
CHAPTER 1

What is differential topology?

The main subject is the study of topological (i.e. global) properties of smooth
manifolds. Typical questions involve:

• Is it possible to embed every smooth manifold in some Rk, k � 0?
• What properties of smooth maps are generic? A typical example is transver-

sality, e.g. transversality to 0 is demonstrated by the following two exam-
ples
pictures of x2(x− 3) (not generic) and (x+ 1)(x− 1)(x− 3) (generic)
The second function is generic because changing it slightly does not change
the situation. However a perturbation of the first function will either miss
the x-axis or will have two “generic” intersections.

• Classification of manifolds. Already Riemann in the late 19th century de-
scribed all (closed) surfaces. They are classified by orientability and genus
(“the number of holes”).
picture of a sphere with a handle One can read this information off ho-
mology.

The next step is dimension 3. Poincaré was pursuing this question.
He asked whether Betty numbers (the dimensions of the free parts of ho-
mology - i.e. all that people at that time knew of homology) where enough
to distinguish (compact and oriented) non-diffeomorphic 3-manifolds. He
showed that it is not. In fact even the homology groups do not suffice
(an example supplied by Poincaré): if M is a manifold with a perfect
group ([π1(M), π1(M)] = π1(M)) then H1(M) = 0 = H2(M) by Poincaré
duality and the manifold has the same homology as S3 (it is so-called ho-
mology sphere) but is not even homotopy equivalent to it as π1(S3) = 0.
His next question was the following. Is every compact simply connected
3-manifold diffeomorphic to S3? This is known as Poincaré conjecture
and was solved only 100 years later by Perelman.

Remark: one can always find a map Mm → Sm of degree 1. If
π1(M) = 0 and H∗(M) ∼= H∗(Sm) then this map is a homotopy equiva-
lence.

We have the following diagram relating a 3-manifold M and S3

diffeo ⇒ homeo ⇒ htpy equiv ⇒ hlgy iso

Concerning the reverse implications: the last one is valid for simply
connected M , the middle one is what is the real Poincar’e conjecture.
This is very difficult in dimension 3 (and also 4), easier for dimension
≥ 5 but still very hard. The reverse of the first implications holds in
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2 1. WHAT IS DIFFERENTIAL TOPOLOGY?

dimension 3 but is not true in higher dimensions. For example on S7

there are 28 distinct differentiable structures (when one is concerned about
orientations, otherwise 15).

The conclusion should be now that the classification problem is too
difficult.

Another idea of Poincaré (still in the 19th century) was to consider
a much weaker relation on compact manifolds: M is called bordant to
N , denoted M ' N , if the disjoint union M t N ∼= ∂W is a boundary
of some compact manifold W with boundary. For example Sm ' ∅ as
Sm = ∂Dm+1.

Classify manifolds up to bordism! We denote the set of bordism
classes of manifolds by N∗ and observe that it has a natural structure
of a ring with respect to t and ×. In 50’s Thom showed that N∗ is iso-
morphic to homotopy groups π∗(MO) of some space (or rather spectrum)
MO. Moreover Thom was able to compute this ring and

N∗ ∼= Z/2[xn | n ≥ 2, n 6= 2t − 1]

where deg(xn) = n i.e. xn is represented by a manifold of dimension n. At
the same time Pontryagin identified a similar bordism ring Ωfr

∗ of the so-
called framed manifolds with the stable homotopy groups of spheres, the
main object of study of algebraic topology. The way to prove both these
identifications is the same and is called the Pontryagin-Thom construction.
This will be our first goal in the lecture.



CHAPTER 2

Embedding into Euclidean space

Manifold will always be meant to be smooth, Hausdorff and second countable1.

Definition 2.1. A topological space X is called paracompact if every open
covering of X has a locally finite refinement.

Here V is a refinement of U if ∀V ∈ V ∃U ∈ U : V ⊆ U . A covering U is called
locally finite if every point x ∈ X has a neighbourhood V which intersects only a
finite number of elements of U , i.e. {U ∈ U | U ∩ V 6= ∅} is finite.

Theorem 2.2. For a connected Hausdorff locally Euclidean space X the fol-
lowing conditions are equivalent

a) X is second countable
b) X =

⋃∞
i=0Ki where each Ki+1 is a compact neighbourhood of Ki

c) X is paracompact

Proof. “a)⇒b)”: We need the following

Sublemma. If X is second countable then every open covering has a countable
subcovering.

Proof of the sublemma. Let U be a covering and {Vi}∞i=0 a basis for the
topology. For each Vi choose (if possible) U ∈ U such that V ⊆ U and call it Ui.
Then the claim is that {Ui}∞i=0 is a subcovering. nice picture �

Let us continue with the proof of the theorem now. Cover X by open sets
Ui with compact closure and we can assume that this collection is countable. We
construct Ki inductively starting with K0 = Ū0. In the inductive step cover Ki by
Uj1 , . . . , Ujn and form Ki+1 = Ūi+1 ∪

⋃n
k=1 Ujk .

