
1. Conventions

The post-composition is a map g∗ : Hom(C,D)→ Hom(C,D′), f 7→ gf . If g is a chain
map of degree k, the same is true of g∗. The pre-composition is a map h∗ : Hom(C,D)→
Hom(C ′, D), f 7→ (−1)|f ||h|fh.1 We have the expected (gg′)∗ = g∗g

′
∗ and (h′h)∗ =

(−1)|h||h
′|h∗h′∗.

We use these maps in the case of the suspension maps sk : C → C[k]. Thus, we obtain
isomorphisms (sk)∗ : Hom(C,D) ∼= Hom(C,D[k]), f 7→ skf and (s−k)∗ : Hom(C,D) ∼=
Hom(C[k], D), f 7→ (−1)k|f |fs−k. As explained, we have (sk)∗(s−k)∗ = (−1)k, i.e. in
general, the suspension isomorphism (s−k)∗ is not an inverse of the suspension isomorphism
(sk)∗. Thus, when passing between the two chain complexes Hom(C,D) and Hom(C[k], D),
we have to choose a direction.

The general isomorphism will be (sl)∗(s
−k)∗ : Hom(C,D) ∼= Hom(C[k], D[l]), in this

order, so that f 7→ (−1)k|f |slfs−k. This turns out to be compatible with the composition
(unlike the other possibility (s−k)∗(sl)∗ with the sign (−1)(k+l)|f |).

2. Introduction

An A∞-algebra is a homotopy version of an associative algebra. Thus, suppose that A
is a dga and that f : A→ B is a homotopy equivalence with a homotopy inverse g. Define
a multiplication on B via

x · y = f(gx · gy).

Now compare the two products

(x · y) · z = f(gf(gx · gy) · gz), x · (y · z) = f(gx · gf(gy · gz)).

Both are homotopic to f(gx·gy ·gz) and in particular, the multiplication on B is associative
up to homotopy. This is probably best explained in topological situation, where A is a
topological space equipped with an associative operation. Denote

a : K3 ×B3 → B

(K3 = I is the unit interval) the homotopy; thus a(−, x, y, z) is the corresponding path
from (xy)z to x(yz). In fact, more is true: there are the following associativity homotopies:

(w(xy))z
a(−,w,xy,z)

w((xy)z)
wa(−,x,y,z)

((wx)y)z

a(−,w,x,y)z

a(−,wx,y,z)

w(x(yz))

(wx)(yz)
a(−,w,x,yz)

1Think this way R[k]⊗Hom(C,D)
h⊗1−−−→ Hom(C ′, C)⊗Hom(C,D)

twist−−−→ Hom(C,D)⊗Hom(C ′, C)
comp−−−→

Hom(C ′, D). The sign is due to the twist map.
1
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It so happens that there is a second order homotopy

K4 ×B4 → B

(K4 is the pentagon) that fills in the above system of paths. Further, there is a third order
homotopy

K5 ×B5 → B

with K5 a certain three-dimensional polytope called the associahedron whose boundary
consists either of pentagons K4 as above or squares (products K3 ×K3 of intervals):

(((vw)x)y)z
a(−,(vw)x,y,z)

(a(−,v,w,x)y)z a(−,a(−,v,w,x),y,z)

((vw)x)(yz)

a(−,v,w,x)(yz)

((v(wx))y)z
a(−,v(wx),y,z)

(v(wx))(yz)

This continues ad infinity.
The definition is simplified in the algebraic situation by the fact that we do not need to

specify the polyhedra and their various faces since the boundary of a polyhedron is a sum
of the faces (with correct signs). Thus, we will have

m2 : B ⊗B → B

m3 : B ⊗B ⊗B → B

m4 : B ⊗B ⊗B ⊗B → B

and these will satisfy

[d,m2] = 0,

[d,m3] = ±m2(m2 ⊗ 1)±m2(1⊗m2)

[d,m4] = · · ·

3. Differential graded coalgebras

The formal definition is conveniently phrased using the language of coalgebras. A (coas-
sociative) coalgebra is a module C together with a comultiplication ∆: C → C ⊗ C satis-
fying the following coassociativity rule:

C
∆

//

∆
��

C ⊗ C
∆⊗1
��

C ⊗ C
1⊗∆

// C ⊗ C ⊗ C

Phrased differently, all possible iterations ∆(n) : C → C⊗n are equal (this corresponds to
the associativity: all possible bracketings are equal).

