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2 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

Preface

This dissertation is based on a written version of my lecture series held during

my visiting professorship at the University of Vienna in the Fall term 1991/1992. I

acknowledge gratefully the support and kind hospitality of the University during my

visit. The motivating interest of the listeners forced me to study deeply the subject

which became one of the main interests of my scienti�c research nowadays. Since

the last year, a joint seminar of J. Bure�s, V. Sou�cek and myself devoted especially to

this topic works at the Charles University in Prag. The general setting for the study

of the natural operators originates in the work of the seminar of I. Kol�a�r during

the last ten years in Brno and in the Middle-European Seminar organized jointly

by I. Kol�a�r and P. Michor in Brno and Vienna since 1985. The recent monograph

[Kol�a�r, Michor, Slov�ak, 93] collects the most of the results of this cooperation.

The submitted version of the lecture notes, �rst distributed at the University of

Vienna in 1992, has been revised and essentially extended. The Sections 4 and 8

present my original results, the rest of the text collects the necessary background

for the theory of natural operators on conformal manifolds which is really di�cult

to be found in one place. The exposition covers the topics assumed as well known

(to specialists) in the survey paper [Baston, Eastwood, 90] and those regularly

applied in the fairly many other recent papers concerning the naturality problems

in conformal geometry. So a graduate student of di�erential geometry should be

able to start an active work in this area after studying the lecture notes. The

bibliography is far from being complete, however I have involved all papers which

I have seen by myself and which thereby have inuenced the text.

My approach combines the general methods developed for the study of the nat-

urality problems in the above mentioned monograph [Kol�a�r, Michor, Slov�ak, 93],

which are more suited for solving concrete (even non-linear) problems, but which

have not been worked out in the category of conformal manifolds there, and the

methods from the representation theory employed by some of the cited authors

(which apply then only to linear problems, of course). The latter methods are very

powerful and they lead to very nice general classi�cation results, but on the other

hand, these results are rather implicit. I believe, that my approach should lead to

new concrete results in the near future as well. The whole text might seem strange

since we are seeking for natural operators, but neither we apply the results nor

we state what they are good for. But the applications are rather non-trivial as a

rule, the interested reader can �nd some of them in [Baston, Eastwood, 90], [Fe�er-

man, 79], [Fe�erman, Graham, 85] for the conformal invariants and [Atiyah, Bott,

Patodi, 73], [Gilkey, 84] for the Riemannian invariants. Typically, a classi�cation

result on all natural operators helps to describe properties of rather concrete geo-

metric objects. Moreover, the theory of the natural operators is itself rich enough

to be treated separately.

The reader is assumed to be familiar with standard �nite dimensional di�erential

geometry. The study of some parts of the monograph [Kol�a�r, Michor, Slov�ak,

93] will be probably necessary for a detailed understanding. Further, a detailed

treatment of the representation theory cannot be involved in the text, but I o�er

at least brief overviews, mainly in the Appendix.

In the �rst preparatory section I try to motivate the naturality problems, to
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indicate the connections to representation theory and to �x some notation. The

next section explains the basic setting for naturality problems and in the third one,

I develop the necessary theory of natural tensors (the so called Weyl's theory).

Section 4 is based on my recent papers [Slov�ak, 92a], [Slov�ak, 92b]. In fact, it

presents the �rst step towards the classi�cation in Section 8, since all conformal

invariants must be �rst of all Riemannian invariants. Furthermore, the results

present a nice application showing the power of the general approach to (non-linear)

naturality problems mentioned above.

Next, I describe thoroughly the at conformal structures and their morphisms

which is applied immediately to the description of all �rst order linear natural

conformal operators which do not vanish on conformally at manifolds in Section

6. In fact, this section covers a result by Fegan from 1970 which is a special case of

the later general classi�cation. But I like to present some of the ideas of the later

development in a more concrete setting. Among these operators, there are some

living on bundles involving more structure, the spin bundles. These are treated

in Section 7 by means of the Cli�ord algebras. In particular, this introduces the

reader to the famous Dirac operators.

Section 8 presents a general classi�cation of all natural operators on conformally

at manifolds based on the representation theory of parabolic subalgebras in the

orthogonal groups and the classi�cations of Riemannian invariants from Section

4. This is the core of the dissertation. The results were partially known, but I

have never found a concise proof in the literature. The presented classi�cation also

corrects some unprecise claims from the survey [Baston, Eastwood, 90].

In the last section, I discuss the problem whether the latter operators extend

to operators on the whole category of conformal manifolds. This is a very subtle

question and even the de�nition of the conformally invariant operators varies from

author to author. This happens since the conformal manifolds are not locally

homogeneous and, moreover, the most of interesting vector bundles do not live

on all manifolds (the existence of the conformal weights makes the di�erence with

respect to the Riemannian case). One approach is to take the implicit description

of all Riemannian invariants, to modify slightly the de�nition of the naturality and

to try to �nd out those operators which are invariant with respect to all scalar

deformations of the metrics. This is the way undertaken by Branson, �rsted,

W�unsch and others. We shall discuss another approach, the point of which is to

classify �rst the linear operations on the conformally at manifolds and then to

use certain geometrical methods to extend the latter operators to all conformal

manifolds. The geometry involved is based on the canonical Cartan connection

on conformal manifolds which is treated �rst and then I indicate how the general

methods work.

Some short parts of the exposition follow [Kol�a�r, Michor, Slov�ak, 93], in partic-

ular 3.1 { 3.8 and 3.21 of this text are based on Section 24 (prepared by I. Kol�ar�r),

3.15 { 3.20 and Section 4 extend my exposition from Section 33 of the monograph.

The style of the whole text is rather brief, an active cooperation of the reader is

assumed.

Brno, 1993 Jan Slov�ak
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1. Introduction

1.1. Geometric operators. In general, operators are rules transforming sections

of one bundle into sections of another one. In di�erential geometry, we often meet

manifolds with some more structure, like Riemannian or symplectic manifolds and

the isomorphisms respecting these distinguished structures. Then the most impor-

tant bundles are those with a distinguished action of the isomorphisms on their

sections, the bundles of geometric objects. The geometric (or invariant or nat-

ural) operators are those operators which intertwine the distinguished actions of

the isomorphims. The latter expresses that the de�nition of such operators does

not involve any special choice and the operators are then de�ned invariantly on all

objects from the category in question. These rough ideas are behind the formal

de�nitions in Section 2, see in particular 2.12. Let us demonstrate the concept of

the natural operators on the simplest case, the operations on functions.

Let us start with the operators D : C

1

(M;R)! C

1

(E) of order 1, i.e. Df(x)

depends only on the �rst derivatives of f at x, and the symbol E denotes the un-

known target vector bundle with an action of the isomorphisms. We �rst require the

invariance with respect to the action of all di�eomorphisms given by '

�

(f) = f�'

�1

and we ask the (rather trivial) question: What are the linear operators D de�ned

on C

1

(R

m

;R) intertwining the actions of all local di�eomorphisms ' : R

m

! R

m

?

Since the action is transitive onR

m

, it is enough to restrict ourselves to a single point

x 2 R

m

, say x = 0, and since we assume the order is one, D is in fact determined

by a mapping

~

D : R� R

m�

! E

x

(now E

x

is the standard �ber of the unknown

bundle). This mapping

~

D is linear and its dual mapping goes

~

D

�

: E

�

x

! R

�

�R

m

.

First of all the mappings commute with the linear isomorphisms and so

~

D

�

in-

tertwines the induced actions of GL(m;R) on the standard �bers. But the right

hand side is precisely the decomposition into GL(m;R)-irreducible components and

so the unknown standard �ber must be either R or R

m�

. By the Schur's lemma,

the �rst possibility corresponds to scalar multiples of the identity operator, the

second one yields a scalar multiple of D

�

((dx

i

)

�

)(f) = (dx

i

)

�

(Df) =

@f

@x

i

. Thus

Df =

@f

@x

i

dx

i

or Df = f up to constant multiples and the only possible target

is the cotangent bundle or C

1

(M;R). In this way we have classi�ed all invariant

local linear operators of order one on functions.

There is a general classi�cation result proved independently by [Terng, 78] and

[Kirillov, 77]: All natural linear operators on arbitrary tensor bundles (invariant

with respect to the tensorial action of all local di�eomorphisms) are compositions

of exterior di�erentials and invariant algebraic tensor operations (i.e. operations of

order zero). Hence there are no operations of higher order on functions natural

with respect to all di�eomorphisms.

There are two very well known examples of second order operators on C

1

(R

m

)

�f =

@

2

f

@x

1

@x

1

+ � � �+

@

2

f

@x

m

@x

m

Laplace operator

�f = �

@

2

f

@x

1

@x

1

+ � � �+

@

2

f

@x

m

@x

m

Klein-Gordon (wave) operator.

As we have mentioned, they cannot be modi�ed to become invariant with respect

to all di�eomorphisms which is equivalent to the statement: these local expressions
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cannot be extended to invariantly de�ned operators on functions on arbitrary man-

ifolds. However, we can still reach this if we restrict ourselves to manifolds with

suitable structure. We shall consider Riemannian manifolds or pseudo-Riemannian

manifolds but �rst we have to �x some notation.

1.2. Abstract index formalism. The typical subjects of natural operations

are tensor �elds with several covariant and contravariant components. The latter

means, we take the vector space V = R

m

or V = C

m

, and consider the tensor

product 


q

V 



p

V

�

with the standard representation of GL(m;K), K = R or C .

For each m-dimensional manifold M we de�ne the tensor bundle T

(p;q)

M as the

associated vector bundle to the �rst order frame bundle onM corresponding to the

above tensor product with V = R

m

. The tensor �elds are sections of these tensor

bundles or their subbundles. In local coordinates, a tensor in a point x 2 M is

an N -tuple of scalars for suitable N , the tensor �elds are then N -tuples of scalar-

valued functions f

i

1

:::i

q

j

1

:::j

p

. On complex m-dimensional manifolds we get the complex

tensor bundles on replacing Rby C . If we use the complex scalars on real manifolds,

we get the complexi�cations of the real bundles in question.

There are several basic operations like permutations of the copies of V or V

�

in the tensor products, linear combinations of such permutations and evaluations

with respect to one chosen copy of V and one copy of V

�

, the so called contraction

or trace. In order to be able to indicate such operations without explicit use of

local coordinates, we shall use a kind of `abstract markers' or `labels' for the copies

of V and V

�

. So V

i

and V

j

means two distinct copies of V and the expressions

t

a

, t

b

j

, f

i

1

:::i

p

, etc. will always denote tensors in V

a

, V

b

j

, V

i

1


 � � � 
 V

i

p

, or

the corresponding tensor �elds, respectively. The same labels used as subscripts

indicate isomorphic but distinct copies of the dual V

�

and the concatenation of

such symbols expresses the tensor product. Hence, in general we should distinguish

carefully the order of the subscripts and superscripts, i.e. we should write t

a

b

2

V 
 V

�

but t

b

a

2 V

�


 V . It is generally adopted in a large part of geometry

to forget about the order of subscripts and superscripts, but we shall be forced to

follow this convention exactly when dealing with Riemannianmanifolds and spinors

later on.

Now, it is easy to write down the above mentioned operations. The permuta-

tions of the copies of V or V

�

result in precisely the same permutations of the

subscripts or superscripts. The linear combinations of tensors are denoted simply

as linear combinations of the formal expressions. In particular, the alternation and

symmetrization are important enough to have a special notation: (a : : : b) means

symmetrization over the indicated indices, [a : : : b] is the alternation, fa : : : bg is the

sum over cyclic permutations. We adopt the so called summation convention which

means that any occurrence of the same label once among the superscripts and once

in the subscripts denotes a contraction with respect to the indicated entries.

If we distinguish a linear isomorphism g

ab

: V ! V

�

, i.e. g

ab

2 V

�


 V

�

, then

there is its inverse g

ab

2 V 
V . We can apply these isomorphisms to each copy of V

or V

�

in the tensor products which can be indicated as a contraction with the proper

tensor g

ab

or g

ab

. Then it is suitable to add the convention that g

ab

t

:::b:::

::: :::

= t

::: :::

:::a:::

and to consider the contractions over all repeated indices in the latter sense. In

particular, g

a

b

= g

ac

g

cb

= �

a

b

, the `Kronecker delta'. The latter will apply in
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our discussion on operations on pseudo-Riemannian manifolds. Of course, then we

have to take care of the order of the indices, this is very important if g

ab

is not

symmetric.

If not disabled explicitly, all italic indices in the further text will be used in the

above context. If we shall need the concrete values in some coordinates, we shall

use the same symbols but underlined.

1.3. Riemannian invariants. There are two important tools available: the rising

and lowering of indices by means of the (pseudo-) metric and the canonical Levi-

Civit�a connection. The latter can substitute the usual derivatives, the former allows

to take traces (contractions). The covariant derivative with respect to the Levi-

Civit�a connection is de�ned on each vector bundle associated with the (pseudo-)

Riemannian linear frame bundle. Hence we consider the composition (the �rst

covariant derivative coincides with the exterior derivative d)

C

1

(M;R)

r

�! C

1

(T

�

M )

r

�! C

1

(T

�

M 
 T

�

M ):

The target of this composed operator decomposes into subbundles invariant with

respect to (pseudo-) Riemannian local isomorphisms. We have

T

�

M 
 T

�

M ' �

2

M � S

2

T

�

M ' �

2

M � (S

2

T

�

)

0

M � (M �R)

where the mid term means the trace-free part of the symmetric forms while the last

one corresponds to the traces (t

ij

7! t

[ij]

+ (t

(ij)

�

1

m

t

aa

g

ij

) +

1

m

t

aa

g

ij

in the Rie-

mannian case, m being the dimension). The composition of the above operator with

the projection onto the third term is the operator r

a

r

a

: C

1

(M;R)! C

1

(M;R),

f 7! r

a

r

a

f = g

ab

r

a

r

b

f which coincides with the Laplace operator in the at

Riemannian case and the wave operator in the at pseudo-Riemannian case.

The projection onto the antisymmetric part is zero (the Ricci identity) while

the projection onto the symmetric trace-free part yields another invariantly de�ned

operator.

1.4. The conformal invariance. We have seen that there are very few linear

operators living on all manifolds and there is a plenty of them on Riemannian man-

ifolds. But the restriction to manifolds with more structure brings also another

interesting phenomenon { there exist more geometric objects, i.e. more bundles

with distinguished actions of the isomorphisms in question. In the (pseudo-) Rie-

mannian case, all the new objects live in some tensor bundles, they form only �ner

decompositions into irreducible parts. However, in general there might appear quite

di�erent new objects, i.e. the distinguished actions are not restrictions of some ac-

tion of all di�eomorphisms. The conformal manifolds are manifolds equipped with

a class of pseudo-metrics which are all equal up to a multiple by a scalar function.

Hence the distances in the individual metrics from the class di�er but the angles

are the same ones. In particular the `light cone' in the pseudo-Riemannian case is

de�ned invariantly. There are more local isomorphisms of conformal manifolds than

in the Riemannian case, but much less than the set of all local di�eomorphisms.

We shall see that each of them is globally determined by its derivatives up to the

second order in an arbitrary point. Nevertheless, there are not many invariantly
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de�ned operators and it is a rather hard problem to describe them. Only very few

of them live in tensor bundles, but on each tensor bundle, the restricted action of

the group GL(m;R) to O(m;R) on the standard �ber can be extended to the center

R� GL(m;R) which also belongs to the conformal isomorphisms on the at con-

formal manifoldR

m

. This extensions are given by multiplication with an arbitrary

�xed power of the elements of the center and the negative of the power is called

the conformal weight of the resulting bundles. Such tensors with weights are also

called (tensor valued) densities with conformal weight. They can be interpreted as

follows: With respect to a �xed metric from the conformal class, the densities of

weight � are represented by usual tensors, but if we deform the metric into ĝ = f

2

g

(this is achieved by the action of �f:id at a point), then the corresponding tensors

are multiplied by f

�

.

Choosing the proper weights on the bundles, we can sometimes eliminate the

e�ect of the deformation of the metric by a scalar function and some of the pseudo-

Riemannian invariant operators become then conformally invariant. These rough

de�nitions and ideas will be discussed in detail later on. Now we illustrate only the

complexity of the problems on some concrete explicit calculations.

1.5. The conformal curvature. The Riemannian covariant derivative is invari-

antly de�ned. We shall see in Section 4 that all natural operators on (pseudo-)

Riemannian manifolds are built from this covariant derivative and the Riemannian

curvature. So we have to inspect how the covariant derivative transforms if we

deform the metric.

If we deform g 7! ĝ = f

2

:g with a positive function f , then we get the deformed

Christo�el symbols

^

�

i

lk

=

1

2

ĝ

ij

(ĝ

lj;k

+ ĝ

jk;l

� ĝ

lk;j

)

= �

i

lk

+

1

2

f

�2

g

ij

(2f

k

fg

lj

+ 2f

l

fg

jk

� 2f

j

fg

lk

)

= �

i

lk

+ f

�1

g

ij

(f

k

g

lj

+ f

l

g

jk

� f

j

g

lk

)

= �

i

lk

+ �

k

�

i

l

+ �

l

�

i

k

� �

i

g

lk

where the (`concrete') indices after comma denote the values of partial derivatives,

the comma is omitted for functions and �

a

:= r

a

(log f). The latter coincides with

the Lie derivative in the direction of the a's coordinate by de�nition. According to

our general conventions, �

a

denotes the corresponding 1-formwhile �

a

is the corre-

sponding vector �eld g

ab

�

b

. The coordinate expression for the covariant derivative

is

r

a

X

b

=

@X

b

@x

a

+ �

b

ka

X

k

; r

a

X

b

=

@X

b

@x

a

� �

k

ab

X

k

:

If we insert our expression for the deformed Christo�el symbols and use the general

abstract index notation, we can write

^

r

a

X

b

= r

a

X

b

+ �

k

�

b

a

X

k

+ �

a

X

b

��

b

g

ka

X

k

(1)

^

r

a

X

b

= r

a

X

b

� �

a

X

b

� �

b

X

a

+ �

k

g

ab

X

k

:(2)
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We recall that r

a

X

b

must be understood as one symbol, a 2-form.

The curvature can be de�ned by R

abc

d

X

c

= (r

a

r

b

� r

b

r

a

)X

d

, where the

iterated covariant derivative is taken with respect to two di�erent connections,

both induced from the same Levi-Civit�a connection on the Riemannian linear frame

bundle. A direct computation yields

^

R

abcd

= f

2

(R

abcd

+�

ac

g

bd

� �

bc

g

ad

+ �

bd

g

ac

� �

ad

g

bc

)(3)

�

ab

= r

a

�

b

��

a

�

b

+

1

2

�

c

�

c

g

ab

where the tensor �eld � is symmetric (notice r

a

�

b

= r

a

r

b

(logf) and the second

covariant derivative is symmetric on functions). The curvature on a (pseudo-)

Riemannian manifoldM is a section of the tensor bundle 


4

T

�

M which is a sum

of several subbundles invariant with respect to isometries. Hence also the curvature

splits into several parts. Since the curvature satis�es several identities:

R

abcd

= R

cdab

; R

abcd

= �R

abdc

; R

fabcgd

= 0

(the last one is the Bianchi identity), the most of these summands are zero. Let us

�nd the non-zero ones.

The Ricci curvature R

ac

is de�ned as the trace R

ac

= R

abcb

and the trace

R := R

aa

is called the scalar curvature. Let us write C

abcd

= R

abcd

+ S

abcd

for the

trace-free part of the curvature, i.e. both C

abcd

and S

abcd

are well de�ned. Let us

try to �nd a symmetric tensor P

ab

satisfying

S

abcd

= P

ac

g

bd

� P

bc

g

ad

+ P

bd

g

ac

� P

ad

g

bc

:

Since the tensor S

abcd

is completely determined by its traces (see the de�nition),

it su�ces to consider the traces of this formal equation to �nd the tensor P

ab

. We

obtain

�R

ac

= S

abc

b

= mP

ac

� P

ac

+ P

b

b

g

ac

� P

ac

(4)

= (m� 2)P

ac

+ P

b

b

g

ac

�R = S

ab

ab

= 2mP

a

a

� P

a

a

� P

a

a

= (2m � 2)P

a

a

(5)

and so P

ab

exists and is uniquely determined in dimensions greater then two. We

shall write briey P := P

a

a

. In dimension two, the full curvature tensor is deter-

mined by its component R

1212

and is therefore irreducible. In general the conformal

geometry is essentially di�erent in dimension two and we shall always assumem � 3

in the sequel.

Now, if we compare the deformation of R

abcd

in (3) with the expression for

the trace part S

abcd

= C

abcd

� R

abcd

, we see that the whole deformation of R

abc

d

belongs to the trace part (the expression f

�2

disappears during the rising of the

index). Hence the trace-free part C

abc

d

is conformally invariant. We call it theWeyl

curvature or conformal curvature. At the same time, we have found the deformation

of P

ab

:

(6)

^

P

ab

= P

ab

�r

a

�

b

+ �

a

�

b

�

1

2

�

c

�

c

g

ab

and the trace of this expression yields

(7)

^

P = f

�2

(P �r

a

�

a

+

2�m

2

�

a

�

a

):
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1.6. The conformal Laplace operator. Let us compute the deformation of

the usual Laplace operator r

a

r

a

, cf. 1.3. Using the above formulas, we get for

functions h:

^

r

a

h = r

a

h and

^

r

b

^

r

a

h = r

b

r

a

h� �

b

r

a

h+�

k

g

ba

r

k

h

^

r

a

^

r

a

h = f

�2

g

ab

(r

b

r

a

h��

b

r

a

h+ �

k

g

ba

r

k

h):

This formula does not seem to promise anything, but let us try to consider the

functions h with some conformal weight. This means, the latter geometric objects

can be represented by a function which changes together with a deformation of

the metric and we have to apply the deformed Laplace operator to this `deformed

function'. If the conformal weight is �, we have

^

h = f

�

h. Hence using several times

the formula r

a

(f

�

h) = �f

��1

r

a

fh + f

�

r

a

h = f

�

(��

a

h+r

a

h) we obtain

^

r

a

^

r

a

^

h = g

ab

f

�2

�

r

b

(f

�

(��

a

h+r

a

h)) ��

b

f

�

(��

a

h+r

a

h)

��

a

f

�

(��

b

h+r

b

h) + �

k

g

ba

f

�

(��

k

h+r

k

h)

�

= g

ab

f

��2

�

�(r

b

�

a

)h+ �

2

�

b

�

a

h+ ��

a

(r

b

h) + ��

b

(r

a

h) +r

b

r

a

h� ��

b

�

a

h

� �

b

(r

a

h) � ��

a

�

b

h� �

a

(r

b

h) + ��

k

g

ba

�

k

h+ �

k

g

ba

(r

k

h)

�

= f

��2

�

r

a

r

a

h+(�

2

� 2�+�m)�

a

�

a

h+�(r

a

�

a

)h+ (2�� 2+m)�

a

(r

a

h)

�

If we compare this formula with the deformation of P derived in 1.5.(7), we �nd two

similar terms, �r

a

�

a

and

2�m

2

�

a

�

a

. The �rst term in our formula corresponds to

the usual Laplace operator and so it seems that we could eliminate the deformation

by adding a suitable multiple of P and considering suitable conformal weights. The

e�ect of the weight should cancel the last term in the formula, i.e. 2�� 2+m = 0.

This yields � =

2�m

2

and with this weight we have

^

P

^

h = f

�2�m

2

�

Pf �r

a

�

a

f +

2�m

2

�

a

�

a

f

�

:

Further, (�

2

� 2�+ �m) = �

�

2�m

2

�

2

and so

^

r

a

^

r

a

^

h +

2�m

2

^

P

^

h = f

�2�m

2

�

r

a

r

a

h+

2�m

2

(P � f

2

^

P )h

�

+

2�m

2

^

P

^

h

= f

�2�m

2

(r

a

r

a

f +

2�m

2

Pf):

Now, we can consider the values of the operator r

a

r

a

+

2�m

2

P on the conformal

densities with weight

2�m

2

as conformal densities with the weight

�2�m

2

and we get

a conformally invariant operator, the so called conformal Laplace operator.

In the dimension four we get the operator

D = r

a

r

a

� P = r

a

r

a

+

1

6

R

which transforms the (scalar) densities with weight �1 into (scalar) densities with

weight �3.
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2. Invariant operators

In the sequel, we shall write C

1

Y for the space of all local smooth sections of a

�bered manifold Y .

1

2.1. Local linear operators. Let Y , Y

0

be �bered manifoldswith a commonbase

M . A local operator is a mapping D : C

1

Y ! C

1

Y

0

such that for all s 2 C

1

Y

de�ned at x 2 M , Ds(x) depends only on the germ of s at x. If Y is a vector

bundle, then C

1

Y carries a natural vector space structure (de�ned pointwise). An

operator D : C

1

Y ! C

1

Y

0

is called smooth if smoothly parameterized curves of

sections are transformed into smoothly parameterized ones.

Theorem. [Peetre, 59] Let E, E

0

be two (�nite dimensional) vector bundles with

common base M . Each local linear operator D : C

1

E ! C

1

E

0

has locally �nite

order, i.e. for each relatively compact coordinate neighborhood U on M there is an

order k such that the values of the operator depend only on the partial derivatives

of the sections up to the order k over the points from U .

We shall not prove this theorem, it follows from a much more general non-linear

result proved in [Slov�ak, 88], see also 4.5 or [Kol�a�r, Michor, Slov�ak, 93].

Let us point out, that the formulation of this theorem is not satisfactory, �rst

of all because of the lack of the invariant de�nition of the order. The solution is to

use the language of jets which is well suited for discussion on di�erential operators

on manifolds.

2.2. Jets. Two smooth mappings g, f : M ! N have the same jet of order r at

x 2M (r-jet briey) if the values and partial derivatives up to the order r of f and

g at x coincide in some local coordinates (equivalently in all local coordinates) at

x and f(x). We write j

r

x

f = j

r

x

g and the corresponding equivalence class is called

an r-jet with source x and target f(x). The composition of jets is de�ned by the

composition of the representatives, i.e. j

r

f(x)

g � j

r

x

f = j

r

x

(g � f).

One has to prove that this de�nition is correct (which is an easy exercise in

analysis).

2

The rule which associates the set J

r

(M;N ) of all r-jets with source in M and

target in N to each couple (M;N ) of manifolds and the map J

r

(f; g) : J

r

(M;N )!

J

r

(M

0

; N

0

), to each couple (f : M ! M

0

; g : N ! N

0

) of local di�eomorphisms

de�ned by the obvious compositions (inverse to f on right, g on left), is a covariant

functor from the category Mf

m

�Mf

n

with values in sets. The local di�eome-

orphisms are globally de�ned and locally invertible maps and Mf

m

denotes the

category of m-dimensional manifolds and local di�eomorphisms. We shall write

also J

r

x

(M;N ), J

r

(M;N )

y

and J

r

x

(M;N )

y

for spaces of jets with �xed source or

1

In fact, it would be more precise to use the language of sheaves but I am sure we will not get

any trouble when speaking about globally de�ned sections.

2

The reader can �nd a much more geometric de�nition and a thorough treatment of all basic

properties in [Kol�a�r, Michor, Slov�ak, 93]. Roughly, we de�ne the contact of order r for smooth

functionsR! Rand then j

r

x

f = j

r

x

g if and only if h � f � c and h � g � c have contact of order r at

0 2 Rfor all smooth curves c : R! M , c(0) = x, and functions h : N ! R, h(f(x)) = 0. In this

setting, jets have a clear geometric meaning depending only on the structure of smooth functions

on the real line.
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target or both. Since J

r

(R

m

;R

n

) admits canonical representatives for the jets { the

Taylor polynomials, there is a canonical structure of a �ber bundle over R

m

�R

n

on this jet space. The composition is the truncated composition of the polyno-

mials by de�nition, hence smooth. Thus, the functoriality ensures that there is a

uniquely de�ned structure of a �ber bundle on each J

r

(M;N ) over M � N with

standard �bers J

r

0

(R

m

;R

n

)

0

and the composition is smooth. There are also the

obvious bundle projections �

r

k

: J

r

(M;N )! J

k

(M;N ).

For each �bered manifold Y over M we de�ne the k-th jet prolongation J

k

Y �

J

k

(M;Y ) over M as the subbundle of all jets of local sections. Clearly, J

k

(M;Y )

can be de�ned as the quotient of C

1

Y and the smooth structure is the induced

one. For each local section s 2 C

1

Y , there is its k-th prolongation j

k

s 2 C

1

(J

k

Y )

de�ned by j

k

s(x) = j

k

x

s. IfE is a vector bundle overM , then J

k

E is a vector bundle

with the operations de�ned on the representatives. Analogous constructions can be

performed for k = 1. We shall not need them (if then without any di�erentiable

structure) and so the modi�cations are left to the reader.

2.3. The tangent and cotangent bundles. It is easy to verify that the tangent

functor T equals to J

1

0

(R; ) { the usual `kinematic' de�nition of tangent vectors.

Notice that the tangent maps are de�ned through composition of jets.

Similarly, T

�

= J

1

( ;R)

0

. In this de�nition, T

�

M always carries a natural

vector bundle structure, TM is its dual bundle (with hj

1

0

c; j

1

c(0)

fi = j

1

0

(f � c) 2 R).

More generally, J

r

(M;R)

0

is a bundle of algebras.

2.4. Proposition. The �ber J

r

x

(M;N )

y

equals to the algebra homomorphisms

Hom(J

r

y

(N;R)

0

; J

r

x

(M;R)

0

).

Proof. Given j

r

x

f with target y we de�ne ' : J

r

y

(N;R)

0

! J

r

x

(M;R)

0

by '(j

r

y

g) =

j

r

x

(g � f). Since the algebra J

r

y

(N;R)

0

is generated by the coordinate functions in

arbitrary local coordinates, we can set the values on ' on the jets of these functions

arbitrarily. This de�nes an element from the other algebra. �

Notice: If r = 1 we get the identi�cation of J

1

x

(M;N )

y

with linear mappings

Hom(T

x

M;T

y

N ), since the multiplication on T

�

y

N is zero and the latter claim is

dual to the proposition above.

2.5. Di�erential operators. Let Y , Y

0

be two �bered manifolds with a common

base M . We say that an operator D : C

1

Y ! C

1

Y

0

is of order 0 � k � 1 if

the equality j

r

x

s = j

r

x

q always implies Ds(x) = Dq(x). Clearly, this is equivalent

to the existence of a mapping D

k

: J

k

Y ! Y

0

which satis�es Ds(x) = D

k

(j

k

x

s)

for all s 2 C

1

Y de�ned at x. Then Ds = D

k

� j

k

s so that j

k

plays the role of

a universal operator of order k. Di�erential operators are the smooth operators

D : C

1

Y ! C

1

Y

0

of a �nite order k. We shall often use the brief notation

`D : J

k

Y ! Y

0

is a di�erential operator'.

Now, we can reformulate Proposition 2.1 easily as follows: Let E and E

0

be two

vector bundles with a common compact base M . Then each local linear operator

is a di�erential operator. Consequently, all local linear operators are expressed by

smooth linear mappings D

k

: J

k

E ! E

0

.

2.6. Invariant operators. Let Y , Y

0

be two bundles with a common baseM and

let G be a group, � : G! Aut(Y ), �

0

: G! Aut(Y

0

) be two group homomorphisms
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with values in the �ber bundle automorphisms. Let us write �, �

0

for the induced

actions onM . There is the canonical action ofG on the spaces of sections de�ned by

(�

g

)

�

(s)(x) = �

g

� s � �

�1

g

(x) and similarly for �

0

. An operator D : C

1

Y ! C

1

Y

0

is said to be G-invariant if D � (�

g

)

�

= (�

0

g

)

�

�D for all g 2 G. In fact the mapping

D is G-equivariant (i.e. it intertwines the actions), but we use the traditional name

invariant for operators. On the other hand, we shall use the word G-invariant for

elements under invariant action of G and an invariant operator in the above sense

is such an element in the space of all operators C

1

Y ! C

1

Y

0

with the induced

action of G.

The action of G on C

1

Y de�nes of course the canonical action of G on J

k

Y ,

we shall use the same notation �

�

for both. We have (�

g

)

�

(j

k

x

s) = j

k

�

g

(x)

((�

g

)

�

s).

A di�erential operator D : C

1

Y ! C

1

Y

0

is G-invariant if and only if the corre-

sponding mapping D

k

: J

k

Y ! Y

0

is G-equivariant. The proof is evident.

Proposition. Assume G is a Lie group, the action � is smooth and the induced

action � on M is transitive. Then there is a bijection between smooth G-invariant

di�erential operators D : C

1

Y ! C

1

Y

0

and G

x

-equivariant smooth mappings

J

k

x

Y ! Y

0

x

where x is an arbitrary �xed point in M and G

x

its isotropy group.

Proof. If D is invariant, then the corresponding mapping D

k

on the jet bundle

must be G-equivariant. The isotropy group G

x

respects the �ber J

k

x

Y and so the

restriction of D

k

to this �ber must be G

x

-equivariant. On the other hand, each G

x

-

equivariant smooth mapping J

k

x

Y ! Y

0

gives rise to a smooth equivariant mapping

J

k

Y ! Y

0

de�ned by the action of G and this de�nes a G-invariant di�erential

operator. It is an easy exercise to work out more details. �

2.7. Proposition. Let E ! M be a vector bundle. For each k 2 N the following

sequence is exact

0 �! S

k

T

�

M 
E

i

�! J

k

E

�

k

k�1

���! J

k�1

E �! 0:

Proof. Consider X = (j

1

x

f

1

 � � �  j

1

x

f

k

) 
 e 2 S

k

T

�

M 
 E with f

j

: M ! R,

f(x) = 0, e 2 E

x

. Let us choose some q 2 C

1

E with q(x) = e and de�ne

s 2 C

1

E by s(y) = f

1

(y)f

2

(y) : : : f

k

(y)q(y). Then j

k�1

x

s = 0 since at least one of

the functions is not di�erentiated and hence zero at x and, for the same reason,

the element i(X 
 e) := j

k

x

s does not depend on our choice of q. Obviously, i is

injective. Using local vector bundle coordinates at 0 2 E

x

, the jets of sections lying

in the kernel of the jet projection are generated by those of the form of s and so

the image of i coincides with the kernel. �

2.8. The symbols. Let E and E

0

be two vector bundles with a common base

M and let D : J

k

E ! E

0

be a di�erential operator. The composition � = D �

i : S

k

T

�

M 
E ! E

0

is called the symbol of D.

0 w S

k

T

�

M 
E w

i

'

'

'

'

')
�

J

k

E w

�

k

k�1

u

D

J

k�1

E w 0

E

0
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Two di�erential operators with the same symbol (so in particular of the same

order) di�er by an operator of a lower order.

If G is a (Lie) group acting on M , i.e. we have a homomorphism � : G !

Di�(M ), then there is the induced action �

T

�

of G on T

�

M de�ned by �

T

�

g

(j

1

x

f) :=

(T

�

�

g

)(j

1

x

f) = j

1

�

g

(x)

(f � �

�1

g

) for each g 2 G. This must be a correct de�nition

since we have used the functoriality of T

�

(the functor is covariant { hence the in-

verse involved!). The same procedure applies to a large class of functor on manifolds

which involves e.g. all tensor bundles, cf. 2.12.

Now, given actions of G on E and E

0

we have a well de�ned action of G also on

S

k

T

�

M 
 E and we get

Proposition. If D : J

k

E ! E

0

is a G-invariant linear di�erential operator, then

its symbol � : S

k

T

�

M 
E ! E

0

is G-equivariant.

Proof. We have only to prove that i is G-equivariant but this is more or less

evident. �

This simple result is often very useful as it allows to exclude the existence of

invariant operators. On the other hand, not every equivariant map S

k

T

�

M 
E !

E

0

is a symbol of an invariant operator.

2.9. Examples. We start with the simplest example, the exterior di�erential on

functions. So EM = M �R, E

0

= T

�

M , D : J

1

(M �R)! E

0

and � : T

�

M 
R=

T

�

M ! E

0

. Consider G = Di�(M ). If D is G-invariant, then � must be G-

equivariant, too. The action of Di�(M ) on M is transitive and smooth if M is

connected and the action of the isotropy group Di�

x

(M ) on T

�

x

M factorizes through

the well known linear action of GL(m;R). We can restrict ourselves to M = R

m

,

x = 0, for our operators are local.

Let us assume E

0

is not �xed but suppose that the action of Di�

0

(R

m

) on E

0

0

also factorizes through GL(m) and is irreducible. Since the action on T

�

0

R

m

= R

m�

is also irreducible, � is a multiple of the identity and, moreover, there is no other

possibility for E

0

beside E

0

= T

�

M . Thus, the only Di�(M )-invariant local �rst

order linear operator on functions is the exterior di�erential, up to the identity

and scalar multiples. Notice, if the target space corresponds to a decomposable

representation of the linear group, then the operator must be a sum of multiples of

the exterior di�erentials and identities with values in the irreducible components.

The symbol of the exterior di�erential d : �

k

T

�

M ! �

k+1

T

�

M is the alternation

Alt: T

�

M 
 �

k

T

�

M ! �

k+1

T

�

M . We shall see that this is the only GL(m)-

equivariant map between these spaces and so d must be unique up to multiples

(and lower order terms).

The mapping id: S

2

T

�

M 
R! S

2

T

�

M is of course Di�(M )-invariant, but we

shall see that this is not a symbol of an invariant di�erential operator.

2.10. Operators on homogeneous bundles. We have seen that the descrip-

tion of invariant operators reduces to the description of some equivariant mappings

(between �nite dimensional manifolds) if the action on the base manifold is transi-

tive. The most common situation is, we are given a manifold M with a transitive
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action of a �nite dimensional

3

Lie group G. Let x 2M be �xed and write B = G

x

for its isotropy group. Hence M = G=B and the projection p : G ! M is a prin-

cipal �ber bundle with structure group B. Given any Lie group homomorphism

� : B ! Di�(S), there is the associated bundle Y = G�

�

S over M with standard

�ber S. We call this bundle a homogeneous bundle over the homogeneous space

M . If S is a vector space and � : B ! GL(V ), we get a vector bundle. This con-

struction is functorial in the principal �ber bundle entry and so there is an induced

action on Y to each action �

0

with values in the principal bundle automorphisms of

G. In particular, the Lie group G acts on itself via left translations, let us denote

this action by a dot. We have g:(h�

�

t) = gh�

�

t and there is the induced action

�

� on C

1

Y .

Consider now the space C

1

(G;S)

B

of all B-equivariant mappings which means

s(gh) = �

h

�1 (s(g)). There is the obvious left action of G there, g:s(h) = s(g

�1

h).

Lemma. We identify C

1

Y = C

1

(G;S)

B

as spaces with a left action of G via

s ' ~s, u�

�

~s(u) := s(p(u)).

Proof. The identi�cation is well de�ned, for u:b�

�

~s(u:b) = u:b �

�

�

b

�1(~s(u)) =

u�

�

~s(u), b 2 B. Under this identi�cation, the actions of G coincide: (g:s)(p(u)) =

gg

�1

u�

�

~s(g

�1

u) = u�

�

~s(g

�1

u). �

This simple lemma is very important since we can view the G-invariant operators

on homogeneous bundles as operators on S-valued functions on the principal bundle

G! G=B which are invariant with respect to the left translations.

2.11. The geometric structures. The r-th order frame bundle P

r

M on an m-

dimensional manifoldM is de�ned as the bundle of all invertible jets invJ

r

0

(R

m

;M )

over M . This is a principal bundle with structure group G

r

m

:= invJ

r

0

(R

m

;R

m

)

0

,

the so called jet group, and the principal action de�ned by the composition of jets.

This construction is functorial, i.e. we have the local principal �ber bundle isomor-

phism Pf : P

r

M ! P

r

N for each local di�eomorphism f : M ! N which is de�ned

by the composition of jets. The elements in the frame bundles are `local coordinate

charts up to order r' and the elements in the jet groups are `transformations of

coordinates up to order r'.

De�nition. Let B � G

r

m

be a closed Lie subgroup. A B-structure on a manifold

M is a reduction FM ,! P

r

M to the structure group B. The category Mf

m

(B)

consists of m-dimensional manifolds with B-structures and local di�eomorphisms

f : M ! N satisfying P

r

f(FM ) � FN .

2.12. Geometric objects and operators. Let us consider a closed Lie subgroup

B � G

r

m

and its action � : B ! Di�(S) on a manifold S. This de�nes the functor

E : Mf

m

(B)!Mf , E(M;FM ) := FM �

�

S and Ef := P

r

f �

�

id

S

jE(M;FM ).

These bundles are called bundle functors or natural bundles or bundles of geometric

objects, their sections are called geometric objects on Mf

m

(B) (more precisely, the

bundles functors are the functors, the geometric objects are sections of their values).

If � is a linear representation of B in a vector space V , then the corresponding

3

We could certainly admit here in�nite dimensional Lie groups as well, but our aim is to apply

tools from �nite dimensional representation theory to �nd all the equivariant mappings and so we

have to proceed in another way if dealing with say G = Di�(M)
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geometric objects are sections of vector bundles. For each manifold with a B-

structure (M;FM ), there is the subgroup B

M

� Di�(M ) of all local Mf

m

(B)-

isomorphisms and its action on all geometric objects on M (i.e. on sections of the

bundles corresponding to representations of B). We shall denote the latter action

corresponding to � : B ! Di�(S) by �

�

. Let us remark that even if we deal with

linear representation, we cannot restrict ourselves to the irreducible representations

since the action of the nilpotent kernel of the jet projections to the �rst order must

then act trivially.

De�nition. Let E and E

0

be two arbitrary bundle functors onMf

m

(B). A natural

operator D : E ! E

0

is a system of B

M

-invariant local smooth operators D

(M;FM)

:

C

1

(EM )! C

1

(E

0

M ) invariant with respect to restrictions to open submanifolds

(with the restricted B-structures). More precisely, all D

(M;FM)

are smooth, and

for all local Mf

m

(B)-isomorphisms f : M ! N and sections s

1

2 C

1

(EM ), s

2

2

C

1

(EN ), the right-hand square commutes whenever the left-hand one does

EM

u

Ef

Mu

s

1

u

f

w

Ds

1

E

0

M

u

E

0

f

EN Nu

s

2

w

Ds

2

E

0

N

Notice, that the latter de�nition involves both the locality of the operators and

invariance of them with respect to restrictions to open submanifolds.

4

2.13. Lemma. Let B � G

r

m

. The B-structures i : FM ,! P

r

M correspond

bijectively to smooth sections of P

r

M

=B.

Proof. Each reduction i : FM ,! P

r

M induces a map

�

i : FM ! P

r

M=B. If �

�

are local sections of FM with domains covering the base M , then the transition

functions of their composition with

�

i are identities and so they determine a global

smooth section of P

r

M=B. On the other hand, each global section of P

r

M=B

can be locally obtained as a projection of local smooth sections of P

r

M . Their

transition functions must have values in B, hence we get a reduction. �

2.14. The coverings of structure groups. Let

~

B be a covering of the Lie group

B � G

r

m

and writeMf

m

(

~

B) for the category of m-dimensional manifoldsM with a

distinguished covering

~

FM of the reduction FM of the frame bundle P

r

M toB, and

distinguished coverings

~

Ff of the values Ff onMf

m

(B)-morphisms f . Repeating

the above construction of the associated spaces, each representation � :

~

B ! Di�(S)

gives rise to the functor F

�

, the bundle functor corresponding to �. A natural

operator D : F

�

! F

�

is a system of local operators D

M

: C

1

(F

�

M )! C

1

(F

�

M )

which commute with the actions of the Mf

m

(

~

B)-morphisms and behave well with

4

The reader interested in axiomatic description of geometric objects and operators is advised

to [Kol�a�r, Michor, Slov�ak, 93]. Roughly, all functors on categories "similar" to Mf

m

(B) with

some mild conditions are of the above form (the conditions do not involve regularity and the

"dependence on jets", so that this description needs a long and involved analytical proof). One

can also de�ne more general operators which "extend" the base, but we shall not treat them in

this text.



16 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

respect to restrictions to open submanifolds. The exact formulation mimics the

above de�nition.

5

2.15. Examples of linear natural operators.

(1) Take B = GL(m;R). The irreducible representations are invariant subbun-

dles of tensor bundles. The natural operators are Di�(M )-invariant operators, i.e.

they have to commute with pullbacks of tensor �elds. One can prove that all of

them are constructed by means of the standard operations from the tensor algebra

(cf. 3.6) and the exterior derivatives on exterior forms. In particular, all of them

have order one, see [Kirillov, 77] or [Terng, 78]. We shall comment on this in more

details later.

(2) Consider B = SL(m;R) = fA 2 GL(m;R); detA = 1g. We claim that

the B-structures are �xed volume forms on the manifolds. Indeed, it is easy to

verify P

1

M=SL(m;R) = �

m

T

�

M n f0g. Hence, the local di�eomorphisms in B

R

m

are just the unimodular ones, i.e. those preserving the canonical volume form. In

a similar way, we can describe the manifolds with a �xed tensor �eld of some

given type in the terms of B-structures. For example O(m) yields Riemannian

manifolds and local isometries. Also in the case B = SL(m) all operators are built

from tensor algebra operations and exterior di�erentials. However, we have to take

into account the natural equivalence T ! �

m�1

T

�

and also �

m

T

�

! �

0

T

�

(the

functors are de�ned on Mf

m

(B)). In this way, there also appears the second order

operation �

m�1

T

�

d

�! �

m

T

�

! �

0

T

�

d

�! T

�

. The �rst d in this composition also

corresponds to the divergence of vector �elds, the whole operation to the di�erential

of divergence.

6

2.16. The Riemannian case. If B = O(m), we have the natural equivalence

T ! T

�

and so there are many linear natural operators. Some of them can be

easily obtained using the canonical Levi-Civit�a connection � on the tensor bundles

E over Riemannian manifolds which can be viewed as a distinguished section of

�

1

0

: J

1

E ! E.

Thus, we get a splitting of the exact sequence from 2.7 in the special case k = 1.

The induced splitting of on the left is just the well known Riemannian covariant

derivative r on E. In fact, the Riemannian covariant derivative is a �rst order

natural operator available on each �rst order natural bundle. Since the values

of the natural bundle are associated bundles to the linear frame bundles and the

above values ofr are section of another tensor bundle, there is also the Riemannian

covariant derivative. In this way, we can de�ne the iterated covariant derivative

r

k

: J

k

E !


k

T

�

M
E. We claim that the symmetrization

~

r

k

of r

k

is a splitting

of the above mentioned exact sequence. Indeed, in coordinates, we express the

iterated covariant derivative as the sum of the usual partial derivatives (which are

symmetric) and a polynomial expression depending on (k�1)-jet of the connection

5

In fact, we have used the concept of the so called gauge natural operators in the sense of [Eck,

81]. The gauge natural bundles are functors on principal �ber bundles with values �bered over

the base manifolds, see [Kol�a�r, Michor, Slov�ak, 93, Chapter XII] for detailed treatment.

6

Exactly as in the example (1), the latter operators exhaust all linear natural operators in the

category of manifolds with �xed volume forms, up to decompositions into irreducible components,

identities and scalar multiples, for more comments see [Kol�a�r, Michor, Slov�ak, 93], the proofs are

in [Kirillov 77], [Rudakov, 74], [Rudakov, 75]
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and (k � 1)-jet of the section of E. Moreover, the degrees of the homogeneous

components of this polynomial in the entry from E are non-zero. Hence on the

image of i : S

k

T

�


 E ! J

k

E, we get just the inverse to i, c.f. 2.7. Since

~

r

k

is natural on Riemannian manifolds, we get a natural operator to each `natural

symbol' (i.e. a natural operator of order zero between the appropriate bundles):

0 w S

k

T

�


 E

w

i

u

~

r

k

'

'

'

'

')
�

J

k

E w

�

k

k�1

u

D

J

k�1

E w 0

E

0

For example, the contraction Tr: S

2

R

m�

! R corresponds to the well known

Laplacian. Unfortunately, we cannot describe easily all operators in this way as we

do not know explicitly, how the Riemannian connection may enter (their inuence

need not be linear or even polynomial a priori). So we have to solve the nonlinear

problem of �nding all `natural symbols', if we want to describe all natural linear

operators on Riemannian manifolds.

An important feature is that the group of allMf

m

(O(m))-morphisms on a Rie-

mannian manifold is a �nite dimensional Lie group. Unfortunately, its action is

rarely transitive. But if this is the case, e.g. for the at Riemannian manifold R

m

or the spheres, then we can view the bundles of geometric objects as homogeneous

bundles as described in 2.9.

2.17. Remark. Let us notice the importance of Lemma 2.13. Namely, the quo-

tients P

r

M=B form bundle functors on the whole categoryMf

m

with the action of

local di�eomorphisms de�ned on the representatives of the cosets. Thus if we want

to discuss natural operators on some categoryMf

m

(B) and if the arguments of the

operators happen to be geometric objects on the whole Mf

m

, then we can always

add the B-structures to the arguments of the operators and solve the problem in

the category Mf

m

(it is a nice exercise to verify that this is really equivalent {

see [Kol�a�r, Michor, Slov�ak, 93] for more details if neccessary). We shall see later

on that all linear representations of SL(m;R) and O(m;n;R) live in tensor spaces.

Since the invariant subspaces are always images of natural linear projections and

they are naturally linearly embedded into the whole space, we can also overcome

the fact that there are much more invariant subspaces in the tensor spaces in the

unimodular or pseudo-Riemannian case there. Let us also notice, that we would be

able to treat the unimodular case directly, but serious problems arise in the Rie-

mannian one as the objects do not admit a transitive action of the local isometries

and so we cannot reduce the classi�cation problem to �nding equivariant mappings

between �nite dimensional manifolds, cf. 2.6.

We need some additional work to incorporate also the spinor �elds into this

setting, we shall apply the approach from 2.14.

3. Invariant tensors

3.1. De�nition. Let G be a Lie group with a representation ' on a �nite dimen-

sional vector space V (real or complex). Then the representation ~' on V

�

is de�ned



18 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

by ~'

g

(v

�

)(v) = v

�

('

g

�1
(v)) and the tensor products of these representations yield

representations on all 


p

V

�


 


q

V . All the above actions of G will be often de-

noted simply by a dot. An invariant tensor in the latter space is an element t with

G:t = t.

3.2. Lemma. A linear mapping f : 


p

V

�





q

V !


r

V

�





s

V is G-equivariant

if and only if the corresponding element f




2 


p+s

V

�


 


q+r

V is G-invariant. If

f is polynomial and G-equivariant, then each homogeneous component of f is G-

equivariant.

Proof. It follows immediately from the de�nition of the tensor product of repre-

sentations and the identi�cation involved. �

3.3. The total polarization of a homogeneous polynomial f : W

1

! W

2

of degree

k between vector spaces (or a�ne spaces) is a linear mapping Pf : S

k

W

1

! W

2

de�ned as follows. The �rst order term in the (partial) Taylor polynomial f(x +

ty) = f(x) + tP

1

f(x; y) + : : : is a polynomial map of degree k � 1 in x. The k-th

iteration P

k

f = P

1

(P

k�1

f) is k-linear and symmetric in variables y

1

; : : : ; y

k

2 W

1

and independent of x. Let Pf be the corresponding linear map. The original map

f is obtained back through f(x) = Pf(x
 � � � 
 x).

Lemma. A polynomial mapping f : 


p

V

�





q

V !


r

V

�





s

V is G-equivariant

and homogeneous if and only if its total polarization is G-equivariant.

Proof. Notice that the actions are linear. �

The aim of this section is to describe all G-invariant tensors for some of the

classical subgroups of GL(m; C ) or GL(m;R). If we shall not specialize the �eld

K = C or K = R, the arguments and results will apply to both cases. In the view

of the above lemmas, this will describe G-equivariant polynomial maps.

Let us start with GL

+

(m;R), the group of real invertible matrices with positive

determinant, or the full linear group GL(m; C ). As before, we shall use the `Penrose

abstract index notation', i.e. usual indices denote a kind of abstract labels and if

they should be concrete numbers, they are indicated by underlined letters, cf. 1.2.

3.4. De�nition. Let us denote by �

i

j

the identity tensor in V

�


 V , i.e. the trace

(evaluation) Tr : V

�


 V ! K. For every permutation � 2 S

r

, r 2 N, we de�ne the

elementary invariant tensor I

�

2 


r

V

�





r

V of degree r, I

�

= �

j

1

i

�(1)

: : : �

j

r

i

�(r)

.

Evidently, all I

�

are GL(m)-invariant tensors, hence also GL

+

(m;R)-invariant

tensors.

3.5. Theorem. All GL

+

(m;R)-invariant tensors are linear combinations of the

elementary invariant tensors. In particular, a non-zero invariant tensor lies in a

tensor space 


q

V 
 


r

V

�

with q = r.

All GL(m; C )-invariant tensors are linear combinations of elementary invariant

tensors.

Proof. Let G = GL

+

(m;R) or G = GL(m; C ) and let V be real or complex,

respectively. The elements a 2 G and their inverses ~a are identi�ed with a

i

j

; ~a

i

j

2

V

�


 V and the invariance of t 2 


p

V

�


 


q

V is expressed through a system of

tensor equations

(1) a

j

1

k

1

: : :a

j

q

k

q

t

k

1

:::k

q

l

1

:::l

p

~a

l

1

i

1

: : :~a

l

p

i

p

= t

j

1

:::j

q

i

1

:::i

p
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where the a

i

j

's are copies of an arbitrary element in G. In particular, if we substitute

a

i

j

= c�

i

j

, c 2 R, c > 0, then we get c

q�p

t

j

1

:::j

q

i

1

:::i

p

= t

j

1

:::j

q

i

1

:::i

p

for all concrete indices.

