

1

happens to be exatly another well known tensor, the Cotton{York tensor.

As mentioned above, this omputation may be understood as an alternative

for the expliit onstrution of the anonial Cartan onnetion for all irreduible

paraboli geometries.

4.9. Total urvature. The expliit onstrution of a normal Weyl{form depends

a lot on the struture in question, a detailed treatment in the ase of partially

integrable almost CR{strutures of hypersurfae type will appear in [6℄. Here we

just desribe the basi ingredient of this proedure. The upshot of this is that

the ondition on a Weyl{form � being normal an be step by step redued to a

ondition on �

�0

only, at the same time omputing step by step the omponents of

the Rho{tensor P = �

+

.

The �rst step in this diretion is to replae the Weyl urvature of a Weyl{form

� by 2{forms de�ned by splitting the struture equations for � . The urvature of

the Cartan onnetion �

�0

is the 2{form K

�0

2 


2

(G

0

; g

�

) given by

K

�0

(�; �) = d�

�0

(�; �) + [�

�0

(�); �

�0

(�)℄:

On the other hand, we de�ne the 2{form K

+

2 


2

(G

0

; p

+

) by

K

+

(�; �) = d�

+

(�; �) + [�

+

(�); �

+

(�)℄:

Motivated by onformal geometry, we all K

+

the Cotton{York{tensor assoiated

to the Weyl{form � . We write K = K

�0

+K

+

and we all it the (total) urvature of

� . Sine �

�0

is a Cartan onnetion, it is well known that its urvature is horizontal

and G

0

{equivariant, so it an be viewed as a two form on M , with values in the

bundle A

�k

�� � ��A

0

. On the other hand, sine �

+

is by assumption G

0

{equivariant

and horizontal, the part K

+

desends to M , too. Finally, taking into aount the

isomorphism TM

�

=

A

�

= A

�k

� � � � � A

�1

, we an �nally view K as a smooth

setion of the bundle L(�

2

A

�

;A) over M .

The reason for introduing this urvature is that it is more losely related to

usual invariants of the Weyl{form than the Weyl{urvature, f. Example 4.8. On

the other hand, we shall see that there still is a simple relation between urvature

and Weyl{urvature.
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To get expliit expressions for the omponents of K, reall that the omponent

�

0

of any Weyl{form � is a prinipal onnetion on G

0

, and thus indues a linear

onnetion r on eah of the bundles A

i

. Let us also reall that �

i

are identi�ed

with forms 


1

(M ;A

i

) for all negative i.

4.10. Proposition. Let p

0

: G

0

! M be a regular in�nitesimal ag struture, let

� 2 


1

(G

0

; g) be a Weyl{form for M , and let K be its total urvature, viewed as an

A{valued two form on M with A

`

{omponent K

`

. Then for all vetor �elds � and

� on M we have:

(1) K

`

(�; �) = r

�

(�

`

(�))�r

�

(�

`

(�))� �

`

([�; �℄) +

P

i;j<0

i+j=`

f�

i

(�); �

j

(�)g, for ` < 0.

(2) For � 2 A

m

we get fK

0

(�; �); �g = R

m

(�; �)(�), where R

m

is the urvature of

the linear onnetion r on A

m

.

Moreover, if we view K as a setion of L(�

2

A

�

;A) and onsider ` > 0, then the

homogeneous omponent K

(`)

of K depends only on the restritions of �

i

to T

i�`

G

0

for all i � 0 and on the restritions of �

i

to T

i�`+1

G

0

for i > 0.

Proof. By de�nition, for ` < 0 the funtion G

0

! g

`

orresponding to K

`

(�; �) is

given by

d�

`

(�

h

; �

h

) +

X

i;j�0;i+j=`

[�

i

(�

h

); �

j

(�

h

)℄ =

= �

h

��

`

(�

h

)� �

h

��

`

(�

h

)� �

`

([�

h

; �

h

℄) +

X

i;j�0;i+j=`

[�

i

(�

h

); �

j

(�

h

)℄;

where the supersript h denotes the horizontal lift with respet to the prinipal on-

netion �

0

. But now �

`

(�

h

) : G

0

! g

`

is exatly the smooth funtion orresponding

to the setion �

`

(�) of A

`

, so the funtion �

h

��

`

(�

h

) orresponds to r

�

(�

`

(�)) and

similarly for the seond term. On the other hand, [�

h

; �

h

℄ is a lift of the vetor �eld

[�; �℄, so sine �

`

is horizontal for ` < 0, we see that the funtion �

`

([�

h

; �

h

℄) orre-

sponds to the setion �

`

([�; �℄) of A

`

. Finally, for the last sum one only has to take

into aount that �

0

vanishes on horizontal lifts and the braket in g orresponds

to the algebrai braket on A.