A graded coalgebra is one in which C is a graded module and ∆ preserves grading.
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Example 1. Let V be a (graded) module. Define the tensor coalgebra T cV to be

T cV =
⊕
n≥1

V ⊗n

together with the following comultiplication:

∆(v1 ⊗ · · · ⊗ vn) =
∑

0<i<n

(v1 ⊗ · · · ⊗ vi)︸ ︷︷ ︸
∈T cV

⊗ (vi+1 ⊗ · · · ⊗ vn)︸ ︷︷ ︸
∈T cV

∈ T cV ⊗ T cV.

A differential graded coalgebra (dgc) is a chain complex and a coalgebra in such a way
that the comultiplication

∆: C → C ⊗ C
is a chain map (of degree 0), i.e. such that the following square commutes:

C
∆

//

d
��

C ⊗ C
d⊗1+1⊗d
��

C
∆

// C ⊗ C

Here d ⊗ 1 + 1 ⊗ d is the differential on the tensor product with the usual Koszul sign
convention (f ⊗ g)(x ⊗ y) = (−1)|g|·|x|fx ⊗ gy. We call this the coLeibniz rule since
it is exactly the dual of the compatibility condition between the multiplication and the
differential in a differential graded algebra.

4. A∞-algebras

An A∞-algebra is a graded module A together with a differential graded coalgebra
structure on T cA[1], where A[1] denotes the suspension of A, i.e. A[1]n = An−1. Since
T cA[1] is already a graded coalgebra, this amounts to the specification of a differential
d : T cA[1]→ T cA[1] of degree −1 that satisfies the coLeibniz rule and d ◦ d = 0.

We denote by q : T cA[1] → A[1] the projection onto tensors of length 1. Then the
projection onto tensors of length k is

T cA[1]
∆(k)

−−−→ (T cA[1])⊗k
q⊗k

−−−→ A[1]⊗k.

The coLeibniz rule unfolds to

T cA[1]
∆(k)

//

d
��

(T cA[1])⊗k∑
i+1+j=k 1⊗i⊗d⊗1⊗j

��

T cA[1]
∆(k)

// (T cA[1])⊗k
q⊗k

// A[1]⊗k,

i.e. the component of d(sx1 ⊗ · · · ⊗ sxn) of length k is

q⊗k∆(k)d(sx1 ⊗ · · · ⊗ sxn) =
∑

q⊗k(1⊗i ⊗ d⊗ 1⊗j)∆(k)(sx1 ⊗ · · · ⊗ sxn)
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The only non-zero terms come from the part of ∆(k) that splits sx1⊗· · ·⊗sxn into i tensors
of length one at the beginning and j tensors of length one at the end, i.e.

(sx1)⊗ · · · ⊗ (sxi)⊗ (sxi+1 ⊗ · · · ⊗ sxn−j)⊗ (sxn−j+1)⊗ · · · ⊗ (sxn)

Denoting the composition

d` : A[1]⊗` ⊆ T cA[1]
d−−→ T cA[1]

q−→ A[1],

we thus have

d =
∑

1⊗i ⊗ d` ⊗ 1⊗j.