Hence either t = 0 or p = q. So let us assume p = q.

Evaluating for concrete values of indices we see that (1) is equivalent to

a

j

1

k

1

: : :a

j

p

k

p

t

k

1

:::k

p

l

1

:::l

p

= a

k

1

l

1

: : :a

k

p

l

p

t

j

1

:::j

p

k

1

:::k

p

and this is further equivalent to

(2) a

i

1

k

1

: : : a

i

p

k

p

�

j

1

i

1

: : : �

j

p

i

p

t

k

1

:::k

p

l

1

:::l

p

= a

i

1

k

1

: : :a

i

p

k

p

t

j

1

:::j

p

i

1

:::i

p

�

k

1

l

1

: : : �

k

p

l

p

:

Since the `variables' a

i

j

run through an open subset of a Euclidean space (R

m

2

or C

m

2

), the `coe�cients' of the same expressions in a's must coincide on both

sides. Taken into account that the concrete values of the monomials in a's are

symmetric in the simultaneous permutations of superscripts and subscripts, we get

the equivalent form of (2)

7

(3)

X

�2S

p

�

j

1

i

�(1)

: : : �

j

p

i

�(p)

t

k

�(1)

:::k

�(p)

l

1

:::l

p

=

X

�2S

p

�

k

�(1)

l

1

: : : �

k

�(p)

l

p

t

j

1

:::j

p

i

�(1)

:::i

�(p)

:

Assume �rst m � p and let us de�ne scalar coe�cients c

�

:= t

1:::p

�(1):::�(p)

. Consider

the equations (3) with concrete indices j

1

= i

1

= 1; : : : ; j

p

= i

p

= p. Then only the

term with � = id remains on the left hand side, and so we get

t

k

1

:::k

p

l

1

:::l

p

=

X

�2S

p

c

�

�

k

�(1)

l

1

: : : �

k

�(p)

l

p

:

Thus, the theorem is proved for m � p.

If m < p, then we would still like to view (3) as a system of equations for t's on

the left hand side, while those on the right should be known.

8

But the rank of this

system is not maximal and we have to add some suitable equations.

Consider the homogeneous system in p! tensorial variables X

�

= (X

�

)

k

1

:::k

p

l

1

:::l

p

corresponding to (3)

(4)

X

�2S

p

�

j

1

i

�(1)

: : : �

j

p

i

�(p)

X

�

= 0

and let Z

�

�

= (Z

�

�

)

k

1

:::k

p

l

1

:::l

p

, � = 1; : : : ; r, be a fundamental system of its solutions.

Let us further consider the system of r equations (with the same variables as in

(4))

(5)

X

�2S

p

Z

�

�

X

�

=

X

�2S

p

(Z

�

�

)

i

1

:::i

p

j

1

:::j

p

(X

�

)

k

1

:::k

p

l

1

:::l

p

= 0:

For each tensor X 2 


p

V

�


 


p

V let us write �:X for the action by permutation

of superscripts.

7

The same system of equations is obtained by di�erentiating (1) with respect to a

i

j

at the unit

and collecting the corresponding terms together (evaluated at �

i

j

2 gl(m)).

8

H. Weyl presents a general tool for the reduction of the considerations to m � p, the so called

Capelli identity, see [Weyl, 39, Chapter II, section 4]. We shall proceed more elementary following

[Gurevich, 48] and [Kol�a�r, Michor, Slov�ak, 93].
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Sublemma. For each X the system of tensors X

�

= �:X, � 2 S

p

, is a solution of

(5).

Proof. We have (X

�

)

i

1

:::i

p

j

1

:::j

p

= X

i

�

�1

(1)

:::i

�

�1

(p)

j

1

:::j

p

= �

i

1

k

�(1)

: : : �

i

p

k

�(p)

X

k

1

:::k

p

j

1

:::j

p

so that the

lemma is obvious. �

Now, it remains to notice that the rank of the system (4) and (5) (considered

with concrete indices as a linear system for p! tensorial variables) is maximal. This

is shown easily: if X

�

is a solution of both systems, then, in particular, X

�

=

P

�

c

�

Z

�

�

, c

�

2 K. But then (5) yields

0 =

X

�

c

�

(

P

�

Z

�

�

X

�

) =

X

�

X

�

c

�

(Z

�

�

)

i

1

:::i

p

j

1

:::j

p

(X

�

)

k

1

:::k

p

l

1

:::l

p

=

X

�

(X

�

)

i

1

:::i

p

j

1

:::j

p

(X

�

)

k

1

:::k

p

l

1

:::l

p

:

In particular,

P

�

�

(X

�

)

i

1

:::i

p

j

1

:::j

p

�

2

= 0 and so all X

�

are zero.

Sublemma. Let c 2 


p

V

�


 


p

V be a �xed tensor and let r! tensors X

�

satisfy

the system

X

�2S

p

�

i

1

j

�(1)

: : : �

i

p

j

�(p)

X

�

=

X

�2S

p

c

i

1

:::i

r

j

�(1)

:::j

�(p)

I

�

X

�2S

p

Z

�

�

X

�

= 0 � = 1; : : : ; r:

Then every X

�

is a linear combination of the elementary invariant tensors.

Proof. Since the system (4) and (5) has full rank, there must be a subsystem (4')

in (4) such that the system (4') and (5) is linearly independent and has still full

rank. Consider the corresponding subsystem in the statement of the lemma and

apply the Cramer rule for modules. �

Now Theorem 3.5 follows easily: if t is invariant, it satis�es (3) and the system of

tensors X

�

= �:t is a solution of the system from the above lemma with c = t. �

Theorem 3.5 and Lemma 3.2 imply the following implicit description of all linear

equivariant mappings between tensor spaces.

3.6. Corollary. All GL

+

(m;R)-equivariant or GL(m)-equivariant linear map-

pings between tensor spaces are obtained through a �nite iteration of the following

steps

(a) permutation of indices

(b) tensor product with invariant tensors

(c) trace with respect to one subscript and one superscript

(d) linear combinations.
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3.7. Polynomial equivariant mappings. Let W

1

, W

2

be GL(m)-invariant sub-

spaces in tensor spaces V

1

= 


p

V

�


 


q

V , V

2

= 


r

V

�


 


s

V . There are equi-

variant projections p

1

: V

1

! W

1

, p

2

: V

2

! W

2

and the equivariant inclusions

j

1

: W

1

! V

1

, j

2

: W

2

! V

2

(the former can be de�ned by extending a �xed basis of

the invariant subspace). Since p

i

are the left inverses to j

i

, all GL(m)-equivariant

linear maps f : W

1

!W

2

are also described by 3.6. Thus, we know all polynomial

GL(m)-equivariant mappings f : W

1

!W

2

, cf. Lemma 3.3.

W

1

u

p

1

z

u

j

1

w

f

W

2

u

p

2

y

u

j

2

V

1

w V

2

3.8. Examples. Let us take V

1

= V

2

= 


r

V , and p

i

be either the alternation

or the symmetrization. A polynomial mapping f : W

1

! W

2

commutes with the

action of the center of GL(m) and therefore f is linear. Hence all polynomial

GL(m)-equivariant mappings

(1) S

r

V ! S

r

V are the constant multiples of the identity

(2) �

r

V ! �

r

V are the constant multiples of the identity

(3) 


r

V ! S

r

V are the constant multiples of the symmetrization

(4) 


r

V ! �

r

V are the constant multiples of the alternation

(5) S

r

V !


r

V and �

r

V !


r

V are the constant multiples of the inclusion.

3.9. SL(m)-invariant tensors. Next we shall restrict our group G to SL(m;R)

or SL(m; C ). Let us write also G

�

= fA 2 GL(m;R); detA = �1g. We shall not

need to modify the proof of 3.5 for these groups since we shall be able to reduce

this case to Theorem 3.5.

First of all we have to notice the existence of the invariant tensor � 2 �

m

V

�

, the

canonical volume form, and its dual contravariant tensor � 2 �

m

V . Further, there

are the linear isomorphisms � : V ! �

m�1

V

�

, � : V

�

! �

m�1

V de�ned by �(v) =

i

v

(�), �(v

�

) = i

v

�

�. Thus, we may restrict ourselves to invariant tensors in 


p

V

�

,

i.e. to invariant linear mappings f : 


p

V ! K. Let us denote W = �

m

V

�

n f0g,

the space of volume forms with the restriction of the action of G

�

. Given f , we

de�ne

�' : W �


p

V ! K; �'((detA)�; t) = f(A:t):

Lemma. If f is G- or G

�

-invariant, then �' is well de�ned and GL(m)-invariant.

Proof. Since the action of G or G

�

onW is A:� = (detA)

�1

�, this follows directly

from the de�nition of �'.

We would like to extend �' to a polynomial GL(m)-invariant map on �

m

V

�

�




p

V , for then we can apply directly Theorem 3.5. The mapping �' gives rise to a

mapping ' : GL(m) � 


p

V ! K, '(A; t) = �'(A:�; t) and for each t 2 


p

V we get

the restriction '

t

: GL(m)! K which is polynomial and G- or G

�

-invariant.
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3.10. Lemma. If  : GL(m) ! C is polynomial and SL(m; C )-invariant, then

there is a polynomial

~

 : C ! C such that  (A) =

~

 (detA). If  is G

�

-invariant,

then we can �nd

~

 with  (A) =

~

 ((detA)

2

). If  : GL

+

(m) ! R is SL(m;R)-

invariant, then there is polynomial

~

 with  (A) =

~

 (detA) de�ned on positive real

numbers.

Proof. Let us de�ne i : K ! gl(m;K); i(a) =

�

a 0

0 I

m�1

�

. Then we get

GL(m)

u

y

i

u

det

w

 

K

K n f0g

�

�

�

��

�

 

If K = C , then A = i(detA) mod SL(m). If K = Rand detA > 0 then A = i(detA)

mod SL(m). If detA < 0 then A = i(� detA) mod SL(m) = i(detA) mod G

�

and so

~

 (a) =

~

 (�a). �

3.11. Theorem. If t 2 


p

V

�


 


q

V is SL(m) invariant and non-zero, then

p� q = km, k 2Z. All SL(m)-invariant maps between SL(m)-invariant subspaces

of tensor spaces are exhausted by those obtained by iterating a �nite number of

steps 3.6.(a){(d) and

(i) the tensors � and � are invariant.

If f is G

�

invariant, we have to replace (i) by

(i') the tensors � 
 �, � 
 �, � 
 � are invariant.

Proof. As discussed in 3.9, we may restrict ourselves to G-invariant mappings

f : 


p

V ! K and we have constructed the polynomial GL(m)-invariant mapping

' : GL(m) � 


p

V ! K. For each t 2 


p

V , the restricted map '

t

: GL(m) ! K

satis�es the assumptions of Lemma 3.10. Assume �rst K = C . Then we can extend

the map '

t

to the whole space �

m

V

�

and we obtain a homogeneous polynomial

mapping ' : �

m

V

�

� 


p

V linear in the second entry. The total polarization of '

is a GL(m)-invariant mapping S

k

(�

m

V

�

)
 


p

V ! C . Thus it results from �nite

iteration of the steps 3.6.(a){(d). The original mapping is f(t) = '(I

m

; t) = �'(�; t).

Thus, taking into account V = �

m�1

V

�

, this proves the theorem in the complex

case. Indeed, if t 2 


r

V

�





s

V is invariant, then t is viewed as an invariant linear

mapping 


r+(m�1)s

V ! C and so r + (m � 1)s = km, i.e. r � s = (k � s)m.

Consider now the real case and an SL(m;R)-invariant linear map f : 


p

V ! R.

Since the description of all GL

+

(m;R)-invariant tensors coincides with that of

GL(m;R)-invariant ones, we can repeat step by step the above proof on replacing

GL(m) by GL

+

(m;R).

If f is G

�

-invariant, then we turn back to GL(m;R) invariant '

t

, but the total

polarization will happen to be a map S

2k

(�

m

V

�

)
 


p

V ! C . Hence the number

� treats in f must be even.

9

�

9

The description can also be deduced by a standard trick which might be useful at another

occasion as well: we could describe only theG

�

-invariant tensors. On the space I of all SL(m;R)-

invariant tensors, there is an action ofZ

2

= G

�

=SL(m;R) which splits I into the �1 eigen spaces

I

+

, I

�

. Then notice, if t 2 I

�

, then � 
 t 2 I

+

.



3. INVARIANT TENSORS 23

3.12. Relative invariant tensors. A tensor t 2 


p

V

�


 


q

V is called relative

GL(m)-invariant if there is a � : GL(m)! K with A:t = �(A)t for all A 2 GL(m).

Clearly � must be a continuous character of GL(m).

Theorem. The relative invariant tensors are exactly the SL(m)-invariant tensors.

In particular, if t 2 


p

V

�


 


q

V is relative GL(m)-invariant and non-zero, then

p� q = km, k 2Z, and the corresponding character � is (detA)

k

.

Proof. First, let us notice how easily we can �nd all continuous characters of

GL(m) using Theorem 3.5. Since �must be a continuous Lie group homomorphism,

it must be smooth. The corresponding Lie algebra homomorphism�

0

: V

�


V ! K

is Ad-invariant (�

0

� Ad = T

e

� � T

e

Conj = T

e

(� � Conj) = �

0

since the action on

C is trivial). Further, Ad(A) is exactly the standard representation of GL(m) on

V

�


 V . Thus, �

0

is a scalar multiple of the trace and so �jGL

+

(A) = (detA)

k

,

k 2 R, in the real case while �(A) = (detA)

k

, k 2 C , in the complex case. This

shows t is SL(m)-invariant and the description of all such t from Theorem 3.11

�nishes the proof. �

3.13. Irreducible representations. Later on we shall often treat only irre-

ducible representations and we shall also need to pass from the real to the complex

situation or back. The latter is usually denoted as the `complexi�cation' and `re-

ali�cation'. Let us describe briey the irreducible representations of GL(m) and

SL(m), the (pseudo-)orthogonal groups will follow later, the details can be found

e.g. in [Boerner, 67]. In the case G = GL(m) this is a problem closed to 3.5. In-

deed, as discussed in 3.7, each invariant subspace is an image of a G-equivariant

projection and for contravariant tensors of degree r all such projections are ob-

tained through actions of the permutation group S

r

. Let D

r

be the group ring of

S

r

which acts obviously on the (contravariant) tensors. The idempotents e 2 D

r

which represent the irreducible representations D

r

:e � D

r

of S

r

(and these corre-

spond to polynomial irreducible representations of GL(m)) are described with the

help of the so called standard Young diagram. The latter is given by a system

n

1

� n

2

� � � � � n

p

> 0 of natural numbers with n

1

+ � � � + n

p

= r which is

graphically described by

n

1

n

2

.

.

.

n

p

with numbers 1; : : : ;m written inside the individual boxes in such a way that they

increase in the columns and do not decrease in the rows. Labeling the boxes by

numbers 1; : : : ; r, such a diagram determines an element e 2 D

r

de�ned as the

composition of the sum of all permutations indicated in the rows and the alternated

sum of the permutations in the columns. Hence the image of the corresponding

projection 


p

V ! W is obtained by numbering the indices of the tensors and

applying the corresponding symmetrizations and alternations. For example, given

the diagram with (1; 2) in the row and (1; 3) in the column, we get the

projection 


3

V ! W , t

ijk

7! (t

ijk

+ t

jik

) 7! t

ijk

+ t

jik

� t

kji

� t

jki

. Notice, we
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permute the tensors according to the original numbering of indices, the permutation

leading to t

kij

in the last term lies in S

2

V 
 V which is further reducible!

Each such diagram (without the numbers inside) with the number of rows less

than or equal to m determines in this way an irreducible polynomial representation

of GL(m; C ) with dimension equal to the number of the possible standard Young

diagrams of the same shape. Two diagrams with di�erent shapes correspond to

inequivalent representations. We shall denote the representation corresponding to

the diagram described by n

1

; : : : ; n

p

by the symbol C

m

(n

1

;::: ;n

p

)

or C

m

(n

1

;::: ;n

m

)

where

we set n

j

= 0 for all j > p. Let us remark that in view of Theorem 3.5 the

proof of the irreducibility is a combinatorial problem in the representation theory

of the symmetric group.

10

The representations C

m

(n

1

;::: ;n

p

)

exhaust all irreducible

polynomial representations of GL(m; C ), see [Boerner, 67, Chapter V, section 5].

These representations remain irreducible if we restrict the group to SL(m; C ) but

some of them coincide (notice that this follows from Theorem 3.11). On the other

hand, they exhaust all rational representations of SL(m; C ) and each continuous

representation of SL(m; C ) is rational and completely reducible, hence polynomial

(remember C

m�

= �

m�1

C

m

). This is not true for GL(m; C ) where only all ra-

tional representations are completely reducible and there are some reducible but

not completely reducible ones

11

. All rational representation of GL(m; C ) are of the

form (detA)

k

C

m

(n

1

;::: ;n

p

)

, k 2 Z. For the proofs we refer to [Boerner, 67, Chapter

V, section 8].

Given a real Lie group G and its linear action on a real vector space W , there

is the induced action of G on W 
 C and if the action on W is reducible, then also

the action on W 
 C is reducible. If G is one of the matrix groups discussed above

or O(m;R), SO(m;R), SO(m;n;R), then the latter action is extended to an action

of the corresponding complex group. In [Boerner, 67, p.164] we �nd the following

statement

Theorem. The irreducible rational representations of the groups GL(m; C ) remain

irreducible if restricted to the subgroups GL(m;R), SL(m; C ), SL(m;R), U (m),

SU (m).

12

10

See [Boerner, 67, Chapter IV]). Roughly speaking, any further permutations can be built

from those concerning only indices lying either in rows or in columns and so a composition with

further permutations yields some `conjugated elements'.

11

As well known, a representation of a semisimple complex Lie group is completely reducible

and a representation of a general complex Lie group is completely reducible if and only if its

restriction to the radical is. In our case, the radical is the one-dimensional center of GL(m; C),

while the semisimple part is SL(m; C).

12

The proof is surprisingly elementary. Roughly speaking, if the restricted representation were

reducible, then there would be a `common null box' in all the matrices of the representation

in a suitable basis. Hence there are non-zero linear forms on gl(W ) which annihilate all the

matrices of the representation. The composition of these forms with the representation matrices

yields rational functions on GL(m) which are zero on all matrices from the subgroups in question.

These subgroups have enough points to assure that these rational functions are zero identically

and, thus, the original representation must be reducible. In the case of SU(m), there is a similar

trick available using the representation of the Lie algebra and for U(m) we apply the results for

SU(m) and SL(m; C). A similar reasoning will become an important step in our discussion on

(pseudo-)orthogonal groups below.
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3.14. Examples. The standard representation on K

m

is the C

m

(1;0;:::;0)

(there is

only one index, no symmetry), K

�

corresponds to (detA)

�1

C

m

(1;:::;1;0)

. The space




2

K admits two indices and so its decomposition must correspond to the diagrams

and , i.e. the symmetrization and alternation. In the decomposition

of 


3

K, there appear only the diagrams , and . We should

notice that we have not discussed at all the multiplicities of these representations!

3.15. O(m)-invariant tensors. We shall proceed in a way similar to 3.11. Re-

call O(m) = fA 2 GL(m);A:g

0

= g

0

g where g

0

2 S

2

V

�

is the canonical Eu-

clidean metric (or its complex analog). Given g in the space S

2

+

V

�

of positive

de�nite non-degenerate 2-forms (non-degenerate in the complex case), this de�nes

an isomorphism g : V ! V

�

and its inverse ~g : V

�

! V . Clearly g

0

and ~g

0

are

O(m)-equivariant and therefore we do not have to consider both covariant and

contravariant entries of the tensors. Thus, we have to describe all O(m)-invariant

linear mappings f : 


p

V ! K. Given such f we de�ne �' : S

2

+

V

�

� 


p

V ! K

by �'(A:g

0

; t) := f(A:t). Since GL(m):g

0

= S

2

+

V

�

and f is O(m)-invariant, �' is

well de�ned and GL(m)-invariant. Similarly to 3.11, we need to extend �' to a

polynomial GL(m)-invariant mapping on the whole space S

2

V

�

� 


p

V . This will

be possible using the next two lemmas which are interesting for themselves.

13

Since we want to treat at the same time metrics with arbitrary signature (in

the real case { in complex situation they are all equivalent), we need some more

notation. We write O(m;n) = fA 2 GL(m);AJA

T

= Jg where J =

�

I

m

0

0 �I

n

�

,

so that the matrices fromO(m;n) preserve the canonical pseudo-metric of signature

m on K

m+n

. This de�nition makes sense not only for K = R or K = C but for

any other extension L of R as well. Further, the Zariski connected components

of O(m;n;L) are always algebraic varieties in L

(m+n)

2

and there is the canonical

inclusion O(m;n;K) � O(m;n;L).

3.16. Lemma. Let L be any algebraic extension of R and let f : O(m;n;L)! L

be a rational function. If f vanishes on O(m;n;R), then f is zero.

Proof. We shall write o(m;n) = fA 2 gl(m + n;R);AJ + JA

T

= 0g for the real

Lie algebra of the pseudo-orthogonal group. Let us consider the Caley map

C : o(m;n)! GL(m); C(S) = (1 + S)(1 � S)

�1

de�ned for all S with det(1�S) 6= 0. This is injective and rational. Further we claim

that the image lies in O(m;n) and C admits a rational inverse C

�1

: O(m;n;R)!

13

The proofs of these lemmas (and also that one of the description of the invariant tensors)

follow [Atiyah, Bott, Patodi, 73, p. 323], where the positive de�nite real case is presented.
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o(m;n). Indeed, we have J = J

�1

, J = J

T

, SJ + JS

T

= 0 and so

C(S)J(C(S))

T

= (1 + S)(1 � S)

�1

J(1� S

T

)

�1

(1 + S

T

)

= (1 + S)(J � JS � S

T

J + S

T

JS)

�1

(1 + S

T

)

= (1 + S)(J(1 � S)(1 + S))

�1

(1 + S

T

)

= (J � JS)

�1

(1 + S

T

) = J(1 + S

T

)

�1

(1 + S

T

) = J:

Further, if Z = (1 + S)(1 � S)

�1

then S = (Z � 1)(1 + Z)

�1

whenever both

expressions are de�ned and it remains only to verify S = (Z�1)(1+Z)

�1

2 o(m;n)

if ZJZ

T

= J . The latter means (Z � 1)(1 + Z)

�1

J + J(1 + Z

T

)

�1

(Z

T

� 1) = 0,

but in order to see that the left hand side is zero we can multiply it by invertible

matrices. Let us multiply by (1 + Z

T

)J on the left and by J(1 + Z) on the right.

This yields (1 + Z

T

)J(Z � 1) + (Z

T

� 1)J(1 + Z) which is zero.

Hence we have proved: the connected component of the unit in O(m;n) is bira-

tionally isomorphic to the real a�ne space o(m;n).

Thus, if f vanishes at all real points, then the composition with this isomorphism

is a zero rational map on an a�ne space and hence all coe�cients of the representing

polynomials vanish. This proves the lemma for the connected component of the

unit.

It remains to know that O(m;n;R) consists of four connected components de-

termined by the signs of the two subdeterminants along the diagonal corresponding

to the matrices I

m

and �I

n

in J , see [Boerner, 67, p.297]. Hence we can compose

the mapping C(S) with multiplication by one of the four matrices

�

A 0

0 B

�

with

A =

�

�1 0

0 I

m�1

�

, B =

�

�1 0

0 I

n�1

�

. This yields the result for all connected

components of O(m;n;R). �

3.17. Lemma. Let h : GL(m + n) ! K be a polynomial or rational O(m;n)-

invariant mapping. Then there is a polynomial or rational mapping F de�ned on

the space of all symmetric matrices such that h(A) = F (A

T

JA) for all A 2 GL(m),

respectively.

Proof. In dimension one, we deal with the well known assertion that each even

polynomial h, i.e. h(x) = h(�x), is a polynomial in x

2

and analogously for rational

mappings. However in higher dimensions, the proof is quite non trivial.

We shall prove the polynomial case, the rational one follows by omitting some

extensions. If we were in the real situation, then h extends to a complex valued

function h : GL(m; C ) ! C which is O(m;n; C )-invariant by virtue of Lemma 3.16.

Indeed, consider

�

h

A

: O(m;n; C ) ! C ,

�

h

A

(B) := h(BA)�h(A). This is polynomial

for each A 2 GL(m; C ) and it vanishes on real matrices, hence also on the complex

ones and this is the invariance we require. Thus we can restrict ourselves to the

complex case.

First notice that if A

T

JA = P with P non singular and if there is a symmetric

Q with QJQ = P , then A lies in the O(m;n)-orbit of Q. Indeed, Q is also non

singular and B = AQ

�1

satis�es B

T

JB = Q

�1

A

T

JAQ

�1

= Q

�1

PQ

�1

= J . Each

symmetric matrix P admits a symmetric square root in the complex domain. Let
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us construct this as follows. Take P = B

T

DB with D diagonal, B

T

JB = J . Write

p

D for the diagonal matrix consisting of square roots of the eigen values of D and

take the matrix D

0

= B

T

p

J

p

DB. This satis�es D

0

T

JD

0

= B

T

DB = P and is

well de�ned. So it su�ces to restrict ourselves to symmetric matrices.

Finally, since O(m;n; C ) is isomorphic to O(m+ n; C ), it is su�cient to restrict

ourselves toO(m; C ). Notice, the isomorphism is induced by constant multiplication

of �rst m coordinates in C by i. Hence the corresponding isomorphism on non-

degenerate symmetric matrices is A

T

A 7! A

T

JA which is well de�ned, see above.

Hence we want to �nd a polynomialmap g satisfying h(Q) = g(Q

2

) for all symmetric

matrices.

As already mentioned, there is the square root

p

P = Q for each symmetric

P = B

T

DB,

p

P = B

T

p

DB. But we should express Q as a universal polynomial

in the elements p

ij

of the matrix P . If all eigen values �

i

of P are di�erent, then

we can write

Q =

m

X

i=1

p

�

i

Y

j 6=i

P � �

j

�

i

� �

j

:

In order to make this to a polynomial expression, we have �rst to extend the �eld of

complex numbers to the �eld L of rational functions (i.e. the elements are ratios of

polynomials in p

ij

's). So for matrices with entries from L, all eigen values depend

polynomially on p

ij

's. We also need their square roots to express Q, but we shall

see that after inserting Q =

p

P into h(Q) all square roots will factor out. For

any �xed P , let us consider the splitting �eld

~

L over L with respect to the roots

of the equation det(P � �

2

) = 0. So

p

P is polynomial over

~

L. Now the basic fact

is, that for any automorphism � :

~

L !

~

L from the Galois group of

~

L over L we

have (�Q)

2

= �P = P and since both Q and �Q are symmetric, B = �QQ

�1

is

orthogonal.

Using Lemma 3.16, we get �h(Q) = h(�Q) = h(BQ) = h(Q). Since this holds

for all �, h(Q) lies in L and so h(Q) = g(Q

2

) for a rational function g.

The latter equality remains true if P = Q

2

is a real or complex symmetric matrix

such that all its eigen values are distinct and the denominator of g(P ) is non zero.

If g = F=G for two polynomials F and G, we get F (A

T

A) = h(A)G(A

T

A). If we

choose A so that G(A

T

A) = 0 and h is a polynomial, we get F (A

T

A) = 0. Hence

if h is polynomial, then g is a globally de�ned rational function without poles and

so a polynomial.

Thus, we have found a rational function (a polynomial in the polynomial case)

F on the space of symmetric matrices such that h(A) = F (A

T

A) holds for a Zariski

open set in gl(m). �

3.18. Theorem

14

. All O(m;n)-equivariant mappings between invariant sub-

spaces of tensor spaces are constructed by a �nite iteration of steps 3.6.(a){(d)

and

(i) the tensors g

0

and ~g

0

are invariant.

Proof. Let us continue the discussion from 3.15 and denote for a moment S

2

+

V

�

,

V = K

m+n

the space of metrics of some �xed signature m. Thus, we want to

14

This is the famous Weyl's theorem, [Weyl, 39]
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describe all O(m;n)-invariant linear maps f : 


p

V ! K. It su�ces to prove that

all such maps are complete contractions over permuted indices (this means there

is an even number of indices there and we choose a half of them, shift them to the

other position using g

0

and then apply some complete contraction). If we are in the

real situation, then f extends to the complexi�ed spaces and becomes O(m;n; C )-

invariant, cf. Lemma 3.16. Hence we shall restrict ourselves to K = C . (We could

also stick to O(m), for all signatures are equivalent now).

The mapping f de�nes an O(m;n)-invariantmapping' : GL(m+n)�


p

V ! C ,

'(A; t) = f(A:t). By Lemma 3.17, every restricted map '

t

: GL(m + n) ! C

satis�es '

t

(A) = h

t

(A

T

JA) for certain polynomial h

t

and so we get a polynomial

mapping h : S

2

V

�

�


p

V ! C linear in the second entry. For all B;A 2 GL(m+n)

we have h((B

�1

)

T

A

T

JAB

�1

; B:t) = f(AB

�1

B:t) = f(A:t) = h(A

T

JA; t) and so

h : S

2

V

�

�


p

V ! K is GL(m+ n)-invariant. Then the composition of h with the

symmetrization yields a polynomial GL(m + n)-invariant map 


2

V

�

� 


p

V ! C ,

linear in the second entry. Each homogeneous component of degree s + 1 is also

GL(m)-invariant and so its total polarization is a linear GL(m)-invariant map

�: 


2s

V

�





p

V ! C . Hence, by Theorem 3.5, p = 2s and � is a sum of complete

contractions over possible permutations of indices. Since the original mapping f is

given by f(t) = h(J; t), the Weyl's theorem follows. �

3.19. Special (pseudo-) orthogonal group. This is the case we shall be most

interested in later on.

Theorem. All SO(m;n)-equivariant linear mappings between SO(m;n)-invariant

subspaces in tensor spaces are obtained through a �nite iteration of steps 3.6.(a){(d)

and

(i) g

0

2 V

�


 V

�

and ~g

0

2 V 
 V are invariant (the pseudo-metric and its

inverse)

(ii) � 2 �

m

V

�

is invariant (the canonical volume form).

Proof. The theorem follows from 3.18 by means of the trick mentioned as a foot-

note in 3.11. Indeed, the SO(m;n)-invariant tensors split into the �1-eigenspaces

for the induced action of Z

2

= O(m;n)=SO(m;n) and once a tensor appears in

the �1-eigenspace, its tensor product with � belongs to the other one, i.e. it is

O(m;n)-invariant. Since the canonical volume element has components �

i

1

:::i

m+n

=

((�1)

n

det(g

ij

))

1=2

"

i

1

:::i

m+n

where "

i

1

:::i

m+n

are the components of the Levi-Civit�a

tensor, this proves the theorem. �

3.20. Remark. In dimensionm = 1, every polynomial can be expressed as a sum

of an odd polynomial and an even one. We generalized the description of the even

polynomials in Lemma 3.16, but there is also an analogy to the above splitting of

polynomials:

Lemma. Let h : GL(m + n)! K be a rational or polynomial SO(m;n)-invariant

mapping, then there are rational or polynomialmappings F , G de�ned on the space

of all symmetric matrices such that h(A) = F (A

T

JA) + (detA)

�1

G(A

T

JA) for all

A 2 GL(m), respectively.

Proof. Let I be the space of all SO(m;n)-invariant rational functions h : GL(m+

n) ! K. There is the action of Z

2

= O(m;n)=SO(m;n) on I. Hence I is splitted
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into the eigen spaces I

+

and I

�

. If h

�

2 I

�

, then the map

~

h

�

given by A 7!

(detA)h

�

(A) lies in I

+

, i.e. is O(m;n)-invariant. Now we can split h as a sum

of elements from I

�

, h = h

+

+ h

�

, and apply Lemma 3.15 to both h

+

and

~

h

�

.

Consequently, h

�

(A) = (detA)

�1

~

h

�

has the desired form. The polynomial case is

completely analogous. �

As a consequence of this lemma, we can identify the ring of rational func-

tions on the `space of all (pseudo-) metrics' GL(m + n)=O(m;n) with the ring

K[g

ij

; (det g

ij

)

�

1

2

] (notice, the metric corresponding to [A] 2 GL(m + n)=O(m;n)

is (AA

T

; sign(detA))).

Let us also remark, the analogous statements to Lemmas 3.17 and 3.20 are

available for the right actions of the orthogonal subgroups. Indeed, we have only

to consider g(A) = h(A

�1

), to apply the lemmas and then to notice that in the

polynomial case we get polynomials.

We shall end this section with an analytical proposition which is often useful to

avoid the polynomiality assumption, i.e. to describe all smooth equivariant map-

pings.

Consider a product V

1

� : : :� V

n

of �nite dimensional vector spaces and write

x

i

2 V

i

, i = 1; : : : ; n.

3.21 Proposition

15

. Let f : V

1

� : : : � V

n

! K be a smooth function and let

a

i

> 0, b be real numbers such that

(1) k

b

f(x

1

; : : : ; x

n

) = f(k

a

1

x

1

; : : : ; k

a

n

x

n

)

holds for every real number k > 0. Then f is a sum of homogeneous polynomials

of degrees d

i

in x

i

satisfying the relation

(2) a

1

d

1

+ � � �+ a

n

d

n

= b:

If there are no non-negative integers d

1

; : : : ; d

n

with the property (2), then f is the

zero function.

Proof. Assume �rst b < 0. If there were f(x

1

; : : : ; x

n

) 6= 0, then the limit of

the right-hand side of (1) for k ! 0

+

would be f(0; : : : ; 0), while the limit of the

left-hand side would be improper. Hence f is zero identically.

In the case b � 0 we write a = min(a

1

; : : : ; a

n

) and r =

�

b

a

�

(=the integer part

of the ratio

b

a

). We claim that all partial derivatives of the order r + 1 of every

function f satisfying (1) vanish identically. Di�erentiating (1) with respect to x

j

,

we obtain

k

b

@f(x

1

; : : : ; x

n

)

@x

j

= k

a

i

@f(k

a

1

x

1

; : : : ; k

a

n

x

n

)

@x

j

:

Hence for

@f

@x

j

we have (1) with b replaced by b�a

i

. This implies that every partial

derivative of the order r + 1 of f satis�es (1) with a negative exponent on the

left-hand side, so that it is the zero function by the �rst part of the proof.

15

The so called Homogeneous function theorem, cf. [Kol�a�r, Michor, Slov�ak, 93, Theorem 24.1].
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Since all the partial derivatives of f of order r+1 vanish identically, the remainder

in the r-th order Taylor expansion of f at the origin vanishes identically as well, so

that f is a polynomial of order at most r. For every monomial x

�

1

1

: : :x

�

n

n

of degree

j�

i

j in x

i

, we have

(k

a

1

x

1

)

�

1

: : : (k

a

n

x

n

)

�

n

= k

a

1

j�

1

j+���+a

n

j�

n

j

x

�

1

1

: : : x

�

n

n

:

Since k is an arbitrary positive real number, a non-zero polynomial satis�es (1) if

and only if (2) holds. �

Let us remark that the assumption a

i

> 0, i = 1; : : : ; n, is essential. For example,

all smooth functions f(x; y) of two independent variables satisfying f(kx; k

�1

y) =

f(x; y) for all k 6= 0 are of the form '(xy), where '(t) is any smooth function of

one variable. In this case we have a

1

= 1, a

2

= �1, b = 0.

4. Operators on (pseudo-) Riemannian manifolds

4.1. Our next problem is: Let us consider two representations �

F

, �

E

of G

1

m

=

GL(m;R) in Di�S, Di�S

0

and the corresponding bundle functors F and E, see 2.12.

We shall consider them as functors on the category Mf

m

(O(m

0

; n;R)) of (m

0

+n)-

dimensional pseudo-Riemannian manifolds with signature m

0

; n and local isome-

tries. Find all natural operators D : F ! E on the category Mf

m

(O(m

0

; n;R))!

The most common examples for the functors are the identity action on R

m

(corresponds to the tangent functor T ), its contragredient action on R

m�

(yields

T

�

) and their tensor products. We shall denote T

(q;p)

the natural bundle of p-times

covariant and q-times contravariant tensors. Hence C

1

(T

(q;p)

M ) are local tensor

�elds on the manifoldM . In particular, we shall study in detail the operations on

exterior forms.

It does not seem to be satisfactory that we restrict ourselves to bundle functors

on the whole category Mf

m

0

+n

. But this has two good reasons: all (univalued)

linear representations of O(m

0

; n) are invariant subspaces of some tensor spaces

(with the restricted usual action), see the Appendix, and dealing with the whole

tensor spaces we can add the metrics themselves to the arguments of the operators

as discussed in 2.17. So we shall deal with natural operators S

2

+

T

�

� F ! E

where S

2

+

T

�

stands for the bundle functor of pseudo-Riemannianmetrics with some

�xed signature (m

0

; n) and the cross denotes the product in the category of bundle

functors and their natural transformations (i.e. the values are the �bred products

over the base manifolds). The only disadvantage, namely we cannot treat directly

the O(m

0

; n)-invariant subspaces is not serious, see 2.17 and 3.7.

A more detailed explanation of the technical tools sketched below in 4.2 { 4.9

can be found in [Kol�a�r, Michor, Slov�ak, 93, Sections 28, 33], the exposition follows

[Slov�ak, 92a], [Slov�ak, 92b].

4.2. The orbit reduction. In our situation, all the manifolds are locally isomor-

phic to R

m

0

+n

and the action of Di�(R

m

0

+n

) is transitive. Let us assume �rst

that the operators are of �nite order k and so we can use 2.6 and the whole

classi�cation problem reduces to the �nding of all G

k+1

m

-equivariant mappings
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f : A := J

k

0

(S

2

+

R

m�

� 


p

R

m�


 


q

R

m

) ! 


r

R

m�


 


s

R

m

(the latter mappings

correspond to natural operators T

(q;p)

! T

(s;r)

on pseudo-Riemannian manifolds

which are of order k in both the tensors and the metrics). We see immediately

that on the target of the equivariant mapping f , the action is of order one, i.e.

the whole kernel K = ker�

k+1

1

in G

k+1

m

acts trivially. This shows that f must

be constant on the orbits of K in the domain. If we succeed in the description

of the corresponding orbit space A=K with the canonical action of G

1

m

, then all

our equivariant mappings f with values in some G

1

m

-space Z will factor through

G

1

m

-equivariant mappings g : A=K ! Z.

First we shall present such a procedure for operations depending on connections.

Since there is the canonical Levi-Civit�a connection on each pseudo-Riemannian

manifold this will be helpful even in the Riemannian case.

There is a simple criterion for such descriptions: Let ' : G! H be a Lie group

homomorphismwith kernelK,M be a G-space, Q be anH-space and let p : M ! Q

be a '-equivariant surjective submersion, i.e. p(gx) = '(g)p(x) for all x 2M , g 2 G.

We can consider every H-space N as a G-space via '.

Lemma. If each p

�1

(q), q 2 Q, is a K-orbit inM , then Q = M=K. Consequently,

there is a bijection between the G-maps f : M ! N and the H-maps g : Q ! N

given by f = g � p. �

4.3. Operations on manifolds with connection. The linear connections on

m-dimensional manifolds are sections of the natural bundle QP

1

= J

1

P

1

=G

1

m

.

This expresses the de�nition of principal connections as right invariant horizontal

distributions. The bundle of symmetric connections (i.e. without torsion) will be

denoted by Q

�

P

1

.

A classical observation due probably to Veblen or Schouten claims that the natu-

ral operators of order k on tensor �elds depending on connections factorize through

the covariant derivatives of the arguments up to the order k and through the cur-

vature and its covariant derivatives up to the order k � 1. Several authors derived

more precise formulations involving some further assumptions, see e.g. [Lubczonok,

72], [Atiyah, Bott, Patodi, 73], [Epstein, 75], [Krupka, Jany�ska, 90]. A (rather

technical) veri�cation of such reduction without any additional assumption is pre-

sented in the framework of natural operators by Kol�a�r in [Kol�a�r, Michor, Slov�ak,

93, Section 28]. The proof is based on the above orbit reduction principle. On the

set-theoretical level, this is a more or less classical technical computation, but the

subtle point is the smoothness.

Let F be a �rst order bundle functor on Mf

m

, E be an open natural subbundle

of a natural vector bundle

�

E onMf

m

. The curvature and its covariant derivatives

are natural operators �

k

: Q

�

P

1

! R

k

, with values in tensor bundles R

k

, R

k

R

m

=

R

m

�W

k

, W

0

= R

m


R

m�


�

2

R

m�

, W

k+1

=W

k


R

m�

. Similarly, the covariant

di�erentiation of sections of E forms natural operators d

k

: Q

�

P

1

�E ! E

k

, where

E

0

=

�

E, E

0

R

m

= R

m

�V

0

, d

0

is the inclusion, E

k

R

m

= R

m

�V

k

, V

k+1

= V

k


R

m�

.

Let us write D

k

= (�

0

; : : : ; �

k�2

; d

0

; : : : ; d

k

) : Q

�

P

1

� E ! R

k�2

� E

k

, where

R

l

= R

0

� : : :� R

l

, E

l

= E

0

� : : :� E

l

. All D

k

are natural operators.

In view of the lemma above, the next assertion shows that there are bundle

functors Z

k

(E) such that all k-th order natural operators Q

�

P

1

� E ! F factor

through natural transformations Z

k

! F .
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Lemma. There are sub bundle functors Z

k

� R

k�2

� E

k

such that D

k

: Q

�

P

1

�

E ! Z

k

and the associated maps D

k

: J

k�1

0

(Q

�

P

1

R

m

) � J

k

0

(ER

m

) ! Z

k

0

R

m

are

surjective submersions for all k. Furthermore, for each point z 2 Z

k

0

R

m

the preim-

age (D

k

)

�1

(z) forms one orbit under the action of the kernel B

k+1

1

of the projection

�

k+1

1

: G

k+1

m

! G

1

m

.

4.4. Proposition. For every natural operator D : Q

�

P

1

�E ! F which depends

on k-jets of sections of the bundles EM and on (k�1)-jets of the connections, there

is a unique natural transformation (i.e. a zero order natural operator)

~

D : Z

k

! F

such that D =

~

D �D

k

.

Furthermore,D is polynomial if and only if

~

D is polynomial, andD is polynomial

in all variables except those from V

0

with smooth real functions on V

0

as coe�cients

if and only if

~

D is polynomial with smooth real functions on V

0

as coe�cients.

Proof. We have only to prove to polynomiality.

Let us write S

i

for the tensor space R

m


 S

i+2

R

m�

, Q = S

0

for the standard

�ber of the bundle of symmetric connections and

S : J

k�1

0

(R

m

; Q) = J

k�1

0

(Q

�

P

1

R

m

)! S

0

� : : :� S

k�1

be the `symmetrization of the derivatives of the Christo�el symbols' (i.e. we express

the jet space J

k�1

0

(Q

�

P

1

R

m

) as the sum of the tensor spaces corresponding to the

individual degrees of derivatives and apply the symmetrization to the individual

summands). A more or less classical construction in local coordinates leads to a

polynomial mapping

 : W

0

� : : :�W

k�2

�V

0

� : : :�V

k

� (S

0

� : : :�S

k�1

)! J

k�1

0

(R

m

; Q)�J

k

0

(R

m

; V )

such that  � (D

k

� S) is the identity on J

k�1

0

(R

m

; Q)� J

k

0

(R

m

; V ).

Since the standard �ber V

0

of the bundle E

0

R

m

is embedded identically into

Z

k

(E)

0

R

m

by D

k

, we get also the last statement. �

4.5. The �niteness of the order. Even if we have no estimate on the order,

we can get an analogous result. The way is paved by the non-linear version of the

Peetre theorem proved in [Slov�ak, 88]. The general result is rather technical and

so we formulate a special case which we shall need.

Proposition. Let Y !M and Y

0

!M be �bered manifolds and letD : C

1

(Y )!

C

1

(Y

0

) be a smooth local operator. Then for every �xed section s 2 C

1

(Y ) and

for every compact set K � M , there is an order r 2 N and a neighborhood V of s

in the compact open C

1

-topology such that for every x 2 K and s

1

, s

2

2 V the

condition j

r

x

s

1

= j

r

x

s

2

implies Ds

1

(x) = Ds

2

(x).

As a direct consequence of this result, we see that each natural operator D : F !

E is of order k =1 and so D is determined by the associated G

1

m

-equivariant map

D : J

1

0

(FR

m

)! E

0

R

m

.

Let us remark that a stronger version of the above proposition (without the

smoothness assumption) is also proved in [Kol�a�r, Michor, Slov�ak, 93, Theorem 19.7]

and it is applied there in an alternative proof of the regularity and the �niteness

of the order of bundle functors which avoids the original manipulation with in�nite

dimensional Lie groups G

1

m

, cf. [Epstein, Thurston, 79].
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4.6. Lemma. Let F : Mf

m

! FM be an arbitrary bundle functor and p > q

be non-negative integers. Then every natural operator D : Q

�

P

1

� T

(q;p)

! F has

�nite order.

Proof. Let us write E = Q

�

P

1

�T

(q;p)

. By 4.5, D is determined by the associated

map D : J

1

0

(ER

m

) ! F

0

R

m

induced by D

R

m

. Furthermore, for every jet j

1

0

s 2

J

1

0

(ER

m

) there is an order r < 1, a neighborhood U

r

of j

r

0

s in J

r

0

(ER

m

) and

a smooth mapping D

r

: U

r

� J

r

0

(ER

m

) ! F

0

R

m

such that for all j

1

0

q 2 V

r

:=

(�

1

r

)

�1

U

r

we have D(j

1

0

q) = D

r

(j

r

0

q). The naturality of D implies that if the

open neighborhood U

r

is the maximal one with this property, then V

r

is G

1

m

-

invariant. The induced action of G

1

m

turns J

k

0

(ER

m

) into a sum of G

1

m

-invariant

linear subspaces in the tensor spaces (R

m





`+2

R

m�

)� (


s

R

m





r+`

R

m�

), ` � k.

Since r > s, the action of the homotheties (i.e. the center) in G

1

m

shows, that the

orbit of any neighborhood of the jet j

k

0

0 of the zero section under the action of G

1

m

coincides with the whole space J

k

0

(ER

m

). �

4.7. Now, we come back to our natural operators Q

�

P

1

� E ! F without any

assumption on the order. Proceeding as in the proof of 4.6, we obtain an open

�ltration of the whole �ber J

1

0

((Q

�

P

1

�E)R

m

) consisting of maximalG

1

m

-invariant

open subsets V

k

where the associated mapping D factorizes through D

k

: �

1

k

(V

k

) �

J

k

0

((Q

�

P

1

� E)R

m

) ! F

0

R

m

. Now, we can apply the same procedure as in the

�nite order case to this invariant open submanifolds �

1

k

(V

k

).

Let us de�ne the functor Z

1

as the inverse limit of Z

k

, k 2 N, with respect

to the obvious natural transformations (projections) �

k

`

: Z

k

! Z

`

, k > `, and

similarly D

1

: Q

�

P

1

� E ! Z

1

.

Theorem. For every natural operator D : Q

�

P

1

�E ! F there is a unique natural

transformation

~

D : Z

1

! F such that D =

~

D �D

1

. Furthermore, for every m-

dimensional compact manifold M and every section s 2 C

1

(Q

�

P

1

M �

M

EM ),

there is a �nite order k and a neighborhood V of s in the C

k

-topology such that

~

D

M

j(D

1

)

M

(V ) = (�

1

k

)

�

(

~

D

k

)

M

; for some (

~

D

k

)

M

: (D

k

)

M

(V )! C

1

(Z

k

M )

D

M

jV = (

~

D

k

)

M

� (D

k

)

M

jV:

In words, a natural operator D : Q

�

� E ! F is determined in all coordinate

charts of an arbitrary m-dimensional manifoldM by a universal smooth mapping

de�ned on the curvatures and all their covariant derivatives and on the sections

of EM and all their covariant derivatives, which depends `locally' only on �nite

number of these arguments.

4.8. The pseudo-Riemannian case. Let us write S

2

+

T

�

for the bundle functor of

pseudo-Riemannian metrics with some �xed signature on m-dimensional manifolds.

On pseudo-Riemannian manifolds, there is the natural operator �: S

2

+

T

�

!

Q

�

P

1

de�ned by the Levi-Civit�a connection. Every operator S

2

+

T

�

� E ! F

can be viewed as an operator Q

�

P

1

� S

2

+

T

�

� E ! F , independent of the �rst

argument. Since S

2

+

T

�

� S

2

T

�

is an open sub bundle functor, we can consider the

compositions D

k

� (�; id) : S

2

+

T

�

�E ! Q

�

P

1

�S

2

+

T

�

�E ! R

k�2

� (S

2

+

T

�

�E)

k

and apply Proposition 4.4. Since all covariant derivatives of the metric with respect
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to the metric connection are zero (the parallel transport consists of isometries), the

covariant derivatives of the metric will not appear in the codomain of the operators

D

k

after the composition. Hence we get

Proposition. There are sub bundle functors Z

k

� R

k�2

� E

k

such that D

k

�

(�; id) : S

2

+

T

�

�E ! S

2

+

T

�

�Z

k

and the associated mappings D

k

on the jet spaces

are surjective submersions with the preimages (D

k

)

�1

(z) forming one orbit under

the action of the kernel B

k+1

1

of the projection �

k+1

1

: G

k+1

m

! G

1

m

. Hence for all

k, and for every k-th order natural operator D : S

2

+

T

�

�E ! F , there is a natural

transformation

~

D : S

2

+

T

�

� Z

k

! F such that D =

~

D �D

k

� (� � id).

For the proof see [Slovak, 92a] or [Kol�a�r, Michor, Slov�ak, 93, Section 33]. Let us

notice that the bundles Z

k

M involve the curvature of the Riemannian connection

onM , its covariant derivatives, and the covariant derivatives of the sections of EM .

Similarly as above, we de�ne the inverse limits Z

1

and D

1

and we get

Corollary. For every natural operator D : S

2

+

T

�

� E ! F there is a natural

transformation

~

D : S

2

+

T

�

� Z

1

! F such that D =

~

D � D

1

� (�; id). Fur-

thermore, for every m-dimensional compact manifold M and every section s 2

C

1

(S

2

+

T

�

M �

M

EM ), there is a �nite order k and a neighborhood V of s in the

C

k

-topology such that

~

D

M

j(D

1

� (�; id))

M

(V ) = (�

1

k

)

�

(

~

D

k

)

M

;

where (

~

D

k

)

M

: (D

k

� (�; id))

M

(V )! C

1

(Z

k

M )

D

M

jV = (

~

D

k

)

M

� (D

k

)

M

� (�; id)

M

jV:

4.9. The polynomial operations. We call a natural operator D : S

2

+

T

�

�E ! F

a polynomial operator on (pseudo-) Riemannian manifolds if the associated map

D : J

1

0

(S

2

+

R

m

)�J

1

0

(ER

m

)! F

0

R

m

depends polynomially on k-jets of sections of

ER

m

for some k.

By the nonlinear Peetre theorem, this means that for each Riemannian manifold

(M; g) the operator D

M

is given by a universal polynomial expression depending on

the derivatives of the sections of EM but the coe�cients are functions depending

on (locally �nitely many) derivatives of the metric.

Let us consider now a k-th order operator D and the natural transformation

~

D

corresponding to D, see 4.8. In the center of normal coordinates, each metric has

the canonical pseudo-Euclidean form g

0

and so the whole transformation

~

D is deter-

mined by the restriction of the associated map

~

D to fg

0

g�Z

k

0

R

m

. This restriction

is polynomial if and only if

~

D depends polynomially on elements from Z

k

0

R

m

, the

metric g

ij

and the square root of the inverse of its determinant det(g

ij

). Indeed, in

order to �nd the transformation of coordinates which maps the canonical pseudo-

euclidean metric to g

ij

we need to decompose g

ij

= AJA

T

with A 2 GL(m;R), cf.

3.17. The same applies to D: if this G

1

m

-equivariant map depends polynomially on

the derivatives of the metric and the jets of sections of ER

m

, then the values of the

metric appear in D polynomially through g

ij

and the square root of the inverse of

its determinant det(g

ij

).



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 35

Now, let us �x g

ij

. Since � depends polynomially on the 1-jet of the metric

and the values of the inverse metric, it follows that

~

D depends polynomially on the

elements from Z

k

0

R

m

if and only if D depends polynomially on the derivatives of the

metric g

ij

and on the jets of the sections of E (with functions of g

ij

as coe�cients),

and this happens if and only if D depends polynomially on the jets of the metrics,

the jets of the sections of E and on the square root of the inverse of the determinant

of (g

ij

).

Let us remark that such operations were introduced in [Atiyah, Bott, Patodi,

73] under the name regular operators, a reason why they should be distinguished

can be also found in 3.20.

4.10. Before studying the (pseudo-) Riemannian case, we shall treat the operations

depending on connections. On the way we shall prepare all necessary tools for

solving our initial problem .

Let us �rst discuss the natural operators D : Q

�

P

1

� T

(s;r)

! T

(q;p)

with r > s.

Proposition. All natural operators Q

�

P

1

�T

(s;r)

! T

(q;p)

are obtained by a �nite

iteration of the following steps:

(a) the tensor �eld and its covariant derivatives with respect to the connection

are invariant

(b) the curvature of the connection and its covariant derivatives are invariant

(c) tensor multiplication is invariant

(d) GL(m;R)-equivariant operations on the tensors determine invariant opera-

tions (i.e. trace, permutations of indices)

(e) linear combinations (over R) of invariant operators are invariant

In particular, they are all polynomial.