“b)⇒c)”: Let U be any covering. For each i let U ij1 , . . . , U
i
jni

cover Ki − intKi−1.
Then

{U ijk ∩ (intKi+1 −Ki−1) | i = 0, . . . ; k = 1, . . . , ni}
does the job. nice picture
The reverse implications are similar. �

Definition 2.3. A (smooth) partition of unity subordinate to a covering U of
M is a collection of smooth functions λi : M → R, i ∈ I, such that the following
conditions are satisfied

• suppλi is contained in some set U ∈ U from the covering
• the collection {suppλi | i ∈ I} is locally finite
•
∑
λi = 1 which makes sense thanks to the local finiteness property

1having a countable basis for its topology

3



4 2. EMBEDDING INTO EUCLIDEAN SPACE

Remark. If λi is a partition of unity subordinate to V and V is a refinement
of U then λi is also a partition of unity subordinate to U .

Remark. Choosing for each λi a definite U ∈ U for which suppλi ⊆ U we can
add those λi’s corresponding to a single U to get λU with suppλU ⊆ U . In this
way we get a partition of unity which is indexed by the covering U itself.

Now we can start proving the following theorem.

Theorem 2.4. Partitions of unity exist subordinate to any open covering.

If I am not mistaken then ρ(x) = e−
1

x+1 e−
1

1−x should be a function which is
positive on (−1, 1) and zero elsewhere. Similarly we get a function ρ(x1) · · · ρ(xm) :
Rm → R, positive on (−1, 1)m and zero elsewhere. pictures

Lemma 2.5. Let K ⊆ U ⊆ Rm with K compact and U open. Then there
exists a smooth function λ : Rm → R+ = [0,∞) such that λ is positive on K and
suppλ ⊆ U .

Proof. Cover K by a finite number of open cubes Vi. Modifying ρ slightly we
find λi which is positive on Vi and zero elsewhere. Then put λ =

∑
λi. �

Proof of Theorem 2.4. Enough to prove for U locally finite and with U ∈
U ⇒ Ū compact and contained in a coordinate chart. This is so as for any U
we can find a refinement of this form. Also we can assume that U is countable
as any covering possesses a countable subcovering. Therefore let U = {Ui}i=0∞.
We construct λi’s inductively. We start with λ0 any function which is positive on
U0−

⋃∞
i=1 Ui and with suppλ0 ⊆ U0. We denote V0 := λ−1

0 (0,∞). In the inductive
step we choose a function λj which is positive on Uj−

⋃j−1
i=0 Vi−

⋃∞
i=j+1 Ui and with

suppλj ⊆ Uj . Then we denote Vj := λ−1
j (0,∞) and the induction step is finished.

Clearly the local finiteness is satisfied as U is supposed to be such. By construction∑∞
i=0 λi > 0 on M . To finish the proof we replace λj by λj∑∞

i=0 λi
. �

Theorem 2.6. Let M be a compact manifold. Then there exists an embedding
of M into Rk for some k � 0.

Proof. Let ϕi : UiRm, i = 1, . . . , k, be a covering of M by coordinate charts
(i.e.

⋃k
i=1 Ui = M . Let λi, i = 1, . . . , k be a partition of unity subordinate to

U = {Ui}ki=1. The claim is that the map

j = (λ1, λ1 · ϕ1, . . . , λk, λk · ϕk) : M → R(m+1)k

(with λi ·ϕi the obvious extension - by zero - of the map with the same name from
Ui to M). Clearly j is injective: if x and y are two points with j(x) = j(y) then
certainly there is i such that 0 6= λi(x) = λi(y). Then in λi(x) ·ϕi(x) = λi(y) ·ϕi(y)
we can divide by this common value to conclude that ϕi(x) = ϕi(y) and then refer
to the injectivity of ϕi. The proof of injectivity of the tangential map follows the
same idea: let (x, v) ∈ TxM be such that j∗(x, v) = 0. Then all (λi)∗(x, v) = 0 and
therefore

0 = (λi · ϕi)∗(x, v) = λi(x) · (ϕi)∗(x, v) + (λi)∗(x, v) · ϕi(x) = λi(x) · (ϕi)∗(x, v)

Again one of the λi(x) is nonzero and therefore (ϕi)∗(x, v) must be zero. But as ϕi
is an embedding this implies v = 0. �
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Aside. An embedding j : M ↪→ N is a diffeomorphism of M with a submani-
fold j(M) ⊆ N . Equivalently (HW) j is an injective immersion and a homeomor-
phism onto its image. Therefore for M compact the notions of an embedding and
an injective immersion coincide.

It is possible to decrease k from the theorem to 2m + 1. We need (an easy
version of) Sard’s theorem.

Definition 2.7. A subset S ⊆ Rm has measure 0 if for each ε > 0, S can be
covered by a sequence Ci of cubes with

∞∑
i=0

Vol(Ci) < ε

Remark. This notion is closed under countable unions.

Remark. If S has measure 0 then S does not contain any nonempty open
subset.

Lemma 2.8. Let f : U → Rm, U ⊆ Rm, be a smooth map and S ⊆ U a subset
of measure 0. Then f(S) has measure 0.

Proof. Cut U into countably many compact cubes Ci On each Ci the deriva-
tives of f are bounded, i.e.

|f ′u(x)| ≤ Ki ∀x ∈ Ci, u ∈ Sm−1

nice picture Now we compute

|f(x+ v)− f(x)| =
∣∣∣∣∫ 1

0

f ′v(x+ tv)dt
∣∣∣∣ ≤ ∫ 1

0

|f ′v(x+ tv)|dt ≤
∫ 1

0

Ki|v|dt = Ki|v|

In other words the lengths increases at most Ki-times, the image of a cube of side
a lies in a cube of side a

√
mKi. If S∩Ci is covered by cubes of total volume ε then

f(S ∩ Ci) is covered by cubes of total volume ε · (
√
mKi)m. As f(S) is the union

of the sets f(S ∩ Ci) each having measure 0, the proof is finished. �

Corollary 2.9. The property of having measure 0 is diffeomorphism invari-
ant. In other words it does not depend on the chart.