This is equivalent to the coLeibniz rule. The fact that d is of degree −1 translates into all
d`’s being of degree −1. It remains to study the condition d ◦ d = 0. There are various
terms involved in d ◦ d: when one composes

(1⊗i
′ ⊗ d`′ ⊗ 1⊗j

′
) ◦ (1⊗i ⊗ d` ⊗ 1⊗j)

and j < j′ then this equals 1⊗i
′ ⊗ d`′ ⊗ 1⊗m ⊗ d` ⊗ 1⊗j while for i < i′, the result will be

−1⊗i⊗ d`⊗ 1⊗m⊗ d`′ ⊗ 1⊗j
′

– the minus sign comes from the Koszul sign (f ⊗ g)(h⊗ k) =
(−1)|g|·|h|fh ⊗ gk that comes from swapping the d`′ and d`. Thus, such terms cancel out.
The remaining terms look like 1⊗i

′ ⊗ d`′(1
⊗i′′ ⊗ d` ⊗ 1⊗j

′′
) ⊗ 1⊗j

′
(where i′′ = i − i′ and

j′′ = j − j′) and thus, the square zero condition only needs to be verified in the case
i′ = j′ = 0 and for the number of inputs i+ `+ j fixed and reads∑

i+`+j=n

di+1+j(1
⊗i ⊗ d` ⊗ 1⊗j) = 0.

Before working out small dimensions concretely, we will use the following diagram to
translate d`’s into more traditional operations

A⊗`
m`

//

s⊗` ∼=
��

A

s∼=
��

A[1]⊗`
d`

// A[1]

(−1)`

i.e. we use2 m` = (−1)`s−1d`s
⊗`. Since s is an isomorphism of degree 1, the operation m`

has degree `−2. One then obtains from the formula for the d`’s the corresponding formula

2The m` is the image of d` under the isomorphism (s−1)∗(s
⊗`)∗ : Hom(A[1]⊗`, A[1]) ∼= Hom(A⊗`, A).
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for the m`’s:

0 =
∑

s−1di+1+j(1
⊗i ⊗ d` ⊗ 1⊗j)s⊗(i+`+j)

=
∑

(−1)i · s−1di+1+j(s
⊗i ⊗ d`s⊗` ⊗ s⊗j)

=
∑

(−1)i+` · s−1di+1+j(s
⊗i ⊗ sm` ⊗ s⊗j)

=
∑

(−1)i+`+j(`−2) · s−1di+1+js
⊗(i+1+j)(1⊗i ⊗m` ⊗ 1⊗j)

=
∑

(−1)i+`+j`+i+1+j ·mi+1+j(1
⊗i ⊗m` ⊗ 1⊗j).

Since i+ `+ j + 1 = n+ 1 is fixed, we may finally write the condition as∑
i+`+j=n

(−1)i+j` ·mi+1+j(1
⊗i ⊗m` ⊗ 1⊗j) = 0

The square zero condition for n = 1 then reads:

m1m1 = 0,

thus m1 is a differential; we will denote it by ∂. The square zero condition for n = 2 reads:

m1m2 −m2(m1 ⊗ 1)−m2(1⊗m1) = [∂,m2] = 0,

i.e. m2 is a chain map. The square zero condition for n = 3 reads:

[∂,m3] +m2(m2 ⊗ 1− 1⊗m2) = 0,

i.e. m3 is a homotopy between m2(m2 ⊗ 1) and m2(1 ⊗m2). When ` = 1 the sign equals
(−1)i+j` = (−1)i+j = (−1)n−1 and thus, we always obtain terms

m1mn − (−1)n
∑

i+1+j=n

mn(1⊗i ⊗m1 ⊗ 1⊗j) = [∂,mn].

Consequently, the relation exhibits mn as a null-homotopy of the remaining terms – these
contain only m`’s for ` < n and constitute the boundary of the polyhedron from the
motivation. This easily implies the following proposition

Proposition 2. Every dga can be thought of as an A∞-algebra by setting m1 to be the
differential, m2 to be the algebra multiplication and m` = 0 for ` > 2.