Proof. By 4.6, every such operator has some �nite order k and so it is determined

by a smooth G

k+2

m

-equivariant map f = (f

i

1

:::i

q

j

1

:::j

p

) : J

k

0

(R

m

; Q) � J

k

0

(R

m

; V ) ! S,

where Q is the standard �ber of the connection bundle, V = 


s

R

m


 


r

R

m�

and

S = 


q

R

m


 


p

R

m�

. Let us assume, we have chosen k in such a way that f

depends on (k � 1)-jets of the connections only. If we apply the equivariance of f

with respect to the transformation x 7! c

�1

x, c 2 R positive, from the center of

G

1

m

, we get

c

p�q

f

i

1

:::i

q

j

1

:::j

p

(�

`

ij

; : : : ;�

`

ij;`

1

:::`

k�1

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(c�

`

ij

; : : : ; c

k

�

`

ij;`

1

:::`

k�1

; c

r�s

v

i

1

:::i

s

j

1

:::j

r

; : : : ; c

r�s+k

v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

)

where the subscripts `

j

denote the usual derivatives. By 3.21 f

i

1

:::i

q

j

1

:::j

p

must be sums

of homogeneous polynomials.

Now, 4.4 and 2.6 imply that there is a unique smooth G

1

m

-equivariant map g on

Z

k

0

R

m

which is a restriction of a polynomial map �g = (g

i

1

:::i

q

j

1

:::j

p

) : W

0

� : : :�W

k�2

�

V

0

� : : :� V

k

! S and satis�es f = g � D

k

. Therefore the coordinate expression of

our operator is given by polynomial mappings

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

k

)
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where the subscripts m

j

denote the covariant derivatives. If we apply once more

the equivariance with respect to the homotheties c

�1

�

i

j

2 G

1

m

, we get

c

p�q

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

k

) =

= g

i

1

:::i

q

j

1

:::j

p

(c

2

R

i

jkl

; : : : ; c

k

R

i

jklm

1

:::m

k�2

; c

r�s

v

i

1

:::i

s

j

1

:::j

r

; : : : ; c

k+r�s

v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

k

):

This homogeneity implies that the g's must be sums of homogeneous polynomials

of degrees a

`

and b

`

in the variables R

i

jklm

1

:::m

`

and v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

`

, satisfying

(1) 2a

0

+ � � �+ ka

k�2

+ (r � s)b

0

+ � � �+ (k + r � s)b

k

= p� q:

Now we consider the total polarization of each multi homogeneous component to

obtain linear mappings

S

a

0

W 
 � � � 
 S

a

k�2

W

k�2


 S

b

0

V 
 � � � 
 S

b

k

V

k

! S:

The description of all invariant tensors (see 3.7) implies that the polynomials in

question are linearly generated by monomials obtained by multiplying an appropri-

ate number of variables R

i

jklm

1

:::m

`

, v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

`

and applying GL(m)-equivariant

operations. This yields the statement of the proposition. �

If q = p, then the polynomials must be of degree zero, and so only the GL(m)-

invariant tensors can appear. If q�p < 0, there are no non negative integers solving

(1) and so all natural operators in question are the zero operators only.

4.11. In order to determine all natural operators D : Q

�

P

1

�T

(0;r)

! �T

�

we have

to consider the case s = 0 in the above construction, to contract all superscripts

and to apply the alternation on all remaining subscripts at the very end.

Every GL(m;R)-invariant polynomial P de�ned on R

m


 R

m�

determines via

the Chern-Weil construction a natural form, i.e. a natural operator of our type

independent of the second argument. In particular, the homogeneous components

of the invariant polynomial det(I

m

+A) give rise to the Chern forms c

q

. The wedge

product of exterior forms de�nes the algebra structure on the space of all operators

in question.

Theorem. The algebra of all natural operators D : Q

�

P

1

� T

(0;r)

! �T

�

is gen-

erated by the alternation, the exterior derivative d and the Chern forms c

q

. The

operators which do not depend on the second argument are generated by the Chern

forms only.

In particular, we see that all natural forms have even degrees. Since the exterior

di�erential is natural, they must be closed.

4.12. In the proof of this result, we shall need several lemmas. The most of the

covariant derivatives of the curvature and of the forms which are involved in the

general construction from 4.10 are disabled by some of their symmetries during the

�nal alternation. Let us �rst recall the antisymmetry of the curvature form, the

�rst and the second Bianchi identity. We have

R

i

jkl

= �R

i

jlk

(1)

R

i

jkl

+R

i

klj

+ R

i

ljk

= 0(2)

R

i

jklm

+ R

i

jlmk

+ R

i

jmkl

= 0:(3)
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Lemma. The alternation of R

i

jklm

1

:::m

s

over any 3 indices among the �rst three

or four subscripts is zero.

Proof. Since the covariant derivative commutes with the tensor operations like the

permutation of indices, it su�ces to discuss the variables R

i

jkl

and R

i

jklm

. By (2),

the alternation over the subscripts in R

i

jkl

is zero and (3) yields the same for the

alternation on k, l, m in R

i

jklm

. In view of (1), it remains to discuss the alternation

of R

i

jklm

on j, l, m. Then (1) implies R

i

jkml

= �R

i

jmkl

and so we can rewrite this

alternation as follows

R

i

jklm

+ R

i

jmkl

+ R

i

jlmk

�R

i

jlmk

+R

i

mkjl

+ R

i

mlkj

+ R

i

mjlk

�R

i

mjlk

+R

i

lkmj

+ R

i

ljkm

+ R

i

lmjk

�R

i

lmjk

:

The �rst three entries on each row form a cyclic permutation and hence give zero.

The same applies to the last column. �

4.13. Lemma. For every tensor �eld t = (t

i

1

:::i

q

), the alternation of its second

covariant derivative r

2

t = (t

i

1

:::i

q

i

q+1

i

q+2

) over all indices is zero.

Proof. Every linear connection �

i

jk

determines a connection � with curvature R on

each vector bundle associated to the linear frame bundle. The components of R are

easily evaluated from R

i

jkl

using the action of gl(m) on the tensor space in question.

In our case, (a

i

j

) 2 GL(m) acts on a tensor !

i

1

:::i

q

by (a

i

j

)!

i

1

:::i

q

= ~a

j

1

i

1

: : :~a

j

q

i

q

!

i

1

:::i

q

where ~ denotes the components of the inverse matrix, and so given a tensor �eld t

we get the expression of the contraction hR; ti = �

P

q

s=1

R

m

i

s

i

q+1

i

q+2

t

i

1

:::m:::i

q

. If the

connection is symmetric, then the Ricci identity yields Alt(r

2

t) = hR; ti, where the

alternation concerns only the last two indices. Hence we can apply our alternation

to this expression. Up to a constant multiple, we get

X

�2�

sgn�t

i

�(1)

:::i

�(q+2)

= �

X

s

X

m

X

�

sgn�R

m

i

�(s)

i

�(q+1)

i

�(q+2)

t

i

�(1)

:::m:::i

�(q)

:

Let us decompose this sum into summands with �xed m, s and all �(j) with j 6= s,

j 6= q + 1, j 6= q + 2. These summands have the form

�

�

X

��2�

3

sgn��R

m

i

��(s)

i

��(q+1)

i

��

q+2

�

t

i

�(1)

:::m:::i

�(q)

:

Now the �rst Bianchi identity implies that all these summands vanish. �

4.14. Lemma. For every tensor t = (t

i

1

:::i

q

), the alternation of the �rst covariant

derivative rt coincides with the exterior di�erential d(Alt(t)).

Proof. Whenever the coordinate expressions of two natural operators coincide

in one coordinate chart, the operators are equal. The �rst covariant derivative

is of order zero in the connection argument, and at a �xed point the Christo�el

symbols are zero in a suitable coordinate system. But then the formula for the
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alternation of the covariant derivative of the tensor t coincides with that for the

exterior di�erential of the alternated tensor at this point. �

Proof of Theorem 4.11. Let us continue in the discussion from 4.10 and con-

sider �rst a monomial in R's and v's containing at least one quantity R

i

jklm

1

:::m

s

with s > 0. Then there exists one term among the R's in the product with three

free subscripts among the �rst four ones, or one term R

i

jkl

with all free subscripts,

so that the monomial vanishes after alternation. Further, 4.12.(1) and (2) imply

R

i

jkl

� R

i

lkj

= �R

i

klj

. Hence we can restrict ourselves to contractions on the �rst

two subscripts in the R's. Obviously, no subscript in the v's can be contracted since

otherwise the alternation would kill one of the R's. So in view of Lemma 4.13, only

the �rst order covariant derivatives can appear, and they yield the exterior deriva-

tives of the alternated tensor v by Lemma 4.14. Hence all the possible operators are

generated by the expressions R

k

q

k

1

ab

R

k

1

k

2

cd

: : :R

k

q�1

k

q

ef

where the indices a; : : : ; f remain

free for the alternation, v

i

1

:::i

r

and Alt(v

i

1

:::i

r

i

r+1

). This is a coordinate expression

of the theorem. �

4.15. Operations on functions. Up to now, we have assumed r > s � 0,

so that the case r = 0 was excluded. In this case we cannot use 4.6 and so we

must apply Theorem 4.7 instead of 4.4, but the codomain of the operations in

question will still ensure the polynomiality of the operations. By 4.7, each jet

(j

1

0

�; j

1

0

v) lies in some G

1

m

-invariant open subset (in the inverse limit topology)

V

k

� J

1

0

(Q

�

P

1

R

m

�R) such that the restriction of the associated mapping D of

the operator to V

k

is determined by a (locally de�ned) G

k+2

m

-equivariant mapping

f : J

k

0

(R

m

; Q)� J

k

0

(R

m

R)! S. Taking k large enough we can assume that the jet

of the zero section lies in V

k

. Now, proceeding as in 4.6 and 4.10 we get for every

positive c 2 R the homogeneity condition

c

p�q

f

i

1

:::i

q

j

1

:::j

p

(�

`

ij

; : : : ;�

`

ij;`

1

:::`

k�1

; v; : : : ; v

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(c�

`

ij

; : : : ; c

k

�

`

ij;`

1

:::`

k�1

; v; : : : ; c

k

v

`

1

:::`

k

):

Thus, f is a polynomial mapping in all variables except v with functions of v as

coe�cients.

Using 4.4 and 4.7, we pass to G

1

m

-equivariant mappings

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v; : : : ; v

m

1

:::m

k

)

with the homogeneity

c

p�q

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v; : : : ; v

m

1

:::m

k

) =

= g

i

1

:::i

p

j

1

:::j

q

(c

2

R

i

jkl

; : : : ; c

k

R

i

jklm

1

:::m

k�2

; v; : : : ; c

k

v

m

1

:::m

k

):

Hence g is polynomial with smooth functions in one real variable v as coe�cients

and the degrees of its monomials satisfy 4.10.(1) with r = s = 0. Now we can

repeat the arguments from the end of 4.10 and we get
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Lemma. All natural operators D : Q

�

P

1

� T

(0;0)

! T

(q;p)

are obtained by iter-

ating the following steps. Given a function, we can compose the function with

arbitrary smooth function of one real variable, we can take covariant derivatives of

the function and the covariant derivatives of the curvature, we can tensorize, we can

apply any GL(m;R)-equivariant operation, and we can take linear combinations.

The arguments from the proof of 4.11 are also valid now and so we can extend

this theorem to the case of functions.

Theorem. The algebra of all natural operators D : Q

�

P

1

�T

(0;0)

! �T

�

is gener-

ated by the compositions with arbitrary smooth functions of one real variable, the

exterior derivative d and the Chern forms c

q

.

4.16. There are many natural operators on pseudo-Riemannian manifolds. In par-

ticular, using the inverse metric we can contract on any couple of indices and the

complete contractions of suitable covariant derivatives of the curvature of the Levi-

Civit�a connection give rise to natural functions of all even orders greater then one.

Composing k natural functions with any �xed smooth function R

k

! R, we get a

new natural function. Since every natural form can be multiplied by any natural

function, we see that there is no hope to describe at least all natural forms in a way

similar to the above characterization of the Chern forms. However, in Riemannian

geometry we meet operations with a sort of homogeneity with respect to the change

of the scale of the metric and these can be described in more details.

De�nition. Let E and F be natural bundles over m-dimensional manifolds. We

say that a natural operator D : S

2

+

T

�

�E ! F is possibly-conformal , if D(c

2

g; s) =

D(g; s) for all metrics g, sections s, and all positive c 2 R. If F is a natural vector

bundle and D satis�es D(c

2

g; s) = c

�

D(g; s), then D is said to be homogeneous

with weight �.

Let us notice that the weight of the metric g

ij

is 2 (we consider the inclusion

g : S

2

+

T

�

! S

2

T

�

), that of its inverse g

ij

is �2, while the curvature and all its

covariant derivatives are conformal. The regular operators on Riemannian mani-

folds (cf. 4.9) homogeneous in the weight were studied extensively, see e.g. [Atiyah,

Bott, Patodi, 73], [Epstein, 75], [Stredder, 75]. Using the above approach, we shall

recover and generalize some of their results.

4.17. Recall S

2

+

T

�

means the bundle functor of pseudo-Riemannian metrics on m-

dimensional manifolds with some �xed signature. We shall discuss �rst the natural

operators D : S

2

+

T

�

�T

(s;r)

! T

(q;p)

with s < r. Similarly to 4.15, we use 4.8 to �nd

G

1

m

-invariant open subsets V

k

in J

1

0

((S

2

+

T

�

�T

(s;r)

)R

m

) forming a �ltration of the

whole jet space. On these subsets D factorizes through smooth G

k+1

m

-equivariant

mappings

f

i

1

:::i

q

j

1

:::j

p

= f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; g

ij`

1

:::`

k

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

):

de�ned on �

1

k

V

k

. Using the action of the homotheties c

�1

�

i

j

for large k's, we get

(1) c

p�q

f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; g

ij`

1

:::`

k

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(c

2

g

ij

; : : : ; c

2+k

g

ij`

1

:::`

k

; c

r�s

v

i

1

:::i

s

j

1

:::j

r

; : : : ; c

r�s+k

v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

):
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Now, let us add the assumption that D is homogeneous with weight �, choose

the change g 7! c

�2

g of the scale of the metric and insert this new metric into (1).

We get

c

p�q��

f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; g

ij`

1

:::`

k

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; c

k

g

ij`

1

:::`

k

; c

r�s

v

i

1

:::i

s

j

1

:::j

r

; : : : ; c

r�s+k

v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

):

This formula shows that the mappings f

i

1

:::i

q

j

1

:::j

p

are polynomials in all variables except

g

ij

with functions in g

ij

as coe�cients.

According to 4.8 and 4.9, the map D is on V

k

determined by a polynomial

mapping

! = (!

i

1

:::i

q

j

1

:::j

p

(g

ij

;W

i

jkl

; : : : ;W

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

k

))

which is G

1

m

-equivariant on the values of the covariant derivatives of the curvatures

and the sections. If we apply once more the equivariance with respect to the

homothety x 7! c

�1

x and at the same time the change of the scale of the metric

g 7! c

�2

g, we get

c

p�q��

!

i

1

:::i

q

j

1

:::j

p

(g

ij

; R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

k

) =

!

i

1

:::i

q

j

1

:::j

p

(g

ij

; c

2

R

i

jkl

; : : : ; c

k

R

i

jklm

1

:::m

k�2

; c

r�s

v

i

1

:::i

s

j

1

:::j

r

; : : : ; c

r�s+k

v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

k

):

This homogeneity shows that the polynomial functions !

i

1

:::i

q

j

1

:::j

p

must be sums of

homogeneous polynomials with degrees a

`

and b

`

in the variables R

i

jklm

1

:::m

`

and

v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

`

satisfying

(2) 2a

0

+ � � �+ ka

k�2

+ (r � s)b

0

+ � � �+ (k + r � s)b

k

= p� q � �

and their coe�cients are functions depending on g

ij

's (in fact polynomials depend-

ing on g

ij

and on the square root of the inverse of the determinant of g

ij

, cf. 4.9).

Now, we shall �x g

ij

= g

0

and use the O(m

0

; n;R)-equivariance of the homoge-

neous components of the polynomial mapping !. For this reason, we shall switch

to the variables R

ijklm

1

:::m

s

= g

ia

R

a

jklm

1

:::m

s

(the v's remain). Using the stan-

dard polarization technique and Theorem 3.18, we get that each multi homoge-

neous component in question results from multiplication of variables R

ijklm

1

;::: ;m

s

,

v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

s

, s = 0; 1; : : : ; r, and application of some O(m

0

; n)-equivariant tensor

operations on the target space. Hence we have proved:

Theorem. All natural operators D : T

(s;r)

! T

(q;p)

, s < r, on pseudo-Riemannian

manifolds which are homogeneous in weight result from a �nite number of the

following steps:

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor

or the covariant derivatives of the tensor �elds form the domain

(b) tensorize by the metric or by its inverse

(c) apply arbitrary GL(m)-equivariant operation

(d) take linear combinations.
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4.18. If the codomain of the operator is �T

�

, then all indices which were not con-

tracted must be alternated at the end of the above procedure. Since the metric is

a symmetric tensor, we get zero whenever using the above step (b) and alternat-

ing on both indices. But contracting over any of them has no proper e�ect, for

�

ij

t

jj

2

;::: ;j

s

= t

ij

2

;::: ;j

s

. So we can omit the step (b) at all.

Surprisingly enough we shall prove that among the homogeneous natural oper-

ators D : S

2

+

T

�

� T

(0;r)

! �T

�

with non-negative weights, there are no other ones

then those obtained by the evaluation of the operators from Theorem 4.11 using

the Levi-Civit�a connection.

It is more suitable to discuss the curvatures and their covariant derivatives in

the form R

ijklm

1

:::m

s

. These are all of weight two. The Riemannian curvature

is a two-form with values in the algebra of skew-symmetric matrices, so we have

the symmetry R

i

jkl

= �R

j

ikl

in the positive de�nite case. The pseudo-Riemannian

curvature has values in `pseudo-skew-symmetric' matrices, but after shifting the

index down, we get always the same symmetry, i.e.

(1) R

ijkl

= �R

jikl

:

Therefore, the evaluation of the Chern forms using the pseudo-Riemannian connec-

tion yields zero in degrees not divisible by four and the Pontrjagin forms in degrees

4`.

Theorem. There are no non-zero homogeneous natural operators D : S

2

+

T

�

�

T

(0;r)

! �T

�

with a positive weight. The algebra of all possibly-conformal natural

operators D : S

2

+

T

�

� T

(0;r)

! �T

�

is generated by the Pontrjagin forms p

q

, the

alternation and the exterior di�erential. The operators which do not depend on the

second argument are generated by the Pontrjagin forms.

16

Proof. The theorem will follow quite easily from the above proposition using Lem-

mas 4.12{4.14 concerning the symmetries of the curvature of arbitrary torsion-free

connections and the one more symmetry speci�c for the pseudo-Riemannian cur-

vatures:

Sublemma. The alternation of R

ijklm

1

:::m

s

on arbitrary 3 indices among the �rst

four or �ve ones is zero.

Proof. Since the pseudo-Riemannian connections satisfy R

ijkl

= R

klij

(this is a

consequence of (1) and Bianchi identity), Lemma 4.12 and (1) yield this lemma. �

Consider a monomial P with degrees a

s

in R

ijklm

1

:::m

s

and b

s

in v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

s

.

In view of the above lemma, if P remains non zero after all alternations, then we

must contract on at least two indices in each R

ijklm

1

:::m

s

with s > 0 and so we can

alternate over at most 2a

0

+ � � �+ ka

k�2

+ pb

0

+ : : : (p+ k)b

k

indices. This means

16

This generalizes the famous Gilkey theorem on the uniqueness of the Pontrjagin forms,

see [Gilkey, 73], [Atiyah, Bott, Patodi, 73]. The Gilkey theorem describes the regular possibly-

conformal natural forms in the Riemannian case, while we use no assumptions on the order or

polynomiality or regularity, only the smoothness. In [Gilkey, 75], the uniqueness of the Pontrjagin

forms is proved in the pseudo-Riemannian case as well. Let us remark, Gilkey proves his theorems

directly discussing the derivatives of the metric.
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p � 2a

0

+ � � �+ ka

k�2

+ rb

0

+ : : : (r+ k)b

k

= p��. Consequently � � 0 if there is a

non-zero natural form with weight �. This proves the �rst assertion of the theorem.

Let � = 0. Since the weight of g

ij

is �2, any contraction on two indices in the

monomial decreases the weight of the operator by 2. Every covariant derivative

R

ijklm

1

:::m

s

of the curvature has weight 2. So we must contract on exactly two

indices in each R

ijklm

1

:::m

s

which implies, there are s+2 of them under alternation.

But then there must appear three alternated indices among the �rst �ve if s 6= 0.

This proves a

1

= � � � = a

k

= 0. Moreover, there is no further contraction for

our disposal, and so any covariant derivative of the tensors of order greater then

one kills the whole monomial after alternation. Hence all the natural operators

are generated by the forms p

q

, the alternation and the exterior di�erential. This

completes the proof. �

4.19. Exactly in the same way as in 4.15, we can modify the proof of Theorem 4.18

for the case r = 0. In the implicit description of all operators D : S

2

+

T

�

� T

(0;0)

!

T

(q;p)

in 3.3, we have to add the compositions with smooth real functions and we

get

Theorem. There are no non-zero homogeneous natural operators D : S

2

+

T

�

�

T

(0;0)

! �T

�

with a positive weight. The algebra of all possibly-conformal natural

operators D : S

2

+

T

�

� T

(0;0)

! �T

�

is generated by the Pontrjagin forms p

q

, the

compositions with arbitrary smooth functions of one real variable and the exterior

di�erential. �

4.20. Linear operations homogeneous in weight. The discussion from the

proof of the Theorem 4.18 can be continued for any �xed negative weight. In par-

ticular, the situation is interesting for � = �2. Beside the well known codi�erential

� : �

p

! �

p�1

, the compositions d � � and � � d (the Laplace-Beltrami operator is

� = � � d + d � �), and the multiplication by the scalar curvature, there appear

some other simple operators. Let us describe this case in more detail for the linear

operators �

p

T

�

! �

p

T

�

(in the Riemannian case and under stronger assumptions

this can be also found in [Stredder, 75]).

If compared with the proof of 4.18, we have exactly one more contraction for our

disposal in each monomial. Hence we might involve also more covariant derivatives.

But once there appears R

ijklm

1

:::m

s

with s > 0, we have never enough contractions

to kill a necessary number of indices. If R

ijkl

appears, then no covariant derivative

of the argument can be involved for the same reason. So there are only the following

possibilities:

(1) R

abab

v

i

1

:::i

p

; R

aba[i

1

v

i

2

:::i

p

]b

; R

ab[i

1

i

2

v

i

3

:::i

p

]ab

; v

i

1

:::i

p

aa

; v

[i

1

:::i

p�1

aai

p

]

Here [: : : ] denotes the alternation of the indicated indices and all natural operators

in question result from a linear combination of these �ve ones.

The codi�erential � is de�ned as the formal adjoint to d, i.e. we require

Z

U

hd!; �i� =

Z

U

h!; ��i�

for all forms ! 2 


p�1

, � 2 


p

with compact supports in U . Here h ; i is the induced

(pseudo-) Riemannianmetric de�ned by hv

i

1

:::i

p

; w

j

1

:::j

p

i =

1

p!

v

i

1

:::i

p

w

i

1

:::i

p

, and � is
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the local Riemannian volume form on U . (U is small enough to allow the existence

of �, �

i

1

:::i

m

= ((�1)

n

det(g

ij

))

1=2

"

i

1

:::i

m

, where "

i

1

:::i

m

is the Levi-Civit�a tensor.)

Clearly, the de�nition does not depend on the orientation (i.e. on the choice of �)

and � is a local linear operator 


p

! 


p�1

. Once we have chosen �, we can de�ne

the Hodge star operator � : 


p

! 


m�p

by the equality h!; �i� = ! ^ ��. This

yields for ! = v

i

1

:::i

p

the expression

�! =

1

p!

v

i

1

:::i

p

�

i

1

:::i

p

i

p+1

:::i

m

:

Now, we compute easily for ! 2 


p

� � ! =

1

p!(m � p)!

vj

1

: : : j

p

�

j

1

:::j

p

j

p+1

:::j

m

�

j

p+1

:::j

m

i

1

: : : i

p

= (�1)

(m�p)p

!:

Further we get

(�d�)(v

i

1

:::i

p

) = �(

1

p!

v

j

1

:::j

p

[i

m+1

�

j

1

:::j

p

i

p+1

:::i

m

]

) =

=

1

p!(m� p)!

v

j

1

:::j

p

[k

m+1

�

j

1

:::j

p

k

p+1

:::k

m

]

�

k

p+1

:::k

m

k

m+1

i

1

:::i

p�1

=

= (�1)

p

(m � p+ 1)v

i

1

:::i

p�1

aa

:

Let us choose ! 2 


p�1

, � 2 


m�p

and write the equation for � with ! and ��:

0 =

Z

U

(�1)

p(m�p)

d! ^ � �

Z

U

! ^ (�� � �) =

Z

U

(�1)

p(m�p)

d(! ^ �):

Since this holds for all ! and �, we get ��� = (�1

p(m�p)+p

d) and so, �nally,

� = (�1)

pm+m+1

(�d�) = (�1)

(p+1)(m+1)

(m � p+ 1)v

i

1

:::i

p�1

aa

:

Now, we are ready to write down the generators from (1) (up to constant mul-

tiples).

4.21. Proposition. All linear operators �

p

T

�

! �

p

T

�

on pseudo-Riemannian

manifolds which are homogeneous with weight �2 are linearly generated by the

following generators: the multiplication by scalar curvature, the contraction with

the Ricci curvature, the contraction with the full pseudo-Riemannian curvature ,

the compositions � � d and d � �.

4.22. Operations on oriented pseudo-Riemannianmanifolds. Let us notice

that in the description of natural operators S

2

+

T

�

�E ! F we used the O(m

0

; n)-

invariance as late as at the very end of 4.17 and that the whole proof of 4.18 uses

only the discussion on the steps from Proposition 4.17. Therefore, we can prove

easily:
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Theorem. All natural operators D : T

(s;r)

! T

(q;p)

, s < r, on oriented pseudo-

Riemannianmanifoldswhich are homogeneous in weight result from a �nite number

of the following steps:

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor

or the covariant derivatives of the tensor �elds from the domain

(b) tensorize by the metric or by its inverse

(c) tensorize by the (pseudo-) Riemannian volume form �

(d) apply arbitrary GL(m)-equivariant operation

(e) take linear combinations.

Proof. It remains to prove that the covariant derivatives of the volume form �

cannot be involved. But the latter are zero, for the covariant derivative is de�ned

through the parallel transport which consists of isometries. �

Let us remark that the latter theorem, as well as Theorems 4.17 and 4.10 are

valid also without the requirement s < r if we add the polynomiality assumption.

4.23. Possibly-conformal linear operators on forms. At the end of this sec-

tion, we prepare some technical results which shall be of fundamental importance in

our description of all conformally invariant operators on conformally at manifolds

in Section 8.

As we have mentioned, the volume form � is de�ned by the expression �

i

1

:::i

m

=

((�1)

n

det(g

ij

))

1=2

"

i

1

:::i

m

(the signature is (m

0

; n)) and so it is evidently homoge-

neous with weightm. Thus, the homogeneous weight of � : 


p

! 


m�p

ism�2p. In

general, there exist more possibly-conformal natural operators in the oriented case.

First of all, if the dimensionm = 2p is even, then �� : 


p

! 


p

is identity up to sign

and we can split the space of p-forms, 


p

= 


p

+

�


p

�

, where 


�

are the two eigen

spaces for �. We shall see later that these spaces are not only O(m

0

; n)-invariant

but even irreducible. If we compose the exterior di�erential d with the projections,

we get the operators d = d

+

+ d

�

and the compositions d � d

�

are not more zero.

Further, it might happen that composing enough d's and �'s together, we get a

possibly-conformal operator. Let us write �

q

= �d � : : :d� : 


q+1

! 


m�q�1

, q < p,

with m� 2q � 1 stars involved, and D

q

= d � �

q

� d : 


q

! 


m�q

.

Proposition. If the dimension m = 2p is even, then each operator D de�ned by

D = D

q

= d��

q

�d or D = �

q

�d or D = �

q

is a possibly-conformal natural operator

on oriented pseudo-Riemannian manifolds. In particular, D

p�1

: 


p�1

! 


p+1

equals to d � d = d � d

+

� d � d

�

. Up to constant multiples and up to terms

involving the curvature and its covariant derivatives, the operators D are the only

non-zero possibly-conformal linear natural operator on forms on (oriented) pseudo-

Riemannian manifolds beside the exterior di�erentials d, d

�

and the identities.

If the dimensionm is odd, then up to constant multiples and up to terms involv-

ing the curvature and its covariant derivatives, the only non-zero possibly-conformal

linear natural operators on forms on (oriented) pseudo-Riemannian manifolds are

the exterior di�erentials and the identities.

Proof. Clearly each operator D is natural. If we start in 


q+1

and apply �d�,

then the mappings go: 


q+1

7! 


m�q�1

7! 


m�q

7! 


q

while the weights which

are added are: 0 7! m � 2q � 2 7! m � 2q � 2 7! �2 (the total is obvious { the
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weight of �). Hence if m = 2p, q < p and if we start at 


q+1

we reach weight zero

exactly after composing (m � 2q � 2)-times d� and applying � at the very end. In

all other cases we never get weight zero, for each turn around decreases the weight

by 2 and once we get back to the initial position with a negative weight in all three

last positions the hope is lost.

Let us now perform the discussion from 4.18 in this special situation and let us

restrict ourselves to the natural operators on the whole category of (not oriented)

pseudo-Riemannian manifolds. If we want to get a linear operator D : 


q

! 


q

0

which is non-zero on at manifolds, then the only monomials which make sense

are of the form v

i

1

:::i

q

l

1

:::l

s

. Since we do not admit the curvatures, we may restrict

ourselves to the at case and so the covariant derivatives l

k

are symmetric. Thus

at most one index among the l's may remain uncontracted and at most one can be

contracted with some of the i's. Hence what we only can do is to involve 2s or 2s+1

or 2s+2 derivatives, to choose s pairs, to contract them and to contract one of the

remaining indices (if any) with some of the i's. Hence, up to constant multiples

and linear combinations, D = d � � : : : � d or D = � � d : : :� d or D = d � � : : : � � or

D = � � d : : : � � and we get q

0

� q = 1 or 0 or 0 or �1, respectively.

On the space of all natural operators D : 


q

! 


q

0

, there is the canonical action

ofO(m

0

; n)=SO(m

0

; n) =Z

2

and so each such operator is a sumD = D

+

+D

�

where

D

+

is invariant with respect to the change of orientation whileD

�

changes the sign.

If D is natural and possibly-conformal, then also both D

+

and D

�

are natural and

possibly-conformal. Now, notice that ��D

�

is invariant with respect to the change

of orientation and D

�

= � � �D

�

. Thus, �D

�

: 


q

! 


m�q

0

and, up to constant

multiples and linear combinations, either m�q

0

�q = 1 and ��D

�

= �d�� : : :�d, or

m�q

0

�q = 0 and ��D

�

= �� �d : : :�d or ��D

�

= �d�� : : :��, or m�q

0

�q = �1

and ��D

�

= ���d : : :��. The last Hodge star in these operators acts on 


m�q

0

and

so its weight is 2q

0

�m. If m is odd then this can never kill the even negative weight

appearing through �'s. Thus, there is no codi�erential involved in the expression,

D

�

= 0 and D is either exterior di�erential or identity (up to constant multiples).

This proves the last statement of the proposition.

If m = 2p is even and 2q

0

�m < 0, then the weight of � is negative and we get the

same result as in the odd-dimensional case. If 2q

0

�m � 0, then a simple discussion

shows that the only possible operators are those listed in the proposition. �

We can describe the most interesting operators by the following two diagrams,

separately for the even and odd dimension m.

The even case m = 2p:




p

+

h

h
hj

d

)'

'
'

d

+




0

w

d




1

w

d

� � � w

d




p�1




p+1

w

d

� � � w

d




m�1

w

d




m




p

�

CA

A

A

d

�

�

�

��

d

D

p�1

=d�d=d�d

+

�d�d

�

u

D

1

=d�(�d)

m�3

u

D

0

=d�(�d)

m�1

u

The diagram is not commutative! The horizontal line is exact, but not the arrows

in the central diamond. On the other hand, all three operators 


p�1

! 


p+1
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di�er by constant multiples. The diagram does not exhaust all operators from the

proposition, but notice that the operators indicated on the arrows are unique, up

to multiples.

The odd-dimensional case coincides with the de Rham resolvent:

0 w 


0

w

d




1

w

d

� � � w

d




m�1

w

d




m

w 0

We shall see later on, that the arrows in the above diagrams correspond exactly

to the conformal operators on forms on conformally at manifolds.

4.24. Linear operators on functions. Another important information is the

description of all homogenous linear operators on functions with values in functions.

For each even number 2k 2 N we de�ne the operator A

k

: 


0

! 


0

by A(v) =

v

b

1

b

1

:::b

k

b

k

, i.e. we take the 2k-th covariant derivative of v and contract all indices.

Notice that if we change our choice of the contracted couples of indices then the

result di�ers by some expression built of curvatures and its covariant derivatives,

cf. 4.13. In particular, on the at manifolds we get no di�erence. The operator A

k

is a homogeneous natural linear operator with weight �2k. In view of the above

discussion there is no other possibility for homogenous linear operators beside those

involving the curvature or its covariant derivatives. Thus we have proved:

Proposition. Up to constant multiples and up to terms involving the curvature

and its covariant derivatives, the operators A

k

are the only linear homogeneous

natural operators de�ned on functions with values in functions. In particular, there

are no homogeneous operators with an odd weight.

5. Conformally at manifolds

5.1. Conformal structures. A conformal (pseudo-Riemannian) manifold M is

an m-dimensional manifold with a CO(m

0

; n;R)-structure, m = m

0

+ n, see 2.11

for the de�nition. Hence M is a base manifold of a principal �ber bundle FM �

P

1

M with structure group CO(m

0

; n;R). By 2.13, the latter bundles correspond

to sections of P

1

M=CO(m

0

; n;R). Whenever we choose representing local sections

with values in the cosets of P

1

M=CO(m

0

; n;R), we get an induced reduction of

P

1

M to O(m

0

; n) and, moreover, if we take another representing local sections,

then the corresponding metric will be deformed by multiplication by a smooth

real function. Analogously we de�ne the complex conformal structures on complex

manifolds.

Further, by the de�nition, a mapping f : M ! N between conformal manifolds

is a morphism inMf

m

(O(m

0

; n;R)) if and only if P

1

f(FM ) � FN , and the latter

happens if and only if f preserves each metric from the conformal class up to

multiplication by a function. Thus, we can study the conformal local isomorphisms

by �xing an arbitrary metric from the given conformal class.

In this section, we shall deal mostly with the real manifolds.

5.2. De�nition. The at conformal structure

�

FR

m

on R

m

is determined by the

canonical (pseudo-) Euclidean metric. A conformal manifold (M;FM ) is called

locally at if each point x 2M admits a local conformal isomorphism (M;FM )!

(R

m

;

�

FR

m

) de�ned at x.
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5.3. Local conformal transformations on the at R

m

. We shall write g = g

ij

for the canonical (pseudo-) metric and its evaluation on vectors will be denoted by

h ; i. Further we write jxj

2

for the value hx; xi. Each local conformal isomorphism

f determines the positive (locally de�ned) function �

2

de�ned by f

�

g = �

2

g. There

are four types of evident local conformal isomorphisms on R

m

:

(a) the transformations from O(m

0

; n;R) are de�ned globally, �(x) = 1

(b) the translations x 7! x+ a are de�ned globally, �(x) = 1

(c) the homotheties (dilatations) x 7! �x are de�ned globally, �(x) = �� is

constant

(d) the inversions x 7! jx�x

0

j

�2

(x�x

0

) are de�ned for all x with jx�x

0

j

2

6= 0,

�(x) is a constant multiple of jx� x

0

j

�2

.

To see that the inversions are really conformal, let us write down the tangent of the

inversion f with x

0

= 0 at x evaluated on �. We get T

x

f:� = jxj

�2

��2h�; xijxj

�4

x,

so that jxj

4

jT

x

f:�j

2

= h� �

2h�;xi

hx;xi

x; � �

2h�;xi

hx;xi

xi = h�; �i. This yields the � as stated

in (d).

These four types of mappings generate a pseudogroup of local conformal trans-

formations. If the dimension m = 2, then there is a plenty of other locally de�ned

conformal transformations, for each complex analytic function is conformal. We

shall restrict ourselves to the case m � 3 in the rest of this section.

5.4. The Liouville theorem. All smooth local conformal transformations on

the pseudo-Euclidean space R

m

0

+n

, m

0

+ n � 3, are generated by the mappings

5.3.(a){(d).

Proof. The indices in this proof will be always concrete (no `Penrose abstract index

notation'). Let us consider a locally de�ned conformalmapping f : R

m

! R

m

. This

means, the Jacobi matrix D = D(x) = (

@f

i

(x)

@x

j

) is an element of CO(m

0

; n;R) for

each x from the domain. Equivalently, for each tangent vector � at x we have

jD(x):�j

2

= (�(x))

2

j�j

2

for some �xed smooth positive function �. We shall use

the brief notation D�(x) := Tf � �(x) for an arbitrary vector �eld �. Consider a

local frame �

1

; : : : ; �

m

at x belonging to the at O(m

0

; n;R)-structure, e.g. we may

identify �

1

; : : : ; �

m

with the standard basis of R

m

. We shall view � as constant

vector �elds on R

m

. Then we have (globally)

(1) 0 = h�

i

; �

j

i = hD�

i

; D�

j

i; i 6= j:

If we di�erentiate the latter equality in the direction of a third vector �eld �

k

, we

get

(2) 0 = @

�

k

hD�

i

; D�

j

i = h@

�

k

D�

i

; D�

j

i+ hD�

i

; @

�

k

D�

j

i:

Now, we �x three di�erent indices i, j, k (recall m � 3) and we write down (2) three

times with a cyclic permutation of these indices. Since our choice of the �'s is a

very special one, we have @

�

i

D�

j

= @

�

j

D�

i

(in fact D�

k

(x) =

P

i

(@f

i

=@x

k

)(x)�

i

(x)

and �

i

is constant, and so the latter claim follows from the symmetry of the second

partial derivatives). Thus, if we add the �rst two equalities and subtract the third

one, we obtain

h@

�

i

D�

j

; D�

k

i = 0:
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Since this holds for each k with k 6= i, k 6= j, there are functions �

ij

and �

ij

such

that

(3) @

�

i

D�

j

= �

ij

D�

i

+ �

ij

D�

j

:

By the de�nition, these functions satisfy

(4)

�

ij

=

1

jD�

i

j

2

h@

�

i

D�

j

; D�

i

i =

1

2�

2

j�

i

j

2

@

�

j

hD�

i

; D�

i

i =

1

�

@

�

j

�

�

ij

=

1

�

@

�

i

�:

Let us denote �(x) =

1

�(x)

. The Hessian H =

@

2

�(x)

@x

i

@x

j

is a bilinear form at each x

from the domain.

Sublemma. It holds H(x) = �g(x) with � constant.

Proof. We shall write y = f(x). Using (3) and (4) we express @

�

i

@

�

j

(�y):

(5) @

�

i

@

�

j

(�y) = (@

�

i

@

�

j

�)y + (@

�

j

�)D�

i

+ (@

�

i

�)D�

j

+ �(@

�

i

@

�

j

y) =

= (@

�

i

@

�

j

�)y + �(�

ij

D�

i

+ �

ij

D�

j

) �

1

�

2

(@

�

j

�)D�

i

�

1

�

2

(@

�

i

�)D�

j

= (@

�

i

@

�

j

�)y:

If we di�erentiate (5) with respect to �

k

, we get

@

�

k

@

�

i

@

�

j

(�y) = (@

�

i

@

�

j

�)D�

k

+ (@

�

k

@

�

i

@

�

j

�)y:

Since two of the three terms commute in i, j, k, the third one must commute as

well. Hence we have for two linear independent vectors D�

k

and D�

i

the equality

(@

�

i

@

�

j

�)D�

k

= (@

�

k

@

�

j

�)D�

i

. This implies H(�

i

; �

j

) = 0 for all i 6= j. Since the

vectors satisfy h�

i

; �

j

i = 0, the latter means H

ij

(x) = �(x)g

ij

= 0 for all di�erent

indices i, j. Since the function � is invariant with respect to isometries, H

ii

(x) are

determined by H

11

=: �(x) and H

ij

(x) = �(x)g

ij

for all indices i and j. We choose

now an arbitrary third index k and di�erentiate

@

�

k

@

�

i

@

�

j

� = (@

�

k

�)h�

i

; �

j

i:

The left hand side is commutative in i and k, so we get

h(@

�

k

�)�

i

� (@

�

i

�)�

k

; �

j

i = 0:

Since all the three vectors are linearly independent, the latter implies @

�

k

� = 0 and

so � is constant. �

The sublemma yields the system of partial di�erential equations for � which is

easy to solve:

@

2

�

@x

i

@x

j

= �g

ij

�(x) =

1

�(x)

= a

1

jx� x

0

j

2

+ b

1

; a

1

; b

1

2 R:
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If we apply the same procedure to the inverse mapping x = f

�1

(y) we get

�(y) =

1

�(y)

=

1

�

= a

2

jy � y

0

j

2

+ b

2

and so the relation �(x)�(y) = 1 yields the implicit description of f

(6) (a

1

jx� x

0

j

2

+ b

1

)(a

2

jy � y

0

j

2

+ b

2

) = 1:

Composing with translations we can arrange x

0

= y

0

= f(0) = 0. The implicit

expression (6) shows that f transforms spheres into spheres. Let us �x x with

jxj

2

> 0 (if jxj

2

� 0 for all x, we can go through the whole proof with �g instead

of g) and let us de�ne a curve [0;1) ! R

m

, t 7! x(t) =

t

jxj

x. This curve is

transformed into a curve y(t) = f(x(t)) and we can evaluate the value jyj = jf(x)j

as follows (notice jyj

2

> 0 as jxj

2

> 0)

jyj =

Z

jxj

0

djy(t)j

dt

dt =

Z

jxj

0

�(x(t))dt =

Z

jxj

0

1

a

1

t

2

+ b

1

dt:

The integral on the right-hand side is a transcendent function in jxj, except a

1

b

1

=

0. In view of (6), either a

1

= 0 or b

1

= 0.

Assume a

1

= 0. Hence both � and � are constant and so (5) shows that y = f(x)

is linear. Consequently f must be an element from CO(m

0

; n).

If b

1

= 0, then the composition of f with the inversion reduces the situation to

the previous case and the Liouville theorem is proved. �

5.5. Stereographic projections. We would like to de�ne the conformal trans-

formations globally on a suitable conformally at manifold since then they will

form a �nite dimensional Lie group and the conformal invariance of operators

will be better understood. For this reason we have to pass from the pseudo-

Euclidean spaces to pseudo-spheres. Consider the pseudo-Euclidean space R

m

with

the canonical pseudo-metric described by the matrix J =

�

I

m

0

0

0 �I

n

�

and the

space R

m+2

= R�R

m

0

+n

�R equipped with the form

S =

0

@

0 0 1

0 J 0

1 0 0

1

A

This is a realization of the pseudo-Euclidean space with signature (m

0

+ 1; n+ 1)

and the `light cone' x

T

Sx = 0 of all vectors with jxj

2

= 0 describes a quadric in

the projective space P

m+1

(R). This quadric is called the M�obius space S

(m

0

;n)

. We

shall identify the M�obius space with the pseudo-sphere S

(m

0

;n)

, at least locally.

Consider a (`�nite') point (z; y) = (z; y

1

; : : : ; y

m

) 2 R

m+1

, jyj

2

+ z

2

= 1, on the

(pseudo-) sphere y

T

Jy+z

2

= 1. Let us de�ne a point in P

m+1

(R) with homogeneous

coordinates (x

0

; : : : ; x

m+1

)

x

0

=

1

p

2

(z � 1); x

m+1

=

1

p

2

(z + 1); x

1

= y

1

; : : : ; x

m

= y

m

:



50 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

Clearly x

T

Sx = z

2

�1+y

T

Jy = 0, hence we have de�ned a mapping � transforming

the `�nite part' of the pseudo-sphere into S

(m

0

;n)

. We claim that this mapping is

injective and in the positive de�nite case even bijective.

Indeed, let us take x = (1; p; q) = (1; p

1

; : : : ; p

m

; q) 2 S

(m

0

;n)

and try to �nd some

suitable multiple of these homogeneous coordinates to obtain the corresponding

point �

�1

(x) = (z; y) on the pseudo-sphere. So let us consider a multiple of the

�rst and the last coordinates and try to �nd the factor so that the �rst two relations

in the de�nition of � are satis�ed: c =

1

p

2

(z�1), cq =

1

p

2

(z+1), i.e. z =

p

2c+1 =

p

2cq � 1. So a good possibility seems to be c =

p

2

q�1

. Since x 2 S

(m

0

;n)

, we have

2q = �jpj

2

. Hence c =

�

p

2

1+

1

2

jpj

2

and z =

�2

1

2

jpj

2

+1

+ 1 =

1

2

jpj

2

�1

1

2

jpj

2

+1

. A direct evaluation

shows z

2

+ c

2

jpj

2

= 1 so that we really get a point of the pseudo-sphere and we

had no free choice. If the signature is (m; 0), we have a global bijection (the point

with z = 1 is obtained if we replace the roles of the �rst and the last homogeneous

coordinate), but if the metric is inde�nite, we need

1

2

jpj

2

6= �1.

Every vector p 2 R

m

de�nes the matrix P =

0

@

0 0 0

p 0 0

0 �p

T

J 0

1

A

which lies in

the Lie algebra o(m

0

+ 1; n + 1) (i.e. P

T

S + SP = 0). Applying the exponential

mapping, we obtain a matrix in O(m

0

+ 1; n+ 1)

(1) expP =

0

@

1 0 0

p I

m

0

�

1

2

jpj

2

�p

T

J 1

1

A

In this way we get a mapping  : R

m

! S

(m

0

;n)

(2) p 7! exp

0

@

0 0 0

p 0 0

0 �p

T

J 0

1

A

0

@

1

0

0

1

A

=

0

@

1

p

�

1

2

jpj

2

1

A

For all points with jpj

2

6= �2 we can compose this mapping with the inverse of

the above injection � of the pseudo-sphere and we get the so called stereographic

projection ' : R

m

! S

(m

0

;n)

(3) p 7! (z; y) = (

1

2

jpj

2

� 1

1

2

jp

2

j+ 1

;

�

p

2p

1

2

jpj

2

+ 1

) 2 S

(m

0

;n)

� R

m+1

:

S

(m

0

;n)

R

m

/'

'

'

')

 

i

i

i

ij

'

S

(m

0

;n)

u

y

�
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Lemma. The mapping ' is conformal with the corresponding `dilatation function'

(�(p))

2

=

2

(

1

2

jpj

2

+1)

2

.

Proof. Let us write R

m

0

+n+1

= R�R

m

0

+n

where the second term in the product

is the pseudo-Euclidean space with signature (m

0

; n) while the �rst one is the usual

R. Let a be the vector (1; 0; : : : ; 0) 2 R� R

m

0

+n

, i.e. ha; xi = 0 if and only if

x 2 f0g �R

m

0

+n

.

If we compose our sterographic projection with multiplication p 7! �

p

2p we

get the more usual formula for the stereographic projection. This composition

corresponds to the translation of the whole `projection hyper-plane' in R

m+1

to the

point (1 �

p

2)a and taking the symmetry with respect to the origin. Both these

maps are conformal, so we can work with the more usual formula

(4) �'(p) =

2

jpj

2

+ 1

p+

jpj

2

� 1

jpj

2

+ 1

a

in our proof. In order to prove that (4) is conform, we have to evaluate jT

p

':�j for

a tangent vector � at a point from the domain of �'. We have

T

p

�':� =

2�(jpj

2

+ 1)� 4ph�; pi+ 4ah�; pi

(jpj

2

+ 1)

2

j(jpj

2

+ 1)

2

T

p

�'�j

2

= j2�(jpj

2

+ 1)� 4ph�; pi+ 4ah�; pij

2

= 4(jpj

2

+ 1)

2

h�; �i:

The dilatation for the ' in the statement of the proposition is obtained by inserting

1

p

2

p into the latter formula.

5.6. The group of conformal transformations. The Lie group O(m

0

+1; n+1)

acts transitively on the M�obius space S

(m

0

;n)

. We shall use 5.5.(2) for a represen-

tation of all local conformal transformations on the pseudo-Euclidean R

m

0

+n

as

global transformations of S

(m

0

;n)

.

(a) A 2 O(m

0

; n), i.e. jApj

2

= jpj

2

, yields

0

@

1

p

�

1

2

jpj

2

1

A

7!

0

@

1 0 0

0 A 0

0 0 1

1

A

0

@

1

p

�

1

2

jpj

2

1

A

=

0

@

1

Ap

�

1

2

jpj

2

1

A

(b) the translation p 7! p+ q corresponds to the action of expQ, cf. 5.5.(1)

0

@

1

p

�

1

2

jpj

2

1

A

7!

0

@

1 0 0

q I

m

0

�

1

2

jqj

2

�q

T

J 1

1

A

0

@

1

p

�

1

2

jpj

2

1

A

=

0

@

1

p+ q

�

1

2

(jpj

2

+ jqj

2

+ 2hq; pi)

1

A

(c) the dilatation p 7! �p, � 6= 0, is expressed by

0

@

1

p

�

1

2

jpj

2

1

A

7!

0

@

�

�1

0 0

0 I

m

0

0 0 �

1

A

0

@

1

p

�

1

2

jpj

2

1

A

=

0

@

�

�1

p

�

1

2

�jpj

2

1

A

=

0

@

1

�p

�

1

2

j�pj

2

1

A
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(d) the inversion p 7!

1

jpj

2

p is not de�ned at jpj = 0, but the corresponding

transformation on S

(m

0

;n)

is de�ned globally by

0

@

1

p

�

1

2

jpj

2

1

A

7!

0

@

0 0 �2

0 I

m

0

�

1

2

0 0

1

A

0

@

1

p

�

1

2

jpj

2

1

A

=

0

@

jpj

2

p

�

1

2

1

A

If jpj 6= 0 the value equals to x

T

= (1;

1

jpj

2

p;�

1

2

jpj

�2

).

Using the inversion, we see that all these transformations are well de�ned also in

the points with homogeneous coordinates starting with x

0

= 0.

5.7. Spheres as homogeneous spaces. The transformations 5.6.(a){(d) gener-

ate the whole group O(m

0

+1; n+1) and, together with the conformal sterographic

projections, they de�ne a smooth atlas and a conformal structure on S

(m

0

;n)

. Since

all conformal transformations of S

(m

0

;n)

must be locally generated by those from

O(m

0

+ 1; n+ 1), the elements from O(m

0

+ 1; n+ 1) exhaust exactly all conformal

transformations on S

(m

0

;n)

. Let us �x the point x = (1; 0: : : : ; 0) 2 S

(m

0

;n)

. Its

isotropy group B consists of matrices of the form

0

@

a

�1

q �

0 A �

0 0 a

1

A

where A 2 O(m

0

; n), q 2 R

m

, a 2 R, a 6= 0, and the stars indicate expressions

determined by A, and q. This subgroup is called the Poincar�e conformal group.

Consequently, we have identi�ed the pseudo-spheres (or, more precise, the M�obius

spaces) with the homogeneous spaces O(m

0

+ 1; n + 1)=B and the canonical left

actions of O(m

0

+ 1; n+ 1) on them exhausts just all conformal transformations.

The same description with complex orthogonal groups applies to the complex

confomal spheres.

5.8. The conformal structure on S

(m

0

;n)

. If we employ the stereographic pro-

jection, we can identify elements h from the Poincar�e conformal group with locally

de�ned di�eomorphisms �(h) on R

m

0

+n

. By our construction and by the Liouville

theorem, �(h) = id

R

m

if and only if j

2

0

(�(h)) = j

2

0

id

R

m

and we can identify the

Lie group B with a subgroup of invJ

2

x

(S

(m

0

;n)

; S

(m

0

;n)

)

x

, and via the stereographic

projection with a subgroup in the jet group G

2

m

. The situation can be described

by a diagram

O(m

0

+ 1; n+ 1)

u

w

?

�

�

�

��

P

2

S

(m

0

;n)

u

P

2

R

m

'

'

'

')

P

2

'

u

R

m











�

'

[

[

[

[

[]

'

S

(m

0

;n)

w

id

S

(m

0

;n)
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The stereographic projection determines a locally de�ned map O(m

0

+ 1; n+ 1)!

P

2

R

m

indicated in the diagram. This map is equivariant with respect to the prin-

cipal action of the Poincar�e conformal group and extends to a global map. Conse-

quently, O(m

0

+ 1; n+ 1) can be viewed as a reduction of the second frame bundle

P

2

S

(m

0

;n)

. This will be of basic importance later on for linking the results obtained

in the at case with the conformal invariance on curved conformal manifolds.

5.9. Proposition. The Lie algebra b of the group B � O(m

0

+1; n+1) decomposes

as a sum of b

0

= co(m

0

; n) and b

1

= R

m�

with the projections

0

@

�a 0 0

0 A 0

0 0 a

1

A

7! A+ aI

m

0

@

0 q 0

0 0 �Jq

T

0 0 0

1

A

7! q

where A 2 o(m

0

n), a 2 R, q 2 R

m�

.