Therefore the following definition makes sense.

Definition 2.10. A subset S ⊆ M of a smooth manifold M has measure 0 if
it is so in each chart.

Theorem 2.11 (Sard’s theorem, easy version). Let f : Mm → Nn be a smooth
map with m < n. Then im f has measure 0 in N .2

Proof. This is a local problem and so we can assume

f : Rm → Rn

extend f to a map

Rn = Rm × Rn−m p1−−→ Rm f−−→ Rn

and observe that im f = f(Rm × 0) and Rm × 0 has measure 0 in Rn. �

2Here it is important that M is second countable. Taking M = N but with discrete topology
and f = id is an example where the theorem would fail otherwise.
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Theorem 2.12. Any compact smooth manifold Mm can be embedded into
R2m+1.

Remark. M being compact is not important (but M second countable is)

Remark. In fact M can be embedded into R2m but the proof given here could
not work picture of a trefoil not where the projection as in the proof does not exist.

Proof. Let M be embedded in some Rk. This is possible by Theorem 2.6.
The strategy is to find a direction (or rather a line `) in which to project to reduce
the dimension k by 1.

M
� � j

// Rk p−−→ Rk/`
The problem is to make sure that p ◦ j is still an embedding. This is possible if
k > 2m+ 1:

• p ◦ j injective: consider the following map

M ×M −∆
g−−→ RP k−1

(x, y) 7→ [j(x)− j(y)]

The injectivity of p ◦ j is equivalent to ` 6∈ im g.
• p ◦ j immersion: consider the following map

STM
h−−→ RP k−1

(x, v) 7→ [j∗(x, v)]

Then equivalently ` 6∈ imh.
All together, p◦ j is an embedding iff ` 6∈ im g∪ imh. If k > 2m+1 then im g∪ imh
has measure 0 by Theorem 2.11 and thus its complement is nonempty. �

Remark. The same proof shows that Mm can be immersed into R2m.



CHAPTER 3

Tubular neighbourhoods

Our situation in this chapter is that we have a submanifold M ⊆ N and we
want to describe a neighbourhood of M in N in a nice way.

Digression (about Riemannian metrics).

Theorem 3.1. Every manifold possesses a Riemannian metric.

Proof. The simplest proof would be: embed M into R2m+1 and induce a
metric from there. But we only proved the existence of an embedding for compact
manifolds. We exhibit a different proof: let Ui be a covering of M by charts and
λi a subordinate partition of unity. On Ui we can choose a Riemannian metric gi
using the chart. Then the required Riemannian metric on M is

∑
i λigi. This is

possible because the set of Riemannian metrics in T ∗xM ⊗ T ∗xM is convex. �

Every manifold M has a metric (is a metric space). A possible proof refers
to a general statement that every second countable completely regular topological
space is metrizable. We give a geometric proof of this fact for M connected. Let
g be a Riemannian metric on M and define a length of a piecewise smooth curve
γ : [0, 1]→M by the formula

`(γ) =
∫ 1

0

g(γ̇(t), γ̇(t))dt

where γ̇ : [0, 1]→ TM denotes the derivative of γ (evaluate the tangential mapping
γ∗ : [0, 1]× R→ TM on unit vectors (x, 1)).

Now we can define a metric on M by a formula

dg(x, y) = inf{`(γ) | γ : [0, 1]→M piecewise smooth, γ(0) = x, γ(1) = y}

To see that the topology induced by dg is correct go local. Then in Rm the metric
dg is equivalent to the standard metric which is de for the standard Riemannian
metric on Rm. The equivalence comes from a relation Ke ≤ g ≤ Le (for some
K,L > 0) holding near some fixed point. The same relation then holds for the
induced metrics: Kde ≤ dg ≤ Lde and so they induce the same topology.

Note. A geodesic γ is a solution to a certain second order differential equation

∇γ̇ γ̇ = 0

where ∇ is the Levi-Civita connection associated with the Riemannian metric.

For (x, v) ∈ TM denote by

t 7→ ϕ(t, x, v)

7



8 3. TUBULAR NEIGHBOURHOODS

the geodesic starting at x with velocity v, i.e. γ̇(0) = (x, v). The curve ϕ(t, x, v) is
defined fot t in some neighbourhood of 0. Also ϕ(t, x, v) only depends on tv, not
on t and v separately

ϕ(t, x, v) = ϕ(1, x, tv) = expx(tv)

under a notation expx v = ϕ(1, x, v). We get a smooth map

V⊆

ϕ
// M

R× TM
with V an open neighbourhood of 0 × TM . If C ⊆ M is a compact subset then
STM |C is also compact and there exists ε > 0 such that ϕ(t, x, v) = expx tv is
defined for all x ∈ C, v ∈ TxM with |v| = 1 and |t| < ε. In other words expx v is
defined for all x ∈ C and v ∈ TxM with |v| < ε.