Proof. The three special cases n = 1, 2, 3 above are clearly satisfied and the higher ones
have either ` > 2 or i+ 1 + j > 2. Thus, they are satisfied trivially. �

There is a way of “truncating” an A∞-algebra A to a dga, essentially by killing all the
higher operations m`, ` > 2. As in universal algebra, we may generate from the m`’s
operations by composition, i.e. we consider terms involving the m`’s. Now consider the
collection of terms that involve at least one m`, ` > 2, and form a graded submodule
I ⊆ A generated by the images of such operations. This contains for example the following
m2(w ⊗m1m3(x ⊗ y ⊗m1z)). In particular, it is closed under m1 = ∂ and thus forms a
subcomplex. Form the quotient A/I; this possesses a multiplication induced from m2 and
since m2(1⊗m2)−m2(m2 ⊗ 1) = [∂,m3] ∈ I, this multiplication is indeed associative.
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5. A∞-coalgebras

Almost dually, we define an A∞-coalgebra C to be a graded module together with a
structure of a differential graded algebra on the tensor algebra TC[−1] on the desuspension
of C. Again, this translates into d : TC[−1]→ TC[−1] being a derivation (which amounts
to the Leibniz rule) and d◦d = 0. The differential is uniquely determined by its components

d` : C[−1] ⊆ TC[−1]
d−−→ TC[−1] // // C[−1]⊗`

or alternatively w` : C → C⊗` of degree `− 2, given by

w` = −s⊗`d`s−1.

The square zero condition then becomes∑
i+`+j=n

(−1)j+i` · (1⊗i ⊗ w` ⊗ 1⊗j)wi+1+j = 0

(As it stands, for each c ∈ C, only a finite number of the w`c’s may be non-zero but this will
not matter to us – we use coalgebras mainly to study algebras.) Most importantly, every
dgc is an A∞-coalgebra by setting w1 to be the differential, w2 to be the comultiplication
and w` = 0 for ` > 2.

For an A∞-algebra A, we denote the tensor coalgebra T cA[1] with the given differential
d by BA, the bar complex of A. For an A∞-coalgebra C, we denote the tensor algebra
TC[−1] with the given differential d by ΩC, the cobar complex of C. Thus, we have two
functors

Ω: DGCnil
//

oo DGA :B

We will now show that these are in fact inverse equivalences up to a quasi-isomorphism
(assuming that the underlying ring is a field), thus showing that the concept of a dga and a
dgc is essentially the same. We will then refine this to the following: given an A∞-algebra
A, the dga ΩBA is equivalent to A and thus every A∞-algebra “rectifies” to a dga.

6. Relation between algebras and coalgebras

We start by observing that Ω is left adjoint to B. To do that, we describe DGA(ΩC,A)
in a more elementary fashion. Since ΩC is a free graded algebra on C[−1], such a homo-
morphism is uniquely specified by a graded map ϕ1 : C[−1] → A, i.e. a map t : C → A of
degree −1. Here we decide to use ϕ1 = s∗t so that the resulting algebra map ϕ : ΩC → A
satisfies ϕs−1c = ϕ1s

−1c = −tc. We will now rephrase the condition on ϕ to be a chain
map. This amounts to the commutativity of

ΩC
ϕ

//

d
��

A

∂
��

ΩC ϕ
// A
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and it is easily verified that this is sufficient to be checked on the generating C[−1] ⊆ ΩC.
Thus, for s−1c, we need

∂t = −∂ϕs−1 = −ϕds−1 = −ϕ(−s−1∂ − (s⊗ s)−1∆) = ϕs−1∂ − ϕ(s−1 ⊗ s−1)∆

and since the first term is of length 1 while the second of length 2, this is computed as

−t∂ −m(ϕ⊗ ϕ)(s−1 ⊗ s−1)∆ = −t∂ −m(t⊗ t)∆.
The chain condition is then

[∂, t] +m(t⊗ t)∆ = 0.

Diagramatically, the differential of t must equal minus the composition

C
∆−−→ C ⊗ C t⊗t−−−→ A⊗ A m−−→ A.

Such a map t is usually called a twisting cochain (denoting t∪ t = m(t⊗ t)∆, the equation
becomes [∂, t]+t∪t = 0 and is called the Maurer-Cartan equation, due to its similarity with
the famous equation in differential geometry – is there more?) and has various applications.