The whole algebra decomposes as o(m

0

+1; n+1) = b

�1

+ b

0

+ b

1

, where b

�1

=

R

m

corresponds to the Abelian group of the `translations', see 5.5.(2), and this

decomposition is a grading. All three summands are subalgebras, b

�1

are Abelian.

The remaining non-trivial commutators are [A;A

0

] = AA

0

� A

0

A, [A; p] = Ap,

[q; A] = qA and [p; q] = pq � J(pq)

T

J+ (qp)I

m

with A;A

0

2 co(m

0

; n), p 2 b

�1

,

q 2 b

1

. Further,

(1) There is the distinguished element E = �I

m

2 b

0

satisfying

b

i

= fX 2 o(m

0

+ 1; n+ 1); [E;X] = iXg; i = �1; 0; 1:

(2) The linear endomorphism � : g! g de�ned for all X

i

2 b

i

by

�(X

�1

+X

0

+X

1

) = �X

�1

+X

0

�X

1

is an ivolutive automorphism of g

(3) hb

�1

+ b

1

; b

0

i = 0, i.e. b

�1

and b

1

are orthogonal to b

0

with respect to the

Killing form

(4) the Killing form is zero on b

�1

and b

1

(5) b

1

and b

�1

are dual spaces with respect to the Killing form

(6) the adjoint representations of b

0

on b

�1

and b

1

are contragredient repre-

sentations on the dual spaces

Proof. The proof of the �rst part consists in obvious computations of the commu-

tators and veri�cations that the values are in the proper subspaces. Let us show at

least one case. Given q 2 R

m�

and p 2 R

m

we have

2

4

0

@

0 0 0

p 0 0

0 �p

T

J 0

1

A

;

0

@

0 q 0

0 0 �Jq

T

0 0 0

1

A

3

5

=

0

@

�qp 0 0

0 pq � Jq

T

p

T

J 0

0 0 p

T

q

T

1

A

= (pq � Jq

T

p

T

J+ qpI

m

)

The other cases are even easier.
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Knowing the commutator relations, (1) and (2) are obvious. Since the Killing

form is invariant with respect to �, we get

hX

�1

+X

1

; X

0

i = h�(X

�1

+X

1

); �(X

0

)i = �hX

�1

+X

1

; X

0

i

and (3) follows. We have adX

�1

adY

�1

= 0 on b

�1

(since the value would be in

b

�3

) and so the Killing form must be zero on b

�1

. Similarly for b

1

.

In order to prove (5), let us assume hX

�1

; b

1

i = 0. Then (3) and (4) imply

hX

�1

; gi = 0 and so X

�1

= 0. Analogously we proceed for hX

1

; gi and this proves

(5).

Since the Killing form is invariant under the action of adX

0

, we have

had(X

0

)X

�1

; X

1

i = �hX

�1

; ad(X

0

)X

1

i;

X

�1

2 b

�1

, X

0

2 b

0

. This veri�es (6). �

5.10. The Lie subalgebra b

1

� b corresponds in the jet picture to the kernel of

the projection G

2

m

! G

1

m

. The Lie algebras of the jet groups are the algebras of

jets of formal vector �elds with the bracket being the negative of the jets of the Lie

brackets of the formal �elds, see [Kol�a�r, Michor, Slov�ak, 93, Section 13].

The Lie subgroup B

1

in G

2

m

corresponding to b

1

is described easily using our

identi�cations of the generators of the conformal mappings. Notice that the inver-

sion 5.6.(d) exchanges the subgroups corresponding to b

�1

. Since we know that b

�1

corresponds to translations, see 5.6.(b), we get the mappingR

m

! R

m

determined

by expq, q 2 R

m�

, by composing two inversions with the appropriate translation

by q:

x 7!

1

jxj

2

x 7!

1

jxj

2

x+ q 7!

1

jxj

2

x+ q

j

1

jxj

2

x+ qj

2

=

x+ jx

2

jq

1 + 2hx; qi+ jxj

2

jqj

2

:

A tedious but elementary calculation shows that the �rst derivative at the origin is

the identity while the second derivative at the origin evaluated at vectors � and �

is D

2

(0)(�; �) = 2(h�; �iq � h�; qi� � h�; qi�). In the usual coordinates (a

i

j

; a

i

jk

) on

G

2

m

this means B

1

= f(�

i

j

; a

i

jk

); a

i

jk

= q

a

g

ai

g

jk

� q

a

g

a

k

�

i

j

� q

a

g

a

j

�

i

k

; q

a

2 R

m�

g where

g is the pseudo-metric in question.

Now, B=B

1

= CO(m

0

; n;R) and so O(m

0

+ 1; n + 1;R)=B

1

� P

1

S

(m

0

;n)

is the

conformal structure on the pseudo-sphere in the proper sense of De�nition 5.1. The

above reduction of P

2

S

(m

0

;n)

to O(m

0

+1; n+1;R) is the so called �rst prolongation

of the �rst order CO(m

0

; n)-structure, we shall give more details on this construction

at the beginning of Section 9.

5.11. Remark. All the previous development can be repeated with the connected

component of the unit, the subgroup SO

0

(m

0

+1; n+1), instead of O(m

0

+1; n+1)

without any essential di�erence.

17

Hence the oriented pseudo-spheres are the homo-

geneous spaces SO

0

(m

0

+ 1; n+ 1)=B (with a smaller B then above, the connected

component of the unit). On the Lie algebra level, everything remains unchanged.

The above discussion on the homogeneous spaces remains also unchanged in the

complex case where we do not have to distinguish the signatures. So the complex

m-dimensional sphere is the homogeneous space SO

0

(m+2; C )=B or O(m+2; C )=B

where the B's are the complex conformal Poincar�e subgroups.

17

In the not positive de�nite case, there are four connected components, two of them form the

special pseudo-orthogonal group SO(m

0

; n;R).
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6. The �rst order natural operators

First of all we have to describe the natural bundles on conformalmanifolds. So let

us discuss briey the linear representations of the Poincar�e conformal group, i.e. the

natural vector bundles in the category of conformal manifolds, cf. 2.12. Roughly

speaking, the natural bundles on a manifold M with a B-structure are bundles

equipped with an action of the group B

M

of the local Mf

m

(B)-isomorphisms. In

our case, the Poincar�e conformal group B is the group of all conformal transforma-

tions �xing a point of the sphere. In 5.1, we de�ned the conformal structure as the

reductions of the �rst order frame bundles to the group CO(m

0

; n;R). If we de�ne

a reduction PM of the second order frame bundle P

2

M to the Poincar�e conformal

group B, then the quotient PM=B

1

� P

1

M is a reduction to CO(m

0

; n;R) and

the same is valid for the connected components of the units. On the other hand,

the general theory of prolongations of G-structures yields that P is just the �rst

prolongation of the latter conformal structure, see Section 9.

18

We shall see, there

is a naturally de�ned subbundle PM � P

2

M with structure group B on each con-

formal manifold and so, given a representation of B, there are the corresponding

bundles (associated to PM ) on all conformal manifoldsM .

Our general problem is to �nd all linear operators transforming sections of such

bundles which intertwine the actions of the conformal transformations, i.e. which

are natural.

We want also to involve the so called two-valued representations, i.e. the rep-

resentations of the double covering of the Poincar�e group. Of course, there is a

topological obstruction to the existence of the corresponding vector bundles, but

since the classi�cation problem of natural operators is a local one, we can always

restrict ourselves to manifolds with a distinguished covering of the reduction of the

frame bundle, the so called spin structure. The spheres are always spin manifolds

and so we can use the global formulation in the terms of homogeneous vector bun-

dles on spheres, cf. 2.10. But having a representation of a double covering of the

jet group in question has another, more unpleasant consequence. We cannot use

directly our de�nition of the natural operators, for there is no canonical action of

the conformal transformations on the sections of the bundles. Thus we have to use

the de�nition from 2.14 which does apply. In a large extent, the latter di�culty

will be avoided using the in�nitesimal version of naturality.

In this section, we shall employ the classical structure theory of semisimple Lie

algebras and their representations in order to describe the �rst order operators.

Our main reference is the thin introduction [Samelson, 89], where the reader can

learn quickly all necessary topics. A brief survey of some elementary concepts and

results is also involved in Section 10.

18

The �rst order structures give direct access to all �rst jets of mappings belonging to the

structure. The prolongations describe directly higher order jets of the morphisms. The conformal

structures form one of very few examples where only �nitely many non-trivial prolongations are

available. In fact already the second prolongation is trivial which reects the global dependence

of conformal morphisms on 2-jets at a single point. The O(m

0

; n;R)-structures have no non-trivial

prolongation since the isometries are determined by the �rst jets at one point. But for example,

the groups of morphisms of symplectic manifolds are in�nite dimensional and the symplectic

structures admit prolongations of any order.
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6.1. Let us remind the construction from 2.11, 2.12. For each closed Lie sub-

group in the jet group B � G

r

m

we obtain a category of manifolds with B-

structures,Mf

m

(B). In particular there are distinguished natural principal bundles

P : Mf

m

(B) ! PB

m

(B) with structure group B over the m-dimensional objects.

For each linear representation � : B ! GL(V ) we obtain the corresponding nat-

ural bundle F

�

. The Lie derivative of sections of natural bundles is de�ned for

all vector �elds with ows formed by morphisms of the category Mf

m

(B), the so

called Mf

m

(B)-�elds. But the values are in the vertical bundles. If the bundles

themselves are vector bundles, we recover the usual Lie derivative and it is easy

to see that the linear natural operators have to commute with the Lie derivative

and vice versa. For the proofs see [Kol�a�r, Michor, Slov�ak, 93, Section 48] or [Cap,

Slov�ak, 92] where the result is proved in the non-linear setting. Each natural bun-

dle F

�

admits the so called ow operator F

�

, a natural operator which transforms

Mf

m

(B)-�elds on M into vector �elds on FM . The ow of its value F

�

X is de-

�ned by the application of the functor F

�

to the ow of the Mf

m

(B)-�eld X. If

P : Mf

m

(B) ! PB

m

(B) is a natural principal bundle, then PX is right invariant

for allMf

m

(B)-�elds X.

Let us consider a linear representation � of the Lie group B in a vector space V

and the associated bundle F

�

M to the principal bundle p : PM !M . Let us write

fu; vg for the class in F

�

M determined by (u; v) 2 PM � V . The Lie derivative of

the V -valued functions on PM is de�ned as usual.

Lemma. The set of all smooth section C

1

(F

�

M ) is identi�ed with the set of B-

equivariant mappings in C

1

(PM;V )

B

, s 7! ~s, s(p(u)) = fu; ~s(u)g, and for all

Mf

m

(B)-�elds X 2 X (M ) and sections s 2 C

1

(F

�

M ). The Lie derivative L

X

s

corresponds to L

PX

~s.

Proof. We have only to write down explicitely the de�nition of the Lie derivative

and to compare it with the identi�cation from the lemma. �

6.2. The natural operators. In view of the above discussion, we can de�ne the

natural linear operators D as those systems of operators for which D

M

(L

PX

~s) =

L

PX

(D

M

~s) for all sections and Mf

m

(B)-�elds. We get exactly the linear natural

operators acting on the natural bundles on the categories over manifolds with B-

structures (de�ned separately for each manifold), but with this formulation we are

able to involve also some covering fenomena. Let us consider P and B as in 6.1, a

covering

�

B of B and two representations �

1

, �

2

of

�

B in V andW . Then some of the

natural bundles PM can be covered by principal

�

B-bundles

�

PM . Let us consider

the manifoldsM together with such coverings

�

PM as distinguished objects. Now,

each

�

PM yields the bundles F

�

i

M and each Mf

m

(B)-�eld X determines a unique

right invariant lift, denoted by the same symbol PX, on

�

PM . Hence in this setting

we can de�ne natural operators between bundles corresponding to representations

of the �nite dimensional coverings of B. Of course, such operators need not to be

de�ned on all Mf(B)-objects M , they are well de�ned only on those ones where

the coverings

�

PM do exist, cf. 2.14.

De�nition. Let �

1

:

�

B ! GL(V ), �

2

:

�

B ! GL(W ) be �nite dimensional linear

representations. A system of local operators D

M

: C

1

(F

�

1

M )! C

1

(F

�

2

M ),M 2

ObMf

m

(B), is called an in�nitesimally natural operator if and only if D(L

PX

~s) =
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L

PX

(D~s) for all Mf

m

(B)-�elds X on M , and D

U

(sjU ) = D

M

(s)jU for all section

s 2 C

1

(F

�

1

M ) and open submanifolds U � M .

In the sequel, we shall write B for the connected component of the unit in

the Poincar�e conformal group and G for the connected component of the unit in

O(m

0

+ 1; n + 1) or their double coverings. We have described in detail the Lie

algebra g of G, g = b

�1

� b

0

� b

1

in the last section. We have seen that the

subgroup of conformal transformations of the sphere S

(m

0

;n)

�xing a point can be

identi�ed with a subgroup in the second jet group G

2

m

. As mentioned above, there

is the natural principal bundle functor P � P

2

on the conformal manifolds and

each representation � : B ! GL(V ) gives rise to a vector bundle functor F

�

on

Mf

m

(B), FM = PM �

�

V . The representations of its double-covering will be

referred to as two-valued representations of B, the classical terminology which is

useful since we shall work on the level of Lie algebras.

In order to get general information on the invariant operators, we have to restrict

our class of natural vector bundles to those coming from (�nite dimensional) irre-

ducible representations of B. Unfortunately, we exclude a lot of representations of

B which are not completely reducible, but we still cover all �rst order bundles. The

normal subgroup B

1

corresponding to b

1

is commutative and B=B

1

is isomorphic

to SO

0

(m

0

; n;R)�R

�

(or its double-covering), where R

�

means the commutative

multiplicative group in R (remember, SO

0

(m

0

; n;R) denotes the connected com-

ponent of the unit for all signatures of the metrics). On the Lie algebra level, we

get the induced representation �

0

= T

e

� and the ideal b

1

acts by nilpotent endo-

morphisms by the Engel's theorem (b = b

0

� b

1

is the Levi decomposition). By

the irreducibility, the action of b

1

must be trivial. Thus, � is a trivial extension

of an irreducible representation �

1

of SO

0

(m

0

; n;R)� R

�

and the vector bundles

in question are associated bundles P

1

�

�

1

V , where P

1

= P=B

1

� P

1

is a sub

bundle in the linear frame bundle with structure group SO

0

(m

0

; n;R)� R

�

. On

the spin manifoldsM , the principal bundle P

1

M lifts to

~

P

1

M with structure group

Spin(m

0

; n;R)�R

�

and there is the associated vector bundle

~

P

1

M �

�

V for each

two-valued representation � of SO

0

(m

0

; n;R)�R

�

.

6.3. The conformal weight. The reductive part b

0

in the Levi decomposition

b = b

0

� b

1

decomposes further to the center and the semisimple part, b

0

=

R�o(m

0

; n;R). So an irreducible representation

�

� of b

0

(i.e. also of b) is determined

by an element � from the dual of the center R

�

and a dominant integral weight �

for o(m

0

; n;R). The element �� is a real number called the conformal weight of

the irreducible representation

�

�. We shall write V

�

for the irreducible o(m

0

; n;R)-

module corresponding to the given dominant weight � and V

�

(�) will denote the

irreducible representation with the conformal weight �. The action of t + A 2

R�o(m

0

; n;R) on v 2 V

�

(�) is v 7! ��t:v+(A:v) where the dot denotes the action of

o(m

0

; n;R) and the multiplication by a scalar is without notation. On the Lie group

level we get (tA):v = t

��

(A:v). The sign convention is used so that the conformal

weight of the metrics is two. This enables the usual identi�cation of sections of the

bundles with a conformal weight � with the sections of the corresponding bundles

on the underlying Riemannian manifolds (without the conformal weight) which

depend on the chosen metric and `rescale' by multiplication by the function f

�

if

the metric is rescaled by f

2

.
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For example, let us consider the standard GL(m;R)-representations R

m

, R

m�

,

�

m�1

R

�

. With the restrictions of the representations to the pseudo orthogonal

groups, all these O(m

0

; n;R)-representation are equivalent. However, the restric-

tions to the conformal groups yield representations with the conformal weights �1,

1 and m � 1.

6.4. Representations of the conformal groups. In 10.10 and 10.11, we �nd

the description of the irreducible representations of the complex orthogonal algebras

in the terms of the dominant weights. There is a general theorem, [Zhelobenko, 70,

p. 526] which enables to use this description also in the real case.

Let G be a semisimple real connected Lie Group and G

C

be its connected complex

form. Then each irreducible �nite dimensional representation of G is uniquely

determined (up to equivalence) by one of the dominant weights of a covering of G

C

.

If we start with a concrete dominant weight, we take the corresponding complex

representation space, we view this space as a complexi�cation of a real one and

restrict the action of the complex group to the real subgroup. It is even possi-

ble to verify directly that we get irreducible representations in this way using the

method mentioned in the footnote in 3.13 and Lemma 3.16 where we proved that

SO

0

(m

0

; n;R) is birationally isomorphic to an a�ne space.

Of course, there is a di�erence concerning the possible conformal weights. If

dealing with representations of the Lie algebras, they are quite arbitrary elements

in the center of co

0

(m

0

; n;K), hence arbitrary real or complex numbers. However

only in the real case all of them also exponentiate to representations of the connected

components of the unit in CSO

0

(m

0

; n;R).

6.5. Remark. For many Lie subgroups B � G

r

m

, the category Mf

m

(B) of man-

ifolds with B-structures involves enough local isomorphisms to be locally homo-

geneous (i.e. there is a local model for all objects and morphisms) and all local

isomorphisms belong to ows ofMf

m

(B)-�elds. In such a situation, the in�nitesi-

mally natural operators are systems of operators commuting with the actions of the

morphisms, hence the usual natural operators. For detailed discussion see [Cap,

Slov�ak, 92].

Unfortunately, dealing with the category of conformal manifolds, we are very

far from the latter situation. On the contrary, the manifolds (generically) admit

no conformal vector �elds, and the objects are highly non-homogeneous. Thus,

our de�nition of in�nitesimally natural operators yields systems of operators which

commute with the actions of the morphisms on subcategories which are homoge-

neous enough, e.g. on the locally conformally at manifolds.

6.6. The �rst order operators on conformal manifolds. In the rest of this

section, we shall solve the following problem: For a given dimension m �nd all

non-zero �rst order natural operators D : F

�;�

! F

�;�

between the vector bundles

corresponding to dominant weights �, � of o(m

0

; n;R) and conformal weights �, �.

So let us �x the weights �, �, �, � and write E ! S

(m

0

;n)

, F ! S

(m

0

;n)

for

values of the corresponding natural bundles E

�;�

, F

�;�

on the pseudo-spheres. Let

us notice that the pseudo-spheres are always spin manifolds, so that this is possible

for all dominant weights. In view of the general theory of natural bundles, the

description of all in�nitessimally natural operators on the pseudo-spheres and their
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open submanifolds yields the description of all natural operators on the conformally

at Riemannian manifolds.

In general, it is a di�cult problem to �nd all possible extensions of a given

operator to the whole category of conformal Riemannian manifolds, we shall touch

it in Section 9. However, dealing with �rst order operators only, the situation is

very simple and we can give a complete answer just now.

Our �rst observation will be that each �rst order operator D : C

1

E ! C

1

F on

the pseudo-sphere with the at conformal structure which intertwines the action

of the conformal isomorphisms determines a natural operator de�ned on the whole

category of conformal manifolds. In view of this fact, we shall often refer to D as

to a natural operator on the conformal manifolds in the sequel.

6.7. Proposition. Every in�nitesimally natural �rst order operator D : C

1

E !

C

1

F is invariant with respect to the whole group SO

0

(m

0

+ 1; n+ 1) of conformal

transformations and extends to a natural operator

~

D on the whole category of

oriented conformal manifolds and their morphisms.

19

Proof. Let us write briey G for the connected component of the unit of the

pseudo-orthogonal group or the spin group. The pseudo-spheres are then homoge-

neous spaces G=B. As discussed in 2.10, the left action of h 2 G on the sections

(viewed as mappings in C

1

(G; V

�

(�))

B

) is given by the left multiplication by the

inverse h

�1

. This action coincides with the induced action of the principal bundle

morphism h (acting by left multiplication) on the sections viewed as elements in

C

1

(E), see 2.10. Thus, given a ow of a conformal vector �eld (i.e. a one-parameter

subgroup in G) its action on the sections is just the left multiplication by exptX

for some element X in the Lie algebra of G. If we di�erentiate this action, we get

just the Lie derivative with respect to �X, where X stands for the right invariant

vector �eld now. So the ow lifts to a one parametric subgroup of principal bundle

morphisms which are just the ow of the above right invariant vector �eld. Hence

the in�nitesimal invariance is equivalent to the usual invariance with respect to

the whole group G, for the image of the exponential mapping generates the whole

connected component of the unit.

20

Now, assume we have found an in�nitesimally invariant operator D : C

1

E !

C

1

F . We have to prove thatD extends uniquely to the whole category of conformal

manifolds, i.e. D determines the linear �rst order operators D

M

: C

1

F

�

(�)M !

F

�

(�)M for all conformal manifoldsM and, moreover, if we deal with representa-

19

The description of the morphisms is a little unpleasant, in general. In the positive de�nite

case, the latter are just the local conformal isomorphisms keeping the orientations, so there are no

problems. However, in the case of a general signature, there are four components of the unit and

two of them are described by the value of the determinant (i.e. they form SL(m;R)\O(m

0

; n;R))

and they are further distinguished by certain subdeterminants.

20

The equivalenceof in�nitesimal invariance and the usual invariance remains valid also for the

B-structures with in�nite dimensional groups of automorphisms, see [Cap, Slovak, 92]. In fact, the

above arguments involve a lot of identi�cations. A geometric de�nition of the Lie di�erentiation

leads to an operation with values in the vertical bundles (since the Lie derivative should have

values in the `tangent space to the space of sections' being itself a derivative of curves) and using

this de�nition, the whole problem becomes very clear, provided the dimension of the group of

transformations in question is �nite. In the cited paper, the main point is to apply suitable

analytical tools in order to reduce the problem to a �nite dimensional one.
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tions of the pseudo-orthogonal groups then the latter operators have to intertwine

the actions of the local conformal isomorphisms while in the spin case they have to

intertwine with the acton of the coverings, see 2.14.

Each �rst order operator D

M

factorizes through a mapping D

1

M

de�ned on the

�rst jets of sections, see 2.5. Let us �x a point x 2 M and consider the normal

coordinates with respect to one of the metrics in the conformal class. If we compose

the latter mapping with the inverse to the stereographic projection, we get a locally

de�ned mapping ' : S

(m

0

;n)

! M with '(0) = x, where 0 2 G=B = S

(m

0

;n)

is the

point represented by the unit e 2 G, and the second jet j

2

0

' transforms the at

conformal metric on the sphere into the �rst jet of the conformal metric onM at x.

Having 'we also have the principal �ber bundle morphismP

1

' : P

1

S

(m

0

;n)

! P

1

M

and we can choose its covering

~

P

1

', if necessary. The restrictions of the �rst jet

prolongations of the induced mappings on the associated bundles to the �bers over

0 depend only on j

2

0

'. Hence we can transform the �rst jets of sections of the

homogeneous bundles on the pseudo-sphere at 0 into �rst jets of sections of the

corresponding bundles on M at x using the second jet j

2

0

' only, see the diagram

below. The induced mappings �

i

de�ne the restriction of the mapping D

1

M

to

the �ber over x which also depends only on the second jet of ' at 0 (and our

choice of the covering if any). If we choose another �' instead of ' with �'(x) =

0 and �' transforming the �rst jets of the conformal metric on M into the at

conformal metric on the sphere, then their second jets di�er by a jet of a conformal

transformation on S

(m

0

;n)

(more explicitly, by a left action of an element from G).

Since the operator D

S

(m

0

;n)

is a �rst order operator which is invariant with respect

to the action of G by the �rst part of the proof, the whole mapping D

S

m

0

;n

is

completely determined by the restriction of the induced mapping on the �rst jets

of sections to the �ber over zero. Thus every choice of ' leads to the same mapping

D

1

M

on the �ber over x and we have got a well de�ned �rst order operator D

M

on

all confomal Riemannian (spin) manifolds M .

On the other hand, the action of an arbitrary local transformation f : M ! N

on the �rst jets of sections of F

�

(�)M depends on the second jets of f in the

underlying points and so the action of each local conformal transformation f : M !

N (or the appropriate covering in the spin case) is reected pointwise as an action

of a conformal mapping on the sphere in a similar way, see the diagram below.

Consequently, D

S

(m

0

;n)

extends canonically to a system of �rst order operators D

M

invariant with respect to all local conformal isomorphisms.

J

1

0

E w

�

1

u

D

S

(m

0

n)





�

J

1

x

(F

�;�

M )

A

A

AAD

u

D

M

w

J

1

F

�;�

f

J

1

f(x)

(F

�;�

N )

u

D

N

A

A

AAD

S

(m

0

;n)

w

'

M w

f

N

F

0

�

�

��

w

�

2

(F

�;�

M )

x

h

h

hk

w

F

�;�

f

(F

�;�

N )

f(x)

h

h

hk

�
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6.8. Remarks. We can formulate the �rst part of the above proposition for the

invariant operators on homogeneous bundles, cf. 2.10. Then the �rst part of the

proof shows that the in�nitesimal naturality is equivalent to the invariance of the

operators with respect to the action of the group elements by the left multiplication

and the proof goes through for every connected �nite dimensional Lie group G

and its closed Lie subgroup B. Such operators are usually called the translation

invariant operators on homogeneous vector bundles.

In the other part of the proof, we found certain canonical extension of a given

translation invariant operator to the whole category of conformal manifolds. But

we have not mentioned any uniqueness. If we forget about the spin cases, we

can formulate the whole naturality problem for operators on natural bundles over

the whole category of m-dimensional manifolds, we add the metrics as additional

arguments and the conformal invariance is then reected as a special kind of ho-

mogeneity in the metric argument (cf. Section 4). From this point of view, the

above uniqueness problem reads: How far is the natural operator determined by its

restriction to the conformally at metrics on R

m

? For higher order operators, even

the existence problem of such an extension has not been solved yet in general.

6.9. The symbols. By the de�nition, the in�nitesimally conformally invari-

ant �rst order operators on the pseudo-spheres D

S

(m

0

;n)

are in bijection with g-

equivariant mappings D : (J

1

E)

0

! F on the �ber over 0 2 S

(m

0

;n)

, see 2.6. The

latter vector space splits as a sum of the representation space V = V

�

(�) and

V

1

= V 
R

m�

= V 
 (g=b)

�

, we shall write J

1

0

E = V � V

1

.

Recall from 2.9 that there is the exact sequence

(1) 0 �! V 
 (g=b)

�

i

�! V � V

1

�

1

0

�! V �! 0

and the composition D � i de�nes the symbol of D which is equivariant too. We

have seen in 2.16 that in the Riemannian case each equivariant symbol is a symbol

of a natural operator and it follows from the results of Section 4 that all �rst order

natural operators on Riemannian manifolds are obtained as composition of the �rst

covariant derivative and an operator of order zero in the covariant derivative but

of an arbitrary order in the metric itself.

The conformal situation is quite similar in the �rst order case, however there are

much more bundles but less operators. Each conformally invariant linear operator

is clearly invariant with respect to all isometries of any metric in the class. We shall

distinguish some of these Riemannian invariant operators, we shall show that there

are uniquely de�ned conformal weights of the bundles for which we get conformally

invariant operators and we shall prove that there are no other invariant operators

on the pseudo-spheres.

Let us write E

�

(�) for the homogeneous vector bundle over pseudo-sphere corre-

sponding to the dominant weight � of o(m

0

; n) and conformal weight �. The symbol

V

�

will denote the corresponding o(m

0

; n)-module. For further notation concerning

the weights see the Appendix.

6.10. Theorem [Fegan, 76]. Let � be a dominant weight of o(m

0

; n), m

0

+n = m,

and let R

m�


 V

�

=

P

�

V

�

be the decomposition into irreducible representations
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with dominant weights � of o(m

0

; n). Let us de�ne

�(�; �) =

1

2

(m � 1) + h�; 2� + �i � h�; 2� + �i

where � is half the sum of all positive roots of o(m

0

; n) (equivalently � is the lowest

form, i.e. the sum of all fundamental forms) and h ; i is the Killing form.

Then, beside the zero operators and the constant multiples of the identities, all

linear in�nitesimally natural �rst order operators which are de�ned on the sec-

tions of the vector bundles E

�;�

with some conformal weight � are given by the

projections

�

�

� r : C

1

(E

�

(�))

r

�! C

1

(R

m�


 E

�

(�))

�

�

�! C

1

(E

�

(�))

of the �rst covariant derivatives with respect to an arbitrary metric from the con-

formal class onto the irreducible components V

�

, and the conformal weight of E

�;�

is then � = �(�; �), while the conformal weight of E

�

(�) equals to �(�; �) + 1.

Furthermore, each irreducible component V

�

has multiplicity one and all the

dominant weights � are listed below:

(i) If m = 2l, then � = �� e

i

, 1 � i � l.

(ii) If m = 2l+1 and e

l

appears in � with a non-zero coe�cient, then � = ��e

i

,

1 � i � l, or � = �.

(iii) If m = 2l + 1 and e

l

does not appear in �, then � = � � e

i

, 1 � i � l � 1,

or � = �+ e

l

.

For the notation concerning the weights see 10.10. Let us notice that the weights

�e

i

are (possibly) not dominant, while the resulting � must be dominant and so

only some values of i are allowed for each given �.

6.11. Remarks. We shall present concrete examples in 6.21 and 6.22, in fact we

will specify the latter theorem for all fundamental weights �.

As we have seen, the operators D

S

(m

0

;n)

extend canonically to natural operators

de�ned for all conformal manifolds. Of course, there are operators like the tensor

product with conformal curvature which cannot appear in our list since they are

zero on the conformally at manifolds.

Even for the integral weights, we cannot treat the problem in the same manner

as for Riemannianmanifolds in Section 4, since only very speci�c conformal weights

allow the existence of the operators. A possibility to overcome this di�culty is to

incorporate the general conformalweights as certain homogeneity condition (linking

the argument of our linear operation and the metric) into the concept of the natural

operators. This is the point of view adopted by many authors, see e.g. [�rsted, 81],

[Branson, 85], [W�unsch, 86].

6.12. The complex case. We shall see that the description of all in�nitesimally

natural operators on the homogeneous complex vector bundles on the complex

spheres coincides with the real situation. In fact we shall prove both theorems

together. We shall keep the same notation as in the real case for the complex bun-

dles. Theorem 6.10 remains true without any change, i.e. all operators result from
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decompositions of the target space of the complex Riemannian covariant derivative,

C

m�


V

�

=

P

�

V

�

, into complex irreducible representations with dominant weights

� of o(m

0

; n) (which is in fact the same as in the real case) and the conformal weights

are prescribed by the same formula.

6.13. Idea of the proof. The whole proof will need several lemmas, but the

main idea is quite simple. Let us consider some in�nitesimally natural operator D

and let us come back to the brief notation from 6.6 and 6.9, so that V

�

(�) = V ,

E

�

(�) = E, J

1

0

E = V � V

1

and write V

�

(�) = W .

Consider an equivariant symbol mapping � : V

1

= (g=b)

�


V !W . If we dualize

the sequence 6.9.(1) and �, we get

0 g=b
 V

�

u (J

1

0

E)

�

u

i

�

V

�

u

(�

1

0

)

�

0u

W

�

u

�

�

O

O

O

O

OP

D

�

We have a non-trivial action of b

1

on the term in the middle of the row, but b

1

acts trivially on the three remaining non-zero terms. Since W , and so also W

�

, is

irreducible, �

�

must be a linear combination of embeddings of co(m

0

; n)-invariant

linear subspaces. Since D

�

is g-equivariant, the image of D

�

must be an invariant

subspace with a trivial action of b

1

. Now it is easy to read from the diagram the

conditions for � being a symbol of an invariant operator. However, we shall proceed

in a more direct way:

If there is a non-zero element y 2 (J

1

0

E)

�

with the trivial action of the whole

b

1

, then the whole linear subspace generated by the orbit b

0

:y consists of points

with the trivial action of b

1

. We assume that W is irreducible and so D

�

must be a

linear combination of embeddings of irreducible components. Since the conformal

weight of the action on (V

1

)

�

is by one less then that on V

�

, we have either y 2 V

�

or y 2 (V

1

)

�

. The �rst possibility yields the constant multiples of the identity

operator, for both V and W are irreducible. Hence we have got: the existence of a

non-trivial linear in�nitesimally conformally invariant operator D is equivalent to

the existence of a vector y 2 (V

1

)

�

with a trivial action of b

1

.

If we deal with a concrete bundle E = E

�;�

, then this is a very good starting point

to �nd all operators de�ned on E. Indeed, it is enough to �nd all y's with trivial

actions of b

1

which are at the same time highest weight vectors for o(m

0

; n;R). The

latter means, we have a rather explicit system of equations for such y's. Moreover,

this point of view restricts the whole proof to certain discussion on the highest

weight vectors. It is convenient to prove the theorem in the complex case and

specialize at the very end to the real case. In particular we sahll not need to take

care of the signature of our metric.

For given concrete bundles we even do not have to insist on the irreducibility

of the representations. However in our general setting we have to proceed more

intricate than to use directly the above idea.

6.14. The action on the �rst jets. For every b=b

1

-module E there is a very

simple formula for the action of g on the dual of the �rst jet space. Notice, we

do not require that the representation is irreducible here. In fact, this is a very
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special case of the identi�cation of (J

1

0

E)

�

with the universal enveloping algebra

of g which we shall use heavily in Section 8.

Lemma. We have (J

1

0

E)

�

= V

�

� (b

�1


 V

�

) with the action of b

1

on the second

summand given by X:(a
y) = �[X; a]:y 2 V

�

, while the action of b

0

is X:(a
y) =

�[X; a]
 y + a 
X:y.

Proof. Clearly J

1

0

E = V � (b

�

1


 V ) as a vector space. The sections can be

considered as B-equivariant mappings s : G ! V , hence also b-equivariant. The

jets from the �ber in question are then identi�ed with the expressions j

1

e

s, e 2 G

being the unit. The induced action of b must be also respected. As derived in 6.7,

the action of X 2 g is given by the Lie derivative L

�X

with respect to the right

invariant vector �eld X on G.

We shall identify an element a
 y 2 (V

1

)

�

with the linear functional de�ned by

ha
 y; j

1

e

si = hL

a

s(e); yi. Now it is easy to express the action of b:

hX:(a
 y); j

1

e

si = �ha 
 y;X:j

1

e

si = �ha 
 y; j

1

e

(L

�X

s)i

= hL

a

L

X

s(e); yi = hL

X

L

a

s(e); yi + hL

[a;X]

s(e); yi

= hL

a

s(e); X:yi � hL

[X;a]

s(e); yi:

If X 2 b

1

, then its action on y is zero and [X; a] 2 b

0

and we get the �rst formula.

Similarly we get the other expression for X 2 b

0

. �

6.15. Let us pass to the complex setting now. The action of the kernel b

1

can be

written as a linear mapping ' : b

1


 C

m


 V

�

! V

�

. Since b

1

= C

m�

, this gives

rise to the induced linear mapping  : C

m


 V

�

! C

m


 V

�

.

Lemma. There is a non-zero element in (V

1

)

�

with trivial action of b

1

if and only

if  is singular.

Proof. Notice  (Y )(X) = '(X 
 Y ). �

6.16. Lemma. It holds  = ��I

m

�B, where � is the conformal weight of E and

B is de�ned by B(a 
 y) =

P

k

e

k


 (ae

k

� J(ae

k

)J):y.

Proof. We have �rst to work out the formula for '. This is easy using Lemma

6.14 and the description of g from 5.9. For all X 2 C

m�

, a 2 C

m

, y 2 V

�

'(X 
 a
 y) = �[X; a]:y = �(XaI

m

+ (aX � J(aX)

T

J)):y

This yields

 (e

i


 y)(e

k

) = ��

k

i

I

m

:y � (e

i

e

k

� J(e

i

e

k

)

T

J):y

 (e

i


 y) = ��(e

i


 y) �

X

k

e

k


 (e

i

e

k

� J(e

i

e

k

)J):y �
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6.17. Lemma. B = C

C

m


1+1
C

V

�

�C

C

m


V

�

. Here C

Y

stands for the Casimir

operator of an o(m)-module Y .

Proof. We shall verify the formula for the even dimension m = 2p, the odd case

is analogous. Let us express B(e

j


 y) in terms of the matrices E

ij

and try to

get an expression in the action of the root elements h

!

k

�!

l , cf. 10.10. We write

h

k

= E

2k�1;2k�1

�E

2k;2k

for the orthogonal basis of the Cartan algebra. We have

h

!

k

�!

l :e

i

= 0 for nearly all j and an elementary (but long) computation leads to

(J is now the symmetric matrix used in 10.10)

B(e

j


 y) =

m

X

k=1

e

k


 (E

jk

� JE

kj

J):y =

X

!

l

�!

k

l>k

h

!

l

�!

k
:e

j


 h

!

k

�!

l
:y+

+

X

!

l

�!

k

l<k

h

!

l

�!

k :e

j


 h

!

k

�!

l :y +

p

X

k=1

h

k

:e

j


 h

k

:y

The Killing form h ; i on the dual to the real part of the Cartan subalgebra h

0

= R

p

is the standard Euclidean scalar product with factor �

1

2

. Hence by the de�nition,

our root elements satisfy hh

!

k

�!

l
; h

!

l

�!

k
i = 1 and hh

k

; h

k

i = �2. Thus the root

elements h

!

k

�!

l together with the multiples

1

p

2

h

k

form two dual bases of the Lie

algebra with respect to the Killing form. In view of this choice of dual bases A

i

,

B

i

, the above formula for B reads B(a 
 y) = �

P

i

(A

i

:a
 B

i

:y +B

i

:a
 A

i

:y).

The Casimir operator of a representation ' (one of the possible de�nitions) is

given by the action of an arbitrary pair of dual basisA

i

, B

i

through

P

'(A

i

)�'(B

i

).

This is independent of our choice of the basis, see e.g. [Samelson, 89, p. 120]. By

the de�nition of the tensor product of representations we get

C

C

m


V

�

(a
 y) =

X

i

A

i

B

i

(a 
 y)

=

�

P

i

A

i

B

i

:a

�


 y + a


�

A

i

B

i

�

:y +

P

i

(A

i

:a
B

i

:y + B

i

:a
A

i

:y)

= (C

C

m


 1)(a
 y) + (1
 C

V

�

)� B(a
 y)

and the lemma is proved. �

A classical result states, [Samelson, 89, p. 121]

6.18. Proposition. The Casimir operator of the irreducible representation cor-

responding to a dominant weight � is C

�

= h�; � + 2�i where 2� is the sum of all

positive roots and h ; i is the Killing metric.

6.19. Corollary. C

C

m

= �

1

2

(m � 1).

Proof. As mentioned in the formulation of Theorem 6.10, half the sum of all

positive roots equals to the sum of all fundamental forms (the so called lowest

form), see [Samelson, p. 91]. Hence we can compute: If m = 2l + 1, then twice the

lowest form equals 2� = (2l�1)e

1

+(2l�3)e

2

� � �+e

l

= (m�2)e

1

+� � �+(m�2l)e

l

and

for m = 2l we get (surprisingly) the same 2� = (2l�2)e

1

+(2l�4)e

1

+ � � �+2e

l�1

=
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(m � 2)e

1

+ � � �+ (m � 2l)e

l

. The dominant form corresponding to C

m

and R

m

is

e

1

and the Killing form di�ers by the factor �

1

2

from the Euclidean one. Hence

C

C

= he

1

; e

1

+ 2�i = he

1

; e

1

+ (m � 2)e

1

i = �

1

2

(m � 1). �

Now we are able to prove the most of Theorem 6.10. The operator D : C

1

E !

C

1

F must be invariant with respect to the isometries of each of the metrics from

the conformal class. In view of the discussion from Section 4, D must be expressed

by means of the �rst covariant derivative only (every curvature term would kill

the operator on the Euclidean space). Hence it must be determined by some pro-

jection of V

1

onto an irreducible component corresponding to a dominant weight

�. Such a projection gives rise to an invariant operator (i.e. we are able to �nd

suitable conformal weights for the bundles) if and only if the restriction of  to

this component is singular. The Casimir operator C

C

m


V

�

is constant on the ir-

reducible components and the mapping  is singular if and only if �� is an eigen

value of B by Lemma 6.16. The latter means �� = C

R

m


 1 + 1 
 C

�

� C

�

=

�

1

2

(m � 1) + h�; 2� + �i � h�; 2� + �i by Lemma 6.17. This is the formula for the

conformal weights in Theorem 6.10.

6.20. The last claim we need for the proof of Theorem 6.10 is that each dominant

weight � which appears in R

m


 V has multiplicity one and we have to �nd all of

them. We shall use the Klimyk's formula, see [Samelson, 89, p. 128], and since we

know all weights of R

m

this happens to be rather easy.

Our notation will slightly di�er from that in Samelson. Let us denote A

�

the

operator on the weights given by A

�

(�) =

P

s2W

(sgns)�

�

s(�)

where the sum goes

over the Weyl group and the Kronecker � symbol is zero or one as usual. By the

de�nition, A

�

(�) = sgnsA

s(�)

(�) = sgnsA

�

(s(�)) and A

�

6= 0 if and only if �

is regular, i.e. it cannot belong to one of the walls of the Weyl chambers (if � is

regular, then all elements s(�), s 2W , are distinct, but if � is on a wall, then there

is s with sgns = �1 and s(�) = �). The functionals A

�

with � dominant are called

the elementary alternating functionals.

Consider now two dominant weights �

1

, �

2

and the decomposition of the tensor

product V

�

1


 V

�

2

=

P

�

n

�

V

�

where n

�

are the multiplicities and we sum over all

dominant weights �. The Klimyk's formula reads:

Proposition. For each dominant weight � the multiplicity n

�

is given by

n

�

=

X

�

m

�

A

�+�

2

+�

(� + �)

where the sum goes over all (not only dominant) weights � of V

�

1

, m

�

is the

multiplicity of the weight � in V

�

1

and � is the lowest form.

We shall apply the proposition to V

�

1

= C

m

and �

2

= �. In order to �nd all

weights � appearing in C

m

, we have to apply the Weyl group to the dominant

weight e

1

. According to the descriptions in 10.10, we can get all �e

i

, 1 � i � l,

where l is the rank of the algebra as usual, and additionally the weight 0 in the odd

dimensional case. Since the corresponding weight spaces yield the full dimension

of C

m

, we have found all weights.
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Now, let us notice that for a dominant weight � and strongly dominant weight

� (i.e. � is not on a wall of the fundamental Weyl chamber), we always have

A

�

(�) =

�

1 if � = �

0 otherwise.

In our case, � =

1

2

((m� 2)e

1

+(m� 4)e

2

+ � � �+(m� 2l)e

l

), �+ � must be strongly

dominant by the de�nition, but we also have

Sublemma. �+�+� is dominant for all weights � appearing in C

m

with the only

exception when � = �e

l

and � does not involve e

l

.

Proof. A weight is dominant if it is a linear combination of the fundamental

weights with non-negative coe�cients, i.e. they are of the form

P

l

1

�

i

e

i

with all

�

i

integral or half-integral and �

1

� � � � � �

l

� 0 in the odd dimensional case

and �

1

� � � � � j�

l

j in the even dimensions. But for the weight � + � we have

�

1

> �

2

> � � � > �

l�1

and �

l�1

> �

l

�

1

2

or �

l�1

> j�

l

j in the even or odd di-

mensional cases, respectively. So we can always subtract e

i

in the even dimensional

case without running away from the class of dominant weights. The same holds in

the odd dimensions m except � does not involve e

l

, for then we get �

l

= �1 after

the subtraction. Adding of e

i

or the zero weight cannot cause any di�culty. �

Now, everything is prepared to �nish the proof of Theorem 6.10. By the Klimyk's

formula, the multiplicity equals either zero or one in the cases 6.10.(i) and (ii), for

two di�erent weights � cannot contribute to the same multiplicity. The multiplicity

one is obtained if and only if � = � � e

i

is dominant. In the case 6.10.(iii) we can

apply the same argument, except i = l and this possibility remains for check. Let

us choose the element s 2 W with s(e

i

) = e

i

, 1 � i � l � 1, and s(e

l

) = �e

l

, cf.

10.10. Hence s(� + � � e

l

) = � + � and so if we choose � with � = � � e

l

then

the contribution of the weight �e

l

cancels with the contribution of the weight zero.

This proves the case 6.10.(iii) and Theorem 6.10 is proved in the complex case. But

its real version follows immediately since we can complexify the space V

�

�V

�

1

and

seek for the heighest weight vectors with trivial actions of b

1

there. During the

complexi�cation, the highest weight vectors either remain the same ones or they

are doubled. Thus each real morphism must be reected also in the complex case

and each complex highest weight vector gives rise to a morphism in the real case.

This completes the proof of Theorem 6.10.

6.21. Examples. Let us discuss the operators de�ned on the fundamental repre-

sentations of SO

0

(m

0

; n;R).

Take �rst � = e

1

+ � � �+ e

i

, 1 � i < l if m = 2l + 1, 1 � i < l � 1 if m = 2l. As

we know, this dominant weights correspond to the exterior forms of degree i. It is

easy to �nd all irreducible components in R

m�


V

�

(It is the same as for R

m


V

�

):

�

1

= e

1

+ � � �+ e

i�1

+ e

i

+ e

i+1

�

2

= e

1

+ � � �+ e

i�1

�

3

= 2e

1

+ e

2

+ � � �+ e

i

:

The �

1

and �

3

result from adding one e

j

, the �

2

is the only possibility obtained

through subtracting an e

j

. We should notice that the dominant weight �

1

= e

1

+
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� � �+ e

l

does not describe the l-th degree exterior forms but only the self-dual part




l

+

, i.e. the +1-eigen space of the Hodge operator.

We have to work out the conformal weights. The formula from Theorem 6.10

yields

�

j

=

1

2

(m � 1)� h�; � + 2�i+ h�

j

; �

j

+ 2�i j = 1; 2; 3

and, as used several times above, the Killing form di�ers form the standard Eu-

clidean product by the factor �

1

2

. Hence we get

�

1

=

1

2

(m � 1)�

he

1

+ � � �+ e

i

; (m� 1)e

1

+ � � �+ (m� 2i+ 1)e

i

+ (m� 2i� 2)e

i+1

+ : : : (m� 2l)e

l

i+

he

1

+ � � �+ e

i+1

; (m� 1)e

1

+ � � �+ (m� 2i� 1)e

i+1

+ : : : (m � 2l)e

l

i =

=

1

2

(m � 1) + he

i+1

; (m� 2i � 1)e

i+1

i =

1

2

(m� 1�m + 2i+ 1) = i

This computation was a good test for the formula since the operator corresponding

to �

1

must be of course the exterior derivative which is invariant with respect to

all di�eomorphisms. Therefore, we have known from the beginning that the weight

must correspond to the restriction of the canonical tensor representation of GL(m).

(In the case i = l� 1, the operator is the composition of d with the projection onto

the irreducible component 


l

+

or 


l

�

.)

A similar computation for �

2

leads to �

2

=

1

2

(m � 1) � he

i

; (m � 2i + 1)e

i

i =

1

2

(m�1+m�2i+1) = m� i. This yields the codi�erential � acting on the bundle

of exterior forms of degree i with conformal weight m � i and valued in exterior

forms of degree i � 1 with conformal weight m � i+ 1.

For �

3

we get �

3

=

1

2

(m � 1) � he

1

; (m � 1)e

1

i � h2e

1

;me

1

i =

1

2

(m � 1 +m �

1� 2m) = �1. As an operator invariant with respect to the isometries, this is the

trace-free part of the covariant derivative symmetrized in the last two indices.

6.22. Examples. Let us consider the remaining fundamental representation � =

1

2

(e

1

+ � � �+e

l

) in the odd dimensional case m = 2l+1. We get only two possibilities

for the weights

�

1

= �

�

2

=

1

2

(3e

1

+ e

2

+ � � �+ e

l

):

The conformal weight �

1

equals

1

2

(m�1) and we evaluate �

2

=

1

2

(m�1)�h

1

2

e

1

; (m�

3

2

)e

1

i+ h

3

2

e

1

; (m�

1

2

)e

1

i =

1

2

(m� 1+

1

2

m�

3

4

�

3

2

m+

3

4

) = �

1

2

. We shall see in the

next section that �

1

corresponds to the Dirac operator while the other one yields

the twistor operator.

If the dimension is m = 2l, we have still to discuss two fundamental repre-

sentations �

+

=

1

2

(e

1

+ � � � + e

l

) and �

�

=

1

2

(e

1

+ � � � + e

l�1

� e

l

). We get the
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components

�

+

1

=

1

2

(e

1

+ � � �+ e

l�1

� e

l

)

�

+

2

=

1

2

(3e

1

+ e

2

+ � � �+ e

l

)

�

�

1

=

1

2

(e

1

+ � � �+ e

l

)

�

�

2

=

1

2

(3e

1

+ e

2

+ � � �+ e

l�1

� e

l

)

The weights �

�

1

correspond to the Dirac operators, the other ones to the twistor

operators. The conformal weights are: �

�

1

=

1

2

(m � 1) and �

�

2

= �

1

2

.

7. The spinors and the Dirac operators

We want to work out a geometric description of the bundles corresponding to the

half integral dominant forms from the proceeding section and, of course, also of the

operators between them, at least for those discussed in the Examples 6.22. First

of all we need to understand the double coverings of the orthogonal groups. The

most e�cient way is to view them as subgroups in the so called Cli�ord algebras.

Hence we start with the necessary algebraic considerations. The topic is standard

and can be found in several nice books, see e.g. [Budinich, Trautman, 88], [Lawson,

Michelsohn, 89], [Gilkey, 84].

7.1. Cli�ord algebras. Let K be any commutative �eld, V be a �nite dimensional

vector space over K and let Q be a quadratic form on V . We write T (V ) =

P

1

k=0




k

V for the tensor algebra of V and C`(V ) = T (V )=I

Q

is the quotient algebra

with respect to the two-sided ideal I

Q

� T (V ) generated by the expressions x
x�

Q(x), x 2 V . The K-algebra C`(V ) is called the Cli�ord algebra. The composition

V ! T (V ) ! T (V )=I

Q

de�nes the injection i

Q

: V ! C`(V ), for if v � w 2 I

Q

then it cannot be an element in V � T (V ) for homogeneity reasons. We shall

often identify V with i

Q

(V ) � C`(V ) in the sequel. The tensor multiplication on

T (V ) induces a multiplication on C`(V ) which we shall denote by �. The canonical

�ltration F

q

� T (V ), F

q

=

P

q

k=0




k

V , induces a �ltration on C`(V ) denoted

by F

i

I

Q

. In this way we get a canonical grading on C`(V ). As a vector space,

C`(V ) = F

0

I

Q

+ F

1

I

Q

=F

0

I

Q

+ F

2

I

Q

=F

1

I

Q

+ : : : . The exterior forms are also a quotient

of the tensor algebra, T (V )=J with J = hx 
 y + y 
 xi. Since Q(x + y) =

(x+ y) � (x + y) = Q(x) + Q(y) + x � y + y � x on V , the identity mapping on the

tensor algebra T (V ) induces the isomorphisms

�

i

(V ) = F

i

=(F

i�1

+ J \ F

i

) ' F

i

=(F

i�1

+ I

Q

\ F

i

) = F

i

I

Q

=F

i�1

I

Q

:

Thus, the Cli�ord algebra C`(V ) is as a vector space isomorphic to the exterior

algebra �(V ). In particular, its dimension is 2

dimV

and if e

i

, i = 1; : : : ;m, is a

basis of i

Q

(V ), then the unit 1 2 K together with the products e

i

1

� � � � � e

i

p

,

i

1

< � � � < i

p

, form the basis for C`(V ) (as a vector space). The multiplication on
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C`(V ) does not respect the grading, so the Cli�ord algebra C`(V ) is not aZ-graded

algebra, however the induced Z

2

-grading C`(V ) = C`

0

(V ) + C`

1

(V ) is respected

(with the proper signs). As vector spaces, the homogeneous components C`

i

(V ),

i = 0; 1, are isomorphic to the even and odd degree exterior forms in �(V ), and so

they have the same dimension 2

dimV�1

. The Cli�ord algebra C`(V ) is universal with

respect to the linear maps ' : V ! A with the property '(x)

2

= Q(x)1, where A is

an arbitrary K-algebra: Indeed, each linear ' extends to an algebra homomorphism

on the tensor algebra T (V ), but this extension is trivial on the ideal I

Q

, hence it

factors to an algebra homomorphism on C`(V ).

7.2. There are several canonical automorphisms or anti-automorphisms of C`(V ):

First of all, the map de�ned by x = x

1


 � � �
 x

p

7! x

t

= x

p


 � � �
 x

1

on T (V )

leaves the ideal I

Q

invariant and so we get the induced mapping y 7! y

t

on C`(V ),

a well de�ned anti-automorphism.

Further, there is the algebra automorphism� generated by�i

Q

: we have �(x)

2

=

Q(x)1, x 2 V , and so � extends by the universal property. This homomorphism

acts by multiplication by �1 and the Z

2

-grading of C`(V ) consists just of the +1

and �1-eigen spaces of �.

Finally, we have the `bar' anti-automorphism x 7! �x = �(x

t

).

7.3. We shall consider only K = R or K = C and Q will be always the canonical

quadratic form with signature (p; q), p + q = m, where m is the dimension of V =

K

m

. The corresponding Cli�ord algebras will be denoted by C`

m

(R) or C`

m

(p; q)

and C`

m

(C ) (in the complex case there is no reason to point out the signature of

Q). Since (V 


R

V )


R

C = (V 


R

C )


C

(V 


R

C ), we have C`

m

(C ) = C`

m

(R)


R

C .