Alltogether exp is defined on a neighbourhood of the zero section M ⊆ TM

U⊆

exp
// M

TM

Consider the map

(π, exp) : U → M ×M
(x, v) 7→ (x, expx v)

We claim that (π, exp) is a diffeomorphism near the zero section. Clearly when
restrcted to the zero section M ⊆ TM the map (π, exp) coincides with the diagonal
embedding ∆ : M → M ×M . We check what its differential at the zero section
is. First we observe that at a zero section the tangent bundle of any vector bundle
canonically splits

Lemma 3.2. Let p : E → M be a vector bundle. Then there is a short exact
sequence of vector bundles over E

0→ p∗E → TE → p∗TM → 0

which splits canonically at the zero section.

Proof. First we define the maps in the sequence. We think of the pullback
p∗TM as a subset of E × TM and write its elements as pairs. Similarly for p∗E
but here we must be careful: the first coordinate serves as the point in the base
whereas the second coordinate as the vector. The first map is

(u, v) 7→ d
dt

∣∣∣∣
t=0

(u+ tv)

This map is clearly injective and its image is called the vertical subbundle of TE.
The second map in the sequence is induced by projection p∗ : TE → TM to the
base. Clearly this sequence is exact. Restricting to the zero section M ⊆ E we
obtain a short exact sequence

0→ E → TE|M → TM → 0

which splits by the map j∗ : TM → TE|M induced by the inclusion j : M ⊆ E. Its
image is called the horizontal subbundle. �
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Now we compute (π, exp)∗ at the zero section. On the vertical subbundle

(π, exp)∗((x, 0), (0, v)) = ((x, x), (0, v))

(this is d
dt

∣∣
t=0

(x, expx tv)) and on the horizontal subbundle

(π, exp)∗((x, 0), (v, 0)) = ((x, x), (v, v))

(which is ∆∗(x, v)). Such vectors clearly span T(x,x)(M ×M) and we can conclude
that (π, exp) is an embedding of a neighbourhood of the zero section M ⊆ TM
onto a neighbourhood of the diagonal ∆(M) ⊆M ×M by the following lemma.

Lemma 3.3. Let M ⊆ N be a compact submanifold, f : N → P a smooth map.
If f is an injective immersion at M (f |M injective and (f∗)|M injective rather than
(f |M )∗ injective - not sufficient). Then there is a neighbourhood U of N such that
f |U is an embedding.

Proof. Only need that there is a neighbourhood of M on which f is injective
as M has a final system of compact neighbourhoods: if f |V is injective choose an
open neighbourhood U of M for which Ū is a compact subset of V and then f |Ū is
a homeomorphism onto its image and thus so is f |U . As we may also assume that
f is an immersion on U , f |U is an embedding.

Therefore assume that there is no neighbourhood of M on which f is injective.
Remembering thatN is a metric space and exhibiting this for an 1/n-neighbourhood
of M we obtain sequences xi and yi of points in N such that f(xi) = f(yi). We
can also assume that both xi and yi converge, say to x and y respectively, both
lying in M . As f |M is injective we must have x = y and as f is an immersion at x
necessarily xi = yi for i big enough. �

In general we consider now an embedding j : M � � //N . A normal bundle ν(j)
of j is the vector bundle TM⊥, the orthogonal complement of TM inside j∗TN .
This definition depends on the choice of metric but it is possible to give one which
does not: ν(j) = j∗TN/TM .

Remark. Let 0 → E → F → F/E → 0 be a short exact sequence of vector
bundles and choose a Riemannian metric on F . Then we get a diagram

0 // E // F // F/E // 0

E⊥

OO

∼=

<<zzzzzzzz

Therefore every short exact sequence of vector bundles (in general over a paracom-
pact topological space) split.

Example 3.4. For the diagonal embedding ∆ : M → M × M the normal
bundle is

ν(∆) = (TM ⊕ TM)/TM ∼= TM

Here TM sits in TM ⊕ TM diagonally. The orthogonal complement of TM is (if
we impose orthogonality of the two summands TM)

{(v,−v) ∈ TM ⊕ TM | v ∈ TM} ∼= TM
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Example 3.5. Let j : M � � // Rk be an embedding of M into Rk and consider
ν(j). For any other embedding j′ : M � � // Rk′ and the corresponding ν(j′) we get
a relation

ν(j)⊕ (Rk
′
×M) ∼= ν(j)⊕ TM ⊕ ν(j′) ∼= (Rk ×M)⊕ ν(j′)

Such vector bundles ν(j), ν(j′) are calles stably isomorphic (i.e. they are isomorphic
after adding trivial vector bundles - of possibly different dimensions). We also
associate to ν(j) a formal dimension −m, intuitively replacing the defining relation
ν(j)⊕ TM ∼= Rk ×M by ν(j)⊕ TM = 0 and therefore thinking of ν(j) as −TM .

Construction 3.6. Thinking of ν(j) as TM⊥, exp provides a map

exp :
◦
DεTM

⊥ −→ N

an embedding of a neighbourhood
◦
DεTM

⊥ of the zero section of TM⊥ as a neigh-
bourhood of M . The proof is exactly the same as for ∆ : M →M ×M . Note that
this construction depends on the Riemannian metric on N .

Definition 3.7. A tubular neighbourhood of j : M � � //N is a pair (E, ι)
where p : E → M is a smooth vector bundle and ι : E → N is an embedding of
E as a neighbourhood of M in such a way that ι|M = j (here M means the zero
section).

Note. Here E must be isomorphic to the normal bundle of j:

E // TE|M
ι∗ // TN |M

p
// TM⊥

TM

OO

j∗

::uuuuuuuuu

with p the orthogonal projection. As TE|M is a direct sum E⊕TM and pι∗|TM =
pj∗ = 0 the composition across the top row must be an isomorphism.