Since this condition is self-dual, it should be rather clear3 that this should also amount to
a dgc-map C → BA, although for this to work correctly, we need the nilpotency condition
on C: for a map C → A[1] to uniquely induce an algebra map C → BA, we need that for
each element c ∈ C, sufficiently high iteration ∆(n)c, n � 0, vanishes. This is clearly the
case for a tensor coalgebra and thus, B really takes values in DGCnil.

Theorem 3. Let A be a dga, whose underlying graded module is free, i.e. each Ak is free.
Then the counit ε : ΩBA→ A is a quasi-isomorphism.

The counit is the dga-map corresponding to the dgc-map id: BA→ BA or alternatively
to the twisting cochain BA→ A,

sx 7→ x, sx1 ⊗ · · · ⊗ sxn 7→ 0 for n ≥ 2

We will denote (x1| · · · |xn) = s−1(sx1 ⊗ · · · ⊗ sxn). Thus, the induced dga-map ε is given
on generators by

εx = x, ε(x1 | · · · | xn) = 0 for n ≥ 2

Abbreviating εi = (−1)i−1+|x1|+···+|xi−1|, the differential on ΩBA is given by

d(x1 | · · · | xn) =
∑

εi · (x1 | · · · | dxi | · · · | xn)

−
∑

εi · (x1 | · · · | xi−1xi | · · · | xn)

+
∑

εi · (x1 | · · · | xi−1)(xi | · · · | xn)

Proof. Using the basis of each Ak, it is simple to verify that ΩBA as an algebra has a basis
formed by (x1| · · · |xn) with each xi a basis element and thus, as a graded module, the basis
is formed by products of such. We will restrict to such elements. We consider the following

3In detail, t induces a coalgebra map ψ : C → BA with qψ = st, i.e. ψ =
∑

(st)⊗n∆(n). Then
st∂ = qψ∂ = qdψ =

∑
qd(st)⊗n∆(n) = d1st− d2(s⊗ s)(t⊗ t)∆ = −s∂t− sm(t⊗ t)∆.
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filtration of ΩBA: let Fr be the subcomplex formed by elements of length ≤ r, where the
length of (x1| · · · |xn) is n and the length of a product is the sum of the lengths.

We will now show that each Fr/Fr−1 is contractible. The differential on this quotient is
given by

d(x1| · · · |xn) =
∑

εi · (x1| · · · |dxi| · · · |xn) +
∑

εi · (x1| · · · |xi−1)(xi| · · · |xn)

The contraction is given by

h((x)(x1| · · · |xn)ξ) = (−1)|x|+1 · (x|x1| · · · |xn)ξ

on products that start with an element of length 1 and by zero on other products.
The long exact sequence of homology groups associated with 0 → Fr−1 → Fr →

Fr/Fr−1 → 0 shows that the inclusion Fr−1 → Fr is a quasi-isomorphism. We have

F1

∼=

��

��

Fr−1
++∼

��
A

Fr

33

��

ΩBA

ε

HH

Since F1 → A is clearly an isomorphism, each Fd → A must be a quasi-isomorphism. As
also H∗(ΩBA) = colimH∗(Fd), the map induced by ε in homology is a colimit of isomor-
phisms and thus an isomorphism. We remark that in fact, ε is a homotopy equivalence. �

7. Relation of dga’s and A∞-algebras

We will now describe a strictification of A∞-algebras. We say that an A∞-algebra A
is cellular if, as a graded algebra, it is free with respect to the operations m`, ` ≥ 2. In
this case, for a generator x, the differential dx must be expressible uniquely as a term
t(y1 ⊗ · · · ⊗ y`) in generators yi of lower degree. In this way, one may obtain A together
with its differential by successively adding generators, ordered by their degree, subject to
the relations dx = t(y1 ⊗ · · · ⊗ y`) as above. These are to be thought of as cells, attached
by their boundaries.