Thus, we can often discuss both cases together.

Let us �x e

i

2 R

m

, the canonical base. Hence Q(e

i

; e

j

) = 0 for all i 6= j, while

Q(e

i

; e

i

) = �1. Thus, C`

m

(p; q) is an algebra generated by 1 2 R and e

i

subject to

the relations e

i

� e

j

= �e

j

� e

i

if i 6= j, e

i

� e

i

= 1, 1 � i � p, and e

i

� e

i

= �1,

p < i � m. Once we have �xed the orthonormal basis, there is the distinguished

element � = e

1

� � � � � e

m

, the so called volume element in C`

m

(K).

Now, the idea is to �nd a suitable subgroup of invertible elements in C`

m

(p; q)

acting on R

m

by isometries.

We consider R

m

as the subspace R

m

� C`

m

(R) and so we can always act by

conjugation (accomplished with suitable sign changes): R

m

3 y 7! �(x) � y � x

�1

2

C`

m

(R), with x 2 C`

m

(R)

�

, the multiplicative group of invertible elements in C`(V ).

The subgroup � � C`

m

(R)

�

of elements with �(x) � y � x

�1

2 R

m

for all y 2 R

m

is called the Cli�ord group. Let us denote by � : � ! GL(m) the induced group

homomorphism. In [Atiyah, Bott, Shapiro, 64], � is called the twisted adjoint

representation of � on R

m

. It is easy to see that all three canonical maps from 7.2

preserve �. Let us further de�ne another mapping N : � ! �, N (x) = x � �x, i.e.

�(N (x)) = �(x) � �(�x).

We de�ne the Pin(p; q) as the subset fy 2 � � C`

m

(p; q);N (y) = 1 or N (y) =

�1g. Let us notice that the multiplicative subgroup C`

m

(p; q)

�

in C`

m

(p; q) is a Lie

group (a closed subgroup of a matrix group) and Pin(p; q) is a closed subset, by

the de�nition.

7.4. Theorem. Pin(p; q) is a Lie subgroup in the Cli�ord group. The restriction

�jPin(p; q) is a surjection of Pin(p; q) onto O(p; q) with kernelZ

2

= f�1g � �. Let
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Spin(p; q) be the inverse image of the connected component of the unit SO

0

(p; q) �

O(p; q). If m � 3, then the restriction � : Spin(p; q) ! SO

0

(p; q) is the non-trivial

connected and simply connected double covering of SO

0

(p; q).

Proof. First of all we have to show that � has values in the subgroup of all isome-

tries and this requires to study the kernels of � and N . Then it will be easy to see

that our choice of the subset Pin(p; q) yields a subgroup, i.e. a Lie group by the

remark at the end of 7.3, and that �jPin(p; q) is surjective.

Sublemma. The kernel of � : �! GL(m) is precisely the multiplicative subgroup

R

�

� � generated by 1. For each x 2 � the value N (x) belongs also to R

�

.

Proof. Let x 2 ker�, so that �(x) � y = y � x for all y 2 R

m

. As an element in

C`

m

(R), x decomposes into the homogeneous parts x = x

0

+ x

1

and the condition

for x being in the kernel splits into two conditions

(1) x

0

� y = y � x

0

and x

1

� y = �y � x

1

:

As usual e

i

are the elements of the canonical basis in R

m

. Let us �x some e

i

and

write x

0

= a

0

+ e

i

� a

1

, x

1

= b

1

+ e

i

� b

0

, where the elements a

0

, a

1

, b

1

, b

0

do

not involve e

i

. The �rst condition in (1) with y = e

i

now implies a

0

� e

i

+ e

i

�

a

1

� e

i

= e

i

� a

0

+ e

i

� e

i

� a

1

. Since a

0

is an even element without e

i

while a

1

is an odd one, we have a

0

� e

i

= e

i

� a

0

and a

1

� e

i

= �e

i

� a

1

. Hence we get

e

i

� a

0

� Q(e

i

)a

1

= e

i

� a

0

+ Q(e

i

)a

1

, so that a

1

= 0 and therefore the even part

x

0

does not involve e

i

. Since i was arbitrary, x

0

is a multiple of 1. Similarly, the

second condition in (1) yields b

1

� e

i

+ b

0

� e

i

� e

i

= �e

i

� b

1

� e

i

� b

0

� e

i

where b

1

is odd and b

0

even. Thus, �e

i

� b

1

+ b

0

Q(e

i

) = �e

i

� b

1

� b

0

Q(e

i

) and so b

0

is zero,

x

1

does not involve any e

i

, i.e. x

1

is a multiple of 1. On the other hand, x

1

is odd,

hence zero, and the �rst claim is proved.

Since y

t

= y for all y 2 R

m

, we have �(x) � y � x

�1

= (x

t

)

�1

� y � �(x

t

) and so

(�(�(x

t

)) � �(x))(y) = y, since �

2

is the identity on C`

m

(R). Thus, we have shown

that N (x) � ker� for all x 2 �. �

Now, N (x � y) = x � y � �y � �x = x � N (y) � �x = x � �x � N (y) = N (x)N (y)

and so N : � ! R

�

is a group homomorphism. Moreover N (�(x)) = �(x) �

x

t

= �(N (x)) = N (x), for N (x) is an element of degree zero. But this implies

N (�(x)(y)) = N (�(x))N (y)N (x

�1

) = N (y) for all x 2 � and y 2 R

m

. For each el-

ement x 2 R

m

, N (x) = x�(�x) = �x�x = �Q(x), i.e. N jR

m

is the negative of the

standard scalar product with signature (p; q). But then the formula for N (�(x)(y))

claims precisely � : �! O(p; q).

Let us write hx; yi for the scalar product of x, y 2 R

m

induced by Q. For all

elements y 2 R

m

� C`

m

(p; q) with N (y) = �Q(y) = 1 and x 2 R

m

we have

y

�1

= �y and

�(y)(x) = �(y) � x � y

�1

= y � x � y = x+ 2hx; yiy

where the last equality follows from 2hx; yi + Q(x) + Q(y) = (x + y) � (x + y) =

Q(x) + Q(y) + x � y + y � x. Similarly, if Q(y) = 1, then y = y

�1

and

�(y)(x) = �y � x � y = x�

2hx; yi

hy; yi

y
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and this formula holds for both cases. It is well known in the de�nite case that

the latter transformations are precisely all reections in hyperplanes in R

m

which

generate the whole orthogonal group O(m;R). Since the real groups of pseudo-

orthogonal transformations all admit the same complexi�cation, they must be also

generated by these transformations (this argument applies immediately for the con-

nected components of the unit, the whole groups need more detailed consideration).

Thus � : Pin(p; q) ! O(p; q) is onto. The kernel of this map is the intersection

ker� \ fN (x)

2

= 1g. Since the kernel of � coincides with the multiplicative group

R

�

and N (�:1) = �

2

, the kernel of �jPin(p; q) must be Z

2

(as a multiplicative

group).

We already know that Spin(p; q) is a double covering of SO

0

(p; q). In order to

show that this is a non-trivial covering, it su�ces to connect +1 and �1, i.e. the

elements of the kernel of �jSpin(p; q), by a curve in Spin(p; q). Let us consider

t 7! c(t) = a(t) + b(t)e

1

� e

2

. We have N (a(t) + b(t)e

1

� e

2

) = (a(t) + b(t)e

1

� e

2

) �

(a(t) + b(t)e

2

� e

1

) = a(t)

2

+ b(t)

2

Q(e

2

)Q(e

1

). If Q(e

1

)Q(e

2

) = 1, then we choose

a(t) = cos t, b(t) = sin t. Then N (c(t)) = 1 and c(0) = 1, c(�) = �1 so that it

yields a suitable curve. If m > 2, we can always �nd two generators e

i

, e

j

with

Q(e

i

)Q(e

j

) = 1. Since SO

0

(p; q) is connected by our de�nition and its fundamental

group isZ

2

ifm � 3, Spin(p; q) must be simply connected in dimensionsm � 3. �

7.5. Remark. Let us consider the positive de�nite case O(m;R). Each element

�(y) 2 O(m;R) equals to a composition x

p

� : : : � x

1

of reections in hyperplanes

and we have seen, there are always elements y

i

2 R

m

� � with �(y

i

) = x

i

. By

Theorem 7.4, there is y 2 Pin(m), y = �y

p

� � � � � y

1

. Let us write Pin

j

(m) =

Pin(m)\C`

j

m

(R), j = 0; 1. The element y must be either in Pin

0

(m) or in Pin

1

(m).

But we know that y 2 Spin(m) if and only if the number of the reections involved

is even. Thus Spin(m) = Pin

0

(m) and we see that the elements in Spin(m) are

just the products y = y

1

� � � � � y

2j

with y

i

2 R

m

, Q(y) = �1. Then y

�1

= y

t

and �(y)(x) = y � x � y

t

. Let us remark that Spin(2; 0) and Spin(0; 2) are also

non-trivial coverings by the argument from the proof. Since they are generated by

e

1

� e

2

, they are one-dimensional (N (a:1 + be

1

� e

2

) = 1). As a double-covering of

the circle S

1

� R

2

it must also be S

1

.

In the case of a general signature, we still get Spin(m) � Pin

0

(m) but the whole

Pin

0

(m) is not involved. The group SO

0

(1; 1) equals R so that it does not admit

a non-trivial covering.

7.6. The complex spin groups. We have noticed that the complex Cli�ord

algebras are C`

m

(C ) = C`

m

(R)


R

C , i.e. the complexi�ed real Cli�ord algebras. All

the previous de�nitions and considerations have their complex analogies (working

best with the negative de�nite bilinear form Q) and we get the complex groups

Pin(m; C ) and Spin(m; C ) which are non-trivial double coverings of the complex

orthogonal group if m � 2. We shall see below that all the real spin groups are

matrix groups and their complexi�cations are just the complex spin groups.

Let us remark that there are other complex Lie groups sitting in the complex

Cli�ord algebras, the groups Pin

C

(m) which are important in the K-theory. The

latter groups are quite di�erent from Pin(m; C ) de�ned above and should be care-

fully distinguished. Namely, we can change our de�nition of the basic operation by

setting �

C

(x
 z) = �(x)
 z, (x
 z)

T

= x

t


 �z and the `bar' operation and N

C

is
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de�ned in terms of �

C

and ( )

T

as before. The (other) complex Cli�ord group �

C

contains the elements x 2 C`

m

(R)
 C with �

C

(x) � y � x

�1

2 R

m

for all y 2 R

m

(so it might be bigger).

Going through the above proof, nearly everything goes through with R

�

replaced

by C

�

(notice that the generators e

i

which are used in the proof remain the same,

i.e. real) and the mapping � takes values in the real orthogonal group O(m;R).

We de�ne the complex group Pin

C

(m) as the kernel of N

C

: �

C

! C

�

. At the

end we get as before that the kernel of � consists of non-zero complex numbers

1 
 z 2 C`

m

(C ) with N

C

(1 
 z) = z�z = 1. Thus, we get for all m � 1 the exact

sequences of Lie groups

1 �! U (1) �! Pin

C

(m) �! O(m;R)�! 1

1 �! U (1) �! Pin(m;R)�

Z

2

U (1) �! Pin(m;R)=Z

2

�! 1:

This induces an isomorphism Pin

C

(m) ' Pin(m;R)�

Z

2

U (1).

7.7. It is possible to view the Cli�ord algebras as matrix algebras, the concrete

identi�cations will require some e�ort. Let us write Mat

m

(K) for the algebra of

(m �m)-matrices over K, i.e. End(K). Beside the real and complex numbers, we

shall also meet K = H , the quaternions.

Proposition. There are the following identities of algebras:

Mat

m

(K) 'Mat

m

(R)


R

K over K

Mat

m

(R)
Mat

n

(R)'Mat

mn

(R) over R

C 


R

C ' C � C over C

C 


R

H 'Mat

2

(C ) over C

H 


R

H 'Mat

4

(R) over R:

Proof. The �rst identity is clear. In the second one, we de�ne the tensor product

of the generating matrices E

ij


 E

pq

as the block matrix A = (A

ab

) with A

ij

=

E

pq

and A

kl

= 0 for all other indices. This generates the required isomorphism.

The third one is de�ned on generators as follows:

p

�1 
 1 7!

p

�1 �

p

�1 and

1


p

�1 7!

p

�1 ��

p

�1. Hence we get a
 b 7! (ab; a

�

b).

The algebras Mat

2

(R) and Mat

2

(C ) are generated by two matrices

� =

�

0 1

1 0

�

and � =

�

1 0

0 �1

�

which form a linear bases together with the identity matrix I

2

and the matrix

� = �� =

�

0 �1

1 0

�

:

These matrices satisfy �� = ���, �

2

= �

2

= ��

2

= I

2

.

The next isomorphism is obtained through

p

�1
1 7!

p

�1I

2

, 1
 i 7! �

p

�1�,

1
 j 7! � on generators.

The last isomorphism is de�ned on the generators by 1
i 7! �
�, 1
k 7! �
� ,

i 
 1 7! � 
 �, k 
 1 7! � 
 �. �
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7.8 Proposition. There are isomorphisms

C`

2

(2; 0)


R

C`

m

(p; q) ' C`

m+2

(q + 2; p)

C`

2

(1; 1)


R

C`

m

(p; q) ' C`

m+2

(p+ 1; q + 1)

C`

2

(0; 2)


R

C`

m

(p; q) ' C`

m+2

(q; p+ 2):

The low-dimensional algebras and their even parts are

C`

1

(1; 0) ' R�R C`

0

1

(1; 0) ' R

C`

1

(0; 1) ' C C`

0

1

(0; 1) ' R

C`

2

(2; 0) ' Mat

2

(R) C`

0

2

(2; 0) ' C

C`

2

(1; 1) ' Mat

2

(R) C`

0

2

(1; 1) ' R�R

C`(0; 2) ' H C`

0

2

(0; 2) ' C :

Proof. We shall give explicit formulas for these isomorphisms on the generators.

Let us consider the canonical basis e

i

in R

m

, f

1

, f

2

inR

2

, and e

0

j

inR

m+2

. Let us

de�ne the elements g

1

= f

1


1, g

2

= f

2


1, g

i+2

= f

1

�f

2


e

i

in the tensor products

of the Cli�ord algebras. We shall show that the linear map  de�ned by  (e

0

j

) = g

j

satis�es in all three cases the universal property from 7.1 and so extends to an alge-

bra homomorphism. If j = 1 or j = 2, we get  (e

0

j

)

2

= f

j


1�f

j


1 = Q(f

j

)1
1 and

for e

0

i+2

it holds  (e

0

i+2

)

2

= (f

1

�f

2


e

i

)� (f

1

�f

2


e

i

) = �Q(e

i

)Q(f

1

)Q(f

2

)(1
1).

Hence the roles of p and q interchange and two positive or two negative dimen-

sions are added, or we add one positive and one negative dimension and the p and

q remain. Then  extends to an algebra homomorphism and since the spaces in

question have equal dimensions and generators are transformed into generators, it

must be an isomorphism.

In the algebra C`

1

(1; 0), there is the generator e

1

with e

2

1

= 1. Hence C`

1

(1; 0) =

R�R and the even part is 1Rwith the isomorphism de�ned by 1 7! (1; 1), e

1

7!

(1;�1). Similarly, e

1

with e

2

1

= �1 is the generator of C`

1

(0; 1) and so e

1

7!

p

�1

de�nes the isomorphism with C . The even part is then 1R.

The algebra C`

2

(2; 0) is generated by e

1

, e

2

with e

2

1

= e

2

2

= 1, e

1

� e

2

= �e

2

� e

1

.

We de�ne e

1

7! �, e

2

7! � and the matrices � and � are declared as odd elements.

Then 1 and � are even, �

2

= �1 and we get the required isomorphisms.

If the signature is (1; 1), we associate e

1

to � (the positive dimension), while

e

2

7! �. The latter are the odd elements and so the even subalgebra is generated

by 1 and � , hence equals to R�R.

Finally, in the negative de�nite case e

2

1

= e

2

2

= �1 and we can identify e

1

and e

2

with the generators i, j of the quaternions H. �

7.9. Proposition. For each dimension m it holds

C`

m+8

(p+ 8; q) ' C`

m+8

(p+ 4; q+ 4) ' C`

m+8

(p; q + 8) ' C`

m

(p; q)
Mat

16

(R)

C`

m+2

(C ) ' C`

m

(C ) 
Mat

2

(C ):

The Cli�ord algebras in dimensions less then eight are listed below for all de�nite

scalar products.
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m C`

m

(0;m) C`

m

(m; 0) C`

m

(C )

0 R R C

1 C R�R C � C

2 H Mat

2

(R) Mat

2

(C )

3 H � H Mat

2

(C ) Mat

2

(C ) �Mat

2

(C )

4 Mat

2

(H) Mat

2

(H) Mat

4

(C )

5 Mat

4

(C ) Mat

2

(H) �Mat

2

(H) Mat

4

(C ) �Mat

4

(C )

6 Mat

8

(R) Mat

4

(H) Mat

8

(C )

7 Mat

8

(R)�Mat

8

(R) Mat

8

(C ) Mat

8

(C ) �Mat

8

(C )

8 Mat

16

(R) Mat

16

(R) Mat

16

(C )

Proof. The whole statement follows from the two above propositions, see [Bu-

dinich, Trautman, 88] if more details are necessary. �

7.10. Proposition. Let e

0

i

, i = 1; : : : ;m + 1, be the canonical basis on R

m+1

,

e

i

, i = 1; : : : ;m, be that on R

m

, and let ' : R

m

! C`

0

m+1

(p; q + 1) be de�ned by

'(e

i

) = e

0

m+1

�e

0

i

. Then ' extends uniquely to the algebra isomorphism C`

m

(p; q) '

C`

0

m+1

(p; q + 1). If we take e

0

i

, i = 0; : : : ;m, as basis of R

m+1

and de�ne '(e

i

) =

e

0

0

�e

0

i

, we obtain the isomorphism C`

m

(p; q) ' C`

0

m+1

(q+1; p). In the complex case

we have C`

m

(C ) ' C`

0

m+1

(C ). Furthermore, C`

0

m

(p; q) ' C`

0

m

(q; p).

Proof. Since '(e

i

)

2

= e

0

j

� e

0

i

� e

0

j

� e

0

i

= �Q(e

0

j

)Q(e

0

i

), ' extends uniquely by the

universal property of the Cli�ord algebras if Q(e

0

j

) = �1 and Q(e

0

i

) = Q(e

i

) or

if Q(e

0

j

) = 1 and Q(e

0

i

) = �Q(e

i

). This leads to homomorphisms between the

indicated algebras. Since ' maps the generators of C`

m

(p; q) to distinct elements,

it must be injective. The dimensions of both spaces are equal and so ' is always an

isomorphism. The complex case follows from the real considerations with negative

de�nite scalar product.

The last isomorphism is obtained by composing the above isomorphisms but it

can be also de�ned directly by e

i

� e

j

7! �e

0

i

� e

0

j

. Indeed, the latter elements

generate the even parts and the mapping is induced from e

i


 e

j

7! �e

0

i


 e

0

j

which

leaves invariant the ideal hx
 y + y 
 x� 2Q(x; y)i �

P

k




2k

R

m

. The even parts

are just the quotients by this ideal and so the homomorphism which is obvious on

the tensor algebra descends to the even parts of the Cli�ord algebras. �

7.11. Remark. Let us notice that the propositions above yield explicit identi�-

cations of the Cli�ord algebras with the (sums of) matrix algebras (as promised at

the beginning of 7.7) and describe also explicitly the even parts of them. The whole

situation is described by the 64 Cli�ord algebras C`

m

(p; q) with 0 � p; q � 7, the

so called spinorial chessboard. We can �nd the main properties of Cli�ord algebras

in this scheme.

It is possible to describe all real Cli�ord algebras by means of the so called real
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clock, [Budinich, Trautman, 88].

R�R w

0

R

4

4

4

46
1

R

�

�

��

7

C

u

2

C

u

6

74

4

4

4

5

H

�

�

��

3

H H � Hu

4

The usage: given p and q compute �rst the `hour' � such that q�p = 8a+� where

a 2 Zand 0 � � � 7. Then the algebras adjacent to the corresponding arrow

determine the type of C`

0

p+q

(p; q) (the source) and C`

p+q

(p; q) (the target). The

dimension of the full algebra is 2

p+q

and we get the Cli�ord algebra by taking the

proper matrix algebra.

For example: p = 2 and q = 1 yield � = 7 and so C`

3

(2; 1) = Mat

2

(R)�Mat

2

(R)

while C`

0

3

(2; 1) = Mat

2

(R).

Similarly C`

8

(3; 5) = Mat

8

(H), for in this case � = 2 and dimMat

8

(H) = 2

8

,

C`

0

8

(3; 5) = Mat

8

(C ).

7.12. Cli�ord modules. A complex vector space V with an algebra homomor-

phism � : C`

m

(C ) ! End(V ) is called a (complex) Cli�ord module, � is called a

representation of C`

m

(C ). Similarly a real vector space with a representation of a

real Cli�ord algebra is called a (real) Cli�ord module. In fact, our aim is to un-

derstand the representations of the spin groups. However the study of the Cli�ord

modules is a good way:

Proposition. There are bijections between the representations of Spin(m+1; C ),

the representations of C`

m

(C ) and the representations of C`

0

m+1

(C ). Furthermore,

the decompositions into irreducible representations coincide.

Proof. We consider the canonical negative-de�nite scalar product. The image of

Spin(m+1; C ) � C`

0

m+1

(C ) in the inverse of the isomorphism' from 7.10 generates

the whole Cli�ord algebra C`

m

(C ) and the latter is isomorphic to C`

0

m+1

(C ). Since

all the relations on the generators live in the image of the spin group as well, both

the statements of the proposition are clear. �

7.13. Spinor bundles. Given any Cli�ord module V



with the representation 

of the real Cli�ord algebra C`

m

(p; q), there is the corresponding bundle F



M !M

over each oriented pseudo-Riemannianm-dimensional manifoldM with a �xed spin

structure (and the proper signature of the metric). This bundle is constructed as

the associated bundle to the principal spin bundle PM ! M with respect to the

given representation . More generally, for each oriented pseudo-Riemannian vector

bundle E with a spin structure there is the spinor bundle C`



(E) = P

Spin

(E)�



V



where the dimension of �bers in E is m and P

Spin

(E) is a covering of the SO

0

(p; q)-

frame bundle of E with structure group Spin(p; q).
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7.14. The Cli�ordmultiplication. As we have seen in the proof of Theorem 7.4,

the twisted adjoint representation of the Cli�ord group acts onR

m

by the reections

and this is equivalent to the usual action of the spin group onR

m

obtained from the

identical representation of GL(m;R). Thus the tangent functor T can be viewed

as a very special example of a spinor bundle.

Proposition. For each Cli�ord module V



there is the mapping � : R

m


V



! V



de�ned by y 
 v 7! (y)(v), y 2 R

m

� C`

m

(p; q) which is Spin(p; q)-equivariant

with respect to the twisted adjoint action on R

m

and the action . An analogous

mapping arises for complex Cli�ord modules.

Proof. For all x 2 Spin(p; q), y 2 R

m

and v 2 V



we have

�(x) � y � x

�1


 (x):v 7! (x)(y)(x

�1

)(x):v = (x)(y):v

since each element x 2 Spin(p; q) is even and so � disappears (the dot means the

application of the endomorphisms). �

This map is called the Cli�ord multiplication and since it is equivariant it extends

to natural transformations de�ned on spinor bundles. Furthermore, there is the

canonical natural equivalence T

�

! T between the tangent and cotangent bundles

on Riemannian manifolds. Hence there is also the natural bilinear transformation

�

M

: T

�

M 
 F



M ! F



M for each spinor bundle F



M . We shall call all these

mappings Cli�ord multiplications.

7.15. The Dirac operators. For each spinor bundle F



M on an oriented pseudo-

Riemannian spin manifoldM , there is the canonical Levi-Civit�a (or Riemannian)

connection on the pseudo-orthogonal frame bundle. As an o(p; q)-valued right-

invariant one-form, this connection lifts uniquely to the spin frame bundle on M .

Let us write r for the corresponding covariant derivative on the associated vector

bundles. Then we have the following composition

D : C

1

(F



M )

r

�! C

1

(T

�

M 
 F



M )

�

�! C

1

(F



M ):

This operator is called the Dirac operator.

7.16. Our next aim is to describe the so called Dirac spinors and Weyl spinors

and the Dirac operators on them. The regular representation of C`

m

(C ) is its

representation on itself by left multiplication. This is a faithful representation.

Proposition. The representations of the complex Cli�ord algebras are always

completely reducible and each irreducible faithful representation of C`

0

2n+1

(C ) or

C`

2n

(C ) is equivalent to a summand in the regular representation, i.e. to the iden-

tical representation of Mat

2

n

(C ) on C

2

n

. All irreducible faithful representations of

C`

2n

(C ) are equivalent.

Proof. According to 7.7, the complex Cli�ord algebras are always isomorphic to

a sum of full matrix algebras over C . Assume �rst m = 2n so that C`

m

(C ) =

Mat

2

n

(C ) and consider the regular representation of Mat

2

n

(C )) on itself. The

matrix algebra decomposes under this representation into the sum of copies of
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C

2

n

, each of them representing the matrices with one non-zero column allowed.

All these representations are faithful (these are the identical representations of

Mat

2

n

(C ) = End(C

2

n

)). Such matrices with one (�xed) non-zero column form

minimal left ideals.

Let us consider a faithful irreducible representation ' of C`

2n

(C ) on some space

S. Fix one of the above minimal ideals B and some elements v 2 S, x 2 B with

'(x)(v) 6= 0. We de�ne f : B ! S, f(y) = '(y)(v). The regular representation

factors to a representation �

B

: C`

2n

(C ) ! End(B) (this is the above identical rep-

resentation) and f intertwines �

B

and ' by its de�nition. Since f(B) contains

non-zero elements, and since �

B

is irreducible as B is minimal, f must be an iso-

morphism.

By a general theorem, each �nite dimensional representation of a sum of full ma-

trix algebras over an algebraically closed �eld is completely reducible, see [Boerner,

67, p. 68]

21

. Hence the proposition is proved for even dimensions. But C`

0

m+1

(C ) =

C`

m

(C ) by 7.10. �

Let us notice that the complete reducibility of all representations of connected

components of the identity in the complex pseudo-orthogonal groups also follows

(cf. 7.12), for each representation of SO(p; q; C ) can be viewed as a representation

of Spin(p; q; C ). The real case is then treated similarly to the discussion from 3.13.

7.17. Proposition. The center Z of C`

m

(K) is 1K � �K if m is odd, and 1K if

m is even. The center of C`

0

m

(K) equals to 1K � �K for even dimensions and 1K in

odd dimensions.

Proof. The proof goes similarly to the sublemma in 7.4. Consider an element

x 2 C`

m

(K) which commutes or anti-commutes with each element v 2 K

m

. We can

decompose x = x

0

+ x

1

, the even and odd part of x, and the latter condition splits

into

x

0

� e

i

� e

i

� x

0

= 0; x

1

� e

i

� e

i

� x

1

= 0; i = 1; : : : ;m:

Now, we �x e

i

and express x

0

= a

0

+ e

i

� a

1

where a

j

do not involve e

i

. Hence

we get a

0

� e

i

+ e

i

� a

1

� e

i

� e

i

� a

0

� e

i

� e

i

� a

1

from the �rst condition and

a

0

is an even element while a

1

is odd. Since they do not involve e

i

we obtain

e

i

� a

0

�Q(e

i

)a

1

� e

i

� a

0

�Q(e

i

)a

1

. If x

0

commutes, this yields 2Q(e

i

)a

1

= 0, i.e.

a

1

= 0. Since i was arbitrary this means x

0

does not involve any e

i

, hence belongs

to K. If x

0

anti-commutes, then we get 2e

i

� a

0

= 0 and so x

0

= e

i

� a

1

where a

1

does not involve e

i

. Since this holds for all e

i

, x

0

must be a multiple of e

1

� � � �� e

m

which is possible only if m is even.

Similarly, write x

1

= b

1

+ e

i

� b

0

and apply the second condition. We get b

1

�

e

i

+ e

i

� b

0

� e

i

� e

i

� b

1

� e

i

� e

i

� b

0

= 0. Analogous considerations as above yield

b

1

= 0 in the commuting case, so that x

1

2 �K and is non-zero only for odd m. If

x

1

anti-commutes, then b

0

= 0, i.e. x

1

2 K, hence zero.

So we have proved: if m is even, then K is the center and �K consists of all

anti-commuting elements, while if m is odd, then the center is K � �K and there

are no anti-commuting elements beside zero there.

21

The proof involves only rather elementary manipulations with matrices, but it is not short.
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Since the center of C`

0

m

(K) consists of all elements which commute or anti-

commute with elements from K � C`

m

(K), the last statement of the proposition

follows. �

7.18. Dirac spinors and Weyl spinors. We have just proved that each of the

algebras C`

2n

(C ) and C`

0

2n+1

(C ) admits precisely one faithful irreducible represen-

tation on the complex space S = C

2

n

, up to equivalence. The elements of this

representation space S are called the Dirac spinors.

For example, starting with V = C

3

, we get the complex 2-component spinors,

often also called the Pauli spinors. If V = C

4

, the Dirac spinors are complex 4-

component. Let us remember, the Cli�ord algebras are explicitly identi�ed with

matrix algebras in even dimensions and so the generators e

i

of C`

2n

(C ) act by the

usual multiplication by the corresponding matrices 

i

, the so called Dirac matrices.

For the explicit expressions of the Dirac matrices in low dimensions see 7.7 and 7.8.

Assume now, the dimension is even, m = 2n, and write  : C`

m

(C ) ! End(S) for

the faithful representation on the Dirac spinors. Fixing the canonical orthonormal

base e

i

in V = C

m

, the volume element v = e

1

� � � � � e

m

satis�es v � v = �1.

We de�ne v

0

= v if v

2

= 1, while v

0

=

p

�1v in the other case, so that v

02

= 1.

Hence (v

0

) : S ! S splits S into the �1-eigen spaces S

�

. Since v

0

is in the

center of C`

0

m

(C ), the restriction 

0

= jC`

0

m

(C ) decomposes as 

0

= 

+

� 

�

,



�

(y) =

1

2

(Id � (v

0

))(y) for all y 2 C`

0

m

(C ). Thus, we have got two irreducible

inequivalent 2

n�1

-dimensional (but not faithful) representations. The elements in

S

+

and S

�

are called the Weyl spinors of positive and negative helicities. They

are also called right and left Weyl spinors, or half-spinors (Chevalley) or reduced

spinors (Penrose and Rindler).

In view of 7.12, we have constructed two irreducible representations of the Lie

group Spin(2n; C ), 

+

on S

+

and 

�

on S

�

, but also the irreducible representation

 of Spin(2n + 1; C ) on S.

If we change our orientation of V , the volume element v is replaced by �v and

so the roles of the helicities are interchanged.

7.19. The odd dimensions. Let us consider the generating vector space V =

C

2n

�C and a generator e

2n+1

in C`

2n+1

(C ) with Q(e

2n+1

) = 1, the scalar product

on C

2n

is as before (the positive de�nite one works well). Using  : C`

2n

(C ) !

End(S), we can de�ne two irreducible representations of C`

2n+1

(C ) in S by setting



0

�

(x) = �(x) for all x 2 C

2n

� C`

2n

(C ), and 

0

�

(e

2n+1

) = �((v

0

)) (notation

form 7.18). The analogy to v

0

in dimension 2n+1 is v

00

= v

0

�e

2n+1

, i.e. v

00

�v

00

= 1.

Since 

0

�

(v

00

) = �(v

0

) � (v

0

) = �Id, these representations cannot be faithful. But

their direct sum



0

= 

0

+

� 

0

�

: C`

2n+1

(C ) ! End(S) � End(S)

is a faithful representation in S � S. Of course, the representations 

0

+

and 

0

�

are equivalent when restricted to the even part C`

0

2n+1

and then equivalent to the

representation .

Let us notice that the 

0

�

can be equivalently obtained from the representations



�

in the even dimensions using the isomorphism C`

0

2n+2

(C ) ' C`

2n+1

(C ).
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7.20. The matrix realization. If we use explicitly the description in 7.7{7.10, we

�nd the important generators of the matrix algebras which realize the isomorphisms

with the Cli�ord algebras. However, their choice can be quite di�erent and we can

get di�erent (but equivalent) representations of the Cli�ord algebras on the spinors.

The matrices �, � and � are generators of Mat

2

(C ) and satisfy the same relations

as the generators e

1

, e

2

, e

1

� e

2

in C`

2

(C ) where we take the positive de�nite scalar

product.

Consider �rst the dimension m = 2n. Using the above matrices, we can de�ne

generators of Mat

2

n

(C )



2j�1

= � 
 � � � 
 � 
 � 
 I

2


 � � � 
 I

2



2j

= �

p

�1� 
 � � � 
 � 
 � 
 I

2


 � � � 
 I

2

with � or � on the j-th place, which satisfy (

i

)

2

= I

m

and 

i



k

= �

k



i

for all

k 6= i. Thus we have found a concrete realization of C`

m

(C ) as a matrix algebra, i.e.

one possible explicit form of the Dirac matrices.

22

If we consider the same tensor

products of matrices, but we distribute the scalar multiples

p

�1 in another suitable

way, we get algebras isomorphic to Cli�ord algebras corresponding to a prescribed

scalar product with any signature. In particular, if there are no

p

�1, we get the

so called neutral Cli�ord algebras C`

m

(n; n; C ). Of course, all these choices lead to

isomorphic algebras in the complex case, but they become important if we pass to

the real algebras and spinors, see below.

Let us examine how the 2

n

equivalent spin representations  sit in the Cli�ord

algebra. Let us consider the elements y

i

=

p

�1e

2i�1

�e

2i

, so that the corresponding

matrices are Y

i

=

p

�1

2i�1



2i

= I

2


 � � � 
 I

2


 � 
 I

2


 � � � 
 I

2

where � is on

the i-th place. The matrices Y

i

are diagonal block matrices with �I

n�i+1

in the

blocks regularly changing the signs. Consider the right action of the matrix algebra

on itself. This corresponds to the right action of the Cli�ord algebra on itself by

multiplication. Each of the 2

n

columns in Mat

2

n

(C ) is precisely the simultaneous

eigen space corresponding to uniquely prescribed sequence of signs �1 with respect

to this right action. Thus, the spin spaces sit in the Cli�ord algebra (complex with

positive de�nite scalar product) as the simultaneous �1-eigen spaces for the right

actions of the elements y

i

.

If the dimension is odd, m = 2n+1, we need one more generator. We can choose



2n+1

= � 
 � � � 
 �

which anticommutes with all the generators above and has square one.

7.21. The real spinors. The complexi�cation of each real Cli�ord algebra

C`

m

(p; q) is isomorphic to C`

m

(C ). Hence there is always an injection C`

m

(p; q)!

C`

m

(C ) of algebras and so each representation of the complex Cli�ord algebra can

22

The procedure leading to such explicit representations consists in choosing a way how to pass

from a representation of C`

2n

(C) on S = C

2

n

to a representation of C`

2n+2

(C) on S�S = C

2

n+1

.

There are several well known extension procedures, let us mention the Brauer-Weyl extension, the

Cartan extension, the Dirac extension. We have used the latter one.
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be restricted to the real one. This yields representations of C`

m

(p; q), but in com-

plex vector spaces. These restrictions are irreducible if the complex representations

are irreducible which means that there are no invariant complex subspaces in the

representation space.

If we start with a real representation of C`

m

(p; q), we can complexify it to obtain

a complex representation of the complexi�cation C`

m

(p; q) 
 C . However, if we

have started with the complex representation, the restriction to the real algebra

may or may not admit an invariant real subspace in the representation space. Let

us indicate very briey what can happen if we restrict the spin representations of

the Cli�ord algebras. Much more details can be found in [Budinich, Trautman, 88,

Section 7.2].

Let us consider the dimension m = 2n = p + q. To each complex space W we

associate the complex conjugate space

�

W which is the same as W if viewed as a

real vector space but the scalar multiplication by a 2 C di�ers from W by taking

�a. If we write w for the elements of W then �w are the elements in

�

W , w 7! �w is

the identity of the real spaces. Each linear map f : W

1

!W

2

induces a linear map

�

f :

�

W

1

!

�

W

2

,

�

f ( �w) = f(w). The correspondence f 7!

�

f is not linear as �f 7!

�

�

�

f .

The bar mapping is compatible with the duals, i.e. W

�

' (

�

W )

�

and the Hermitean

conjugate map to f is de�ned by

�

f

t

:

�

W

�

2

!

�

W

�

1

.

Consider now the restriction of the spin representation  : C`

m

(p; q) ! End

C

S

and the conjugate � : C`

m

(p; q)! End

C

�

S. We shall write � = p� q mod 8. Since

the center of the Cli�ord algebra is the �eld of the scalars, there is a C -linear

isomorphism C : S !

�

S which intertwines the representations  and �, and which

satis�es either

�

CC = Id if � = 0 or 2, or

�

CC = �Id if � = 4 or 6 (this needs of

course a proof). The �rst case is called real while the other one quaternionic. In

the real case,  = 

+

+ 

�

decomposes and 

�

: C`

m

(p; q)! End

R

S

�

are two real

equivalent representations. The elements of S

�

are called the Majorana spinors (of

the �rst kind). They can be also characterized by S

�

= fs 2 S;

�

C(�s) = �sg. The

restriction of  to C`

0

m

(p; q) decomposes even in the complex case into the eigen

spaces of the action of the suitable multiple of the volume element v

0

. The same

takes place for the complex conjugate space

�

S and �v

0

. One computes �(�v

0

) � C =

(�1)

�(��1)=2

C � (v

0

) and so C respects the helicity if � = 0 or 4, but changes the

helicity if � = 2 or 6. If � = 2, then there are C -linear isomorphisms F

�

: S

�

! S

�

constructed by means of v

0

and C, but S

�

\ S

�

is zero for all combinations of

signs. If � = 0 or � = 6 then we can �nd another decomposition of the Dirac

spinors, S = S

+

i

� S

�

i

with S

�

i

= fs 2 S;

�

C�v

0

(�s) = �sg (notice

�

C�v

0

Cv

0

= Id if

� = 0 or � = 6). But these spinors, called Majorana spinors of the second kind, are

invariant under the action

i

(s) =

p

�1(s) of C`

m

(q; p) but not under the action 

of Cl

m

(p; q). If � = 6, they are equivalent to the Majorana spinors of the �rst kind

for the algebra C`

m

(q; p) and we have once more the C -linear isomorphisms F

�

.

The representations 

�

are intertwined by the multiplication by

p

�1. If � = 0,

then all representations , 

�

are real and there are non-zero intersections of S

�

and S

�

i

. Thus, the real form of S decomposes into four real 2

n�1

-dimensional space

S

�

�

, the so called Weyl-Majorana spinors. If � = 4, there are no Majorana spinors.

7.22. Dirac operators on theWeyl spinors. Let us consider an even dimension

m = 2n and let us specialize the Cli�ord multiplication from 7.14 to the Cli�ord
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modules S

�

of Weyl spinors viewed as the complex representations of the real

algebras. We get

Proposition. The Cli�ord multiplication � : R

m


 S ! S interchanges the helic-

ities, i.e. it restricts to the mappings � : R

m


 S

�

! S

�

. The same holds for the

complex Cli�ord multiplication.

Proof. It su�ces to check the mappings on the generators. Let us remember that

the Weyl spinors are �1-eigen spaces for the v

0

, where v

0

is either the volume v or

p

�1v. For all e

i

2 R

m

, s 2 S

+

we get v

0

:(e

i

�s) = (v

0

� e

i

)(s) = a(e

1

� � � � � e

m

�

e

i

)(s) = a(�1)

m�i

(e

1

� : : :

^

i

� � � � e

m

)(s) = (�1)

i�1

(�1)

m�i

(e

i

� v

0

) = �e

i

�(v

0

:s)

since m is even (a is either 1 or

p

�1). �

Let us also write � and �

�

for the (real) bundles over pseudo-Riemannian man-

ifolds corresponding to the (complex) spin representations. Since the Riemannian

covariant derivative is a natural operator, it must respect subbundles coming from

Spin(2n)-invariant submodules. Hence the Dirac operator D : �! � decomposes

as

D

�

: �

�

! �

�

in the even dimensions. We claim that the operators D and D

�

are the operators

discussed in the Example 6.22. In order to see this explicitly, we have to �nd the

highest weights of the basic spin representations and for that reason we need a good

description of the Lie algebra.

7.23. The Lie algebra o(m+ 1; C ). Write m+ 1 = 2n or m+ 1 = 2n+ 1 for the

dimension. Let us consider the usual positive de�nite scalar product, hence the Lie

algebra is generated (as a vector space) by the matrices A

ij

= E

ij

�E

ji

and their

commutators are (remember [E

ij

; E

kl

] = �

jk

E

il

� �

li

E

kj

)

[A

ij

; A

kl

] = �

jk

A

il

+ �

il

A

jk

� �

jl

A

ik

� �

ik

A

jl

:

The matrices A

ij

admit two eigen values, �1, the commutative subalgebra h gen-

erated by A

12

; A

34

; : : : ; A

2n�1;2n

is the Cartan subalgebra. A general element in h

has the form X = �

1

A

12

+ � � �+ �

n

A

2n�1;2n

. The element (m

1

; : : : ;m

n

) 2 C

n�

is

a weight of a representation ' if all '(A

2i�1;2i

) admit a common eigen vector such

that the corresponding eigen value for H

i

= A

2i�1;2i

is

p

�1m

i

, i.e. the eigen value

for X is

p

�1(m

1

�

1

+ � � �+m

n

�

n

).

If we choose a (weak) order in h, then the highest weights are those ones with

weight vectors under trivial action of the positive root elements, or equivalently

the maximal ones in the chosen order. The multiplication of the weights by

p

�1

corresponds to the isomorphism which transforms the scalar product we use now,

to the scalar product we use in 10.10{10.11. Hence the fundamental weights remain

unchanged.

Consider now Spin(m + 1; C ) � C`

0

m+1

(C ) ' C`

m

(C ). We shall identify o(m +

1; C ) with a subspace in C`

m

(C ). Let us de�ne the bracket [ ; ] on C`

m

(C ) by

[x; y] = x � y � y � x, i.e. [e

i

; e

j

] = 2e

i

� e

j

, i 6= j, for the generators, and write

�

0j

= e

j

= ��

j0

, �

ij

= [e

i

; e

j

]. Hence the

1

2

n(n + 1) elements �

jk

with j < k are
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linearly independent and �

jk

= ��

kj

. An elementary computation leads to the

commutators

[�

ij

; �

kl

] = 4(�

jk

�

il

+ �

il

�

jk

� �

jl

�

ik

� �

ik

�

jl

) for all i; j; k; l non-zero

[�

0j

; �

kl

] = 4(�

jk

�

0l

� �

jl

�

0k

) for j; k; l non-zero

[�

0j

; �

0k

] = �

jk

j; k 6= 0

We would like to have generators X

ij

, 0 � i < j � m, which satisfy the same

commutator relations as the above generators A

ij

of o(m + 1; C ). First of all the

commutators have the right form in the case of indices di�erent from zero, up to

the multiple

1

4

. Further, if i = k then we need [X

ij

; X

kl

] = �X

jl

, so the �

0j

= e

j

must be multiplied by some pure imaginary scalar. Finally, the second and third

rows in the above commutators suggest �

p

�1

2

for this scalar factor and we shall

use the minus sign to �t with the earlier choice of the Dirac matrices 

i

. Now one

checks by elementary computations that the choice of generators

X

0j

= �

p

�1

2

�

0j

= �

p

�1

2

e

j

X

jk

=

1

4

�

jk

=

1

2

e

j

� e

k

leads really to a Lie algebra sitting in the Cli�ord algebra C`

m

(C ) which is isomor-

phic to o(m + 1; C ). The bracket in this algebra is precisely the commutator and

so there is the analogy to Proposition 7.12:

Proposition. Each representation of the Cli�ord algebra C`

m

C induces the rep-

resentation of the Lie algebra o(m + 1; C ) given by the restriction.

Proof. The generators of C`

m

(C ) are contained in o(m+1; C ) and every represen-

tation of the Cli�ord algebra respects the commutators by the de�nition. �

In fact there is the other part of the proposition which we shall not need in

general: each representation of o(m+1; C ) induces a representation of the spin group

(for the latter is simply connected) and therefore a representation of the Cli�ord

algebra C`

m

(C ) as well. However, the resulting representation may fail to be an

extension of the original one. We shall need this correspondence of representations

only for the spinors. This is the identical representation of the corresponding matrix

algebra and so it remains the same as a representation of the spin group.

7.24. The weights of spin representations. Let us consider �rst the group

Spin(2n + 1; C ) and its faithful irreducible representation on the spinors S = C

2

n

(unique up to equivalence). The weights are evaluated from the corresponding rep-

resentation of the Lie algebra o(2n+1; C ). If we view Spin(2n+1; C ) as a subgroup

in the matrix algebra Mat

2

2n
(C ) then the representation is the identical one and

so the induced representation of the Lie algebra is also the standard identical one.

First of all we have to �nd the expression for the elements H

i

2 C`

2n

(C ) from the

Cartan algebra as elements in the corresponding matrix algebra. We shall use the

explicit representation of C`

m

(C ) as a matrix algebra from 7.20 (consult [Boerner,
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67, Chapter VIII] for more details here or below if necessary). Let us recall the gen-

erators 

2j�1

= �
� � �
�
�
I

2


� � �
I

2

and 

2j

= �

p

�1�
� � �
�
�
I

2


� � �
I

2

where � and � are at the j-th place and there are altogether n (2 � 2)-matrices in

the expressions.

Now, we use the above description of the Cartan algebra with the zero index

replaced by 2n + 1 (in fact the elements X

0j

will not appear explicitly at all, for

they do not belong to the Cartan subalgebra). Then

H

i

=

1

2



2j�1



2j

= �

p

�1

2

I

2


 � � � 
 I

2


 � 
 I

2


 � � � 
 I

2

;

see the identities in 7.7. Thus, the H

i

are diagonal matrices with the same number

of the entries

1

2

p

�1 and �

1

2

p

�1. Inspecting the distribution of the signs, we see

that a common eigen vector in C

2

n

can involve only one non-zero entry. Hence the

weights are precisely of the form (�

1

2

; : : : ;�

1

2

) and according to our choice of the

order, the highest among them is the weight (

1

2

; : : : ;

1

2

). This shows that the spin

representation is really the remaining representation among those corresponding

to the fundamental weights, see the last section. Thus, for the odd dimension

m = 2n + 1, all representations of Spin(m; C ) are involved in tensor products of

the exterior forms of degrees less then n and the spin representation on S = C

2

n

.

Since we know that all representations of the real spin groups are obtained from

suitable complexi�cations, see 6.4, we can use the above result for the real case as

well (but it is not simple at all to get concrete results, cf. 7.21).

7.25. The even dimensions. Consider now Spin(2n+2; C ), so we have to study

the representation of C`

2n+1

(C ). We can proceed analogously, but the Cartan

algebra contains now additionally the matrixH

n+1

which has a quite di�erent form,

for it corresponds to the generator X

0;2n+1

= �

p

�1

2

e

2n+1

, see 7.23. In 7.19, we

de�ned the two representations 

0

�

of C`

2n+1

(C ) on S. On the (n+ 1)-st generator

they were de�ned through the volume element with the proper scalar multiple. If

we perform the necessary identi�cation with a matrix in Mat

2

n

(C ) we get the action

of

H

0

n+1

= �

p

�1

2

� 
 � � � 
 �:

This is also a diagonal matrix with the entries of the form �

p

�1

2

. If we inspect

once more the distribution of the signs, we conclude that the highest weights are

precisely (

1

2

; : : : ;

1

2

;�

1

2

) and they correspond to the Weyl spinors with positive and

negative helicities.

7.26. Tensor products of spin representations. We know from the represen-

tation theory that all irreducible representations of the spin groups must appear in

the tensor products of the spin representations and the exterior forms, cf. 10.11.

Let us describe the situation more explicitly in the even dimensional case, m = 2n.

We shall write � for the complexi�cation �R

m


 C (i.e. � = C`

m

(C ) as a vector

space), �

e

and �

o

for the even and odd forms, while �

�

are the eigen spaces of the

action of the suitable multiple v

0

as in the de�nition of the Weyl spinors. The left

multiplication by the volume element plays the role of the Hodge star operator, in

particular, the splitting of the exterior form of degree n coincides with the splitting
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�

n

�

discussed in the last section. Beside these homogeneous forms, the spaces �

�

are generated by linear combinations from �

p

� �

m�p

.

If we let act the spin group on the Cli�ord algebra by right multiplication by

inverse elements, we get an equivalent representation and the decomposition into a

sum of 2

n

equivalent spin modules S exactly as in the decomposition in 7.16. This

is best seen on the matrix realization: The generators Y

i

= 

2i�1

� 

2i

of the even

part of the Cli�ord algebra are symmetric (see 7.17) and the remaining 

2i

� 

2i+1

equals to

p

�1I

2


 � � � 
 I

2


 � 
 � 
 I

2


 � � � 
 I

2

, hence is also symmetric. If we

apply the transposition to these generators they should change the signs, but this

corresponds to the transposition of the corresponding matrix generators. Thus,

the transposition (e

i

1

� � � � � e

i

2p

)

t

on C`

0

m

(C ) corresponds to the transposition of

the corresponding matrix accomplished with suitable sign depending on p mod 2.

The spin representations as right C`

0

m

(C )-modules are the rows in the matrices

with the right multiplication by the matrices from the algebra. We de�ne a linear

mapping f : S 
 S ! C`

m

(C ) by f(u
 v) = u � v

t

, i.e. we view S 
 S as the tensor

product of one left and one right Spin(m; C ) module. This is a linear isomorphism,

which is easily seen on the matrices (E

j1

E

1k

= E

jk

, 1 � j; k � 2

n

, and so f is

surjective, but the dimensions of � and S 
 S coincide). The (twisted) adjoint

representation of Spin(m; C ) on C

m

� C`

m

(C ) is precisely the usual standard

representation of SO(m; C ) and its extension to the whole algebra coincides with

the standard representation of SO(m; C ) on the exterior forms �. By the de�nition,

f intertwines the action of C`

m

(C ) on S 
 S and the adjoint action (warning: the

right-hand S is the right C`

m

module). We can also get information on the behavior

of subspaces:

Proposition. There are the following equivalences of representations:

� = S 
 S

�

+

= (S

+


 S

+

)� (S

+


 S

�

)

�

�

= (S

�


 S

+

)� (S

�


 S

�

)

�

e

=

�

(S

+


 S

+

) � (S

�


 S

�

) if n is even

(S

�


 S

+

)� (S

+


 S

�

) if n is odd

�

o

=

�

(S

�


 S

+

)� (S

+


 S

�

) if n is even

(S

+


 S

+

) � (S

�


 S

�

) if n is odd

Proof. The �rst equivalence has been already proved, the isomorphism is u
v

t

7!

u � v. By the de�nition, �

�

are the eigen spaces of the left multiplication by v

0

,

hence �

+

= S

+


 S and �

�

= S

�


 S. The volume element v

0

satis�es v

0t

=

(�1)

2n(2n�1)=2

v

0

= (�1)

n

v

0

. In the proof of 7.22 we derived that each generator e

i

commutes with v

0

with the change of its sign. Thus, the odd elements w in � are

precisely those with v

0

� w � (v

0

)

t

= (�1)

n

v

0

� w � v

0

= (�1)

degree of w

(�1)

n

w and

this implies the description of the odd and even forms. �

7.27. The inner products on spinors. Consider the space S of Dirac spinors

with the faithful representation  of C`

2n

(C ) or C`

0

2n+1

(C ) and its dual space S

�

with the representation 

t

(a) = ((a

t

))

t

. If restricted to the spin group, this
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is precisely the contragredient representation. Since these representations must

be equivalent, there is a linear isomorphism " : S ! S

�

intertwining these rep-

resentations. This de�nes a bilinear non-degenerate form "(s

1

; s

2

) = "(s

1

)(s

2

)

denoted by the same symbol. If we de�ne "

t

(s

1

)(s

2

) = "(s

2

; s

1

) we get a map-

ping which must be proportional to " by the Schur's lemma. Since "

tt

= ", the

multiple must be �1. This means " is either symmetric or skew. We can check

which of the possibilities takes place by evaluating "((a)(s); s) with suitable ele-

ments a 2 C`

2n

(C ) and s 2 S. Let us pass to the matrix realization and choose

a = � 
 � � � 
 � , i.e. a volume element, and s be the column vector with only the

�rst entry non-zero. Hence (a)(s) = s, a

t

= (�1)

2n(2n�1)=2

a = (�1)

n

a and we get

"(s; s) = "((a)s; s) = (a

t

)

t

("(s))(s) = "(s; (a

t

)(s)) = (�1)

n

"(s; s). Therefore,

the inner product " is symmetric if n = 0 mod 2, while " is skew if n = 1 mod 2.

The next question is: what about an inner product on the Weyl spinors? The

Weyl spinors are �1-eigen spaces for the multiplication by the proper volume ele-

ment v

0

and the same is true for the duals. We have seen (v

0

)

t

= (�1)

n

v

0

. Hence

(v

0

)

t

� " = (�1)

n

" � (v

0

) and the inner product " restricts to the Weyl spinors if

n is even. We shall denote the products by "

+

and "

�

.