Theorem 3.8. Every compact submanifold M ⊆ N has a tubular neighbour-
hood.

Proof. Use TM⊥ ∼=
◦
DεTM

⊥ exp−−−→ N . �

In particular a tubular neighbourhood provides a retraction

r : ι(E) ι−1

−−−→ E
p−−→M

a nice picture of the retraction
Now we show an interesting application of tubular neighbourhoods (and in

particular of the above retraction).

3.1. Smoothening maps

Let M and N be compact manifolds and ι : ν(N) → Rk a tubular neighbour-
hood of some embedding N � � // Rk. Our aim is to find for each continuous map
f0 : M → N a smooth approximation, i.e. a smooth map f1 : M → N with a
homotopy f : I ×M → N for which f(0,−) = f0 and f(1,−) = f1. In fact we will
find a small homotopy f so that f1 will be close to f0 but we will make this precise
only later.
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Theorem 3.9. Approximations exist for every f0 : M → N . If f0 is already
smooth in a neighbourhood of a closed subset K ⊂ M then the homotopy f can be
chosen to be constant on a (possibly smaller) neighbourhood of K (and in particular
f1 ≡ f0 near A).

Proof. Find ε > 0 such that every Bε(x), x ∈ N lies in the tubular neigh-
bourhood of N . Cover M by an open covering U with the following properties:

• U ∈ U ⇒ ∀x, y ∈ U : |f0(x)− f0(y)| < ε
• U ∈ U ⇒ either U ⊆M −K or f0|U is smooth

Let λU be a subordinate partition of unity and let gU be smooth maps U → Rk
satisfying

• ∀x ∈ U : |gU (x)− f0(x)| < ε
• if U ∩K 6= ∅ then gU = f0

Such a collection exists - it is either dictated by the second condition or, when
U ⊆ M − K, one can choose x0 ∈ U and put gU (x) = f0(x0) constant. Define
g : I ×M → Rk by the following formula

g(t, x) = (1− t)f0(x) + t
∑
U∈U

λU (x)gU (x)

Easily im g lies in the tubular neighbourhood and one can compose with the retrac-
tion r to obtain the required f(t, x) = r(g(t, x)). �

3.2. Classification of 1-dimensional manifolds

The classification we present here works equally well for manifolds with bound-
ary. First we define all the needed notions (and slightly more).

In the same way manifolds are modeled on the Euclidean space Rm manifolds
with boundary are modeled on the halfspace

Hm = R− × Rm−1 = {(x1, . . . , xm) ∈ Rm | x1 ≤ 0}

To do differential topology on manifolds with boundary it is important to define
what a smooth map is.

Definition 3.10. A map ϕ : Hm → Hn is called smooth is all the partial
derivatives (possibly one-sided) are continuous. This is the standard definition but
for convenience our working definition will be: ϕ is smooth if it can be locally
extended to a smooth map Rm → Rm. Again a map is called a diffeomorphism if
it is smooth together with its inverse.

Definition 3.11. A smooth manifold with boundary is a Hausdorff second
countable topological space M with a chosen equivalence class of atlases - a collec-
tion of charts satisfying

• each ϕ : U → Hm is a homeomorphism of an open subset U ⊆M with an
open subset of Hm

• the transition maps ψϕ−1 : Hm → Hm (partially defined) are diffeomor-
phisms

The set ∂M of all points which in some (and then in any) coordinate chart lie in
∂Hm = {0} × Rm−1 is called the boundary of M .
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Definition 3.12. A tangent bundle TM of a manifold with boundary M is
defined in the same way with THm = Rm × Hm, i.e. we allow all vectors even
those pointing out of the manifold (therefore the kinetic definition of TM is not
appropriate).

Definition 3.13. A subset M ⊆ N of a manifold with boundary N is called a
neat submanifold if there is a covering of M by charts ϕ : U → Hn such that

ϕ(M ∩ U) = Hm ∩ ϕ(U)

Here Hm ⊆ Hn consists precisely of all (x1, . . . , xn) with only first m coordinates
nonzero1.

Theorem 3.14. Let ϕ : M → N be a smooth map, ∂N = ∅, and suppose that
both ϕ and ϕ|∂M are submersions near ϕ−1(y) where y ∈ N is some fixed point.
Then ϕ−1(y) is a neat submanifold.

Proof. This is a local problem so we can assume that ϕ : Hm → Rn and y = 0.
The statement is classical on the interior of M , thus we assume that x ∈ ∂Hm is
such that ϕ(x) = 0. As ϕ|∂Hm is a submersion at x we can choose among x2, . . . , xm
an n-tuple of coordinates such that the derivatives of ϕ with respect to them give
an isomorphism. We assume that these are xm−n+1, . . . , xm. Writing now

Hm ∼= Hm−n × Rn

we define a smooth map

ψ : Hm (pr1,ϕ)−−−−−−→ Hm−n × Rn ∼= Hm

where pr1 : Hm → Hm−n denotes the projection onto the first (m − n) variables.
Easily dψ(x) is an isomorphism and so by the inverse function theorem ψ is a
diffeomorphism near x (but note that the inverse function theorem does not imply
that the inverse ψ−1 takes Hm into Hm, this follows from our definition of ψ). In
the chart ψ the subset ϕ−1(0) becomes

ψ(ϕ−1(y)) = {(x1, . . . , xm−n, 0, . . . , 0) ∈ Hm}

�

A serious HW: every compact neat submanifold has a tubular neighbourhood.
From now on we will distinguish between compact manifolds without boundary

- they will be called closed - and compact manifolds with boundary which we will
refer to simply as compact manifolds.