In the case of a cellular A∞-algebra A, the strictification is simply the truncation trA.
The truncation map p : A→ trA is a quasi-isomorphism since its kernel admits a contract-
ing vector field given by

t0 ·m`(t1 ⊗ · · · ⊗ t`) · x1 · · · xk ⇒ m`+1(t0, t1, . . . , t`) · x1 · · ·xk
where the dot denotes the productm2 with the usual bracketing convention x·y·z = (x·y)·z.
Here the term m`(t1 ⊗ · · · ⊗ t`) is the right-most term that is not a variable and t0 is the
term in front of it – it may well be a product again, but this is not important. (There is a
filtration given by deg(m`(t1 ⊗ · · · ⊗ t`) · x1 · · ·xk) = (k, `, |t1|). This gets increased by the
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vector field.) The only critical cells are the full products x1 · · ·xk that form exactly the
truncation trA.

To strictify a fairly general A∞-algebra, we will first replace it by a quasi-isomorphic
cellular A∞-algebra. The replacement will somewhat stronger than a quasi-isomorphism.

A strong deformation retractions (sdr)

(f, g, h) : C ⇒ D

consists of the following data: two chain complexes C, D, two chain maps f : C → D and
g : D → C together with a homotopy h : C → C of degree 1 satisfying

1− fg = 0, 1− gf = [d, h], fh = 0, hg = 0, hh = 0.

We will describe a cellular replacement of an A∞algebra A only in the case that the
underlying graded module is free (this happens always when k is a field). The replacement
is again a sort of bar construction.

We will construct it as a universal strong deformation retraction (f, g, h) : QA⇒ A onto
A in which f is a map of A∞-algebras while g and h are only k-linear. Thus, we

• start with a generating set {gx | x ∈ A a generator}; here |gx| = |x|,
• close freely under operations m`, ` ≥ 2, and h
• subject to the relations hg = 0 and hh = 0.

Next we specify the projection f by

• fg = 1,
• fm` = m`f

⊗`, i.e. f is a map of A∞-algebras,
• fh = 0.

The differential on QA is then given by

• dg = gd, i.e. g is a chain map,
• d(m`(t1 ⊗ · · · ⊗ t`)) = [d,m`](t1 ⊗ · · · ⊗ t`) +

∑`
i=1(−1)`+|t1|+···+|ti−1|m`(t1 ⊗ · · · ⊗

dti ⊗ · · · ⊗ t`),
• dh = 1− gf − hd, i.e. [d, h] = 1− gf .

It is simple to verify that

• dhg = −hgd = 0, dhh = hhd = 0 so that d is indeed defined on QA,
• df = fd so that f is a chain map, and consequently
• dd = 0 so that d is indeed a differential.

By the second defining formula for d, it makes QA into an A∞-algebra. By construction,
(f, g, h) is indeed a sdr QA⇒ A whose projection f is a map of A∞-algebras. In addition,
QA is cellular with generators formed by the gx and the ht. Put together, it is a cellular
replacement. Finally, we have a span of quasi-isomorphisms of A∞-algebras A ← QA →
trQA, where trQA is in fact a dga.

Remark. We remark that the above construction can also be made for kG-modules where
only f is required to be kG-linear while g and h are only k-linear. In this case, one obtains
the usual bar construction. Denoting the elements of G by a, a generator of QM looks

a0ha1h · · ·hangx = a0|a1| · · · |an ⊗ x.
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8. Transfer of the structure

In this section, we will describe how to transfer the structure of an A∞-algebra along
homotopy equivalences. It is true, although not completely trivial,4 that an arbitrary
homotopy equivalence can be replaced by a span of sdr’s, C ⇐ S ⇒ D. For this reason, it
is possible to restrict to sdr’s.