If ` = 0, the de�nition ofK

0

redues to d�

0

(�

h

; �

h

) and this exatly represents the

urvature of the prinipal onnetion �

0

, so the result follows immediately, taking

into aount that the ation of g

0

on g

m

is given by the Lie braket in g and thus

orresponds to the algebrai braket A

0

�A

m

! A

m

.

To verify the statements about homogeneous degrees, take setions � of A

i

and

� of A

j

, and let

~

� be the (unique) setion of T

i

M suh that �

n

(

~

�) = 0 for all

i < n < 0, �

i

(

~

�) = �, and similarly for ~�. Then for ` > 0, K

(`)

(�; �) = K

i+j+`

(

~

�; ~�).

If i+ j + ` < 0, then the above formula just gives us

Æ

0

i+`

r

~

�

� � Æ

0

j+`

r

~�

� � �

i+j+`

([

~

�; ~�℄):

This is ompletely independent of the omponents �

n

for n > 0. If we allow a hange

of � without hanging the restrition of �

n

to T

n�`

for all n � 0, then this means

that

~

� is hanged at most by a setion of T

i+`+1

M . In partiular, if the �rst term

in the above expression atually ours, i.e. i+ ` = 0 then

~

� is �xed, and moreover,

sine the restrition of �

0

to T

�`

G

0

= T

i

G

0

is �xed, also the ovariant derivative is

�xed. Similarly one analyzes the seond term. Finally, the last term depends only

on the restrition of � sine the braket of a setion of T

i+`+1

M with a setion of

T

j

M is a setion of T

i+j+`+1

M and this subbundle lies in the kernel of �

i+j+`

.

If i+ j + ` = 0, then K

(`)

(�; �) = d�

0

((

~

�)

h

; (~�)

h

), and as above, we see that (

~

�)

h

and (~�)

h

depend only on the appropriate restrition of � . Moreover, the braket

[(

~

�)

h

; (~�)

h

℄ by onstrution is a setion of T

i+j

G

0

, so the whole expression depends

only on the restrition of �

0

to T

i+j

G

0

= T

0�`

G

0

.
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Finally, we have to onsider the ase i + j + ` > 0, so we are dealing with a

omponent of K having values in A

+

. As before, one veri�es that all extensions

and horizontal lifts depend only on the appropriate restritions of �

�0

, so what

remains to be disussed is the dependene on P. But viewing P as a setion of

L(A

�

;A

+

), the statement to be proved redues to the fat that a homogeneous

omponent of K depends only on homogeneous omponents of P of stritly smaller

degree. But this is obvious from the de�nition of K

+

.

4.11. Remark. The previous Proposition reveals that the A

�

{omponents of the

total urvature give exatly the torsion of the linear onnetion �

0

orreted by the

algebrai ontribution of the Lie braket in g

�

, while the omponent K

0

is just the

standard urvature of �

0

. For a normal Weyl form � this means (using Proposition

4.12 below) that the torsion of �

0

has the algebrai braket as its homogeneous

omponent of degree zero, no omponents of negative degrees, and some positive

degree omponents. The torsion omponent of degree one is an invariant of the

paraboli struture in question.

The key point in the further analysis is that while the total urvature of a Weyl{

form is muh easier to relate to the underlying struture than its Weyl{urvature,

there is the quite simple relation between them desribed in the next Proposition.

4.12. Proposition. Let � 2 


1

(G

0

; g) be a Weyl{form forM , let P 2 �(L(A

�

;A

+

))

be its Rho{tensor, and let K;W 2 �(L(�

2

A

�

;A)) be its total urvature and its

Weyl{urvature, respetively. Then

W (�; �) = K(�; �) + fP(�); �g � fP(�); �g:

In partiular, W

(i)

= K

(i)

for all i � 1.

Proof. Let � be a setion of A

i

and � be a setion of A

j

, with i; j < 0. To ompute

W (�; �), we �rst have to view � and � as vetor �elds on M via �

�

: TM

�

=

A

�

.