Now we are ready to classify 1-dimensional manifolds.

Theorem 3.15. Every connected 1-dimensional manifold is diffeomorphic to
exactly one of the following list

• [0, 1]
• [0,∞)
• R
• S1

(following Goodwillie we do not call ∅ connected as π0(∅) 6= ∗).

1Loosely speaking, a neat submanifold should be perpendicular to the boundary. In particular
∂M is not a neat submanifold of M although it is a submanifold (a notion which we do not define).
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Proof. Let M be a connected 1-dimensional manifold and choose a Riemann-
ian metric on it. Let v ∈ TxM be a unit tangent vector and consider a geodesic
determined by it:

ϕ : J → M

t 7→ expx tv

Here J is an interval in R but as M could have some boundary, the same could be
true of J . As ϕ is a submersion (∀t ∈ J : |ϕ̇(t)| = 1) the image of ϕ is open and
for the same reason it is also closed2. As M is connected ϕ is surjective. Suppose
first that it is also injective. Then ϕ is a diffeomorphism and this gives us the first
three possibilities. Assume now that for some a < b we have ϕ(a) = ϕ(b). As ϕ̇(a)
and ϕ̇(b) are two unit vectors in the same 1-dimensional space Tϕ(a)M necessarily
ϕ̇(a) = ±ϕ̇(b).

• ϕ̇(a) = −ϕ̇(b): in this case ϕ(a + t) = ϕ(b − t) which for t = (b − a)/2
gives a contradiction ϕ̇((a+ b)/2) = −ϕ̇((a+ b)/2).

• ϕ̇(a) = ϕ̇(b): in this case ϕ(a+ t) = ϕ(b+ t) and ϕ is periodic with period
(b−a). Then necessarily J = R. Let T be the smallest period of ϕ (which
easily exists). Then ϕ induces a map

ϕ̃ : S1 ∼= R/TZ −→M

which is now injective and therefore a diffeomorphism.
�

Remark. Surjective submersions are quotients in the category of smooth man-
ifolds. This is because surjective submersions have local sections.

M //

surjective
submersion

����

P

N

←−−− a factorization exists
iff it exists in Set

>>}
}

}
}

In particular such quotients are diffeomorphic iff they have the same kernel. In the
previous proof this could be used as an explanation why S1 ∼= M in the last case -
both are quotients of R.

2One can partition M into images of geodesics, each of which is open.





CHAPTER 4

Sard’s theorem

Definition 4.1. Let f : M → N be a smooth map. A point x ∈M is called a
critical point of f if f∗ : TxM → Tf(x)N has rank strictly lower than m = dimM .
The set of critical points is called a critical set of f and denoted Σf . A point y ∈ N
is called a critical value if it is an image of a critical point, y ∈ f(Σf ). Otherwise
it is called a regular value.

Theorem 4.2 (Sard). The set of critical values has measure 0 in N .

Corollary 4.3 (Brown). The set of regular values of any smooth map f :
M → N is dense in N .

Before giving the proof of Sard’s theorem we show an application.

Theorem 4.4 (Brouwer). There is no retraction Dn → ∂Dn = Sn−1.

Proof. First we show that there is no smooth retraction. Suppose r : Dn →
Sn−1 is such a retraction. Take a regular value y ∈ Sn−1 (which exists by Sard’s
theorem). Then r−1(y) is a compact 1-dimensional neat submanifold of Dn and
contains y as a boundary point. There must exist a second boundary point. But
as r(z) = z for all z ∈ Sn−1 the only z ∈ Sn−1 in r−1(y) is y itself, a contradiction.
picture

To reduce to the smooth case we use smooth approximations. Let r : Dn →
Sn−1 be a continuous retraction. We define a new retraction r′ : Dn → Sn−1

by pasting together r on the disc of radius 1/2 and the radial projection on the
annulus. picture We apply the relative version of the smoothening and find a
smooth r′′ : Dn → Sn−1 with r′′ = r′ near Sn−1. �

In the course of the proof of Sard’s theorem we need a version of Taylor formula
which is also of interest independently.

Lemma 4.5. Let f : U → Rn be a smooth function defined on some convex
subset U of Rm. Then for any two points x, y ∈ U the following formula holds

f(y) = f(x) + · · ·+ (T kx f)(x)(y − x)⊗k + · · ·+ (T lxf)(y)(y − x)⊗l

(all T kx f are applied to x except the last one, which is applied to y) where

T kf : U × U −→ hom
(
(Rm)⊗k,Rn

)
(x, y) 7−→ (T kx f)(y)

is also smooth and (T kx f)(x) = 1
k!f

(k).