Before going into the transfer stuff, we observe that sdr’s are closed under direct sums
(easy) and also tensor products: if (f, g, h) : Ci ⇒ Di is a finite number of sdr’s then so is

(f⊗k, g⊗k,
∑

i+1+j=k

(gf)⊗i ⊗ h⊗ 1⊗j) : C1 ⊗ · · · ⊗ Ck ⇒ D1 ⊗ · · · ⊗Dk.

It is worth pointing out that this tensor product of sdr’s is associative and thus it does not
matter in which order we tensor sdr’s.

The advantage of sdr’s over general homotopy equivalences is the following theorem.

Theorem 4 (Basic Perturbation Lemma). Let there be given a sdr (f0, g0, h0) : C0 ⇒ D0

and a perturbation δ, i.e. a map of degree −1 such that d = d0 + δ is also a differential.
Suppose that h0δ (equivalently δh0) is pointwise nilpotent. Then there exists a perturbation
of the differential of D0 and of the maps f0, g0, h0 such that (f, g, h) : C ⇒ D is another
sdr. These perturbations are functorial in a suitable sense.

Given a sdr A ⇒ A′, consider both A, A′ equipped with trivial A∞-structures, i.e.
m` = 0, ` ≥ 2, we denote the resulting bar complex B0A =

⊕
nA[1]⊗n. Then there is

a sdr B0A ⇒ B0A
′ since sdr’s are closed under tensor products and direct sums. Now

4Let ϕ : C → D be a homotopy equivalence with a homotopy inverse ψ and a homotopy [d, η] = 1−ψϕ.
Let cyl(ϕ) be the mapping cylinder. It has the following universal property: maps cyl(ϕ) → E are in
bijection with triples (γ, η, δ) where γ : C → E and δ : D → E are chain maps and [d, η] = δϕ − γ is a
homotopy; in othe words, such maps correspond to homotopy commutative triangles

C
γ

''
ϕ

��

⇓η E

D
δ

77

We denote the components of the universal such triangle by g : C → cyl(ϕ), i : D → cyl(ϕ) and κ. There is
also a projection p = (ϕ, 0, 1) : cyl(ϕ)→ D that fits into a sdr (p, i, µ) with µ = (−κ, 0, 0). Then ϕ = pg.
It is easily verified that p is a projection of a sdr with injection iz = (0, 0, z). Thus, g is a homotopy
equivalence. Moreover, it admits a retraction f = (1,−η, ψ) that is homotopic to ψp = (ψϕ, 0, ψ) via
the homotopy λ = (−η, 0, 0). The retraction condition means fg = 1 and it remains to ensure the side
conditions fh = 0, hg = 0, hh = 0.

Let h denote the concatenation of homotopies gf ∼κf+iϕλ (iϕ)(ψp) ∼iθp ip ∼µ 1, where [d, θ] = 1−ϕψ.
The resulting homotopy is h(x, y, z) = (0,−ηy+ψz, (θϕ−ϕη)x+θz). The map 1−gf is the projection onto
the summand C ′ of cyl(ϕ) complementary to C. Restricting the homotopy h to C ′ produces a contraction
h′ = (1− gf)h of C ′. It is simple to produce a contraction that squares to zero, namely h′dh′. Then one
reconstructs a homotopy with the required properties by extending to C by the zero homotopy, i.e. the
resulting homotopy operator is h′dh′(1−gf) = (1−gf)hd(1−gf)h(1−gf) = (1−gf)h(1−gf)dh(1−gf).
In fact, since hg = 0 in our case, we may use (1− gf)hdh(1− gf).



11

let A be equipped with an A∞-structure, i.e. a coderivation on T cA, and think of it as a
perturbation of the differential on B0A. Then the basic perturbation lemma gives a sdr
BA⇒ BA′ where BA′ is a perturbation of B0A

′ and is obtained from the lemma. Thus, the
lemma will produce an A∞-structure on A′ once we check that the perturbed differential
is indeed a coderivation. This follows from the functoriality of the basic perturabation
lemma: consider the commutative square

B0A
f0

//

∆
��

B0A
′

∆
��

B0A⊗B0A
f0⊗f0

// B0A
′ ⊗B0A

′

and observe that the two maps ∆ in fact form a map of sdr’s that even commute with the
perturbations δ = d− d0 at the top and δ ⊗ 1 + 1⊗ δ at the bottom – since both A with
the trivial A∞-structure and A with the given A∞-structure are A∞-algebras, ∆ commutes
with d0 and d = d0 + δ, hence also with δ.