Then, by onstrution the setion W (�; �) of A orresponds to the funtion G

0

! g

given by

d�(�

h

; �

h

) + [�(�

h

); �(�

h

)℄;

where the subsript h denotes the horizontal lift with respet to the prinipal on-

netion �

0

. Thus, the g

0

{omponents of �(�

h

) and �(�

h

) are automatially zero, so

we may write

[�(�

h

); �(�

h

)℄ = [�

�

(�

h

); �

�

(�

h

)℄ + [�

+

(�

h

); �

�

(�

h

)℄ +

[�

�

(�

h

); �

+

(�

h

)℄ + [�

+

(�

h

); �

+

(�

h

)℄:

On the other hand, from the de�nition of the urvature it is lear, that the setion

K(�; �) orresponds to the funtion

d�(�

h

; �

h

) + [�

�

(�

h

); �

�

(�

h

)℄ + [�

+

(�

h

); �

+

(�

h

)℄:

Now �

+

(�

h

) is exatly the funtion orresponding to P(�), while �

�

(�

h

) is the

funtion orresponding to �. (Atually, by onstrution �

�

(�) has values in g

j

only,

but this is not important here.) Sine the algebrai braket f ; g is simply indued

by the Lie braket on g, the formula for W (�; �) follows immediately.

To see the seond statement, one just has to notie that the algebrai braket is by

de�nition homogeneous of degree zero, while all nonzero homogeneous omponents

of P have degree at least two.

4.13. Remark. Note that the latter result, together with the formula (1) for the

hange of the Weyl{urvature of a Weyl{struture from 4.6 and the formula (2) for

the hange of the Rho{tensor from 3.9, gives us a formula for the hange of the

total urvature of a Weyl{struture under the hange of the Weyl{struture.
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4.14. The onstrution of normal Weyl{forms. Now we are ready to desribe

the proedure of step by step reduing the ondition of normality of a Weyl{form

� 2 


1

(G

0

; g) to a ondition on �

�0

and at the same time omputing step by step

the Rho{tensor. From Proposition 4.12 we know that W

(1)

= K

(1)

and from 4.6 we

know that this is atually the same expression for any normal Weyl{form. Usually,

this an be omputed in advane, and thus gives us a ondition on the restrition

of �

i

to T

i�1

G

0

for i � 0. Next, by Proposition 4.12, we have

W

(2)

(�; �) = K

(2)

(�; �) + fP

(2)

(�); �g � fP

(2)

(�); �g

= (K

(2)

� �P

(2)

)(�; �):

If W

(2)

is to be �

�

{losed, then this implies that �

�

(K

(2)

) = �

�

�P

(2)

. On the other

hand, sine H

1

(g

�

; g) is onentrated in homogeneous degrees less or equal to one

and H

0

(g

�

; g) = g

�k

, the Hodge deomposition implies that P

(2)

= �

�1

�

�

�P���

2

for a unique smooth setion �

2

of A

2

. Moreover, sine P

(2)

has to have values in

A

+

, it follows that the restrition of �

�1

�

�

(K

(2)

) to A

�k

� � � � � A

�2

must be

given by �(�

2

), whih gives a ondition on the restrition of �

i

to T

i�2

G

0

for i � 0.

If this is satis�ed, then �

2

is uniquely determined, and we an ompute P

(2)

as

�

�1

�

�

(K

(2)

) � ��

2

. Let us notie, how simple the latter step gets for j1j{graded

examples: then there is no �

2

, the entire forms P and K

0

are of homogeneous degree

two, and so P is simply obtained in the unique way by the formula P = �

�1

�

�

K

0

promised in Example 4.8.

Now this proess an be easily iterated. We next onsider K

(3)

whih depends

only on the (known) omponent P

(2)

of the Rho{tensor and on the restritions of

�

i

to T

i�3

G

0

for i � 0. As above, the restrition of �

�1

�

�

(K

(3)

) to A

�k

�� � ��A

�3

must be given by �(�

3

) for a setion �

3

of A

3

, whih gives onditions on the

restritions of �

i

for i � 0. If these are satis�ed, �

3

is uniquely determined, and we

an ompute P

(3)

. Finally, one we have reahedK

(k)

, there are no more onditions,

sine �

�0

is already ompletely determined at this stage, so we only get a way to

ompute the remaining homogeneous omponents of the Rho{tensor.
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