Proof. We construct T kf inductively starting with k = 1:

f(y)− f(x) =
[
f(x+ t(y − x))

]1
0

=
(∫ 1

0

f ′(x+ t(y − x)) dt
)

(y − x)

15
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and we denote (T 1
xf)(y) =

∫ 1

0
f ′(x + t(y − x)) dt. As a function of x and y this is

a smooth map
T 1f : U × U → hom(Rm,Rn)

Iterating this construction we get T kx f = T 1
x · · ·T 1

xf with

T kf : U × U −→ hom((Rm)⊗k,Rn)

smooth and a Taylor formula1

f(y) = f(x) + · · ·+ (T kx f)(x)(y − x)⊗k + · · ·+ (T lxf)(y)(y − x)⊗l

Comparing the derivatives of the two sides we get T kx (f)(x) = 1
k!f

(k). �

Proof of Sard’s theorem. Firstly we can assume that m ≥ n, the remain-
ing cases are taken care of by Theorem 2.11. Also the problem is local so we can
assume

W⊆

f
// Rn

Rm
We partition the critical set Σf according to the order of vanishing derivatives

Σ1 = {x ∈ Σf | df(x) 6= 0}

Σ2 =

{
x ∈ Σf

∣∣∣∣∣ df(x) = 0 but there is a nonvanishing
derivative of order at most m/n at x

}
Σ3 = {x ∈ Σf | all derivatives of order at most m/n vanish at x}

We need to show that each f(Σi) has measure 0. This will be proved in 3 steps.
III. f(Σ3) has measure 0: let C ⊆ W be a compact cube with side a. It is

enough to show that f(C ∩Σ3) has measure 0. Let x ∈ C ∩Σ3 and let y be another
point in C. According to Lemma 4.5 we can write

f(y) = f(x) + (T lxf)(y)(y − x)⊗l

where l is the smallest integer greater than m/n. Thinking of T lf as a function

C × C × (Rm)l −→ Rn

we get a bound
∣∣(T lxf)(y)(v1 ⊗ · · · ⊗ vl)

∣∣ < K for all x, y ∈ C and vi ∈ Sm−1.
Therefore

(4.1) |f(y)− f(x)| =
∣∣(T lxf)(y)(y − x)⊗l

∣∣ < K|y − x|l

Now cover C by km cubes of side a/k, k some positive integer. Then C ∩ Σ3 is
covered by at most km cubes of side a/k each containing a point from Σ3. By our
bound (4.1) the image f(C ∩ Σ3) is covered by cubes of total volume at most

const · km ·
(
(a/k)l

)n
= const · k−n(l−m/n)

(at most km cubes in Rn of side at most (a/k)l). As k →∞ this tends to 0.
This finishes the proof for m = 1 as then n = 1 and Σf = Σ3 which is covered

by step III. We proceed further by induction on m, i.e. we prove steps II and I
assuming the whole theorem proved for all smaller m.

1What this formula roughly says is that after subtracting from f its Taylor polynomial at x
of order (l − 1) the remainder remains smooth even after “dividing” by (y − x)⊗l.
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II. We show that f(Σ2) has measure 0. Let x ∈ Σ2. There is a multiindex I
and numbers i, j such that

∂xI
fj(x) = 0

∂xi∂xI
fj(x) 6= 0

We will partition Σ2 according to different I, i, j and denote these ΣI,i,j2 . It is
enough to show that the various parts ΣI,i,j2 have image of measure 0. Near the
point x ∈ ΣI,i,j2 the function

∂xI
fj : W → R

is a submersion and therefore X = (∂xI
fj)−1(0) is near x a submanifold of dimen-

sion m− 1. Clearly ΣI,i,j2 ⊆ Σf |X (it is important here that we assume that all the
first derivatives are zero!) and consequently

f(ΣI,i,j2 ) ⊆ f(Σf |X )

which has measure 0 by induction hypothesis.
I. We show that f(Σ1) has measure 0. Let x ∈ Σ1 and assume for simplicity

that ∂x1f1(x) = 0 (otherwise change coordinates). Define a map

g = (f1, x2, . . . , xm) : W → Rm

with differential 
∂x1f1 ∂x2f1 · · · ∂xm

f1

0
...
0

E


Therefore g is a diffeomorphism on a neighbourhood U of x

U
f

//

g ∼=
��

Rn

gU
f̄=fg−1=(x1,f̄2,...,f̄n)

=={{{{{{{{

Clearly f(U ∩ Σf ) = f̄(Σf̄ ) (the critical values are diffeomorphism invariant) and
so it is enough to show that f̄(Σf̄ ) has measure 0. Denote the last n−1 coordinates
of f̄ by

hx1(x2, . . . , xm) := (f̄2, . . . , f̄n)(x1, . . . , xm)

Then we can write Σf̄ =
⋃
x1∈R
{x1} × Σhx1

and similarly

f̄(Σf̄ ) =
⋃
x1∈R
{x1} × hx1(Σhx1

)

Fubini theorem gives the following formula with µ denoting the measure

µ(f̄(Σf̄ )) =
∫
µ(hx1(Σhx1

)) dx1 =
∫

0 dx1 = 0

The second equality follows from the induction hypothesis as each hx1 is a smooth
map Rm−1 → Rn−1. �
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Remark. The version of Fubini theorem that we need here is rather easy to
prove, first we state it: let C be a compact subset of Rn ∼= R × Rn−1. Denote by
Rnt the subset {t} ×Rn−1 ⊆ Rn and similarly Ct = C ∩Rnt . This version says that
if each Ct has measure 0 then so does C.

To prove this let us cover, for each t, Ct by a countable family Ki of cubes of
total volume ε. By compactness there is a small interval It around t such that the
products It ×Ki cover C ∩ (It × Rn−1). The image of C under projection to the
first coordinate is a compact subset and thus lies in a closed interval, say of length
a. This interval is covered by the intervals It and one can pick from them a finite
subset It1 , . . . , Itk of intervals of total length at most 2a. Then the total volume of
cubes we used to cover C ∩ (Iti × Rn−1) is at most 2aε and by varying ε can be
dropped arbitrarily low.