In fact, we obtain more than just an A∞-algebra structure on A′, namely the chain maps
f : BA→ BA′ and g : BA′ → BA (and also h). As observed in the above diagram, f is a
coalgebra map.

Definition 5. An A∞-map A→ A′ is defined to be a dgc-map BA→ BA′.

As in the case of coderivations, such a map must be of the form

f(sx1 ⊗ · · · ⊗ sxn) =
∑

`1+···+`k=n

f`1(sx1 ⊗ · · · ⊗ sx`1)⊗ · · · ⊗ f`k(sxn−`k+1 ⊗ · · · ⊗ sxn)

where f` : (sA)⊗` → sA′. For f to be a chain map, it must satisfy the following:∑
`1+···+`k=n

dk(f`1 ⊗ · · · ⊗ f`k) =
∑

i+`+j=n

fi+1+j(1
⊗i ⊗ d` ⊗ 1⊗j)

(in particular, f2 measures the extent to which f1 does not respect the multiplication,
[d1, f2] = f1d2 − d2(f1 ⊗ f1), etc.) Thus, both f and g are A∞-maps.

Remark : another point of view is that f : BA→ BA′ is a “twisting cochain” BA→ A′

(however, A′ is an A∞-algebra and thus a twisting cochain is not equivalent to Ω∞BA→ A′

since the left-hand side does not exist) – this has components (sA)⊗` → A′ of degree −1
and these are precisely the f`’s.

The basic perturbation lemma in fact provides formulas for the respective perturbations.
The differential on BA′ is given by the formula

d = d0 + f0(δ − δh0δ + δh0δh0δ − · · · )g0.

Recalling that δ =
∑

`≥2 1⊗i ⊗ d` ⊗ 1⊗j, it is simple to see that the application of h0 to
δ(h0δ)

rg0, r ≥ 0, produces a non-zero term only when h0 is applied to the d`-term, so that
one may replace the appearance of each term h0δ by

∑
(g0f0)⊗i ⊗ h0d` ⊗ 1⊗j. A succesive

application
((g0f0)⊗i

′ ⊗ h0d`′ ⊗ 1⊗j
′
)((g0f0)⊗i ⊗ h0d` ⊗ 1⊗j)
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is zero unless i′ ≤ i. In this case, one may replace each (g0f0)⊗i ⊗ h0d` ⊗ 1⊗j by 1⊗i ⊗
h0d` ⊗ 1⊗j. Putting together, we obtain formulas

d` =
∑
r≥0,

i1≤···≤ir

(−1)r · f0d`0(1
⊗i1 ⊗ h0d`1 ⊗ 1⊗j1) · · · (1⊗ir ⊗ h0d`r ⊗ 1⊗jr)g ⊗`0

Since we have

1⊗i ⊗ h0d` ⊗ 1⊗j = (−1)(`−1)(j+1) · s⊗(i+1+j)(1⊗i ⊗ h0m` ⊗ 1⊗j)(s⊗(i+`+j))−1,

we may also rewrite the formula as

m` =
∑
r≥0,

i1≤···≤ir

(−1)r+(`1−1)j1+···+(`r−1)jr ·f0m`0(1
⊗i1⊗h0m`1⊗1⊗j1) · · · (1⊗ir⊗h0m`r⊗1⊗jr)g ⊗`0 .

The iterations as above may be depicted in terms of trees, whose vertices are decorated by
the m`’s, whose inner edges are decorated by h0, whose incoming leaves are decorated by
g0 and whose outgoing leaf is decorated f0.

There are similar formulas for f , g and h.

References