7.28. The four-dimensional case. Let us work out more explicit formulas in the

(most interesting) case of dimension m = 2n = 4. The Dirac spinors are complex

4-component. In the above identi�cation, the Dirac matrices are (i =

p

�1)



1

= � 
 I

2

=

0

B

@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1

C

A



2

= �i� 
 I

2

=

0

B

@

0 0 i 0

0 0 0 i

�i 0 0 0

0 �i 0 0

1

C

A



3

= � 
 � =

0

B

@

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 �1 0

1

C

A



4

= �i� 
 � =

0

B

@

0 i 0 0

�i 0 0 0

0 0 0 �i

0 0 i 0

1

C

A

The volume element is then

� = � 
 � =

0

B

@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1

C

A

; � � � = I

4

:

Hence the Weyl spinors S

+

and S

�

of positive and negative helicities are precisely

(a; 0; 0; b) 2 C

2

� C

4

and (0; a; b; 0) 2 C

2

� C

4

. We have found that these rep-

resentations are irreducible and their highest weights are �

+

=

1

2

(e

1

+ e

2

) and

�

�

=

1

2

(e

1

� e

2

), see 10.11 and 6.22 for the notation. The tensor product S

+


 S

�

must involve the representation corresponding to the dominant weight �

+

+�

�

= e

1

with multiplicity one. But the dimension of the tensor product C

2


 C

2

is exactly

the dimension of C

4

which corresponds to the weight e

1

. Thus, the tensor product

of the two di�erent half-spin representations is equivalent to the identical represen-

tation on C

4

. This shows how all tensor representations of SO(m; C ) arise from

the fundamental ones, i.e. from the spin representations. In Proposition 7.26 we



7. THE SPINORS AND THE DIRAC OPERATORS 87

proved �

o

= (S

+


S

�

)� (S

�


S

+

), hence the second summand corresponds to �

3

.

The product S

+


 S

+

contains the invariant subspace with highest weight e

1

+ e

2

.

However, its dimension is only 3.

23

These are the positive exterior two-forms �

2

+

.

The remaining one dimensional space corresponds to the trivial representation on

the �eld of scalars, �

0

. Similarly S

�


 S

�

splits to one dimensional representation

�

4

and the other half �

2

�

of �

2

.

In conformal geometry, one often meets elements from tensor products of several

copies of S

+

, S

�

and their duals S

�

�

, S

�

+

, or even mixed with tensors. Similarly

as with the tensors in the previous text, we shall use the Penrose's abstract index

notation. We have chosen the small italics superscripts (with possible further indices

like a

1

, b

p

, etc.) as labels for distinct but isomorphic copies of K

m

, while the same

labels as subscripts indicate always copies of K

m�

. If we want a similar notation for

spinors, we need two further kinds of labels. We choose the capital italic superscripts

(with possible further indices) for copies of S

+

and the same subscripts for S

�

+

.

The same labels with primes will indicate the spaces S

�

and S

�

�

. In view of the

above description of the tensor products of spinors, this becomes a very powerful

notation (in the dimension 4). Let us add some further conventions. We have

proved t

AA

0

= t

a

(i.e. tensor product of S

+

and S

�

is C

4

) and we shall adopt this

convention also for general expressions like : : :C

j

C

0

j

� � � = : : : c

j

: : : . The skew inner

products " de�ned in 7.27 are elements "

AB

, "

A

0

B

0

, "

AB

, "

A

0

B

0

, antisymmetric in

the indices. These elements allow rising and lowering of indices similarly to that

induced by a metric on tensors, but since they are antisymmetric we have to �x the

usage of the indices: s

:::A:::

= "

AB

s

:::

B

:::

where the dots can involve both subscripts

and superscripts. In particular, "

A

B

= "

BC

"

AC

= �"

BC

"

CA

= �"

B

A

.

The tensor product "

+


 "

�

is a linear isomorphism C

4

! C

4�

which intertwines

the standard representations and so it corresponds to the original scalar product g

on C . This is expressed by "

AB

"

A

0

B

0

= g

ab

. As seen on "

A

B

= �"

B

A

, we have to

be very careful to preserve the order of the primed and unprimed indices (including

superscripts and subscripts) separately, while the relative order of the primed and

unprimed ones is not important. The symmetrizations and alternations in some

entries are denoted on the indices exactly as with the tensor indices.

A special convection concerns the pseudo-Riemannian covariant derivative r.

This is an operator with one vector argument, hence we have denoted it by r

a

and

its value on a tensor was r

a

t

:::

:::

, understand as one symbol. Now we can use the

covariant derivative on all spinors and write r

AA

0

t

:::

:::

where the dots may involve

all three types of indices. Moreover, we can rise and lower all indices, e.g. r

A

A

0

t

:::

:::

.

Let us notice that this is a very e�ective notation. For example, T

ab

= T

ABA

0

B

0

for

23

There is the famous Weyl's degree formula: The dimension of an irreducible representation

corresponding to a dominant form � is

d

�

=

Q

�>0

h�;�+ �i

Q

�>0

h�; �i

where the products go over all positive roots and � is half the sum of all positive roots.

In our case the positive roots are chosen as e

1

� e

2

and e

1

+ e

2

, hence � = e

1

. The Killing

form is the Euclidean scalar product up to a scalar multiple which does not play any role in the

formula. For � = e

1

+ e

2

we get immediately the dimension 3.
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every twice covariant tensor but T

(AB)(A

0

B

0

)

is a simple expression for its symmetric

trace-free part! This follows from the antisymmetry of "

AB

= �"

BA

which is used

in the trace.

In 6.22, we found two other operators beside the Dirac operators. They are

de�ned on the sections of the bundles �

+

and �

�

of the Weyl spinors and their

values are in the bundles corresponding to the representations S

+


 S

+


 S

�

and

S

�


S

+


S

�

. Now we are able to write down a simple formula for these operators:

D(s

B

) = r

(A

A

0

s

B)

; D(s

B

0

) = r

(A

0

A

s

B

0

)

:

They have values in the required spaces, symmetric in the unprimed or primed

indices and trace-free. The whole S

+


 C

4

decomposes into S

�

and another space

corresponding to the weight

1

2

(3e

1

+ e

1

). (Its dimension is six as easily computed

using the Weyl's degree formula.) Similarlywe get the other case. The �rst operator

is called the twistor operator, its solutions are called the (global) twistors.

8. Verma modules and natural operators

In this section we present the complete classi�cation of natural linear operators

on �rst order natural vector bundles on locally at conformal manifolds, which is

achieved by means of the methods from representation theory. Our inspiration is

[Baston, 90], and [Baston, Eastwood, 90], however we succeed also in the case of

singular in�nitesimal characters and we present complete (and rather elementary)

proofs. In particular, we correct some claims of the latter survey paper. Some basic

notions and results from representation theory are outlined in the Appendix.

8.1. The main idea. Each locally at conformalmanifold is locally isomorphic to

the sphere, so that we shall restrict ourselves to the homogeneous bundles over the

(pseudo-) spheres without loss of generality. Let us �x two such bundles E = E

�

and F = F

�

corresponding to irreducible representations V

�

, V

�

, for two weights �, �

of g = o(m+2; C ), dominant for the Poincar�e conformal subalgebra b, i.e. V

�

and V

�

are (real or complex) representation spaces either for the Poincar�e conformal group

B or for its simply connected covering. This notation is di�erent form that used in

Section 6, where the weights were dominant weights of o(m; C ) and the remaining

information was involved in the conformal weight. The explanation of the present

notation is in 10.13 and 10.14. Let us remind that all linear representations of

orthogonal groups are completely reducible and the action of the nilpotent part

must be trivial in each irreducible representation of the Poincar�e algebra. Thus,

the above restriction to the irreducible representations means in fact that we will

describe operators on all �rst order natural bundles.

In fact we used the general idea in the �rst order case in the proof of 6.10, cf.

6.13. According to the non-linear version of the Peetre theorem, each local operator

D : C

1

(E

�

M )! C

1

(F

�

M ) on sections of bundles E

�

M and F�M over the same

base M factors through a mapping

~

D : J

1

(E

�

M ) ! F

�

M , see [Slov�ak, 88] or

[Kol�a�r, Michor, Slov�ak, 93]. For a linear operator we get even the �niteness of the

order and a smooth

~

D : J

k

(E

�

M ) ! F

�

M (this is the classical Peetre theorem).
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The locally at conformal manifolds are homogeneous enough to apply the general

theory of natural bundles and operators, see Section 2. In particular, the whole

operator is completely determined by the equivariant mapping

~

D

M

: J

k

x

(EM ) !

F

x

M for an arbitrary point x 2 M , with respect to the group of locally de�ned

conformal isomorphisms at x keeping x �xed.

Thus, in order to classify linear natural operators D : C

1

(E

�

) ! C

1

(F

�

) on

locally at conformal manifolds, we have to �nd all B-equivariant linear mappings

D : J

k

0

E

�

! (F

�

)

0

= V

�

, where 0 is the coset in G=B containing the unit e. Dual-

izing this mapping, we get a B-equivariant mapping D

�

: (V

�

)

�

! (J

k

0

E)

�

. Since

(V

�

)

�

is irreducible, all such mappings are uniquely determined by the highest

weight vectors in (J

k

0

E)

�

with the same weight as (V

�

)

�

. Then the mapping D

is the dual mapping to the corresponding inclusion. The main technical step is a

suitable identi�cation of (J

k

0

E)

�

. In Section 6 we derived the action only up to the

�rst order. Now, the most e�ective way is to deal with the direct limit of (J

k

0

E)

�

which will be identi�ed with a generalized Verma module.

More exactly, we shall solve the whole classi�cation problem on the Lie algebra

level, i.e. we shall discuss the equivariance with respect to the action of the universal

enveloping algebra U(g) on the duals of the jet spaces. Let us recall that this is

an equivalent formulation of the problem as shown in 6.7 and 6.8. The passing to

the Lie algebras has two big advantages. First, we can forget about the coverings

and, which is more important, the derivatives with respect to constant vector �elds

enable us to work still in a single �ber but to involve the translations into the

equivariance conditions at the same time.

8.2. The U(g)-module (J

1

0

E)

�

. As usual the sections of the homogeneous bundle

E are identi�ed withB-equivariant mappingsG! V

�

and the jets of sections form a

submanifold in J

k

e

(G; V

�

). Then the action ofG is given by the compositionwith the

left translation by the inverse, see 2.10. Let us identify the real universal enveloping

algebra U(g) with the Lie derivatives with respect to right invariant vector �elds

on G and consider an element x
 v

�

2 U(g)
 (V

�

)

�

. An element X 2 g � U(g) is

identi�ed with the Lie derivative L

�X

with respect to the right invariant vector �eld

on G, see 6.1. This identi�cation is extended to the actions L

x

for all x 2 U(g)

k

.

Then we can associate an element in (J

k

0

E)

�

to each x 
 v

�

2 U(g)

k


 V

�

�

acting

on j

k

e

s by (x 
 v

�

)(j

k

e

s) = hL

x

s(e); v

�

i. However this identi�cation is not one-

to-one since for x 2 U(b) where b � g is the Lie algebra of B, we get the same

action of x
 v

�

and 1
 x:v

�

where x:v

�

is the contragredient action. Let us write

I � (U(g)
V

�

�

) for the left U(g)-submodule generated by all x
v

�

�1
x:v

�

with

v

�

2 V

�

�

, x 2 U(b) and de�ne

M

b

(V

�

�

) = (U(g) 
 V

�

�

)=I = U(g)


U(b)

V

�

�

:

This is the generalized Verma module corresponding to the weight � dominant for

the parabolic subalgebra b � g, see 10.18.

We have g = b

�1

� b and b

�1

= C

m

or b

�1

= R

m

is abelian. Hence by the

properties of the enveloping algebras

M

b

(V

�

�

) = U(b

�1

)
 V

�

�

=

1

X

k=0

S

k

(b

�1

) 
 V

�

�
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with the grading induced from that of the symmetric algebra. Choosing basis @

i

of

the Lie algebra b

�1

and completing it into a basis of g, we get the normal coordinates

on a neighborhood of e 2 G and we see immediately that M

b

(V

�

�

) coincides with

(J

1

0

E)

�

as a vector space. But the left actions of U(g) coincide by the de�nition.

Let us write this action down explicitly. For this reason, we de�ne for every multi

index � = i

1

: : : i

j�j

, i

1

� � � � � i

j�j

, the linear map

`

�

: J

k

0

E ! V

�

; `

�

(j

k

e

s) = (L

�@

i

1

� : : : � L

�@

i

j�j

s)(e):

Since the elements in g

�1

commute, we can view the elements in S

j�j

(g

�1

) as

linear combinations of maps `

�

. This is precisely the above identi�cation. Let

us denote `

i

= L

�@

i

2 b

�

�1

= S

1

(b

�1

), so the elements `

�

can be viewed as

`

�

= `

i

1

� : : : � `

i

j�j

2 S

j�j

(b

�1

) and we have `

�

= 0 if j�j > k. Further, for every

X 2 g we shall denote ad`

�

:X = (�1)

j�j

[@

i

1

; [: : : [@

i

j�j

; X] : : : ]].

Lemma. The action of elements X

q

2 b

q

on `

�


 v

�

2 S

p


 V

�

�

is

X

�1

:(`

�


 v

�

) = `

�

�X

�1


 v

�

X

0

:(`

�


 v

�

) = �

X

�+1

i

=�

1�i�m

(`

�

� [@

i

; X

0

])
 v

�

+ `

�


X

0

:v

�

X

1

:(`

�


 v

�

) =

X

�+=�

jj=1

`

�


 (ad`



:X

1

):v

�

+

X

�+=�

jj=1+1

(`

�

� (ad`



:X

1

)) 
 v

�

Proof

24

. We compute with ` = j

k

0

X 2 b

q

`:(`

�


 v

�

)(j

k

e

s) = �(`

�


 v)(`:j

k

e

s) = (`

�


 v)(j

k

e

(L

X

s)) = h(`

�

� L

X

s)(e); v

�

i

Since `

j

� L

Y

= L

Y

� `

j

+ L

[�@

j

;Y ]

for all Y 2 g, 1 � j � n, and [@

j

; b

l

] � b

l�1

, we

get

`:(`

�


 v

�

)(j

k

e

s) = h`

i

1

: : : `

i

p�1

L

X

`

i

p

s(0); v

�

i+ h`

i

1

: : : `

i

p�1

L

[�@

i

p

;X]

s(0); v

�

i

24

The last formula also applies to the action of the isomorphism groups of other geometric

structures (like the symplectic or unimodular manifolds or simply all manifolds) on the duals of

jets of sections of natural bundles in the sense of 2.12. More explicitly, this formula with q = 1

replaced by a general q � 0 describes the action of the Lie algebra of all vector �elds on the

sections of the natural bundles. The natural linear operators are just those commuting with the

action of these vector �elds, see [Kol�a�r, Michor, Slov�ak, 93, Section 34] for more details. This

formula is the main ingredient of the classi�cation of all linear natural operators on all manifolds,

unimodular manifolds, symplectic manifolds, derived (with quite di�erent aim) in [Rudakov, 74,

75], and the classi�cation of all bilinear natural operators on all manifolds due to [Grozman, 80],

see also the excellent survey [Kirillov, 80], or [Kol�a�r, Michor, Slov�ak, 93, Section 34]. Of course,

the methods used for the proofs must be quite di�erent since the groups are in�nite dimensional.

The idea is to disable �rst all vectors with non-trivial action of the subalgebra g

1

� g

2

� : : : and

then apply the �nite dimensional representation theory of g

0

on the remaining vectors, the so

called singular vectors. In fact we have described this idea explicitly in 6.13 in the conformal case.
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and the same procedure can be applied p times in order to get the Lie derivative

terms just at the left hand sides of the corresponding expressions. Each choice of

indices among i

1

; : : : ; i

p

determines just one summand of the outcome. Hence we

obtain (the sum is taken also over repeating indices)

`:(`

�


 v

�

)(j

k

e

s) =

X

�+=�

h(ad`



:`):`

�

s(e); v

�

i:

Further ad`



:` = 0 whenever jj > q + 1 and for all vector �elds Y 2 b

0

� b

1

we

have

h(L

Y

� `

�

s)(e); v�i = �h(`

�

s)(0);L

Y

v

�

i

so that only the terms with jj = q or jj = q + 1 can survive in the sum. Since

` = j

k

e

Y 2 b

0

acts on (the jet of constant section) v by `:v = L

�Y

v(0), we get the

result. �

The formulas work in both real and complex domains.

8.3. Consider now an equivariant mapping D

�

: V

�

�

! (J

k

0

E)

�

. The Verma mod-

ules M

b

(V

�

�

) and M

b

(V

�

�

) are generated by the elements 1 
 v

�

�

, 1 
 v

�

�

where v

�

�

and v

�

�

are the highest weight vectors. Thus, the mapping D

�

extends uniquely

to a homomorphism D

�

: M

b

(V

�

�

) ! M

b

(V

�

�

) of the U(g)-modules. On the other

hand, each such homomorphism clearly speci�es a translational invariant operator.

Hence we have proved for both real and complex homogeneous bundles

Theorem. There is a bijective correspondence between the homomorphisms of the

generalized Verma modules and the translational invariant operators on homoge-

neous bundles.

8.4. Remark. It might seem that we have successfully reduced our problem to an

algebraic task and what remains is only to look somewhere, �nd the classi�cation

of all homomorphisms and interpret them as di�erential operators. This is very far

from the truth. First of all, the description of all homomorphisms is given in terms

of the action of the Weyl group and a complete classi�cation is well known only for

the classical Verma modules, i.e. for Borel subalgebras B. In the conformal case,

we meet the more general parabolic subgroups and here the classi�cation covering

all possible bundles has been found only recently. But say, we do not want to know

really all operators, it could su�ce to be able to �nd complete lists of them acting

on some concrete �xed bundles. Even then the results are not very satisfactory

since we �nd the extreme weight vectors and we know that the operators are the

dual mappings to the identical embeddings up to a scalar factor, but we do not get

explicit formulas for the operators in this way. Nevertheless, the fact that we can be

sure that there is an operator between some given bundles is of great importance,

cf. the deriving of the conformal Laplace operator in Section 1.

In the rest of this section we mainly follow [Slov�ak, 92].

8.5. The use of the in�nitesimal character. It turns out to be convenient

to prove the classi�cation in the complex setting and at the very end to specify

the result to the real case. So we shall treat only complex groups and algebras

in the sequel. As explained in the Appendix, if two U(g) modules generated by
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a single highest weight vector admit a homomorphism, then they must have the

same in�nitesimal character, see 10.17. Hence we have a rather strong restriction

on the possible homomorphisms between the Verma modules. The Harish-Chandra

theorem reduces the problem to the study of the a�ne action of the Weyl groupW ,

see 10.19 and 10.20. Thus, if there should exist an invariant operatorD : C

1

(E

�

)!

C

1

(E

�

), for two weights dominant for b � g, then there must be an element w 2W

such that w:�

�

= �

�

, i.e. w(�

�

+ �)� � = �

�

where �

�

and �

�

are the weights of the

contragredient representations and � is the lowest form.

De�nition. If � is a weight dominant for b such that �+ � does not lie on a wall

of a Weyl chamber, then the in�nitesimal character �

�

is said to be regular. The

in�nitesimal characters of the weights � with � + � lying on some wall are called

singular. The in�nitesimal characters of weights � and � with the same cardinality

of the stabilizers of � + � and � + � in the Weyl group W are called equisingular.

In particular, all regular in�nitesimal characters are equisingular.

8.6. Notation for natural bundles. In 10.12 and 10.13, we explain the general

notation for b-dominant weights by means of the Dynkin diagrams. We adopt the

following convention for natural vector bundles corresponding to such representa-

tions:

De�nition. A vector bundle corresponding to an irreducible representation which

is dual to that one with highest weight � will be denoted by the Dynkin diagram

with the values of � + � on the simple coroots inscribed over the corresponding

nodes (� is the sum of fundamental weights as usual).

This seems to be a very strange notation, but the passing to the duals reects

the fact that we are describing the dual mappings to the operators and the shift by

� simpli�es heavily our formulas. In fact, the dual representations are distinguished

only by their opposite conformal weights (which is, of course, not the same as the

inverting of the sign over the crossed node in general). Concrete examples are listed

in 10.14 (we have only to take the duals). The expressions C

1

(

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

) and

C

1

(

b

�

d

1

� � � �

d

n�1

� >

a

�) mean the corresponding spaces of sections of the homogeneous

vector bundles.

8.7. The patterns of natural bundles. We discuss in 10.15 that the elements

in the Weyl group which map at least some of the weights dominant for b into

weights dominant for b form the so called parabolic subgraph W

b

of W . Let us

describe this explicitly for the orthogonal algebras.

Ifm = 4, we have b = � � � and let s

1

, s

2

, s

3

be the simple roots as indicated

in g =

s

2

�

s

1

�

s

3

� . The Weyl group consists of all permutations of four letters, the

generators s

i

correspond to the transposition of the i-th and (i+ 1)-st coordinates

(in the proper ordering), see 10.10. If w 2 W

p

is di�erent from the identity, then

its decomposition into the generators must end with s

1

. A further discussion yields
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the parabolic subgraph W

p

s

1

s

2h

h

h

hj

id w s

1

'

'

'

')

h

h

h

hj

s

1

s

2

s

3

w s

1

s

2

s

3

s

1

s

1

s

3

'

'

'

')

More generally, in the even dimensions m = 2n we can describe W

b

symbolically

by

id
w
s

1

w
s

1

s

2

w
: : :

s

1

s

2

: : : s

n�1

s

n





�

w s

1

s

2

: : : s

n�1

4

4

46

�

�

��

s

1

s

2

: : : s

n�1

s

n

s

n+1

w

s

1

s

2

: : : s

n�1

s

n+1

A

A

AC

w s

1

s

2

: : : s

n�1

s

n

s

n+1

s

n�1

w : : : w s

1

s

2

: : : s

2

s

1

where the symbols s

i

denote the reections corresponding to the simple roots indi-

cated in the diagram

s

1

�

s

2

� � � � � s

n�1

�

� s

n

�

� s

n+1

.

If m = 2n+ 1 we order the simple roots as indicated in

s

1

�

s

2

� � � �

s

n

�>

s

n+1

� and we

get

id
w
s

1

w
: : :

w
s

1

: : : s

n+1

w

w s

1

: : : s

n+1

s

n

w : : : w s

1

s

2

: : : s

2

s

1

The arrows describe the so called Bruhat order on W

b

, for a more detailed descrip-

tion see e.g. [Boe, Collingwood, 85] or [Borho, Jantzen, 77].

If a weight dominant for b has all coe�cients over the nodes integral then its

in�nitesimal character is regular if and only if there is a weight � with the same

in�nitesimal character, which is dominant for the whole g. For such weights with

regular in�nitesimal characters, the meaning of the above patterns is easy to ex-

plain: We take the only weight � dominant for g with the in�nitesimal character

�

�

and we let the elements from W

b

act on �+ � as indicated in the diagrams. In

this way we get just all weights � + � with � dominant for b and with the same

in�nitesimal character �

�

.

The action of the simple reections from the Weyl group is described in 10.20.

For example, let us consider a dominant weight � for g, � =

a

�

b

�

c

� with integers

a, b, c > 0. The action of the reection s

1

2 W corresponding to simple root

denoted by the second node on � is

s

1

:� = s

1

(� + �) � � =

a+b

�

�b

�

b+c

� :



94 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

Similar simple computation yields the action of all elements in the directed graph

W

p

from 10.15. Altogether we get the pattern

b

�

�b�a

�

a+b+c

�

[

[]

a

�

b

�

c

� w

a+b

�

�b

�

b+c

�

[

[]

[

[]

b+c

�

�a�b�c

�

a+b

� w

c

�

�a�b�c

�

a

�

a+b+c

�

�b�c

�

b

�

[

[]

It is a straightforward computation to write down explicitly the patterns in the

higher dimensions. We shall do this in a quite formal way, i.e. the only restriction

on the coe�cients over the nodes of the left most weight is that this should belong

to the closed fundamental Weyl chamber.

Let us �x �rst a weight

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

with all coe�cients non-negative (but

not necessarily integral).

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

w

�b

�

b+d

1

�

d

2

� � � � � d

n�2

�

� a

�

� c

w

�b�d

1

�

b

�

d

2

+d

1

� � � � � d

n�2

�

� a

�

� c

w � � �

�b�d�a

�

b

� � � � � d

n�3

�

� d

n�2

�

� a+c+d

n�2

w

�b�d

�

b

�

d

1

� � � � � d

n�3

�

� a+d

n�2

�

� c+d

n�2

N

NP

�

��

�b�d�a�c

�

b

�

d

1

� � � � � d

n�3

�

� d

n�2

+c

�

� d

n�2

+a

��

�

PN

N

w

�b�d�c

�

b

� � � � � d

n�3

�

� a+c+d

n�2

�

� d

n�2

w

�b�d�d

n�2

�a�c

�

b

�

d

1

� � � � � d

n�3

+d

n�2

�

� c

�

� a

w : : : w

�b�2d�a�c

�

d

1

� � � � � d

n�2

�

� c

�

� a

where d = d

1

+ � � �+ d

n�2

.

The pattern for manifolds of dimension 2n+1 starts with a weight

b

�

d

1

� � � �

d

n�1

� >

a

�

with non-negative coe�cients

b

�

d

1

� � � �

d

n�1

�>

a

�
w

�b

�

d

1

+b

� � � �

d

n�1

� >

a

�
w
: : :

w

�b�d

�

b

� � � �

d

n�2

� >

a+2d

n�1

�
w

�b�d�a

�

b

� � � �

d

n�2

� >

a+2d

n�1

�

w

�b�d�d

n�1

�a

�

b

�

d

1

� � � �

d

n�2

+d

n�1

�>

a

�
w
: : :

w

�b�2d�a

�

b+d

1

�

d

2

� � � �

d

n�1

� >

a

�
w

�b�2d�a

�

d

1

� � � �

d

n�1

�>

a

�

where d = d

1

+ � � �+ d

n�1

.

Let us point out once more that the weights � in the patterns correspond to the

duals of the standard �bers of the bundles and the coe�cients themselves are the

values of �+ � on the simple corrots. In view of the above discussion we know that

all natural operators must appear between two bundles in the same pattern.
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8.8. Each position in the pattern corresponds to just one Weyl chamber and the

weights � which determine representations with regular in�nitesimal character are

those with �+ � not lying on a wall of a Weyl chamber. Thus, the unique position

of every representation with regular in�nitesimal character can be read o� the

coe�cients over the nodes. Let us call the non-negative coe�cients a; b; : : : over

the left-most weight in the pattern the coe�cients of the pattern.

If some of the coe�cients of the pattern are not integral, then a lot of the listed

weights are not dominant for b. If the stabilizer of a weight � under the a�ne

action of the Weyl group is not trivial, then the pattern degenerates in such a way

that some of the weights are not dominant for b and the number of occurrences

of the remaining weights appearing in the pattern equals to the cardinality of the

stabilizer of each of them.

Lemma. The number of occurences of the b-dominant weights in the pattern

equals to the number of the zeros among its coe�cients increased by one.

Proof. The claim follows from the explicite description of the patterns in 8.7. �

8.9. The order of the operators. The conformal weights are easily computed

by means of the coe�cients in the Dynkin diagrams as described in 10.14. The

conformal weight ! of the representation with the highest weight

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

is

! = b+ d

1

+ � � �+ d

n�2

+

1

2

(a+ c) � n

while the conformal weight of

b

�

d

1

� � � �

d

n�1

�>

a

� is

! = b+ d

1

+ � � �+ d

n�1

+

1

2

a�

1

2

(2n+ 1):

The conformal weights of the natural bundles corresponding to such diagrams are

obtained by taking the negative of the above formulas (this is our duality conven-

tion).

If there is a translational invariant operator D : C

1

((F

�

)

�

)! C

1

((F

�

�

) between

the complex bundles over complex pseudo-spheres, then its order is described eas-

ily be means of the conformal weights of � and �. Let us remind that D cor-

responds to the inclusion of the representation space V

�

into the Verma module

M

b

(�). Since each homogeneous component in the grading of the Verma module is

a g

0

-submodule, the image of the inclusion must be contained in one homogeneous

component. But the degree of this component is exactly the order of the operator

D. If !

1

is the conformal weight of �, then the conformal weight of all irreducible

representations in the i-th homogeneous component in M

b

(�) is !

1

� i. Thus, the

operator D has the order r = !

1

� !

2

where !

2

is the conformal weight of �. This

elementary observation will become one of the basic tools for the classi�cation.

8.10. Translation functors. There is a general construction which allows to

translate the results on homomorphisms of Verma modules from one pattern to

another one, the so called Jantzen-Zuckerman functors, see e.g. [Zuckerman, 77].

As before, let us write V

�

for the �nite dimensional irreducible representation with
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highest weight � dominant for b. Further, write V

�

�

for the module contragradient

to V

�

, i.e. V

�

�

has the lowest weight ��. Each U(g)-module decomposes completely

into submodules with di�erent in�nitesimal characters, see e.g. [Zuckerman, 77].

Let us write p

�

for the projections onto the modules with in�nitesimal character

�

�

. Hence given a weight � dominant for b and a weight � dominant for g, we can

de�ne two functors

'

�

�+�

= p

�+�

� (( )
 V

�

) � p

�

 

�+�

�

= p

�

� (( ) 
 V

�

�

) � p

�+�

where the action on the morphisms is de�ned by the tensor product with the iden-

tity.

These functors are de�ned on a large class of U(g)-modules involving the gen-

eralized Verma modules. For technical reasons, we shall also allow � to be an

arbitrary weight with s:� dominant for b for some s 2W

b

(then the projections p

�

and p

�+�

are well de�ned), but we shall always assume that � + � belongs to the

closed fundamental Weyl chamber which contains the weights corresponding to the

representations appearing in the most left position in the patterns. In particular,

this means that � is dominant for g if �

�

is regular and � is integral.

Lemma.

(1) The functor  

�+�

�

is left adjoint to '

�

�+�

.

(2) If the weights � and � + � are equisingular, then  

�+�

�

(M

b

(s:(� + �))) =

M

b

(s:�) and '

�

�+�

(M

b

(s:�)) = M

b

(s:(�+ �)) whenever s:� is dominant for

b.

Proof. Since V

�

is �nite dimensional, the space of homomorphismsHom(M

b

(s:(�+

�))
V

�

�

;M

b

(s

0

:�)) is naturally isomorphic to Hom(M

b

(s:(�+�));M

b

(s

0

:�)
V

�

).

In view of 8.5, only the summand p

�

(M

b

(s:(� + �)) 
 V

�

�

) can contribute to

Hom(M

b

(s:(� + �)) 
 V

�

�

;M

b

(s

0

:�)) and similarly only p

�+�

(M

b

(s

0

:�)
 V

�

)) con-

tributes to the other homomorphisms. This shows the required natural equivalence

Hom( 

�+�

�

(M

b

(s:(� + �)));M

b

(s

0

:�)) ' Hom(M

b

(s:(�+ �)); '

�

�+�

(M

b

(s

0

:�))):

The other assertion is more di�cult to prove. A general theorem reads that if

the weights � and �+� are equisingular, then the functors  

�+�

�

and '

�

�+�

are the

mutually inverse natural equivalences on their de�nition domains, see [Zuckerman,

77]. If we �x such weights � and �+ �, then for each s 2 W

b

the weights s:� and

s:(�+ �) determine representations appearing at the same position in the patterns

starting with � and � + �. The in�nitesimal characters are the same ones for the

whole pattern and so the projection p

�

is the identity on M

b

(s:�). Further

M

b

(V

s:�

)
 V

�

=

1

M

i=0

(S

i

(g

�1

)
 (V

s:�


 V

�

))

=

1

M

i=0

(S

i

(g

�1

)
 (�

k

j=1

V

�

j

)) =

k

M

j=1

M

b

(V

�

j

)
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The weights �

j

appearing in the tensor product and their multiplicities can be

determined using one of the consequences of the Weyl character formula, e.g. the

well known Brower's formula or Klimyk's formula. Finally, the projection p

�+�

selects just those �

j

which lead to the prescribed in�nitesimal character �

�+�

.

So we see that the value of '

�

�+�

on a generalized Verma module must be a

sum of generalized Verma modules. If we replace V

�

and � by V

�

�

and � + �,

we get the same result for the functor  

�+�

�

. But since  

�+�

�

� '

�

�+�

is naturally

equivalent to the identity, the values can always consist of only one generalized

Verma module. But there is certainly the weight � = s:(�+�) involved among the

weights �

j

and this appears with multiplicity one. Thus for all s 2 W

b

we have

'

�

�+�

(M

b

(s:�)) = M

b

(s:(� + �)) if s:� is dominant for b.

Similarly we can analyze the functor  

�+�

�

with � and � replaced by �� and

�+ � and we get  

�+�

�

(M

b

(s:(� + �))) = M

b

(s:�). �

As a consequence of the lemma, we can pass from one pattern to another one

by adding integral weights with regular in�nitesimal character. In particular, once

we describe all operators between the representations in one pattern, we can get all

operators in many other patterns by applying the above translations.

8.11. The operators on exterior forms. All linear natural operators on Rie-

mannian manifolds which do not disappear on at manifolds and which behave

well with respect to constant rescaling of the metric were described in 4.23. Those

which are natural on conformally at manifolds are indicated in the following two

diagrams. In the even dimension m = 2n they are all composed from the exterior

di�erential d and the Hodge star operator �.




n

+

h

h
hj

d

)'

'
'

d

+




0

w

d




1

w

d

� � � w

d




n�1




n+1

w

d

� � � w

d




2n�1

w

d




2n




p

�

CA

A

A

d

�

�

�

��

d

D

p�1

=d�d=d�d

+

�d�d

�

u

D

1

=d�(�d)

m�3

u

D

0

=d�(�d)

m�1

u

The odd-dimensional case (m = 2n+ 1) coincides with the de Rham resolvent:




0

w

d




1

w

d

� � � w

d




m�1

w

d




m

All of them are natural on locally at conformalmanifolds and there are no other

natural linear operators there. In view of the translation procedure and the form

of our patterns, this solves the existence problem for operators which act between

bundles determined by integral weights with regular in�nitesimal character. In

particular, there is at most one operator between any two such bundles up to

constant multiples.

8.12. Powers of the Laplace operator. We shall list more natural operators

on functions with conformal weights which appear in the patterns with singular
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in�nitesimal character or in patterns with non-integral coe�cients. The coe�cients

of the Dynkin diagram correspond to a function space if and only if all of them equal

to one except the coe�cient over the crossed node. Inspecting one of the patterns

with singular in�nitesimal character from 8.7 which involves such an entry, we see

immediately that either the coe�cients of the pattern are non-integral or some of

them are zero. We shall omitt now the general discussion on all possibilities since

we have to do this more complex in the proof of the main theorem below, but we

shall describe the existing operators. In fact the translation procedure described

above will produce all natural operators from those on exterior froms described

in 8.11, those on functions described below and the conformally invariant Dirac

operators on Weyl spinors derived in 6.22.

In the even dimension m = 2n we have for each 0 � i � n� 2 the translational

invariant operator D : C

1

(

�i

�

1

� � � � � 1

�

� 1

�

� 1

) ! C

1

(

�2n+i+2

�

1

� � � � � 1

�

� 1

�

� 1

). This is the

so called conformally invariant (n�i�1)-st power of the Laplacian which is de�ned

by the complete contraction of the suitable iteration of the covariant derivative. Its

uniqueness is clear from the considerations in the category of Riemannianmanifolds

(by evaluation in the Euclidean metric we exclude the curvatures but then the only

possibility to end in functions is to take a complete contraction of iterated covariant

derivative), its invariance is a matter of a direct evaluation of the e�ect of the

rescaling of the metric. In particular, the choice i = n � 2 yields the well known

conformally invariant Laplace operator.

In the odd dimensions m = 2n+ 1 we also have only the powers of the Laplace

operators. More explicitely, for each 0 � i � n�2 there is the translational invariant

operator D : C

1

(

�i+

1

2

�

1

� � � �

1

�>

1

� )! C

1

(

�2n+i+

1

2

�

1

� � � �

1

�>

1

� ). The invariance has

to be veri�ed by direct computation, the uniqueness follows from the Riemannian

invariance just as above.

8.13. Theorem. For every two weights �, � dominant for b, the space of the

natural linear operators D : C

1

(F

�

M )! C

1

(F

�

M ) acting on smooth sections of

complex natural vector bundles over complex conformal Riemannian manifolds is

at most one dimensional. All such non-trivial operators, i.e. those di�erent from

constant multiples of the identities, are indicated in the patterns below. The labels

over the arrows indicate their orders.

Let dimM = 2n, n > 1. The pattern starting with the weight

b

�

d

1

� � � � � d

n�2

�

� a

�

� c

,

where all b, d

1

; : : : ; d

n�2

, a, c � 0, is

�

� w

b

� w

d

1

� � � w

d

n�2

�

N

N

NP

a

�

�

��

c

�

PN

N

N

a

��

�

�

c

w

d

n�2

� � � w

d

1

� w

b

�

�

a+c

u

2d

1

+���+2d

n�2

+a+c

u

2b+2d

1

+���+2d

n�2

+a+c

u
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All arrows in the diagram which join integral weights dominant for b describe a

non-zero linear natural operator on conformally at manifolds and there are no

other ones.

If the dimension ofM is 2n+1, n > 0, then the non-zero linear natural operators

act between bundles corresponding to weights with integral and half-integral coe�-

cients. If the pattern starts with

b

�

d

1

� � � �

d

n�1

�>

a

� and all the coe�cients are positive

integers, then the operators are exhausted exactly by those which are indicated by

the solid arrows in the diagram

� w

b

� w

d

1

� � � w

d

n�1

� w

a

� w

d

n�1

� � � w

d

1

� w

b

�

a

u

2d

1

+���+2d

n�1

+a

u

2b+2d

1

+���+2d

n�1

+a

u

while if some of the coe�cients are half-integral and the in�nitesimal character is

regular, then we get exactly those operators indicated by the dashed arrows which

join weights dominant for b. If the in�nitesimal character of the pattern is singular,

then there are no non-trivial operators in odd dimensions.

Exactly the same classi�cation applies to natural linear operators acting on

smooth sections of real natural vector bundles over conformal Riemannian mani-

folds with an arbitrary signature (m

0

; n

0

), m

0

+n

0

= 2n � 4 or m

0

+n

0

= 2n+1 � 3.

Proof. The description of the general patterns and the computation of the confor-

mal weights in 8.8 and 8.9 yield the possible orders of natural operators as indicated

on the labels over the arrows in the diagrams above. Since the order must be a

non-negative integer, a careful inspection of the general patterns from 8.7 shows

that the coe�cients of the patterns must be half-integral. Moreover, if these coe�-

cients are not integral and the dimension is even, then the only possibility to �nd a

weight dominant for b is either to choose b half-integral or to take two half-integral

coe�cients over the adjacent nodes in the left-most weight or the couple (a; c) or the

triple (d

n�2

; a; c) must be half-integral, while all other coe�cients must be integral.

The proof of this claim consist of an elementary discussion based on the form of

the patterns from 8.7. But now, in view of the translation principle we can choose

the half-integral coe�cients to be

1

2

while the integral can be set to one. In the

case (a; c) is half-integral, the only two weights dominant for b are the two weights

just in the middle, which are di�erent but the order should be zero. Thus there

is no non-zero operator available in this case. In all other cases listed above, the

operator should transform complex functions with suitable conformal weights into

complex functions with another conformal weight, but the orders should be odd.

However, if we apply the methods leading to the description of the Riemannian

invariants in Section 4, then we see that there is no such non-zero operator in the

even dimensional case. The reason is that the evaluation in the Euclidean metric

excludes all curvatures and after applying an odd number of covariant derivatives

we get into an odd tensor power of the covectors, but then there is no way how to

come to functions using the orthogonal invariant tensor operations. Hence there

are no non-zero linear natural operators acting between bundles with non-integral

coe�cients in the even dimensions.
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In order to �nish the description of the even dimensional case, we have now to

discuss case by case the in�nitesimal characters by means of the translations be-

tween the equisingular ones. If the in�nitesimal character of the pattern is regular,

then the assertion of the theorem follows from 8.11. We have seen in 8.8 that two

patterns have equisingular in�nitesimal characters if and only if they posses the

same number of zeros among their coe�cients. On the other hand, if there should

exist a weight dominant for b in the pattern, then there can appear at most one

zero, except the case a = c = 0, see 8.6.

Assume �rst d

i

= 0 for some 0 < i � n � 2, or b = 0. Then there are only two

weights dominant for b. Let us choose all other coe�cients equal to one. Hence the

operator should be de�ned on complex functions C

1

(

�i

�

1

� � � � � 1

�

� 1

�

� 1

) with values in

C

1

(

�2n+i+2

�

1

� � � � � 1

�

� 1

�

� 1

) (we set i = 0 if we have chosen b = 0). Such operators do

exist and they are unique up to scalar multiples, see 8.12.

Now, let us choose a = 0 and suppose all other coe�cients equal to one. Then

we have also only two weights which are dominant for b in the pattern. The

corresponding operator C

1

(

�n+1

�

1

� � � � � 1

�

� 1

�

� 2

) ! C

1

(

�n

�

1

� � � � � 1

�

� 2

�

� 1

) exists and is

unique up to constant multiples. It is just the conformally invariant Dirac operator.

The choice c = 0 leads to the other Dirac operator on the basic spin representations.

The last choice, a = c = 0 yields four identical weights and operators of order zero.

This �nishes the discussion on the even dimensions.

A quite di�erent situation appears in the odd dimensions. There we must admit

also the half-integral weights. If we combine our knowledge of the possible orders

with the requirement that the arrows which could indicate a natural operator must

join the nodes with weights dominant for b, we see that the only possibility is either

to consider b half-integral or b and d

1

half integral or two adjacent coe�cients d

i

,

d

i+1

half-integral or d

n�1

half-integral. But then either the orders indicated over

the solid arrows are not integral or the weights are not dominant for b, so they

are all excluded. Now we can discuss the individual positions of the pattern for

functions with suitable half-integral conformal weights. The whole discussion is

quite similar to the above description of the sigular patterns in even dimensions.

Let us �rst show this procedure on the case of the longest arrow. We consider

the weight

1

2

�

1

� � � �

1

�>

1

� , i.e. the operator should act on the complex functions

with conformal weight

1

2

. The order r = 2n of the operator is now even and

the complete contraction of the r-th iterated covariant derivative is just the n-

th power of the Laplacian which is conformally invariant on at manifolds as an

operator acting on functions with conformal weight

1

2

with values in functions with

conformal weight

1

2

+ 2n. The uniqueness up to constant multiples is proved easily

in the category of Riemannian manifolds. Similarly we obtain (n� i)-th powers of

the Laplacians C

1

(

�i+

1

2

�

1

� � � �

1

� >

1

� )! C

1

(

�2n+i+

1

2

�

1

� � � �

1

� >

1

� ) in the remaining

cases listed above. The last possibility is d

n�1

=

1

2

and it leads to the unique

operator C

1

(

�n+

1

2

�

1

� � � �

1

� >

2

� ) ! C

1

(

�n�

1

2

�

1

� � � �

1

�>

2

� ) which is the conformally

invariant Dirac operator on the basic spin representation.

If the dimension is three, the whole pattern of weights starting with the func-

tions with conformal weight

1

2

survives and the middle arrow corresponds to the
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conformally invariant Dirac operator acting on spinors with conformal weight one.

If the pattern has a singular in�nitesimal character, then the weights must be

integral. Indeed, with some half-integral coe�cient we need the summation to

neglect it, but then we cannot get o� the zeros among the coe�ecients. Similarly,

there can appear only one zero among the coe�cients. If all non-zero coe�cients

equal one, then independent of our choice of the zero, we should �nd a non-trivial

operator acting on complex functions with an odd order. This is not possible for

the reason discussed above. Thus, there are no non-trivial operators acting between

bundles with singular in�nitesimal character in the even dimensions.

If we want to describe the natural operators in the real setting, then we also

have to describe the singular highest weight vectors, but in the real generalized

Verma modules, see 8.3. But if we complexify the duals to the jet spaces, then

either we obtain the same set of highest weight vectors or some of them can be

doubled. In any case no new singular highest weights appear. Since the spaces

of the natural operators are always at most one-dimensional in the complex case,

either the highest weight vector generating the whole Verma module is doubled, or

no other one can be doubled. Thus we may look for the singular highest weight

vectors in the complex U(g)-moduleM

b

(�). This also implies the pleasant fact that

the existence of the operators and some of their characteristics do not depend on

the signature (m

0

; n

0

). �

8.14. Examples. Let us write down the complete patterns with the orders of

the operators inscribed above the arrows, which exhaust all operators in dimension

four. If some weights are not dominant for b they have to be ignored involving all

adjacent arrows.

b

�

�a�b

�

a+b+c

�

'

')

c

][

[

a

a

�

b

�

c

� w

b

a+b

�

�b

�

b+c

�

b+c

�

�a�b�c

�

a+b

� w

b

c

�

�a�b�c

�

a

�

a+b+c

�

�b�c

�

b

�

�

��

a

][

[

c

a+ c

u

a+ 2b+ c

u

All coe�cients are non-negative integers. All linear natural operators on locally

at conformal manifolds are involved.

In dimension three we start with

b

�>

a

� with all coe�cients integral or half-

integral and non-zero. If the order is not integral we have to omit the corresponding

arrow.

b

�>

a

� w

b

�b

�>

a+2b

� w

a

�b�a

�>

a+2b

� w

b

�b�a

�>

a

�

a+ 2b

u

Using the general patterns, we can sometimes answer rather general questions.

For example, if we want to �nd all linear natural operators, say of order two, on



102 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

conformal manifolds of dimension 2n such that their source and target bundles

coincide up to conformal weights, then they must correspond to the `long' arrows

in our patterns and a = c, cf. [Branson, 89, Theorem 3.14]. Now the exact formulas

for the orders yield lists of possible sources. In particular, we �nd the operators

D

2;k

discovered by Branson for k < n. The operators D

2;n

appear in the central

diamond, e.g. D

2;2

: C

1

(

1

�

�1

�

3

�) ! C

1

(

3

�

�3

�

1

�) in the pattern which should

start with � =

0

�

1

�

2

� , cf. [Branson, 89].

8.15. Examples of the highest weights. In order to get some feeling how

concrete calculations work, let us discuss some examples in dimension four. For

this reason we �x the generators of the Lie algebra gl(4; C ) as indicated by the

position in the matrix

0

B

@

H

1

X

1

x

2

x

4

Y

1

H

2

x

1

x

3

y

2

y

1

H

3

X

2

y

4

y

3

Y

2

H

4

1

C

A

The generators o� the diagonal together with h

i

= H

i

�H

i+1

, i = 1; 2; 3, generate

the Lie algebra sl(4; C ) ' o(6; C ). Then the summands in g = n

�

�b = n

�

�l�n are

generated as follows: n = hx

i

i, l = hX

i

; Y

j

i, n

�

= hy

i

i. The simple root elements

are �

1

= X

1

, �

2

= x

1

, �

3

= X

2

. In the concrete calculations we shall need the

commutators of the root elements:

[h

1

; [h

2

; [h

3

; [X

1

; [x

1

; [X

2

;

Y

1

] �2Y

1

Y

1

0 h

1

0 0

Y

2

] 0 Y

2

�2Y

2

0 0 h

3

y

1

] y

1

�2y

1

y

1

0 h

2

0

y

2

] �y

2

�y

2

y

2

�y

1

Y

1

0

y

3

] y

3

�y

3

�y

3

0 �Y

2

y

1

y

4

] �y

4

0 �y

4

�y

3

0 y

2

Let us seek �rst for maximal weight vectors in M

b

(V

�

�

) with � =

1

�

1

�

1

� , i.e.

we shall describe invariant operators on functions. Let us recall that the maximal

weight vectors are the weight vectors for the Cartan algebra which are annihilated

by the simple root elements from b (i.e. by X

1

and X

2

) and also by the whole n (i.e.

we have to verify the vanishing of the action of x

1

and the rest will follow). Hence

we can consider the elements P (y

i

; Y

i

) 2 U(g) given by `polynomial expressions' in

y

i

, i = 1; 2; 3; 4, and Y

j

, j = 1; 2, let them act on the generating highest weight

vector v 2 M

b

(V

�

�

) and look which of the values have the desired properties. The

simplest possibility is to consider y

1

:v. Then

X

j

:y

1


 v = [X

j

; y

1

]
 v + y

1


X

j

:v = [X

j

; y

1

]
 v = 0; j = 1; 2

x

1

:y

1


 v = [x

1

; y

1

]
 v + y

1


 x

1

:v = 1
 [x

1

; y

1

]:v = 1
 h

2

:v = 0

so that y

1


 v is a good candidate for a maximal weight vector. It remains to

compute

h

i

:y

1


 v = [h

i

; y

1

]
 v + y

1


 h

i

:v = [h

i

; y

1

]
 v =

8

>

<

>

:

y

1


 v i = 1

�2y

1


 v i = 2

y

1

:v i = 3
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and so y

1

:v generates (as a maximal weight vector) a subspace in M

b

(V

�

�

) isomor-

phic to

2

�

�1

�

2

�. The standard �ber of the target bundle of the corresponding

operator is the dual, hence we get the bundle of 1-forms as the target of the oper-

ators.

Let us notice that the same computation yields also the operators corresponding

to

p+1

�

1

�

r+1

� !

p+2

�

�1

�

r+2

� . In particular, p = r = 1 determines a �rst

order operator on vector �elds with values in symmetric two-forms with suitable

conformal weight and its null-space consists of conformal vector �elds, cf. [Hitchin,

80], while p = 1, r = 0 leads to the local twistor operator de�ned on spinors, cf.

6.22 and 7.28.

Similar direct computations show

X

1

(y

1

y

4

� y

2

y

3

) = �y

1

y

3

+ y

1

y

4

X

1

+ y

1

y

3

� y

2

y

3

X

1

= (y

1

y

4

� y

2

y

3

)X

1

X

2

(y

1

y

4

� y

2

y

3

) = y

1

y

2

+ y

1

y

4

X

2

� y

1

y

2

� y

2

y

3

X

2

= (y

1

y

4

� y

2

y

3

)X

2

x

1

(y

1

y

4

� y

2

y

3

) = y

4

h

2

+ y

4

+ y

3

Y

1

+ y

2

Y

2

+ (y

1

y

4

� y

2

y

3

)x

1

h

i

(y

1

y

4

� y

2

y

3

) =

�

�2(y

1

y

4

� y

2

y

3

) + (y

1

y

4

� y

2

y

3

)h

2

if i = 2

0 if i = 1; 3.

If we choose � =

1

�

0

�

1

� , the y

4

entries in the third row cancel each other and

the Y

j

, j = 1; 2, act trivially on the highest weight vector. Hence we obtain a second

order operator with values in the bundle corresponding to the dual of

1

�

�2

�

1

�,

i.e. the conformal Laplacian on the at manifolds. If we replace the weight � by

� =

1

�

�1+q

�

1

�, we get x

1

(y

1

y

4

� y

2

y

3

)

q

:(1
 v) = 0 and the actions of X

i

, i = 1; 2,

and h

j

, j = 1; 3, remain trivial. The action of h

2

yields that the resulting operator

has the values in the bundles corresponding to

1

�

�1�q

�

1

�. These operators are

called the powers of the Laplace operator, in particular, the case with q = 2 can be

viewed as the square of the Laplace operator �

2

acting on functions (with weight

zero) with values in the functions with weight four, i.e. the longest arrow in the

diagram in 8.13.

The root elements Y

1

, Y

2

can also appear in the polynomials but they do not

increase the order. For example, (�y

3

+y

1

Y

2

)(�2y

3

+y

1

Y

2

)(�3y

3

+y

1

Y

2

) determines

a third order operator

2

�

�1

�

4

� !

5

�

�4

�

1

�, �

A

0

(ABC)

7! r

A

(A

0

r

B

B

0

r

C

C

0

�

D

0

)ABC

,

see [Baston, 90].

8.16. The Bernstein-Gelfand-Gelfand resolution. The original study of ho-

momorphisms between Verma modules was made for a Borel subalgebra b � g,

i.e. in the case of classical Verma modules. A complete classi�cation of them was

derived by [Verma, 68] and [Bernstein, Gelfand, Gelfand, 71]. The result (trans-

lated into the language of di�erential operators) states: Let B � G be a connected

and simply connected subgroup in a connected and simply connected semisimple

complex Lie group G with a Borel subalgebra b � g. If � is a dominant weight

for g, then there is a translational invariant operator D : C

1

(E

w:�

)! C

1

(E

w

0

:�

)

acting on homogeneous bundles on G=B if and only if w � w

0

in the Weyl group

W of g, see 10.15 for the notation.
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In our conformal case, the Poincar�e conformal subgroup B is far from being

a Borel subgroup B

0

� SO(m + 2; C ), but some of the homomorphisms can be

derived from the Borel case using the natural �bration � : G=B

0

! G=B where B

0

is chosen to be contained in B. Let us give a rough idea.

By the means of the latter �bration, we can lift bundles and their sections and we

can apply the result for the Borel case, however it might happen that the operator

acting on the sections of homogeneous bundles on G=B

0

vanishes on the pullbacks of

the original sections and so the invariant operator obtained in this way happens to

be the zero one. The operators obtained from the Borel case via this construction

are called the standard operators. But if this construction fails, there can still

exist non-trivial invariant operators. Such operators are called non-standard. The

Laplace operator

1

�

0

�

1

� !

1

�

�2

�

1

� is an example pointed out in [Baston,

90] bringing also slightly more details on the latter construction.

In our conformal case, the operators denoted by the straight arrows are the

standard operators, the other ones are non-standard. Without the non-standard

operators, this pattern is known as the Bernstein-Gelfand-Gelfand resolution which

generalizes the de Rham resolution.

25

The operators corresponding to the longest

arrow in our patterns are called the long operators (they correspond to the longest

element in the Weyl group). Only the long operators in these patterns might fail

to admit curved analogues, cf. Section 9.

It is a di�cult problem (and probably unsolved in full generality) to specify

all homomorphisms of the generalized Verma modules in the general parabolic

case. However, the problem was solved for many cases with regular in�nitesimal

characters se e.g. [Boe, Collingwood, 85a,b].

9. The conformal connection and

operators on curved manifolds

In the last section of this text we want to comment on natural operators on

the whole category of conformal manifolds. We shall only indicate some of the

known results, we provide the reader with further references and we sketch some

directions of possible development in the near future. We shall not mention all of

the known constructions of invariant operators on curved conformal manifolds, a

detailed survey with many references can be found in [Baston, Eastwood, 90].

We discussed in Section 4 how all Riemannian invariants are constructed by

means of the Levi-Civit�a connection. In the conformal case, we can use �rst the

Riemannian invariance, then to build general formulas in terms of the covariant

derivatives, and then to discuss which of them give rise to a conformally invariant

operator, i.e. to a natural operator on the category of conformal manifolds. This is

the approach used by many authors, see e.g. [Branson, 85], [�rsted, 81], [W�unsch,

25

On generalmanifolds, the de Rham sequence is used to resolve the sheaf of constant functions.

On homogeneous manifolds we can resolve this constant sheaf in a more e�cient way. The point

is, on a homogeneous manifoldsM we have a natural choice of a distribution D in the tangent

bundle T such that [D;D] = T and so it su�ces to use the vector �elds tangent to D in order to

recognize the constants. More details of this point of view are found in [Baston, Eastwood, 89].
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86]. They developed sophisticated in�nitesimalmethods for checking the invariance

of such operators.

Another possibility is to use a canonical connection which does exist on the

conformal manifolds, the so called Cartan connection. This can be viewed as a

general connection on a suitable �ber bundle (i.e. not right-invariant) with very

special properties. This is the approach we would like to indicate in more details.

We have to begin with the description of the Cartan connections. But �rst we

need to �nd the bundles where it lives, the �rst prolongations of the conformal

structures. This will also complete our development from Section 5.

9.1. For every closed Lie subgroup B � G

r

m

, the B-structures on m-dimensional

manifolds were de�ned in 2.11. In Section 5, we identi�ed the conformal structures

on the pseudo-spheres with such a structure of order two, while the conformal struc-

tures were de�ned as �rst order structures in general, see 5.1. We have promised

to clarify how are these two kinds of structures related.

Roughly speaking, the second order conformal structure is the �rst prolongation

of the �rst order one. In order to make this idea more precise, we need to discuss

a little the prolongations of the �rst order structures. Usually, the latter means

a tower of B

(k)

-structures F

(k)

on F

(k�1)

such that F

(k)

� P

1

(F

(k�1)

) is a �rst

order structure and the morphisms f : M ! M of these structures coincide (f is

a morphism of F

(1)

if P

1

(P

1

f)(F

(1)

) � F

(1)

). Such prolongations always exist

but they are not canonically de�ned. For a detailed exposition of this theory see

e.g. [Kobayashi, 72, Chapter I]. However, our aim is to get the prolongation as a

reduction of the higher order frame bundle which is not so easy in general. The

reader who likes to believe that the two de�nitions of conformal structures coincide

(or prefers to de�ne the conformal structures as second order ones) can skip the

next text up to 9.4.

First we have to describe the prolongation B

r

� G

r+1

m

of the Lie group B �

G

1

m

= GL(m;R). The group B

M

� Di�M of the di�eomorphisms f satisfying

P

1

f(FM ) � FM , cf. 2.12, determines the Lie subalgebra of the so called in�ni-

tesimal automorphisms of the B-structure in the algebra of all vector �elds, which

consists of the vector �elds X with ows Fl

X

t

in B

M

for small parameters t. A

B-structure is called at if FM ' M � B, the trivial bundle. Let us consider

a at B-structure and a �xed point x 2 M . Then we have a subgroup B

0

� B

of automorphisms �xing the point x and the Lie algebra b of in�nite jets of the

in�nitesimal automorphisms at x (a subalgebra in the Lie algebra of the so called

formal vector �elds). As a Lie subalgebra of the in�nite jets of all vector �elds at

x, the latter carries a canonical grading b = b

�1

� b

0

� b

1

� : : : . In particular

b

0

� gl(m;R) is the Lie algebra of B. The jets j

r+1

0

f of the automorphisms B

0

keeping the �xed point 0 2 R

m

form the Lie groups B

r

� G

r+1

m

. Their Lie algebras

are the algebras b

0

� b

1

� b

2

� � � � � b

r

with grading. The simplest way how to

describe the Lie groups B

r

is to study these Lie algebras, since the nonlinear parts

of the polynomial expressions for the jets of morphisms in B can be identi�ed with

the polynomial expressions for the elements in the subalgebra b

1

� b

2

� � � � .

Without loss of generality, we may assume M = R

m

with the standard coor-

dinates and x = 0, the origin. Then the elements in homogeneous components

b

q

of b have distinguished polynomial representatives X

q

(x) =

P

�;i

a

i

�

x

�
@

@x

i

(x).
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The condition on a vector �eld X to belong to b is P

1

(Fl

X

t

)(FR

m

) � FR

m

for

all small t, which means in local coordinates

@

@x

j

(Fl

X

t

)

i

2 b

0

. If we di�eren-

tiate with respect to t we get the condition on the coe�cients a

i

�

in the form

@

@x

j

(

P

�

a

i

�

x

�

) 2 b

0

� gl(m;R). But this condition is equivalent to the requirement

that the matrices (a

i

jj

1

:::j

q

) are elements in b

0

for all �xed indices j

1

; : : : ; j

q

. Since

the coe�cients a

i

�

are symmetric in the subscripts, we have obtained an identi�ca-

tion of b

q

with a subset in S

q+1

(R

m�

) 
R

m

of symmetric (q + 1)-linear mappings

s satisfying s( ; v

1

; : : : ; v

q

) 2 b

0

� R

m�


R

m

for all �xed elements v

1

; : : : ; v

q

. The

linear subspaces b

q

are called the q-th prolongation of the Lie algebra b

0

. If b

q

= 0,

then b

r

= 0 for all r � q, by the de�nition. The smallest q with b

q

= 0 is called the

order of the Lie algebra b

0

. If b

q

6= 0 for all q, then b

0

is said to be of in�nite type.

9.2. Examples. In order to illustrate the above procedure, let us discuss the Lie

algebras o(m

0

; n;R) and co(m

0

; n;R),m

0

+ n = m, just now. Let us assume X 2 b

1

is a polynomial �eld in the �rst case. Then its coe�cients a

i

jk

can be viewed as

elements a

ijk

by means of the isomorphism provided by the pseudo-metric. But

then we have the anti-symmetry a

ijk

= �a

jik

for all signatures. Since a

ijk

= a

ikj

,

we get

a

ijk

= �a

jik

= �a

jki

= a

kji

= a

kij

= �a

ikj

= �a

ijk

and so a

ijk

= 0. Thus, the Lie algebra o(m

0

; n;R) is of order one.

By the de�nition of the algebra co(m

0

; n;R), the kernel of the homomorphism

co(m

0

; n;R) ! R, A 7! TrA, is just the Lie algebra o(m

0

; n;R). Since o(m

0

; n;R)

has order one, the linear mapping b

1

! R

m�

, X = (a

i

jk

x

j

x

k
@

@x

i

) 7!

1

n

a

i

ik

2 R

m�

, is

injective (the kernel lies in the �rst prolongation of o(m

0

; n;R) and so is zero). On

the other hand, each element q

i

2 R

m�

de�nes an element �q

b

g

bi

�

jk

+q

b

g

b

k

�

i

j

+q

b

g

b

j

�

i

k

which belongs to b

1

, cf. 5.10. Thus the latter formula de�nes the identi�cation

b

1

= R

m�

. Let us consider X 2 b

2

with coe�cients a

i

jkl

. For each l �xed we must

get an element from b

1

. Hence after lowering all superscripts, we can write

a

ijkl

= �q

il

�

jk

+ q

kl

�

ij

+ q

jl

�

ik

:

Since the coe�cients are symmetric in j, k, l, the trace satis�es a

bbkl

= mq

kl

=

a

bblk

= mq

lk

. Further we have a

bbkl

= a

bklb

= �q

bb

�

kl

+ q

lk

+ q

kl

and so �q

bb

�kl =

(m � 2)qkl. The trace of this expression yields (m � 2)q

bb

= �mq

bb

and therefore

q

bb

= 0. Then the last but one equality implies q

ij

= 0 if m � 3. In this way, we

have proved that co(m

0

; n;R) is of order two in dimensions greater then two. (In

dimension two, there is the isomorphism co(2;R)' gl(1; C ), hence it is an algebra

of in�nite type.)

A general theorem due to R. Palais claims that if the Lie algebra of all in�nites-

imal automorphisms of a B-structure on M is �nite dimensional, then the group

B � Di�M is a �nite dimensional Lie group and the in�nitesimal automorphisms

form its Lie algebra. In particular, this happens for each B-structure with the Lie

algebra b

0

of B of �nite order, see [Kobayashi, 72, Chapter I] for the proofs.

9.3. The �rst order prolongation. There is the so called canonical form � 2




1

(P

1

M;R

m

) (called also soldering form) de�ned by �(X) = '

�1

�

(T�(X)) 2 R

m
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where X 2 T

u

(P

1

M ), � : P

1

M !M is the bundle projection and u = j

1

0

'. Equiv-

alently, �(X) = j

1

0

'

�1

� � � c if X = j

1

0

c.

The B-structure FM is a subbundle in � : P

1

M ! M , hence J

1

(FM ) �

J

1

(P

1

M ). If we choose a horizontal subspace H � T

u

P

1

M , then �jH is an iso-

morphism. Now, each y = j

1

x

s 2 J

1

(FM ) determines a horizontal subspace H

y

2

T

s(x)

(FM ) and an isomorphismR

m

�b

0

! T

s(x)

(FM ) given by (X;Y ) 7! �

Y

+X

0

where �(X

0

) = X, X

0

2 H

y

and �

Y

is the fundamental �eld corresponding to Y .

Hence we can view the one-jets of the sections as elements in P

1

(FM ). The actions

of the isomorphisms f : M !M on J

1

(FM ) depend on the second derivatives and

we shall try to �nd a subbundle in J

1

(FM ) carrying the structure of the principal

�ber bundle with the structure group B

1

, which is preserved by the action of second

jets of the automorphisms of the B-structure. This can be constructed by means of

the di�erential d� restricted to the tangent spaces to sections. Let us start with the

notion of the torsion. The torsion t of the B-structure FM is the smooth function

t on J

1

(FM ) with values in Hom(�

2

R

m

;R

m

)) de�ned by

t(y)(�(X

1

) ^ �(X

2

)) = d�(X

1

; X

2

); y = j

1

x

s; X

1

; X

2

2 H

y

� T

s(x)

(FM ):

The torsion t is equivariant with respect to the action of the vector group R

m�

�

b

0

with respect to the following actions. The transitive action on the bundle

J

1

(FM ) ! FM is de�ned by means of the above identi�cation R

m

� b

0

'

T

s(x)

(FM ) determined by j

1

x

s, while the action on Hom(�

2

R

m

;R

m

) is given by

A(w) = w+ @A, where A 2 Hom(R

m

; b

0

) and @ : Hom(R

m

; b

0

)! Hom(�

2

R

m

; b

0

),

(@f)(v

1

; v

2

) = �f(v

2

)v

1

+ f(v

1

)v

2

, is the Spencer operator. Hence we can factorize

t by these action of R

m�

� b

0

and we get a mapping

c : FM ! Hom(�

2

R

m

;R

m

)=(R

m�

� b

0

)

which is called the structure function of B.

The space R

m

is identi�ed with the (abelian) subalgebra of constant vector �elds

b

�1

and so each value of t can be viewed as a cochain in C

0;2

(b

�1

; b

�1

� b

0

� � � � )

in the Spencer bigraded complex. All cochains in C

0;q

are closed (since b

�2

= 0)

and we factorize precisely by the image of the di�erential @, cf. 10.21. Hence the

values of c are in the Spencer bigraded cohomology space H

0;2

(b

�1

; b

�1

�b

0

�� � � ).

If the structure function is zero, then there is a canonical way of the prolongation

of the B-structure: The �rst jet prolongation J

1

(FM ) is embedded into the bundle

of second semi-holonomic frames

�

P

2

M and the vanishing of c is a necessary and

su�cient condition for the existence of a holonomic subbundle F

1

M = i(J

1

(FM )\

P

2

M ). The latter is then the �rst prolongation with all required properties, see

[Kol�a�r, 85] for details. Let us remark that the structure function is de�ned in

the latter paper by a nice geometrical construction using the di�erence tensor on

semiholonomic second frame bundle.

In the conformal case, we compute in 10.21 that H

0;2

(b

�1

; g) = 0 and so the

structure function must be always zero. Thus there is the canonical second order

structure F

1

M � P

2

M on conformal manifolds which is the �rst prolongation of

the conformal structure FM � P

1

M .

26

26

If the structure function is not zero, the torsion still helps to get the usual (but not canonical)
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9.4. Another construction of the prolongations is based on the torsion free connec-

tions on FM . We shall need several technical tools.

The second frame bundle, is equipped with a generalization of the soldering

form, a form �

(2)

2 


1

(P

2

M;R

m

� g

1

m

) de�ned as follows

27

. Each element u 2

P

2

x

M , u = j

2

0

', determines a linear isomorphism ~u : R

m

� g

1

m

! T

�

2

1

(u)

P

1

M (in

fact T

0

(P

1

') : T

(0;e)

(R

m

� G

1

m

) ! TP

1

M ). Now if X 2 T

u

P

2

M then �

(2)

(X) =

~u

�1

(T�

2

1

(X)), i.e. �

(2)

(X) = j

1

0

(P

1

'

�1

� �

2

1

� c) if X = j

1

0

c. This canonical form

decomposes as �

(2)

= �

�1

� �

0

where �

�1

is the pullback of the soldering form �

on P

1

M , �

�1

= (�

2

1

)

�

�, while �

0

is g

1

m

-valued. The values of �

(2)

can be viewed as

elements in the Lie subalgebra of constant and linear vector �elds in the Lie algebra

of formal vector �elds.

Lemma. (1) For each X 2 g

2

m

, �

(2)

(�

X

) = T�

2

1

(X) 2 g

1

m

= gl(m).

(2) For each g 2 G

2

m

, (r

g

)

�

�

(2)

= Ad(g

�1

)�

(2)

.

(3) There is the structure equation d�

�1

+ [�

0

; �

�1

] = 0.

Proof. The �rst two statements follow easily from the de�nition of �

(2)

. Let us

prove the last one. We shall use the canonical local coordinates u

i

, u

i

j

, u

i

jk

on

P

2

R

m

= R

m

� GL(m;R) � R

m


 S

2

R

m�

. The coordinate expression of (3) is

d�

i

= ��

i

k

^ �

k

, where �

�1

= �

i


 e

i

, �

0

= �

i

k


 e

k

i

are the expressions with

respect to usual bases e

i

2 b

�1

= R

m

, e

k

i

2 gl(m;R) so that [e

k

i

; e

j

] = �

k

j

e

i

. The

de�nition of �

(2)

provides us with the coordinate expression for the di�erentials of

the coordinate functions u

i

, u

i

j

on P

1

M

du

i

= u

i

j

�

j

du

i

j

= u

i

h

�

h

j

+ u

i

hj

�

h

:

Applying the di�erential to the �rst equality we get

0 = du

i

j

^ �

j

+ u

i

j

d�

j

= u

i

j

d�

j

+ u

i

h

�

h

j

^ �

j

+ u

i

hj

�

h

^ �

j

where the last term is zero, for u

i

hj

is symmetric in the subscripts. If we multiply

by the inverse matrix function v

k

i

to u

i

j

on the left, we obtain d�

k

= ��

k

j

^ �

j

as

required. �

9.5. A section of the bundle �

2

1

: P

2

M ! P

1

M is called admissible if s(u:g) =

s(u):g for all u 2 P

1

M and g 2 G

1

m

� G

2

m

. The admissible sections are precisely

sections of P

2

M=G

1

m

!M .

Lemma. There is a bijective correspondence between local torsion-free connections

� on P

1

M and local admissible sections s

�

given by � = s

�

�

�

0

.

Proof. Given any local admissible section s : P

1

M ! P

2

M , the Lie algebra valued

one form � = s

�

�

0

is a local principal connection. One veri�es easily in local

prolongations as mentioned at the very beginning. Every choice of a complementary subspace C 2

Hom(�

2

R

m

;R

m

) to the subspace @(Hom(R

m

; g)) determines the subspace t

�1

(C) � J

1

(FM).

The bundle t

�1

(C) ! FM has the proper structure group (corresponding to the Lie subalgebra

b

1

� b

0

� b

1

).

27

In general, a similar de�nition yields a form �

(k)

2 


1

(P

k

M;R

m

� g

k

m

) where g

k

m

is the Lie

algebra of G

k

m
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coordinates that � is without torsion. On the other hand, the coordinate expression

shows that each locally de�ned principal connection without torsion de�nes a local

section M ! P

2

M=G

1

m

, see [Kobayashi, 72, Proposition 7.1] for more details if

necessary. �

The value s

�

(u) depends only on the restriction of � to T

u

P

1

M . Hence if we

consider a connection � of a B-structure FM � P

1

M , then the admissible section

s

�

de�nes the B-principal subbundle s

�

(FM ) � P

2

M . Now, we can take the orbit

B

1

(s

�

(FM )) � P

2

M which is a B

1

-principal subbundle. Hence the problem which

remains is how to determine whether two di�erent torsion-free connections give rise

to the same second order B

1

-structure. Such connections are called equivalent and

the set of all equivalence classes of connections belonging to certain B-structures is

parameterized by sections of the associated bundles of the B-principal bundle FM

with respect to the representation of B on H

1;1

(b

�1

; g), cf. [Ochiai, 70] or [Baston,

90]. This applies in particular to the conformal case, where the �rst prolongation

B

1

of the structure is just the Poincar�e conformal group and we compute in 10.21

that the above mentioned cohomology is zero. In other words, all torsion-free

connections on conformal manifolds are equivalent, see also [Kobayashi, 72] for a

more elementary direct treatment. Thus the local prolongations do not depend on

our choice of the connections and hence they can be glued into a unique reduction of

the second frame bundle P

2

M to the Poincar�e conformal group. In particular, we

can use the Levi-Civit�a connection with respect to any pseudo-Riemannian metric

from the conformal class.

9.6. The Cartan connections. We have established the existence of a canon-

ical subbundle in the second order frame bundle on each conformal manifold, let

us denote this principal bundle PM . We are interested in some analogy to the

Levi-Civit�a connection for conformal manifolds. We shall see, that there exists a

canonical Cartan connection which is unfortunately not a connection but more an

analogy of the Maurer-Cartan form on Lie groups.

De�nition. Let G be a Lie group with a closed subgroup B and let dimG=B = m.

A Cartan connection ! on a principal bundle P with m-dimensional base manifold

and structure group B is a g-valued one-form on P (g is the Lie algebra of G) with

the properties

(1) !(�

X

) = X for all X 2 b

(2) (r

g

)

�

! = Ad(g

�1

)! for each g 2 B

(3) !(Y ) 6= 0 for each non-zero Y 2 TP

As already mentioned, the Maurer-Cartan form on G is the simplest example of

a Cartan connection on the principal bundle G! G=B. The Cartan connection !

on P can be viewed as a principal connection on the principal bundle P �

B

G with

structure group G.

Similarly to the usual principal connections, we can write down the structure

equation

d! = �

1

2

[!; !] + 


where 
 is some g-valued 2-form. This 2-form is called the curvature form of the

Cartan connection !.



110 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

9.7. Our next aim is to �nd canonical Cartan connections on the canonical subbun-

dles PM in P

2

M on conformalmanifolds. We shall follow the elementary treatment

from [Kobayashi, 72] using local coordinates but we shall review the whole story in

the language of the Spencer cohomologies later on.

A Cartan connection ! and its curvature 
 on the canonical bundle PM can

be always decomposed as ! = !

�1

� !

0

� !

1

and 
 = 


�1

� 


0

� 


1

. But this

decomposition is only b

0

-invariant and not (b

0

� b

1

)-invariant.

Lemma. (1) the restriction !

�1

to each �ber of PM vanishes

(2) the restriction of the b-component, i.e. !

0

�!

1

, to each �ber is the Maurer-

Cartan form of b

(3) the curvature is a horizontal 2-form, i.e. 
(X;Y ) = 0 if X is vertical

(4) if !

�1

= !

1


 e

1

+ � � � + !

m


 e

m

for some �xed base of b

�1

, then the

curvature admits an expression 
 =

P

i;j

1

2

K

ij

!

i

^ !

j

where K

ij

are g-

valued functions.

Proof. The assertions (1) and (2) follow directly form the de�nition of the Cartan

connections. Then the structure equation, restricted to any �ber, yields (3). Since

each Cartan connection ! de�nes an absolute parallelism on PM , the components

!

i

, !

i

j

, !

j

of !

�1

� !

0

� !

1

with respect to basis of the components of the Lie

algebra generate the whole algebra of the exterior forms �(M ). But then obviously

(1){(3) imply (4). �

9.8. Admissible Cartan connections. The restriction of the canonical form

�

(2)

M

2 


1

(P

2

M;R

m

� g

1

m

) on an m-dimensional conformal manifold M to the

principal subbundle P � P

2

M with structure group B is an (R

m

�b

0

)-valued form,

we shall denote it by �

P

2 


1

(PM;R

m

� b

0

). This decomposes as �

P

= �

�1

� �

0

where �

�1

2 


1

(P; b

�1

) and �

0

2 


1

(P; b

0

). We have

�

0

(�

X

0

+X

1

) = X

0

for each X

0

+X

1

2 b

0

� b

1

(1)

(r

g

)

�

(�

�1

� �

0

) = Ad(g

�1

)(�

�1

� �

0

)(2)

�

�1

(Y ) = 0 if and only if Y is vertical(3)

d�

�1

+ [�

0

; �

�1

] = 0(4)

and so there can exist Cartan connections ! = �

�1

� �

0

� !

1

on P where !

1

is

subject of a free choice. Such Cartan connections are called admissible.

The Maurer-Cartan equations of O(m + 1; 1;R) can be easily read o� 5.9 if we

decompose the bracket

[!; !] = [!

�1

; !

0

] + ([!

�1

; !

1

] + [!

0

; !

0

]) + [!

1

; !

0

]:

The structure equation for a Cartan connection ! consists then of the same terms

together with the curvature components:

d!

i

= �!

i

k

^ !

k

+ 


i

(5)

d!

i

j

= �!

i

k

^ !

k

j

� !

i

^ !

j

� !

i

^ !

j

+ �

i

j

!

k

^ !

k

+ 


i

j

(6)

d!

j

= �!

k

^ !

k

j

+


j

:(7)
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If ! is admissible, then 


i

= 0 by the de�nition and (5). Now, applying the exterior

di�erential d to (5) we get

0 = d(!

i

j

^ !

j

) = d!

i

j

^ !

j

� !

i

j

^ d!

j

:

If we substitute from (5) and (6) we obtain the Bianchi identity 


i

j

^ !

j

= 0. In

the expression 


i

j

=

1

2

K

i

jkl

!

k

^ !

l

this means

K

i

jkl

+K

i

klj

+K

i

ljk

= 0:

9.9. Theorem. Let P be a principal bundle over an m-dimensional manifold

M , m � 3, with structure group B, the Poincar�e conformal group. If !

�1

2




1

(P; b

�1

) and !

0

2 


1

(P; b

0

) are two 1-forms satisfying the equalities 9.8.(1){

(3) and the structure equation 9.8.(4), then there is a unique Cartan connection

! = !

�1

� !

0

� !

1

, such that the curvature 
 = 


�1

� 


0

� 


1

satis�es 


�1

= 0

and 


0

is in the trace-free part of the space of b

0

-valued 2-forms. In the standard

basis of the components of the Lie algebra, the latter means 
 = (0;


i

j

;


j

) with




i

j

=

X

1

2

K

i

jkl

!

k

^ !

l

;

X

K

i

jil

= 0:

Proof. Let us �rst prove the uniqueness. Consider two admissible Cartan connec-

tions !, �! with the properties required in the theorem. Then the b

�1

-component

and b

0

-component of the di�erence �! � ! are zero by the de�nition and

�!

j

� !

j

=

X

k

A

jk

!

k

for suitable functions A

jk

on the principal bundle P . Now, direct computation

using 9.8.(5){(7) yields the expression for the di�erence of the curvatures

�




i

j

�


i

j

=

1

2

P

kl

(

�

K

i

jkl

�K

i

jkl

)!

k

^ !

l

with

�

K

i

jkl

�K

i

jkl

= ��

i

l

A

jk

+ �

i

k

A

jl

+ �

i

j

A

kl

� �

i

j

A

lk

:

Thus, the traces are

X

i

(

�

K

i

jil

�K

i

jil

) = (m � 2)A

jl

+ �

jl

X

i

A

ii

X

ij

(

�

K

i

jij

�K

i

jij

) = 2(m� 1)

X

i

A

ii

and so A

ij

= 0 for all subscripts.

Next we notice that there is a Cartan connection satisfying all requirements if

there is at least one Cartan connection with the given components !

�1

and !

0

.
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The point is, we write �! � ! as above and we �nd functions A

ij

such that �! will

obey all the required properties. One veri�es easily that the right choice is

A

jk

=

1

m � 2

�

1

2(m� 1)

�

jk

X

i;l

K

i

lil

�

X

i

K

i

jik

�

:

In order to complete the proof, we have to construct an arbitrary Cartan con-

nection ! with given components !

�1

and !

0

. Since local Cartan connections on

M can be glued together using the partition of unity on the manifoldM , it su�ces

to construct the connections locally. (Another argument is, each such local Cartan

connection gives rise to a local connection with the required properties, but the

latter is unique and so we must get a globally well de�ned object.) If we choose a

section � of P , we can de�ne !

j

= 0 on the tangent spaces to the section and since

the values of !

j

are given also on the vertical tangent spaces by the de�nition and

!

j

must be right invariant with respect to action of the Poincar�e group B, !

j

is well

de�ned by this choice. Explicitly, each vector Y 2 T

u

P , u = �(x):g, decomposes

uniquely as Y = (r

g

)

�

(X

1

) + �

X

2

(u) with X

1

2 T�(T

x

M ) and X

2

2 b

0

� b

1

. Then

by the de�nition

!(Y ) = Ad(g

�1

)(!(X

1

)) +X

2

�

and this formula de�nes the values of !

j

.

9.10. Remark. The local construction from the end of the above proof can be

modi�ed to produce a globally de�ned admissible Cartan connection by means of

a torsion-free connection on the `linear' frame bundle PM=B

1

.

Let us consider such a connection � and the corresponding admissible section

s

�

from 9.5. Now, we set !

j

= 0 on the image of s

�

, and we decompose each

Y 2 T

u

P , u = s

�

(x):g with g 2 B

1

, uniquely as Y = (r

g

)

�

(X

1

) + �

X

2

(u) with

X

1

2 T�(T

x

(PM=B

1

) and X

2

2 b

1

. Then !(Y ) = Ad(g

�1

)(!(X

1

)) + X

2

de�nes

!

j

. One checks easily that this is an admissible Cartan connection.

9.11. The conformal connection. For each conformal manifold M , we can

apply the above theorem to the canonical principal subbundle PM � P

2

M with

structure group B and the restriction �

P

of the canonical two-form �

(2)

on P

2

M

to PM . Thus, there is the uniquely de�ned Cartan connection !

M

on PM such

that !

M

= �

�1

� �

0

� (!

M

)

1

and 


M

= 0� (


M

)

0

� (


M

)

1

with values of (


M

)

0

in the trace-free part of �

2

T

�

P 
 b

0

. This connection is called the normal Cartan

connection on M or the conformal connection on M . Usually, we shall omit the

subscript M in the sequel.

As mentioned in 9.6, the Cartan connections can be viewed as the usual con-

nections on the extended principal �ber bundle P �

B

G with structure group G

and so we get the induced connections on each associated bundle. In particular,

we can consider the standard �ber G=B, the sphere. The associated bundle can

be viewed as the `pointwise compacti�ed tangent space' over the base manifoldM .

The connection on this space is also called the conformal connection on M in the

literature.

9.12. The cohomological interpretation. We present briey an alternative

description of the conformal connection and its curvature. We follow [Ochiai, 70]

and [Baston, 90].
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Let us consider an arbitrary admissible Cartan connection ! = �

�1

� �

0

� !

1

on the canonical bundle PM over a conformal manifoldM and let us write briey

g = b

�1

� b

0

� b

1

= o(m + 2). Further we shall use the notation !

�1

(X) for the

vector �eld on P corresponding to an element X 2 g. In particular, we can rewrite

the structure equation d! =

1

2

[!; !] + 
 as

(1) 
(!

�1

(X); !

�1

(Y )) = [X;Y ]� !([!

�1

(X); !

�1

(Y )])

for all X, Y 2 g (the values of ! on our particular �elds are constant and so the

`Lie derivative part' of the di�erential disappear).

For each u 2 P we de�ne the cochain W (u) 2 C

1;2

(b

�1

; g) by

(2) W (u)(X;Y ) = 


0

(!

�1

(X); !

�1

(Y )); X; Y 2 b

�1

:

The di�erential @W is evaluated on three elements from b

�1

, and the formula from

10.21 yields

(3) @W (X;Y; Z) = [�

�1

;


0

](X;Y; Z)

so that the Bianchi identity implies @W = 0. Hence W determines a cohomology

class in H

1;2

(b

�1

; g).

In the �rst part in the proof of Theorem 9.8 we proved in fact that this class is

independent of our choice of !

1

. The assumption on the values of 


0

in Theorem

9.8 mean that we have to adjust !

1

in such a way that W is the unique harmonic

representative of the class. Let us give some more details.

Given any pair !, �! of admissible Cartan connections, there is the C

2;1

(b

�1

; g)-

valued function f on P de�ned by

�!

�1

(X) � !

�1

(X) = �!

�1

(f(X)); X 2 b

�1

:

Since 
 is a horizontal form, we get

(

�

W �W )(X;Y ) = (

�




0

� 


0

)(!

�1

(X); !

�1

(Y ))(4)

= [�

�1

; �!

1

� !

1

](!

�1

(X); !

�1

(Y ))

= @f(X;Y )

(only the b

1

-valued entry in the structure equation can contribute to the last but

one term). This shows that the cohomology class of W is uniquely de�ned.

We can always construct an admissible Cartan connection ! on PM from local

sections, see the proof of 9.8, or equivalently from the Levi-Civit�a connection of one

of the metrics from the conformal class by means of the construction from 9.4. In

order to get the right one, we have to �nd the proper C

2;1

(b

�1

; g)-valued function

f . This is obtained as the solution of the equation

(5) �f = �@

�

W

where � is the Laplace operator on the cochains and @

�

is the codi�erential, see

10.22 for the notation and de�nitions. Indeed, then we can de�ne

�!

�1

(X) = !

�1

(X) + !

�1

(f(X))
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for all X 2 b

�1

and so

�

W = @f +W;

see (4). Now, @

�

�

W = @

�

@f + @

�

W = �f + @

�

W = 0 and so �

�

W = 0.

Since we know from 10.21 that H

2;1

(b

�1

; g) = 0 in the conformal case, this

solution f is unique and we have recovered the uniqueness and existence of the

normal conformal connection.

9.13. The conformal curvature. In the coordinate like description, the compo-

nents of the curvature of the normal Cartan connection are 


i

j

=

1

2

P

K

i

jkl

!

k

^ !

l

and 


j

=

P

K

jkl

. In the proof of 9.8 we deduced the Bianchi identity for 


i

j

. An

analogous computation leads to the equalities

X

i

!

i

^ 


i

= 0; !

i

^ 


j

� !

j

^


i

= 0:

A further computation with traces veri�es also that 


1

vanishes whenever 


0

does,

provided the dimension is at least four. Hence 


0

is the proper obstruction against

the integrability of the conformal structures.

Let us represent the b

0

-component 


0

of the curvature as a section of a suitable

bundle. As mentioned in 10.21, the cohomology spaces H

�

(b

�1

; g) carry a canonical

b

0

-module structure. Hence the cohomology class of the function W on the canoni-

cal bundle PM could represent a section of the associated bundle corresponding to

the b

0

-module H

1;2

(b

�1

; g) (viewed as (b

0

� b

1

) -module via the trivial extension,

if it satis�es the proper equivariance condition. Indeed, then we view W as an

equivariant smooth mapping with values in the standard �ber, i.e. as a section.

But the latter equivariance follows from the fact that 


0

is right invariant modulo

b

1

.

In 10.21 we compute the highest weights of the representations of b

0

occurring

in H

1;2

(b

�1

; g) in the conformal case. One �nds, that in dimensions greater then

four we get the irreducible conformally invariant part of the Riemann curvature

tensor, the so called Weyl curvature tensor, while in dimension four the latter still

splits into two irreducible components.

An interesting fenomenon appears in dimension three, where H

1;2

(b

�1

; g) = 0

and so the Weyl curvature does not exist and has to be replaced by a third order

invariant tensor. See [Baston, 90] for more comments.

Now, let us come back to the natural operators on conformal manifolds.

9.14. Let us �rst recall the meaning of `conformally invariant'. In the sense of the

general de�nition of Section 2, the natural operators are systems of operators de-

�ned on sections of bundles with distinguished actions of the conformal morphisms

and intertwining these actions, one for each conformal manifold. If we deal with

spinor bundles, we have to consider the coverings of the morphisms to the spin

structures, see 2.14. It has no meaning to restrict this de�nition to individual man-

ifolds, since in general there may be no conformal morphisms beside the identity,

or only very few of them, and in such a case all operators would be `invariant'.

However exactly those constructions on individual manifolds which make no use

of some special choices extend into natural operators on all conformal manifolds.
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All our operators are local and so we do not take care of the spin structures which

always exist locally. The e�ect is that the operators we obtain might not exist on

some manifolds simply because of the lack of the de�nition domains.

9.15. The `curved' translation principle. The translation procedure which

was heavily used in Section 8 in the conformallyat case, was worked out in [Baston,

90] by means of the normal Cartan connection for general conformal manifolds of

all dimensions greater then two.

The inverse of the Cartan connection ! on the canonical bundle PM !M on a

conformal manifoldM is an injective linear mapping

!

�1

: g! C

1

(TPM )

where G = SO(m + 2; C ) and g is its Lie algebra. The right invariance of ! with

respect to the action of the conformal Poincar�e group B has the in�nitesimal form

!

�1

([X;Y ]) = [!

�1

(X); !

�1

(Y )]; X 2 b; Y 2 g:

Let us now �x two weights � and � dominant for b and write as usual V

�

, V

�

for the corresponding representation spaces. They de�ne the associated bundles

E

�

M = PM �

�

V

�

and E

�

= PM �

�

V

�

on all conformal (spin) manifolds (in the

`spin case' PM means the lift to the double covering of the canonical bundle, see

2.14).

In order to �nd an invariant linear operator D

M

: C

1

(E

�

M ) ! C

1

(E

�

M ),

we have to describe the dual mapping to its action on the in�nite jets of sections

of the bundles. If we �x a point u 2 PM , the latter should be an invariantly

de�ned mapping fug �

�

V

�

�

! (J

1

u

(PM;V

�

)

B

)

�

. Now we can employ the Cartan

connection. The domain of this map is a U(b)-module generated by a highest weight

vector but the codomain is , with the help of !, too.

Let us write A(g) for the quotient T (g)=hX
Y �Y 
X�[X;Y ]; X 2 b; Y 2 gi of

the tensor algebra over g by the indicated ideal. A(g) is a U(b)-bimodule and U(g) is

a quotient of A(g). As a vector space A(g) ' T (n

�

) 
 U(b) and the left b-modules

A(g) 


U(b)

V

�

�

cover the generalized Verma modules M

b

(V

�

�

). In particular, the

maximal weight vectors are de�ned in A(g)


U(b)

V

�

�

and they must cover maximal

weight vectors in M

b

(V

�

�

).

Now the point is, the normalCartan connection identi�es the dual of the jet space

(J

1

u

(PM;V

�

)

B

)

�

with a quotient of A(g)


U(b)

V

�

�

, exactly as in the identi�cation

in 8.2. Indeed, in Section 8 we made use of the special case of the normal Cartan

connection, the Maurer-Cartan form on g in the identi�cation of the right invariant

vector �elds on G with U(g) and this was the crucial point of the identi�cation

of the dual jet spaces. Now we can do the same, but we are allowed only to use

commutators of the form [X;Y ] with X 2 g, Y 2 b.

If we �nd a maximal weight vector with weight � in A(g) 


U(b)

V

�

�

, then we

obtain a uniquely de�ned mapping fug �

�

V

�

�

! (J

1

u

(PM;V

�

)

B

)

�

and since we

deal with jets of right-invariant mappings, the latter cannot depend on our choice

of u in the �ber. Once such maximal weight vector exists in one �ber, we get it

in all other ones as well and we obtain an invariant operator in this way. Each

such maximal weight vector covers a maximal weight vector in M

b

(V

�

�

) and so the
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corresponding operator can be viewed as an extension of the invariant operator

on the locally at conformal manifolds. Hence, in our algebraic reformulation, the

question whether the invariant operators on at manifolds admit curved analogues

reads: do the maximal weight vectors in M

b

(V

�

�

) lift to maximal weight vectors in

A(g)


U(b)

V

�

�

? A partial answer is given in [Baston, 90]:

9.16. Lemma. Let � be an integral dominant weight for g = � � � � � � �

�

�

�

�

,

let b = � � � � � � �

�

�

�

�

and let w, w

0

2 W

b

. If D : M

b

(V

�

w

0

:�

) ! M

b

(V

�

w:�

)

is a homomorphism of Verma modules, then the image of M

b

(V

�

w

0

:�

) is generated

by a maximal weight vector v which can be lifted to a maximal weight vector in

A(g)


U(b)

V

�

w:�

, unless w = id and jw

0

j = 2n, the full dimension.

In the formulation of the Lemma, we use terminology and notation introduced

in the Appendix. In particular, W

b

means the parabolic subgraph, jw

0

j the length

of its element. In order to prove the lemma one has to �nd an expression for the

maximal weight vector v as a sum of terms of the form P 
 v

0

with P 2 T (n

�

) and

v

0

2 V

�

w:�

such that its maximality can be proved only by means of commutators

of the form [X;Y ], X 2 b, Y 2 g. The complete proof is available in [Baston, 90]

and is based heavily on the translation principle.

The latter author claims also that an analogous lemma holds in odd dimensions.

As a consequence, we get immediately the following general result on the existence

of natural operators.

9.17. Theorem. All natural operators between natural vector bundles with reg-

ular in�nitesimal characters on at conformal m-dimensional manifolds, m = 2n

even, extend to bundles on curved m-dimensional conformal manifolds except the

long operators, i.e. those corresponding to the longest arrow in the diagram from

8.13.

In odd dimensions, all natural operators on locally at conformal manifolds

extend to a natural operator on the whole category.

Though the proof of Lemma 9.16 consists in certain inductive construction, it

provides us with no direct method for writing down the formulas for the operators,

cf. the situation in the at case, Remark 8.4. Nevertheless, there is a general

reason for which all these formulas are expression in the Levi-Civit�a connection

with highest order term coinciding with the at case, accomplished with certain

lower order correction terms. The correction terms are expressed only through the

Ricci curvature of the Levi-Civit�a connections and their formal expressions do not

depend on the choice of the metric in the conformal class.

9.18. Remark. The problem which of the so called long operators admit curved

analogues seems to be still unsolved, in general. There is the theorem due to

[Graham, 90] which shows that the cube of the Laplace operator in dimension

four has no curved analogue. (The proof consists of twenty nine pages of careful

elimination of all possible correction terms!) On the other hand, the operator

�

n

: 


0

! 


2n

on 2n-dimensional manifolds is a long operator which admits a

curved analogue. There is a conjecture that this is the only long operator which

does, see [Baston, Eastwood, 90].
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Another unsolved problem is to clarify how far is the extension unique. For

example, we can add multiples of '

a

7! B

d

a

'

a

to the invariant operator O

a

[1]!

O

d

[�3], where B

d

a

is the so called Bach tensor.

9.19. Explicit formulas. If we choose a metric from the conformal class, we get

the admissible Cartan connection �! constructed from the Levi-Civit�a connection,

see 9.10. Let ! be the normal Cartan connection. For each element X 2 n

�

we

de�ne the vector �elds

�

X = �!

�1

(X) and X

�

= !

�1

(X). The two admissible Cartan

connections de�ne the C

2;1

(b

�1

; g)-valued f on the canonical bundle PM such that

X

�

=

�

X+!

�1

(f(X)), see 9.12. A homomorphismof Verma modules ' : M

b

(V

�

�

)!

M

b

(V

�

�

) is determined by the proper maximal weight vector in the target which

must be of the form

P

i

P

i

(X

j

)�

i

where the elements �

i

form a weight basis of

V

�

�

, the X

j

's form a root space basis of n

�

and P

i

are homogeneous polynomials.

These polynomialsmust be chosen according to Lemma9.16 and in order to obtain a

di�erential operator, each occurrence ofX

j

must be replaced by the vector �eld X

�

j

.

Thus, in order to get di�erential operators in terms of the Levi-Civit�a connection

we have to substitute X

�

j

in terms of

�

X , ! and f . Then the monomials in

�

X

will induce the di�erential operator obtained from projecting r

a

1

� � �r

a

n

s into its

irreducible factor corresponding to the target bundle of the operator in question

and the terms !

�1

(f(X

j

)) will build certain correction terms. A more careful study

of the two Cartan connections involved enables to express f as f = ��

�1

@

�

r(�)

where � is the Levi-Civit�a connection and @

�

r(�) is the Ricci curvature of �, if

viewed as a section of the appropriate induced bundle.

The algorithmwhich leads to the explicit correction terms goes quite quick out of

hand with increasing order. In [Baston, 90], the correction terms were computed in

general for second order operators (with some particular examples of higher order

operators involved). We add only two general remarks concerning this algorithm:

If fY

j

g is a basis of the negative root spaces in g

0

, then in an expansion in terms

of

�

X

i

of an expression of the form X

�

i

1

X

�

i

2

: : :X

�

i

n

(Y

j

1

Y

j

2

: : : Y

j

p

:v)

(1) the �rst element X

�

i

n

gives rise to no correction terms

(2) for each occurrence of a curvature correction term in the expansion, there

are two fewer occurrences of

�

X

i

's in the result then X

�

i

's in the original

expression

The point (1) recovers the result form Section 6 where we proved that the �rst

order invariant operators always extend to the whole category without changing

the formal expression. From (2) it follows immediately, that the highest order

correction terms are of order at least two less than that of the leading term.

9.20. Some other methods. The Gover's idea how to �nd explicit formulas

of some invariant operators is to apply the standard technique of the twistor the-

ory, the double �bration

A G w

�

u

�

M

where G is the bundle of null

directions on a su�ciently small region M of a conformal manifold, A, the am-

bitwistor space, is the space of null geodesics of M and �, � are the obvious

projections. In the at four-dimensional case, we have the homogeneous space

M = SL(4; C )=( � � � ), the space of full ags in C

4

G = SL(4; C )=(� � � )

and A = SL(4; C )=(� � � ). The twistor theory studies in detail the relations

between the homogeneous bundles on G andM, in particular, it is well known how
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to induce operators acting on bundles over M from the operators acting on bundle

over G. It turns out that all operators on bundles over G which involve only di�er-

entiation in the directions of �bers of � descend to non-trivial operators on bundles

on M. Such operators are called horizontal operators. [Gover, 89] proves that all

horizontal operators on the homogeneous space G in the at case have curved ana-

logues and he also gives explicit method how to �nd the formulas for the correction

terms. Comparing these results with the discussion from Section 8 one �nds that

what we get in this way are precisely the standard operators and nothing else. For

explicit formulas and details see [Gover, 89], a geometric description of this method

in terms of the canonical projective structures on curves in conformal manifolds is

given in [Baston, Eastwood, 90].

Let us further mention the methods related to Lie algebra cohomology and the

Fe�erman-Grahammethod, cf. [Fe�eman, Graham, 85] and [Baston, Eastwood, 90].

A lot of the methods which were elaborated for the classi�cation of the conformal

invariants are e�cient also for some other, higher order geometries. The so called

almost Hermitian symmetric structures are treated in [Baston, preprint, 90].

9.21. Possible development. We shall mention only a few of areas where the

interested reader could �nd a lot of possibilities for his own activity.

First, the representation theory provides the necessary background for similar

classi�cations in di�erent geometric categories with �nite dimensional spaces of

morphisms. A lot of activity is visible in the literature in this direction. It seems,

that even the specialists in the representation theory could pro�t from the geometric

reformulations of their problems.

Second, the construction of the operators on the curved manifolds should be

expressed in more geometric terms and some analogy to the general theory for Rie-

mannian invariants could be achieved. The general theory of connections could be

a good tool for that. One of the crucial questions reads: Are all natural opera-

tors built of the above mentioned extensions of those living on the conformally at

manifolds and the Weyl conformal curvature?

Further, the in�nitesimal naturality could be weakened by dropping the locality

assumption. Are all such operators obtained by integration of local ones? In the

category of all manifolds and mappings the answer to an analogous question is, yes,

cf. [Cap, Slov�ak, to appear].

Next, any e�ective algorithm for concrete formulas for the operators would be

highly appreciated, even in the conformally at case (in fact we need the curvature

correction terms even in the conformally at case and may be that the contents of

the above extension construction is that the same formulas apply).

10. Appendix

This is a rather sketched overview of some basic facts concerning representations

of Lie algebras and Lie groups used in the main text. The main sources are: [Samel-

son, 89], [Knapp, 86], [Zhelobenko, 70], [Naymark, 76], [Baston, 90], [Lepowsky, 77],

[Zuckerman, 77].

10.1. A representation � of a (real or complex) Lie group G on a �nite dimensional
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(real or complex) vector space V is a Lie group homomorphism � : G ! GL(V ).

Analogously, a representation of a Lie algebra g on V is a Lie algebra homomorphism

g ! gl(V ). For every representation � : G ! GL(V ) of a Lie group, the tangent

map at the identity T� : g! gl(V ) is a representation of its Lie algebra. Given two

representations �

1

on V

1

and �

2

on V

2

of a Lie group G, a linear map f : V

1

! V

2

is called a G-module homomorphism if f(�

1

(a)(x)) = �

2

(a)(f(x)) for all a 2 G and

all x 2 V . Analogously we de�ne the g-module homomorphisms. We say that the

representations �

1

and �

2

are equivalent, if there is a G-module isomorphism (or

g-module isomorphism) f : V

1

! V

2

.

A linear subspace W � V in the representation space V is called invariant if

�(a)(W ) � W for all a 2 G (or a 2 g) and � is called irreducible if there is no

proper invariant subspace W � V . A representation � is said to be completely

reducible if V decomposes into a direct sum of irreducible invariant subspaces. A

decomposition of a completely reducible representation is unique up to the ordering

and equivalences.

A representation � of a connected Lie group G is irreducible, or completely re-

ducible if and only if the induced representation T� of its Lie algebra g is irreducible,

or completely reducible, respectively.

10.2. The commutator of two elements a

1

, a

2

of a Lie group G is the element

a

1

a

2

a

�1

1

a

�1

2

in G. The closed subgroup K(S

1

; S

2

) generated by all commutators

of elements s

1

2 S

1

� G, s

2

2 S

2

� G is called the commutator of subsets S

1

and S

2

. In particular, G

0

:= K(G;G) is called the derived group of the Lie group

G. We get two sequences of closed subgroups G

(n)

and G

(n)

, n 2 N, de�ned by

G

(0)

= G = G

(0)

, G

(n)

= (G

(n�1)

)

0

, G

(n)

= K(G;G

(n�1)

). A Lie group G is called

solvable if G

(n)

= feg for some n 2 N, G is called nilpotent if G

(n)

= feg for some

n 2 N. Since always G

(n)

� G

(n)

, every nilpotent Lie group is solvable.

The Lie bracket determines in each Lie algebra g two analogous sequences of

Lie subalgebras: g = g

(0)

= g

(0)

, g

(n)

= [g

(n�1)

; g

(n�1)

], g

(n)

= [g; g

(n�1)

]. The

sequence g

(n)

is called the descending central sequence of g. A Lie algebra g is

called solvable, or nilpotent if g

(n)

= 0, or g

(n)

= 0 for some n 2 N, respectively.

Every nilpotent Lie algebra is solvable. If b is an ideal in g

(n)

such that the factor

g

(n)

=b is commutative, then b � g

(n+1)

. Consequently, a Lie algebra g is solvable

if and only if there is a sequence of subalgebras g = b

0

� b

1

� � � � � b

l

= 0 where

b

k+1

� b

k

is an ideal, 0 � k < l, and all factors b

k

=b

k+1

are commutative.

A connected Lie group is solvable or nilpotent if and only if its Lie algebra is

solvable or nilpotent, respectively.

Each Lie algebra g contains a unique maximal solvable ideal, the so called radical

r of g. Similarly, there is a unique maximal nilpotent ideal, we call it the nilradical

n. A Lie algebra g is called semisimple, if its radical is zero and its dimension is

positive, g is called simple if it contains no non-trivial ideals.

The quotient g=r is always semisimple or trivial and we get the exact sequence

0 �! r �! g �! g=r �! 0:

The Levi-Malcev theorem states this sequence splits, i.e. each Lie algebra is a direct

sum g = r � s with r solvable and s semisimple or trivial.
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The Engel's theorem claims: A Lie subalgebra g � gl(m; C ) consisting entirely

of nilpotent operators is a nilpotent Lie algebra.

A Lie algebra with a completely reducible adjoint representation is called re-

ductive. If g is reductive, then its radical r coincides with the center z. The Levi

decomposition g = l� n is a decomposition with l reductive while n nilpotent.

10.3. The Killing form � on the Lie algebra g is the symmetric bilinear form de�ned

by �(X;Y ) = Tr(adX � adY ), the trace of the composition of the adjoint actions.

A Lie algebra is semisimple if and only if its Killing form is non-degenerate and

its dimension is positive. A Lie algebra is solvable if and only if its Killing form

vanishes identically on the derived algebra g

0

.

10.4. Cartan subalgebra. A nilpotent Lie subalgebra h � g which is equal to

its own normalizer is called a Cartan subalgebra. If g is complex and semisimple

this is equivalent to h maximal abelian with adH diagonizable for all H 2 h. If

g = gl(m; C ) we take the subalgebra of all diagonal matrices for h. The dimension

l of h does not depend on the choice and we call it the rank of g.

10.5. Roots and weights. Consider a representation � of a Lie algebra g in a

vector space V . An element � 2 g

�

is called a weight if there is a non zero vector

v 2 V such that �(x)v = �(x)v for all x 2 g. Then v is called the weight vector

(corresponding to �). Every representation of a nilpotent algebra decomposes as a

sum of its weight spaces V

�

of weight vectors corresponding to the weights �.

If h � g is a Cartan subalgebra, then the weights � of the adjoint representation

of h in g are called roots of the algebra g with respect to h. The corresponding

weight vectors X

�

are called the root elements (with respect to h), the weight

spaces are called the root spaces. Since h is nilpotent, the whole algebra g splits as

a sum of the root spaces g =

P

�

g

�

.

In the sequel we shall assume g is complex and semisimple. Let us consider

a representation � of g. Then there are the weight vectors corresponding to the

restriction of � to the Cartan subalgebra. Let us write V

�

for the subspace consisting

of the zero vector and all weight vectors corresponding to a weight � 2 h

�

. Since

the Cartan subalgebra is nilpotent (even abelian), the whole representation space

V is spanned by the weight vectors v 2 V

�

. So V =

P

�

V

�

and there is only a

�nite number of V

�

non-zero. The set of weight vectors is always invariant under

the action of the root elements in g, i.e. X

�

:V

�

� V

�+�

. In particular, this applies

to the splitting of a complex semisimple Lie algebra g into root spaces g

�

so that

[g

�

; g

�

] � g

�+�

.

A maximal solvable subalgebra b in a Lie algebra g is called a Borel subalgebra.

Each Borel subalgebra contains a maximal commutative subalgebra h � g with the

property that all operators adX, X 2 h, are diagonal in g, i.e. a Cartan subalgebra.

The roots with root elements belonging to the chosen Borel subalgebra are called

positive roots. Those positive roots which are not linear combinations of two di�er-

ent positive roots with positive coe�cients are called simple roots (or fundamental

roots). Choosing an order on the simple roots, we get a weak order (sometimes

called lexicographic) on the set of all roots of g. The set of all roots is denoted

by �, the space of positive roots by �

+

� �. The set of all simple roots will be

denoted by �

+

0

. We always have �� = � and [g

�

; g

��

] � h.
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The real vector subspace in h

�

generated by the roots is called the real part

h

�

0

of h

�

. For semisimple algebras, the Killing form is non-degenerate and also its

restriction to h is non-degenerate. Thus we get the induced isomorphism h ' h

�

.

Using the induced isomorphism with the dual we obtain the real part h

0

� h. The

restriction of the Killing form to the real part h

0

is positive de�nite and so we �nd

for each � 2 h

�

0

a unique element h

�

2 h

0

such that hh

�

; Xi = �(X) for allX 2 h. If

X 2 g

�

, Y 2 g

��

and hX;Y i = 1 then [X;Y ] = h

�

. The elements H

�

=

2

hh

�

;h

�

i

h

�

are called the coroots. The reason for this de�nition of H

�

will be clear in 10.9.

The simple roots form a basis of h

�

and so each other root is a real linear

combination

P

a

i

'

i

of the simple ones and, moreover, a root is positive if and only

if all coe�cients a

i

are non-negative. For all roots, the coe�cients a

1

; : : : ; a

l

, where

is the rank of g, are integral. In particular, all weights of a representation belong

to the real part h

�

0

. A weight � of a representation � is called the highest weight if

there is no positive root � such that � + � is a weight of �.

28

Let us denote n

+

the derived algebra [b

+

; b

+

] of the chosen Borel subalgebra (the

subalgebra of upper triangular matrices with zeros on the diagonal in the gl(m; C )

case). A vector v in a g-module V is the highest weight vector (with respect to b

+

)

if it is a weight vector with highest weight. This happens if and only if there is a

weight � 2 h

�

such that x:v��(x)v = 0 for all x 2 h and x:v = 0 for all x 2 n

+

, i.e.

v is a weight vector with the trivial action of [b

+

; b

+

]. (The latter condition shows

that � is the highest weight of the representation as de�ned above).

The highest weight vectors always exist for complex �nite dimensional represen-

tations of complex semisimple algebras (and some more general ones) and they are

uniquely determined for the irreducible ones. The procedure of complexi�cation

allows to use this for the real case as well.

10.6. Examples. In order to have some simple examples, let us take g = gl(m; C ).

The irreducible representations coincide in fact with irreducible representations of

sl(m; C ), see 3.13. We start with the highest weight of the identical representation

on R

m

corresponding to the tangent bundle T . The action of a = (a

k

l

), a

k

l

= �

k

j

�

i

l

for some j < i, (corresponding to the action of X = x

i
@

@x

j

given by the negative of

the Lie derivative) on a highest weight vector v must be zero, so that only its �rst

coordinate can be nonzero. Hence the weight is e

1

2 R

m�

.

For the irreducible modules �

p

R

m�

we can express the action of X = x

i
@

@x

j

on

(constant) form ! through the Lie derivative L

�X

!. Since L

X

dx

l

= �

l

j

dx

i

we get

that if X:! = 0 for all j < i then ! is a constant multiple of dx

m�p+1

^ � � � ^ dx

m

.

Further, the action of L

�x

i

=@x

i on dx

i

1

^ � � � ^ dx

i

p

is minus identity if i appears

among the indices i

j

and zero if not. Hence the highest weight is �e

m�p+1

�� � ��e

m

.

Similarly we compute the highest weight of the dual �

p

R

m

e

1

+ � � �+ e

p

and the

highest weight vector of S

p

R

m�

which is the symmetric tensor product of p copies

of dx

m

and the weight is �pe

m

.

10.7. Abstract root systems. The roots of a semisimple complex algebra form

a geometric object with a very strong and nice geometric properties. Let us forget

28

Sometimes, the highest weights are also called `extreme' but we use this term for all weights

in the orbit of the highest weight under the Weyl group, see below.
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for a moment about the Lie algebras endowed with the Killing form and let us focus

on the roots themselves.

An (abstract) root system in a vector space V with respect to a de�nite bilinear

form h ; i is a �nite non-empty subset R � V n f0g which satis�es

(1) For all �, � 2 R, a

��

:=

2h�;�i

h�;�i

is an integer.

(2) For all �, � 2 R, the vector � � a

��

:� belongs to R.

(3) If � 2 R and a:� are both in R, then a = �1.

Sometimes, this is also called reduced root system while the unreduced root systems

are de�ned by dropping condition (3).

We can express the conditions (1) and (2) more geometrically: Let us denote

S

�

(�) = � �

2h�;�i

h�;�i

�, i.e. S

�

is the reection in V with respect to the hyperplane

orthogonal to �. The �rst two conditions are equivalent to

(1') For all �, � 2 R, the di�erence S

�

(�) � � is an integral multiple of �.

(2') The set of all roots is invariant under the action of all S

�

, � 2 R.

The group of isometries of V which preserves the root system R is generated by

the refelections S

�

and is called the Weyl group of the (abstract) root system R.

10.8. Weyl group. Let us come back to complex semisimple Lie algebras. The

reections S

�

corresponding to the root system of the Lie algebra g generate the

Weyl group W of g. This is a group of isometries in h

�

0

. The set � of roots is invari-

ant under the action of the Weyl group. The hyperplane orthogonal to � in h

�

0

is

called the singular plane of � (of height zero), we shall denote it by (�; 0). Clearly

(�; 0) = (��; 0). The Weyl reection S

�

is identity on (�; 0) and interchanges the

two half-spaces determined by (�; 0). We denote by D

0

= [

�2�

+
(�; 0). The com-

plement h

�

0

nD

0

is an open subset. Its connected components are bounded by parts

of some singular planes (�; 0), the so called walls. These connected components are

called the Weyl chambers of �. The Weyl group W permutes the Weyl chambers

and if an element fromW leaves one chamber �xed (as a set), then it is the identity.

Moreover, for each � 2 �, the orbit W:� meets each Weyl chamber in exactly one

point.

The union of the singular planes de�nes the (in�nitesimal) Cartan-Stiefel dia-

gram D

0

.

10.9. Dominant weights. Consider a Borel subalgebra b in a semisimple Lie

algebra g with Cartan subalgebra h, and choose an order on the simple roots.

The set of all simple roots is called the fundamental system. Recall that every

positive root is a linear combination of the simple roots with non-negative integral

coe�cients and the fundamental system is linearly independent. Hence the number

of simple roots equals the rank of the algebra. The coroots corresponding to the

simple roots are called the fundamental coroots.

Let �

i

form the fundamental system of roots and write H

i

for the fundamental

coroots. Then the set f� 2 �; h�

i

; �i � 0; 1 � i � lg forms a Weyl chamber, the

so called fundamental Weyl chamber. We consider the Weyl group as an abstract

group acting on h

�

0

. By the duality, the Weyl group acts also on h

0

with the

contragredient representation. Then the coroots form a congruent root system

with the fundamental coroots as the simple roots. The fundamental Weyl chamber

consists just of all H 2 h

0

with �

i

(H) positive.
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The lattice of all elements � in h

�

0

with �(H

�

) integral for all coroots H

�

, � 2 �,

is called the lattice of integral forms. The dual basis �

i

to the simple coroots H

i

is formed by the fundamental weights (or fundamental forms) of g. The integral

weights � which satisfy �(H

i

) � 0, i.e. �(H

�

) � 0 for all � 2 �

+

, are called

dominant. The set of all dominant weights is an Abelian semigroup generated by

the fundamental weights. Each highest weight of a representation of a complex

semisimple Lie algebra is dominant and each dominant weight is a highest weight

of some irreducible representation. Since the tensor product of two irreducible

representations always contains an irreducible representation with highest weight

equal to the sum of the two highest weights, the so called Cartan product of the two

representations, all irreducible representations are generated by those corresponding

to the dominant weights (more explicitly, they live in their tensor products).

The sum of all fundamental weights � = �

1

+ � � �+ �

l

is called the lowest weight

(or lowest dominant form). It holds � � S� is the sum of those positive roots that

become negative under S

�1

, S 2 W , and � is half the sum of all positive roots.

As already mentioned, a representation space V of a complex semisimple Lie

algebra splits into subspaces generated by the weight vectors. The weights are

always integral forms and the set of all weights of a representation ' is invariant

under the action of the Weyl group. In fact, together with �, all the forms �; � �

sgn(�(H

�

))�; ��2sgn(�(H

�

))�; : : : ; ���(H

�

)� are weights of '. The multiplicities

of the weights of ' are invariant with respect to the action of the Weyl group, i.e.

m

�

= m

S�

, S 2 W .

For each �nite dimensional representation, there is precisely one orbit W (�)

under the Weyl group containing the highest weight. The elements � from this

orbit are called the extremal weights of the representation, they are independent

of the choice of the positive roots and they can be characterized by h�; �i � h�; �i

for all weights � of the representation (the equality takes place if and only if �

is extremal). On the other hand, for each integral weight � there is precisely one

dominant weight in its orbit. Hence each integral weight is an extremal weight of

a uniquely de�ned �nite dimensional representation.

10.10. Orthogonal algebras. The properties of the orthogonal algebras di�er

essentially for even and odd dimensions. Moreover the dimensions m = 3, m = 4

andm = 6 are exceptional, for the corresponding algebras are isomorphic to sl(2; C ),

sl(2; C ) � sl(2; C ) and SL(4; C ) (the bar means the complex conjugation).

(i) m = 2l + 1. We take the quadratic form de�ning the orthogonal group in the

form x

T

Jx = x

2

0

+ 2(x

1

x

2

+ x

3

x

4

+ � � � + x

2l�1

x

2l

), i.e. J = E

00

+ E

12

+ E

21

+

� � �+ E

2l�1;2l

+ E

2l;2l�1

. The symbol E

ij

means a matrix with just one non-zero

element placed in the i-th row and j-th column, e

i

are the elements from the

standard basis from R

m

or C

m

, e

i

the dual basis in the dual space. The abelian

subalgebra h = C

l

of diagonal matrices with (0; a

1

;�a

1

; : : : ; a

1

; : : : ; a

l

;�a

l

) is the

Cartan subalgebra and the real subspace of diagonal matrices of the same form in
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h is the real subalgebra h

0

.

29

The roots and root elements are

e

i

p

2(E

2i�1;0

� E

0;2i

) 1 � i � l

�e

i

p

2(E

0;2i�1

� E

2i;0

) 1 � i � l

e

i

� e

j

E

2i�1;2j�1

� E

2j;2i

i 6= j

e

i

+ e

j

E

2j�1;2i

�E

2i�1;2j

i < j

�e

i

� e

j

E

2i;2j�1

�E

2j;2i�1

i < j

We choose e

i

and e

i

� e

j

with i < j for the positive roots. The simple roots

(fundamental system) are fe

1

� e

2

; e

2

� e

3

; : : : ; e

l�1

� e

l

; e

l

g. The fundamental

coroots are H

1

= e

1

� e

2

, : : : , H

l�1

= e

l�1

� e

l

, H

l

= 2e

l

. The fundamental Weyl

chamber is de�ned by a

1

> a

2

> � � � > a

l

> 0 and the maximal root is e

1

+ e

2

.

The Killing form is the Euclidean

P

(e

i

)

2

, up to a factor. The Weyl group contains

the exchange of any two axes (reexion with respect to e

i

� e

j

) and the changes of

signs of any axis (corresponds to e

i

), i.e. W is the group of all permutations and

changing of signs on l variables.

(ii) m = 2l. We consider the quadratic form x

T

Jx= 2(x

1

x

2

+ � � �+ x

2l�1

x

2l

), i.e.

J= E

12

+ E

21

+ : : : , the Cartan algebra h consists of diagonal matrices given by

(a

1

;�a

1

; : : : ; a

l

;�a

l

). The roots and root elements are

e

i

� e

j

E

2i�1;2j�1

� E

2j;2i

i 6= j

e

i

+ e

j

E

2i�1;2j

� E

2j�1;2i

i < j

�e

i

� e

j

E

2i;2j�1

� E

2j;2i�1

i < j

The order in h

�

0

is de�ned by (l � 1; l � 2; : : : ; 0) and the positive roots are the

e

i

� e

j

and e

i

+ e

j

, i < j. The simple roots are e

1

� e

2

; : : : ; e

l�1

� e

l

; e

l�1

+ e

l

, the

corresponding coroots are H

1

= e

1

� e

2

; : : : ;H

l�1

= e

l�1

� e

l

;H

l

= e

l�1

+ e

l

. The

fundamental Weyl chamber is a

1

> a

2

> � � � > a

l�1

> ja

l

j. The maximal root is

e

1

+ e

2

. The Killing form is the Euclidean

P

(e

i

)

2

, up to a factor. The Weyl group

contains the exchange of any two axes and the exchange of an arbitrary pair of axes

coupled with the change of their signs. Thus W is the group of all permutations

and even number of sign changes in l variables.

(iii) The algebras sl(l + 1; C ). Here the situation is most simple. The Cartan

algebra is the subalgebra of diagonal matrices with trace zero, the roots are �

ij

=

e

i

�e

j

, i 6= j, the E

ij

, i 6= j are the corresponding root elements. The positive roots

are �

ij

with i < j and the simple roots are �

12

; �

23

; : : : ; �

l;l+1

(the corresponding

coroots are e

1

� e

2

; : : : ; e

l

� e

l+1

). The fundamental Weyl chamber consists of

elements with a

1

> � � � > a

l+1

and the maximal root is e

1

� e

l+1

. The Killing form

is also the Euclidean form up to a factor. The Weyl group W is the group of all

permutations in l + 1 variables.

29

Of course, the usual quadratic form must lead to the same relations, however let us notice

that then the real Cartan subalgebra does not consist of diagonal matrices, and involves purely

imaginary entries.
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10.11. Representations of the complex orthogonal groups. All the groups

except SO(4; C ) are simple. An irreducible representation of a direct sum of two

semisimple Lie algebras is a tensor product of irreducible representations of the

summands.

The sum �+� of highest weights of two irreducible representations of a semisim-

ple Lie algebra is the highest weight in the tensor product of the two representations

and occurs with multiplicity one. The irreducible representation with the highest

weight �+� is called the Cartan product of the original two representations. In this

way, the irreducible representations form a semigroup which is isomorphic to the

set of dominant weights. The dominant weights are (freely) generated by the fun-

damental weights. Let us list briey these fundamental representations and some

more information for the three types of algebras discussed in 10.10.

(i) o(m); m = 2l + 1. The fundamental weights are �

1

= e

1

, �

2

= e

1

+ e

2

, : : : ,

�

l�1

= e

1

+ � � �+ e

l�1

, �

l

=

1

2

(e

1

+ � � � + e

l

). The corresponding representations

to the �rst l � 1 weights are the (complex) exterior forms of degrees 1; : : : ; l � 1,

the remaining representation is called the spin representation, we shall discuss it in

the next section. (Notice, the Hodge star identi�es some of the remaining exterior

forms, but still there is the degree l missing and so this must be expressed using

the two-valued spin representation.)

The set of dominant weights consists of all forms � =

P

l

1

�

i

e

i

with �

1

� �

2

�

� � � � �

l

� 0 and either all �

i

are integral or all �

i

half-integral. The numbers

(�

1

; : : :�

l

) are called the signature of the irreducible representation �. The signa-

ture of the exterior forms of degree k is (1; : : : ; 1; 0; : : : ; 0) with k ones, k � l.

(ii) o(m); m = 2l. The fundamental weights are �

i

= e

1

+ � � � + e

i

, 1 � i �

l � 2, and �

l�1

=

1

2

(e

1

+ � � � + e

l�1

� e

l

), �

l

=

1

2

(e

1

+ � � � + e

l�1

+ e

l

). The

corresponding representations to the �rst l� 2 weights are as before the (complex)

exterior forms of degrees 1; : : : ; l � 2, the remaining representations are called the

half-spin representation, see the next section. The set of dominant weights consists

of all forms � =

P

l

1

�

i

e

i

with �

1

� �

2

� � � � � j�

l

j and either all �

i

are integral or

all �

i

half-integral.

(iii) sl(l + 1). The fundamental weights are �

i

= e

1

+ � � �+ e

i

, i = 1; : : : ; l, the

corresponding representations are the exterior forms (the representation on the

highest degree forms is trivial). The dominant forms are � =

P

l

1

�

i

e

i

with �

1

�

�

2

� � � � � �

l

� 0 integral.

All these facts are more or less easily obtained from the above description of

the structure of the algebras in question (the Killing form is proportional to the

Euclidean metric, so that it is easy to �nd the coroots and their dual basis). Let

us also notice, that we can use the above description of both the structure and

representations also in the extreme dimensions, see e.g. [Jacobson, 62], if we omit

the objects which do not make sense. So for example, all representations must be

generated by the two spin representations for dimension four. This is the basic

ingredient of the `two-spin' formalism which we shall mention later on.

It is important to know all weights involved in a given representation. This is

easy for the forms: the weights of �

r

, r � l, are simply e

i

1

+ � � �+ e

i

r

, 1 � i

1

<

� � � < i

r

� l+ 1. These must be all involved as they form the orbit under the Weyl
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group. On the other hand their number equals the dimension.

10.12. Parabolic subalgebras. Let us �x a Borel subalgebra b � g in a complex

reductive Lie algebra. Each subalgebra p containing b, i.e. b � p � g is called

a parabolic subalgebra. There is only a �nite number of parabolic subalgebras

containing a �xed Borel algebra. All parabolic subalgebras (up to conjugation) are

constructed by a simple procedure:

Let us write n

�

for the subalgebras generated by the positive or negative root

elements respectively, i.e. n

+

= [b; b]. The whole algebra is a sum

g = h� (�

�2�

g

�

) = h� n

+

� n

�

= n

�

� b:

Let us �x a set � � �

+

0

of simple roots and write �

�

for its span in the set of all

roots. Now we de�ne the subalgebras

l = h� (�

�2�

�

g

�

); n = �

�2�

+

n�

�

g

�

; p = l� n

By the de�nition, p contains the whole Borel algebra b and the algebra g splits as a

vector space direct sum of Lie subalgebras g = n

�

�p. The subalgebra l is reductive,

n is nilpotent. Hence l is the reductive Levi factor of the parabolic subalgebra p.

The semisimple factor is [l; l] = �

�2�

�

g

�

and l = h

�

� (�

�2�

�

g

�

) where h

�

is the

linear subspace in h corresponding to � � h

�

.

The parabolic subalgebras in semisimple complex algebras can be e�ectively

denoted by means of the Dynkin diagrams if we replace the nodes corresponding to

the simple roots which are not in � by a cross. In the main text we need the algebras

SO(m + 2; C ) with m � 3. The Dynkin diagrams are (SO(6; C ) ' SL(4; C ))

g = � � � � � � �

�

�

�

�

if m = 2n

g = � � � � � � > � if m = 2n+ 1

g = � � � if m = 4 = 2n

where all diagrams have n+ 1 nodes. The explicit description of the Poincar�e con-

formal subalgebra b � o(m+ 2; C ), see 5.9, shows that b is a parabolic subalgebra,

for the maximal solvable subalgebra in b must be maximal in the whole o(m+2; C )

as well. Looking at the list of roots and root elements in 10.10, one can see that

this parabolic subalgebra contains all root spaces corresponding to the negatives of

the simple roots, except the �rst one. Hence

b = � � � � � � �

�

�

�

�

if m = 2n

b = � � � � � � > � if m = 2n+ 1

b = � � � if m = 4 = 2n.
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10.13. Representations of parabolic subalgebras. In general, the represen-

tations of the parabolic subalgebras of semisimple algebras need not be completely

reducible. But we shall still restrict ourselves to the irreducible ones. Let us �x

a parabolic algebra p � g and its Levi decomposition p = l � n corresponding to

a subset � � �

+

0

as above. If V is a �nite dimensional irreducible representation

space of p, then n acts by nilpotent endomorphisms by the Engel's theorem, and so

n acts trivially. The reductive part l decomposes into the semisimple factor s = [l; l]

and the center z. We can always arrange h = (h\ s)� z. An irreducible representa-

tion of p is determined by a dominant weight for s and an element from z

�

and so

the representation is speci�ed by a weight � for g such that �(H

�

) is a non-negative

integer for all � 2 �. Such a weight is called dominant for p. We shall denote by

V

�

the irreducible p module with highest weight �. More precisely, � decomposes

into a dominant weight �

s

for s and an element from z

�

, in the conformal case z is

one-dimensional and the negative of the latter element in z

�

is just the conformal

weight, cf. 6.3. We shall describe how to get the proper coe�cients in the examples

below.

Notation. We shall express the representation determined by a dominant weight

� for p by inscribing the values (� + �)(H

�

) on the fundamental coroots over the

corresponding nodes.

10.14. Examples. Let us specify some important bundles in the conformal case.

So we consider g = o(m+ 2; C ) and the Poincar�e conformal (parabolic) subalgebra

b � g. Using the lists from 10.10 we can compute the values �(H

�

) for each highest

weight �. More explicitly, the �rst and the second coroots are e

1

� e

2

and e

2

� e

3

,

the last one e

l�1

+ e

l

, in all dimensions m � 4. The conformal weight, as de�ned

in 6.3 is determined by the coe�cient a

1

at e

1

in the expression of � as a sum of

simple roots, see the explicit decomposition of o(m+2; C ) in 5.9 and notice the �a

entry in the �rst row corresponding to the multiple aI

m

in the center. In order to

get the coe�cient over the omitted node, we have �rst to �nd the coe�cient at e

1

in the combination of the fundamental weights indicated over the other nodes, to

subtract this coe�cient from the intended conformal weight and to place the result

over the crossed node. The rest of the coe�cients corresponds to the highest weight

of the underlying representation of o(m; C ).

For example, we can write down the basic spin representations, the tangent space

C

m

, the cotangent space C

m�

and the conformal scalar densities L

w

:

S

�

=

1

�

1

�

1

� � � �

1

� >

2

�

C

m�

=

1

�

2

�

1

� � � �

1

� >

1

�

C

m

=

�1

�

2

�

1

� � � �

1

� >

1

�

L

w

=

�w+1

�

1

�

1

� � � �

1

� >

1

�

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

in odd dimension.
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S

�

+

=

1

�

1

�

1

� � � �

1

�

1

�

�

� 2

�

� 1

S

�

�

=

1

�

1

�

1

� � � �

1

�

1

�

�

� 1

�

� 2

C

m�

=

1

�

2

�

1

� � � �

1

�

1

�

�

� 1

�

� 1

C

m

=

�1

�

2

�

1

� � � �

1

�

1

�

�

� 1

�

� 1

L

w

=

�w+1

�

1

�

1

� � � �

1

�

1

�

�

� 1

�

� 1

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

in even dimension

In the dimension m+ 2 = 6, the diagrams are di�erent:

S

�

+

=

2

�

1

�

1

�

S

�

�

=

1

�

1

�

2

�

C

4�

=

2

�

1

�

2

�

C

4

=

2

�

�1

�

2

�

L

w

=

1

�

�w+1

�

1

�

Let us remember that the coe�cients over the nodes are precisely the coe�cients

at the fundamental dominant forms in the expression of the weight, but these are

the (possibly not dominant) weights of the whole algebra g. We know only that

they are dominant for p. The usual `raising and lowering of indices' e�ects the

conformal weight only. With the spin representations, we increase the coe�cient

over the crossed node by one for each lowering of one subscript. In general, a spinor

�eld s

(A

0

1

:::A

0

p

)(A

1

:::A

r

)

with r symmetric primed superscripts and p unprimed ones

with conformal weight q is a section of the bundle corresponding to

p+1

�

q+1

�

r+1

�

(the weight is

1

2

(p+ r) + q if all indices are down).

30

The same diagrams are used

also for the bundles corresponding to the dual (i.e. contragredient) representations.

This strange notational convention is reasonable for the description of the operators

since the corresponding morphism appear between modules corresponding to the

dual representations.

Sometimes the notation O

(A

0

1

:::A

0

p

)(A

1

:::A

r

)

[q] for the sheaf of all sections of the

latter bundle is also used for the bundle. Lowering of all indices e�ects the weight,

so that the same diagram can denote O

(A

0

1

:::A

0

p

)(A

1

:::A

r

)

[p + q + r]. For example

the tangent bundle TM � O

AA

0

�

2

�

�1

�

2

� while 


1

� O

AA

0

. Some further

30

The convention for the usage of primed and unprimed indices varies by di�erent authors, we

use that one from [Baston 90].
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important bundles on four-dimensional manifolds are expressed below




2

= O

(A

0

B

0

)

[�1]� O

(AB)

[�1] =

3

�

�2

�

1

� �

1

�

�2

�

3

�




3

= O

AA

0

[�2] =

2

�

�3

�

2

�




4

= O[�4] =

1

�

�3

�

1

�

S

2

T

�

= O

(AB)(A

0

B

0

)

�O[�2] =

3

�

�3

�

3

� �

1

�

�1

�

1

�

10.15. The directed graph structure on the Weyl group. The number of

positive roots in � which are transformed to negative ones by an element S 2 W

is called the length of S, we write jSj. Equivalently, the length of S is the minimal

number of the reections corresponding to simple roots the composition of which

gives S. We de�ne the sign of S as sgnS = (�1)

jSj

.

We connect two elements w, w

0

in the Weyl groupW of some complex semisimple

algebra g by an arrow, w ! w

0

, if w

0

= S

�

(w) for some root � 2 � of g and

jw

0

j = jwj+ 1. This directed graph structure de�nes a partial order on W , w � w

0

if there is a directed path from w to w

0

or w = w

0

.

31

The whole Weyl group

is generated by the reections corresponding to the simple roots. If a parabolic

subalgebra p � g corresponding to � � �

+

0

is �xed, then there is the parabolic

subgroup W

p

� W generated by the simple reections S

�

, � 2 �. We de�ne

W

p

= fw 2 W ; jS

�

wj = jwj + 1 for all � 2 �g. Equivalently, W

p

consists of

elements w 2 W with the property that if w

�1

� 2 ��

+

and � 2 �

+

, then �

belongs to the span of �

+

0

n �. Thus, W

p

consist just of elements from W whose

reections send weights dominant for g into weights dominant for p.

It is possible to prove that each w 2 W admits a unique decomposition as

w = w

p

w

p

, with w

p

2W

p

, w

p

2 W

p

, and jwj = jw

p

j+ jw

p

j.

By the de�nition, there is the subgraph structure on W

p

and one can prove that

for each w

0

2 W

p

di�erent from the identity, there is some w 2 W

p

with w ! w

0

.

These subgraphs are described explicitly for the conformal Poincar�e subalgebras

b � g = o(m + 2; C ) in 8.7.

10.16. The enveloping algebra. For every �nite dimensional Lie algebra g over

K = R or K = C , its universal enveloping algebra U(g) is de�ned as the quotient

T (g)=I of the (real or complex) tensor algebra generated by the elements of g with

respect to the two-sided ideal I in T (g) generated by all x
 y� y
x� [x; y] for x,

y 2 g. There is the induced increasing �ltration U

k

(g) from that on T (g) and the

inclusion i : g ! U(g). We have i([x; y]) = i(x)i(y) � i(y)i(x) for all x, y 2 g and

U(g) has the following universal property:

For each associative algebra A over K with identity and each linear mapping

' : g ! A satisfying '([x; y]) = '(x)'(y) � '(y)'(x) for all x, y 2 g, there is a

unique algebra homomorphism �' : U(g)! A such that �' � i = ' and �'(1) = 1.

31

This graph structure is de�ned in the same way on much more general groups, the so called

Coxeter groups, which are generated by a (�nite) set of idempotents S

�

like the Weyl groups.

The strong partial order de�ned above is called the Bruhat order. The parabolic subgroups

and subgraphs are also de�ned in the same way using the subsets of the generators. A detailed

treatment can be found in [Hiller, 82].
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According to the Birkho�-Witt theorem, the canonical inclusion i extends to

vector space isomorphisms

P

k

0

S

k

(g) = U

k

(g). These isomorphisms build an algebra

isomorphism S(g) =

P

k

S

k

(g) = U(g) if and only if g is abelian.

As a consequence of the Birkho�-Witt theorem we get some canonical identi�-

cations. Given a vector space basis x

i

of g, the vector space U

k

(g) is generated by

the expressions x

i

1

: : :x

i

l

, i

1

� i

2

� � � � � i

l

, l � k. If g = a � b is a direct sum of

vector spaces, then U(g) = U (a)U (b) = U (a) 
 U (b) where U (a) means the linear

span of the elements x

1

: : :x

l

with x

i

2 a and similarly for U (b).

The real universal enveloping algebra U(g) of a Lie algebra of a connected Lie

group G is isomorphic to the algebra of left invariant vector �elds (or right invariant

vector �elds) on G, i.e. to the algebra of left-invariant (or right-invariant) di�erential

operators on the smooth functions on G.

The adjoint representation ad

x

: g! g, x 2 g extends into a derivation on U(g).

If g is semisimple, then this representation is completely reducible. The subset

Z(g) � U(g) of elements y with ad

x

(y) = 0 for all x 2 g is called the center of U(g).

This is equivalent to the usual requirement that y commutes with all elements in

U(g).

10.17. U(g)-modules. Given a representation of a complex Lie algebra g, i.e. an

algebra homomorphism' : g! EndV for some complex vector space V , there is the

uniquely de�ned algebra homomorphism �' : U(g) ! EndV . If the representation

is irreducible, then the actions of the elements from the center Z(g) � U(g) of

the complex algebra must be multiplications by scalars. This can be viewed as an

algebra homomorphism � : Z(g) ! C , the so called in�nitesimal character of the

representation '.

Suppose now, we have two irreducible representation V

�

, V

�

corresponding to

two dominant weights � and � for a semisimple complex Lie algebra g and an

intertwining linear mapping D : V

�

! V

�

, i.e. a U(g)-module homomorphism. Let

us write �

�

and �

�

for the in�nitesimal characters of V

�

and V

�

. For every v 2 V

�

,

z 2 Z(g) we have zD(v) = D(zv) = D(�

�

(z)v) = �

�

(z)D(v) and so either �

�

= �

�

or D = 0. The same conclusion is true if both representations are generated by a

single highest weight vector.

10.18. Verma modules. Let us consider �rst an arbitrary complex Lie algebra

g and its subalgebra p. Given a representation of p in a �nite dimensional vector

space V , we de�ne the induced representation

Ind(g; V ) = U(g)


U(p)

V:

The representation space V is canonically embedded into the induced representation

Ind(g; V ) via V 7! 1


C

V ' U(p) 


U(p)

V .

In particular, if g is semisimple, p is a Borel subalgebra and if we consider the one-

dimensional characters � of the Borel subalgebra p, then the induced representations

are called the Verma modules and denoted by M

�

(sometimes a shift in the weight

is used in the notation for symmetry reasons: �� � instead of �, � being the lowest

form). They always have the highest weight vector 1
1 which generates the whole

U(g)-module M

�

. The theory of Verma modules is well developed, in particular

there is a complete classi�cation of their homomorphisms.
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In general, it is di�cult to work with the induced representations since the

structure of U(g) is complicated. However, if g is semisimple and p parabolic, the

whole situation is much more similar to the theory of Verma modules. Let us recall

g = p � n

�

as a vector space direct sum of Lie subalgebras. Thus, given a �nite

dimensional representation of p in V , we have U(g) 


U(p)

V ' U(n

�

) 


C

V (as

vector spaces) by virtue of the Birkho�-Witt theorem. We shall denote this U(g)-

module M

p

(V ) and call it the generalized Verma module. If the representation

is irreducible and corresponds to a dominant form � for p, then the U(g)-module

M

p

(V

�

) is generated by the highest weight vector 1
v where v is the highest weight

vector in V

�

.

In particular, if the subalgebra n

�

is abelian, then U(n

�

) = S(n

�

), the symmetric

algebra and the latter is equal to the algebra S((n

�

)

�

) of polynomials on n

�

. In

the conformal case we deal with the Poincar�e conformal parabolic subalgebra b �

o(m+2; C ) and n

�

= C

m

, the `subalgebra of translations' which is abelian, cf. 5.9.

10.19. Homomorphisms of Verma modules. Consider dominant weights �

and � for complex parabolic p � g and a homomorphism D : M

p

(V

�

) ! M

p

(V

�

)

of U(g)-modules. The whole modules are generated by the highest weight vectors

1
v

�

and 1
v

�

. Each element z 2 Z(g) from the center must preserve the highest

weight vectors and acts by scalar multiplication by �

�

(z) and �

�

(z), the in�nitesimal

characters of the representations. Hence a non-zero morphism can exist only if the

in�nitesimal characters coincide, cf. 10.17. A classical theorem by Harish-Chandra

states that �

�

= �

�

if and only if � + � and � + � are conjugate under the action

of the Weyl group W of g, here � is the lowest form (half the sum of all positive

roots). The a�ne action of W on the weights � is de�ned for each w 2 W by

w:� = w(� + �) � �. Thus, the above mentioned condition states: If there is a

non-zero U(g)-module homomorphismM

p

(V

�

) ! M

p

(V

�

) then there is some w in

the Weyl group of g such that w:� = �.

If � is dominant for g, then all weights � dominant for p with the same in�nites-

imal character �

�

= �

�

are given by fw:� ; w 2W

p

g.

10.20. Action of the Weyl group on weights. Let us recall that a weight

is denoted by inscribing its values on fundamental coroots over the corresponding

nodes in the Dynkin diagram increased by 1. The action of the simple reections

on the weights can be described as follows, cf. [Baston, 90]. For each root � 2 �,

the reection S

�

acts on the weight � by S

�

(�) = � � h�;H

�

i� where H

�

is the

coroot corresponding to �. Hence the coe�cients over the nodes are given by

hS

�

(�);H

i

i+1 = h�;H

i

i�h�;H

�

ih�;H

i

i+1 where H

i

are the simple coroots. If �

is a simple root, then h�;H

i

i is the Cartan integer which is obtainable directly form

the Dynkin diagram. This yields the procedure for getting the new coe�cients over

the nodes after the a�ne action of a simple reection:

Let a be the coe�cient of the i-th node corresponding to �. In order to get the

coe�cients over the nodes corresponding to S

�

i

(�+ �), add a to the adjacent coef-

�cients, with multiplicity if there is a multiple edge directed towards the adjacent

node, and replace a by �a.

For example, if � is

a

�

b

�

c

� and we act by the middle simple reection, we get

the weight

a+b

�

�b

�

b+c

� . Similarly

a

� >

b

� transforms under the action of the �rst



132 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

simple reection into

�a

� >

2a+b

� , while the second simple reection yields

a+b

� >

�b

� .

10.21. The Lie algebra cohomologies. Consider an arbitrary Lie algebra g

and a g-module A. The degree q cochains with coe�cients in A are de�ned as the

space C

q

(g;A) of all (continuous) skew-symmetric q-linear A-valued forms on g.

By the de�nition, C

q

(g; A) = Hom(�

q

(g);A) carries a natural g-module structure.

We de�ne the di�erential @ : C

q

(g;A)! C

q+1

(g;A) by the formula

@c(X

1

; : : : ; X

q+1

) =

X

1�s<t�q+1

(�1)

s+t�1

c([X

s

; X

t

]; X

1

; : : :

ŝ

: : :

t̂

: : : ; X

q+1

)

(1)

+

X

1�s�q+1

(�1)

s

X

s

:c(X

1

; : : :

ŝ

: : :X

q+1

)

One veri�es easily @

2

= 0 and we obtain a complex by setting C

q

(g;A) = 0 and

@(C

q

(g;A)) = 0 if q < 0. This complex is denoted by C

�

(g;A) and the correspond-

ing cohomologies are denoted by H

q

(g;A) and called the cohomologies of g with

coe�cients in A.

We need this general de�nition in a special case. Let us consider an algebra with

grading g = g

�1

�g

0

�g

1

�: : : . Then g

�1

is an abelian Lie subalgebra and g

0

is a Lie

subalgebra acting on all homogeneous components g

p

turning them into g

0

-modules.

The whole g is a g

�1

-module via the adjoint action. The Lie algebra cohomology

H

�

(g

�1

; g) is called the Spencer cohomology. The grading of g induces a natu-

ral grading on the cochains, C

�

(g

�1

; g) =

P

p;q

C

p;q

(g

�1

; g) where C

p;q

(g

�1

; g) �

C

q

(g

�1

; g) is the subset of g

p�1

-valued forms. Since the Lie algebra g

�1

is abelian,

only the second term remains in (1) and we get a di�erential @C

p;q

(g

�1

; g) !

C

p�1;q+1

(g

�1

; g). The Spencer bigraded cohomology H

p;q

(g

�1

; g) is the cohomology

of this complex,H

p;q

(g

�1

; g) := @

�1

(0)\C

p;q

(g

�1

; g)=@(C

p+1;q�1

(g

�1

; g)). The ac-

tion of g

0

on the homogeneous components induces an action on the cochains which

intertwines the di�erential and so there is a distinguished g

0

-module structure on

H

�;�

(g

�1

; g).

In the main text, we need the conformal case where g = b

�1

� b

0

� b

1

=

o(m + 2; C ), b

0

is the reductive part of the parabolic subalgebra b = b

0

� b

1

. All

irreducible representations of b

0

= co(m; C ) in H

�

(b

�1

; g) can be established by the

Kostant's theory (developed for general parabolic subalgebras in complex reductive

algebras), see [Vogan, 81, p. 123]: If A is a �nite dimensional b-module of highest

weight �, then the irreducible �nite dimensional representations of g

0

with highest

weight � occur in H

�

(b

�1

;A) if and only if there is a w 2 W

b

� W such that

� = w:� = w(� + �) � � and in that case it occurs in degree jwj with multiplicity

one, (see 10.15 and 10.19 for the notation).

In our situation, � is the maximal root (e

1

+ e

2

, see 10.10) and the a�ne action

of W

b

is described in 10.20. In particular, if we want to compute H

�;1

(b

�1

; g), we

have to evaluate the a�ne action of s

1

if m � 4 (this is the only elements of length
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one in W

b

, see 10.15 and 8.7)

s

1

:

�

2

�

1

�

2

�

�

=

3

�

�1

�

3

�

s

1

:

�

1

�

2

�

1

� � � �

1

�

�

� 1

�

� 1

�

=

�1

�

3

�

1

� � � �

1

�

�

� 1

�

� 1

s

1

:

�

1

�

2

� � � �

1

� >

1

�

�

=

�1

�

3

� � � �

1

� >

1

�

Since H

0;1

(b

�1

; g) = b

�1


 (b

�1

)

�

=b

0

by the de�nition, this cohomology must be

non-zero. Since there is only one irreducible representation available, the other two

�rst order cohomologies must be zero. Hence H

1;1

(b

�1

; g) = H

2;1

(b

�1

; g) = 0, see

also [Baston, 90] or [Ochiai, 70].

Similarly, we can compute the second cohomologies. In dimensions m > 4 we

have to compute (s

1

s

2

):�, in dimension m = 4, the second cohomologies have two

summands, (s

1

s

2

):� and (s

1

s

3

):�. We get the representations

�3

�

1

�

3

� � � �

1

�

�

� 1

�

� 1

m = 2n > 4

�3

�

1

�

3

� � � �

1

� >

1

� m = 2n+ 1 > 5

�3

�

1

�

1

� >

5

� m = 5

5

�

�3

�

1

� �

1

�

�3

�

5

� m = 4

The conformal weights show that all these representations must occur in the coho-

mology space H

1;2

(b

�1

; g) and so H

0;2

(b

�1

; g) = H

2;2

(b

�1

; g) = 0.

The cohomologies of the complexi�ed algebras g

C

are the complexi�cations of

the real cohomologies. Hence the vanishing of the above cohomology spaces in the

complex case implies the vanishing of the same ones for the real conformal case as

well.

10.22. The Hodge theory. Given a general Lie algebra g and a g-module, the

chains C

q

(g;A) are de�ned as the space A 
 �

q

g and the di�erential is de�ned by

@(a
(X

1

^� � �^X

q

)) =

P

1�s<t�q

(�1)

s+t�1

a
([X

s

; X

t

]^X

1

^� � �

ŝ

� � �

t̂

� � �^X

q

)+

P

1�s<t�q

(�1)

s

X

s

:a
 (X

1

^ � � �

ŝ

� � � ^X

q

). Since @

2

= 0 we obtain the homology

H

q

(g;A). If both the algebra g and the g-module A are �nite dimensional, then

H

q

(g;A

�

) = (H

q

(g;A))

�

. Let us assume that g and A are moreover graded and

that there is a distinguished Hermitian metric in each homogeneous component g

q

.

Then we can identify the cochains with their duals, i.e. C

q

(g;A) ' C

q

(g;A) and

the di�erential on the chains gives rise to @

�

: C

q

(g;A)! C

q+1

(g; A). The operator

� = @

�

@ + @@

�

: C

q

(g;A)! C

q

(g;A) is called the Laplace operator. The cochains

with �(c) = 0 are called harmonic.

In the conformal case we can express the adjoint di�erential using arbitrary basis

x

i

of b

�1

and the dual bases y

i

of b

1

(b

1

is dual to b

�1

with the contragredient

representation of b

0

, see 5.9)

@

�

c(X

1

; : : : ; X

q�1

) =

m

X

j=1

[y

j

; c(x

j

; X

1

; : : : ; X

q�1

)]
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which is a linear mapping C

p;q

(b

�1

; g) ! C

p+1;q�1

(b

�1

; g). In each cohomology

class of H

p;q

(b

�1

; g) there is a unique harmonic representative f 2 C

p;q

(b

�1

; g).

The Laplace operator acts by scalar multiplication on irreducible representations of

b

0

occurring in H

�;�

(b

�1

; g). More explicitly, if the irreducible representation has

the highest weight � then � acts by

1

2

(h� + �;�+ �i � h�+ �; �+ �i)

where � is the maximal root of g and � is the lowest form.

References

Atiyah, M.; Bott, R.; Patodi, V.K., On the heat equation and the index theorem, Inventiones

Math. 19 (1973), 279{330.

Atiyah, M.; Bott, R.; Shapiro, A., Cli�ord modules, Topology 3 (1964), 3{38.

Bailey, T. N,; Eastwood, M. G.; Graham, C. R., Invariant theory for conformal and CR geometry,

preprint 1992.

Baston, R. J., Verma modules and di�erential conformal invariants, J. Di�erential Geometry 32

(1990), 851{898.

Baston, R. J., Almost Hermitian symmetric manifolds, I: Local twistor theory; II: Di�erential

invariants, Preprints (1990).

Baston, R.J.; Eastwood, M.G., The Penrose Transform, Its Interaction with Representation The-

ory, Clarenden press, Oxford, 1989.

Baston, R.J.; Eastwood, M.G., Invariant operators, Twistors in mathematics and physics, Lecture

Notes in Mathematics 156, Cambridge University Press, 1990.

Bernstein, I. N.; Gelfand, I. M.; Gelfand, S. I., Structure of representations generated by vectors

of highest weight, Funct. Anal. Appl. 5 (1971), 1{8.

Boe, B. D.; Collingwood, D. H., A comparison theory for the structure of induced representations

I., J. of Algebra 94 (1985), 511-545.

Boe, B. D.; Collingwood, D. H., A comparison theory for the structure of induced representations

II., Math. Z. 190 (1985), 1-11.

Boerner, H., Darstellungen von Gruppen, 2nd ed., Springer,Grundlehrender math. Wissenschaften

74, Berlin Heidelberg New York, 1967.

Branson, T. P., Di�erential operators canonically associated to a conformal structure, Math.

Scand. 57 (1985), 293{345.

Branson, T. P., Conformal transformations, conformal change, and conformal covariants, Pro-

ceedings of the Winter School on Geometry and Physics, Srni 1988, Suppl. Rendiconti Circolo

Mat. Palermo, Serie II 21 (1989), 115{134.

Branson T. P., Second-order conformal covariants I., II., Kobenhavns universitet matematisk

institut, Preprint Series, No. 2, 3, (1989).

Budinich, P.; Trautman, A., The spinorial chessboard, Trieste Notes in Physics, Springer-Verlag,

1988.

Cap, A.; Slov�ak, J., In�nitesimally natural operators are natural, J. Di�. Geom. and Appl. 2

(1992), 45{55.

Eastwood, M. G., On the weights of conformally invariant operators, Twistor Newsl. 24 (1987),

20{23.

Eastwood, M. G.; Graham, C. R., Invariants of CR Densities, Proccedings of Symposia in Pure

Mathematics, Part 2 52 (1991), 117{133.

Eastwood, M. G.; Graham, C. R., Invariants of conformal densities, Duke Math. J. 63 (1991),

633{671.

Eastwood, M. G.; Rice, J. W., Conformally invariant di�erential operators on Minkowski space

and their curved analogues, Commun. Math. Phys. 109 (1987), 207{228.



REFERENCES 135

Eastwood, M. G.; Tod, P., Edth { a di�erential operator on the sphere, Math. Proc. Cambr.

Phil. Soc. 92 (1982), 317{330.

Epstein, D.B.A., Natural tensors on Riemannian manifolds, J. Di�. Geom. 10 (1975), 631{645.

Epstein, D. B. A.; Thurston W. P., Transformation groups and natural bundles, Proc. London

Math. Soc. 38 (1979), 219{236.

Fe�erman, C., Parabolic invariant theory in complex analysis, Adv. Math. 31 (1979), 131{262.

Fe�erman,C.; Graham,R., Conformal invariants,

�

Elie Cartan et les Math�ematiquesd'Aujourd'hui,

Ast�erisque, 1985, pp. 95{116.

Fegan, H. D., Conformally invariant �rst order di�erential operators, Quart. J. Math. 27 (1976),

371{378.

Friedrich, H., Twistor connection and normal conformal Cartan connection, Gen. Rel. Grav. 8

(1977), 303{312.

Gilkey, P. B., Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in

Math. 10 (1973), 344{382.

Gilkey, P. B., Local invariants of a pseudo-Riemannian manifold, Math. Scand. 36 (1975),

109{130.

Gilkey, P. B., Invariance Theory, The Heat Equation, And the Atiyah-Singer Index Theorem,

Mathematics Lecture Series 11, Publish or Perish Inc., Wilmington, Delaware, 1984.

Gover, A. R., Conformally invariant operators of standard type, Quart. J. Math. 40 (1989),

197{208.

Graham, C. R., Non-existence of curved conformally invariant operators, Preprint (1990).

Grozman, P. Ya., Classi�cation of bilinear invariant operators on tensor �elds, (Russian), Funct.

Anal. and its Appl. 14 No 2 (1980), 58{59.

Gurevich, G. B., Foundations of the theory of algebraic invariants, (Russian), OGIZ, Moscow-

Leningrad, 1948.

Hiller, H, Geometry of Coxeter groups, Research Notes in Mathematics, Pitman, Boston, London,

Melbourne, 1982.

Hitchin, N. J., Linear �eld equations on self-dual spaces, Proc. R. Soc. Lond. A 370 (1980),

173{191.

Jacobson, N., Lie algebras, Interscience Publishers, New York { London, 1962.

Jakobsen, H. P., Conformal invariants, Publ. RIMS, Kyoto Univ 22 (1986), 345{364.

Jakobsen H. P.; Vergne, M., Wave and Dirac operators, and representations of the conformal

group, Jour. of Funct. Anal. 24 (1977), 52{106.

Kirillov, A. A., Introduction to representation theory, (Russian), Nauka, Moscow, 1972.

Kirillov, A. A., On invariant di�erential operations over geometric quantities, (Russian), Func.

Anal. and its Appl. 11 No 2 (1977), 39{44.

Knapp, W., Representation theory of semisimple groups, Princeton university press, Princeton,

New Jersey, 1986.

Kobayashi, S., Transformation groups in di�erential geometry, Springer-Verlag, Berlin-Heidelberg-

New York, 1972.

Kol�a�r, I.; Vadovi�cov�a, I., On the structure function of a G-structure, Math. Slovaca 35 (1985),

277{282.

Kol�a�r, I.; Michor, P. W.; Slov�ak, J., Natural operations in di�erential geometry, Springer-Verlag,

Berlin Heidelberg New York, 1993.

Krupka D.; Jany�ska J., Lectures on di�erential invariants, Univerzita J. E. Purkyn�e, Brno, 1990.

Lawson, H. B.;Michelsohn M. L., Spin geometry, Princeton University Press, Princeton, 1989.

Lepowsky, J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. of Algebra 49

(1977), 496{511.

Lubczonok, G., On the reduction theorems, Ann. Polon. Math. 26 (1972), 125{133.

Naymark, M. A., Group representation theory, (Russian), Nauka, Moscow, 76.

Ochiai, T., Geometry associated with semisimple at homogeneous spaces, Trans. Amer. Math.

Soc. 152 (1970), 159{193.

�rsted, B., Conformally invariant di�erential equations and projective geometry, J. Funct. Anal.

44 (1981), 1{23.

Peetre, J., Recti�cations �a l'article \Une caract�erisation abstraite des op�erateurs di��erentiels",

Math. Scand. 8 (1960), 116{120.



136 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

Penrose, R.; Rindler, W., Spinors and Space-time, vol. I. Two-spinor calculus and relativistic

�elds; vol. II. Spinor and twistor methods in space-time geometry, Cambridge University

Press, 1984; 1986.

Rudakov, A. N., Irreducible representations of in�nite dimensional Lie algebras of Cartan type,

(Russian), Izv. AN SSSR, Ser. Mat. 38 (1974), 835{866.

Rudakov, A. N., Irreducible representations of in�nite dimensional Lie algebras of types S and

H , (Russian), Izv. AN SSSR, Ser. Mat. 39 (1975), 496{511.

Samelson, H., Notes on Lie algebras, Universitext, Springer-Verlag, 1989.

Slov�ak, J., Peetre theorem for nonlinear operators, Annals of Global Analysis and Geometry 6

(1988), 273{283.

Slov�ak, J., On invariant operations on a manifold with connection or metric, J. Di�. Geom. 36

(1992), 633{650.

Slov�ak, J., On invariant opeators on pseudo-Riemannian manifolds, Comm. Math. Univ. Car-

olinae 33 (1992), 269{276.

Stredder, P., Natural di�erential operators on Riemannian manifolds and representations of the

orthogonal and special orthogonal group, J. Di�. Geom. 10 (1975), 647{660.

Terng C. L., Natural vector bundles and natural di�erential operators, American J. of Math. 100

(1978), 775{828.

Verma, D. N., Structure of certain induced representations of complex semisimple Lie algebras,

Bull. Amer. Math. Soc. 74 (1968), 160{166.

Vogan, D. A. jr., Representations of real reductive Lie groups, Progress in Math., No. 15,

Birkh�auser, Boston, 1981.

Weyl, H., The classical groups, Princeton University Press, Princeton, 1939.

W�unsch, V., On conformally invariant di�erential operators, Math. Nachr. 129 (1986), 269{281.

Zhelobenko, D. P., Compact Lie groups and their representations, (Russian), Nauka, Moscow,

1970.

Zuckerman, G., Tensor products of �nite and in�nite dimensional representations of semisimple

Lie groups, Ann. Math. 106 (1977), 295{308.

Index

A

admissible Cartan connections, 110

a�ne action of W , 131

B

B-structure on a manifold, 14

Bernstein-Gelfand-Gelfand resolution, 104

Bianchi identity, 111

Borel subalgebra, 120

bundle functors, 14

bundles of geometric objects, 14

C

canonical form, 106

Cartan connection !, 109

Cartan product, 123, 125

Cartan subalgebra, 120

Cartan-Stiefel diagram, 122

Cli�ord algebra, 69

Cli�ord group, 70

Cli�ord module, 76

Cli�ord multiplication, 77

codi�erential �, 42

completely reducible, 119

conformal connection, 112

conformal curvature, 8

conformal Laplace operator, 9

conformal weight, 7, 57

contraction, 5

coroots, 121

curvature form of the Cartan connection, 109

D

derived group, 119

descending central sequence, 119

di�erential operators, 11

Dirac matrices, 79

Dirac operator, 77

Dirac spinors, 79

dominant, 123

dominant for p, 127

E

elementary invariant tensor, 18



INDEX 137

Engel's theorem, 120

equivalent, 119

extremal weights, 123

F

at conformal structure, 46

at B-structure, 105

frame bundle, 14

fundamental coroots, 122

fundamental roots, 120

fundamental system, 122

fundamental weights, 123

fundamental Weyl chamber, 122

G

g-module homomorphisms, 119

G-invariant, 12

G-module homomorphism, 119

generalized Verma module, 131

geometric objects, 14

group Pin(p; q), 70

H

half-spinors, 79

harmonic, 133

helicities, 79

highest weight, 121

highest weight vector, 121

Hodge star operator, 43

homogeneous bundle, 14

horizontal operators, 118

I

induced representation, 130

in�nitesimal automorphisms of B-structures,

105

in�nitesimal character, 130

integral forms, 123

invariant tensors, 18

invariant subspace, 119

irreducible representation, 119

J

jet group, 14

jet of order r, 10

K

Killing form, 120

L

Laplace operator, 133

length of an element in the Weyl group, 129

Levi decomposition, 120

Levi-Malcev theorem, 119

local di�eomeorphisms, 10

local operator, 10

locally at, 46

long operators, 104

lowest weight, 123

M

Majorana spinors, 81

M�obius space S

(m

0

;n)

, 49

N

natural bundle, 14

natural operator, 15

nilpotent, 119

nilradical, 119

non-standard operators, 104

normal Cartan connection, 112

O

order of the Lie algebra b

0

, 106

P

parabolic subalgebra, 126

Pauli spinors, 79

Poincar�e conformal group, 52

positive roots, 120

R

radical, 119

rank of g, 120

reduced spinors, 79

reductive, 120

regular operators, 35

regular representation, 77

representation, 118

Ricci curvature, 8

root, 120

root spaces, 120

root system, 122

S

scalar curvature, 8

semisimple Lie algebra, 119

signature, 125

simple Lie algebra, 119

simple roots, 120

singular vectors, 90

smooth, 10

soldering form, 106

solvable, 119

Spencer bigraded cohomology, 132

spinor bundle, 76

spinorial chessboard, 75

standard operators, 104

stereographic projection, 50

structure function, 107

symbol of operator, 12



138 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

T

torsion t of the B-structure, 107

total polarization, 18

trace, 5

translation invariant operators, 61

twisted adjoint representation, 70

twistor, 88

twistor operator, 88

U

universal enveloping algebra U(g), 129

V

Verma modules, 130

volume element in C`

m

(K), 70

W

wall in the Weyl group, 122

weight, 120

weight spaces, 120

weight vectors, 120

Weyl chambers, 122

Weyl curvature tensor, 8, 114

Weyl group, 122

Weyl spinors, 79