CHAPTER 5

Transversality

Definition 5.1. Let there be given smooth maps as in the diagram

M
f

// N M ′
f ′

oo

The maps f and f ′ are said to be transverse if for each x ∈ M , x′ ∈ M ′ with
y = f(x) = f ′(x′) the following holds

f∗(TxM) + f ′∗(Tx′M
′) = TyN

We denote this fact by f t f ′.

picture
We will need a special case when f ′ is an embedding j : A � � //N of a sub-

manifold.
A� _

j
��

M
f

// N

Then f is said to be transverse to A, denoted f t A, if it is transverse to the
embedding j, i.e. if for each x ∈M with f(x) ∈ A

f∗(TxM) + Tf(x)A = Tf(x)N

The following reformulation will be useful: for x ∈ f−1(A) consider the composition

TxM −→ Tf(x)N −→ (TN/TA)f(x) = ν(j)f(x)

with ν(j) the normal bundle of the embedding j. Then f t A iff this map is
surjective for all x ∈ f−1(A).

Example. A submersion is transverse to every submanifold.

Example. Let A = {y} ⊆ N . Then f t A iff f is a submersion near (or at)
f−1(y) iff y is a regular value of f .

In the proceeding the following notation will be very useful. A codimension of
an embedding j : A � � //N is the difference

codim j = dimN − dimA = the dimension of the fibre of ν(j)

of the dimensions.

Example. Let f : M → N be any smooth map and j : A � � //N . If dimM <
codim j then f t A is equivalent to im f ⊆ N −A.

19
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Proposition 5.2. Let f : M → N be smooth and j : A � � //N a submanifold
(which is neat in the case ∂N 6= ∅) such that f t A and f |∂M t A. Then f−1(A)
is a neat submanifold of the same codimension as A. Moreover the map g in the
following diagram is a fibrewise isomorphism

f−1A
f ′

//
� _

j′

��

A� _

j

��

ν(j′)
g

//

��

ν(j)

��

M
f

// N f−1A
f ′

// A

Remark. The slogan here is: “transverse pullbacks exist”. More generally
when f t f ′ then M ×AM ′ is a submanifold of M ×M ′ and we get a pullback

M ×N M ′

y
//

��

M ′

f ′

��

M
f

// M

Serious HW: prove this (by reducing to the proposition).

Proof. This is again a local problem and so we can assume

Hm f=(f1,f2)−−−−−−−→ Rn−d × Rd

with A = Rn−d × {0}. The condition f t A translates to the component f2

being a submersion near f−1(A) and similarly for f |∂M t A. Therefore locally
f−1(A) = f−1

2 (0) is a neat submanifold by Theorem 3.14. �

Remark. A neat submanifold is a submanifold (which we have not defined)
A ⊆ N such that ∂A = A ∩ ∂N and which is transverse to ∂N .

Sard’s theorem says that most of the points are transverse to a given f : M →
N . We will now generalize this to submanifolds. In fact we will approach this
problem from the other side: we will prove that “most” of the maps f : M → N
are transverse to a given A.

a picture of how this is natural

Lemma 5.3. Consider the following diagram with f t A and any smooth map
g : P →M .

f−1A
y

f ′
//

j′

��

A

j

��

P
g

// M
f

// N

Then g t f−1A if and only if fg t A.
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Proof. Clearly for x ∈ P the conditions fg(x) ∈ A and g(x) ∈ f−1A are
equivalent. For such x consider the diagram

ν(j′)g(x)

∼= // ν(j)fg(x)

TxP

g∗

OO

(fg)∗

88rrrrrrrrrr

In this diagram g∗ is surjective iff (fg)∗ is surjective. This completes the proof. �

A serious HW: generalize this to arbitrary j (not necessarily an embedding).

Remark (A very important remark!). Most of the statements we proved for
compact manifolds work (with the same proof) for general manifolds near any given
compact subset. Two (important!) examples are

• Let C ⊆M a compact subset of a smooth manifold M . Then there exists
an embedding of some neighbourhood U of C in some Rk, k � 0.
For a proof, instead of covering M by a finite number of charts and pro-
ducing a map, cover C and write down the same formula. It will be an
embedding of some neighbourhood U .

• Let C ⊆ M � � j
//N . Then some neighbourhood U of C has a tubular

neighbourhood, i.e. there is an embedding

ι : ν(j)|U → N

extending the embedding j.

Here exp is still defined and an embedding near C, i.e. on some
◦
Dε ν(j)|U .

picture

We are now ready to prove our main theorem.

Theorem 5.4. Let M be a compact smooth manifold and A ⊆ N a manifold,
both A and N boundaryless. Then for any f0 : M → N there exists a smooth
homotopy f : I ×M → N such that f(0,−) = f0 and f(1,−) t A. Moreover if f0

is transverse to A near some closed subset K ⊆ M then f can be chosen constant
near K.

Proof. Embed a neighbourhood of f0(M) ⊆ N in some Rk with a tubular
neighbourhood ι : ν(N)|U

∼=−−→ V ⊆ Rk. First assume that K = ∅ and define

F : Rk ×M → Rk

(v, x) 7→ f0(x) + v

For a small v we land in the tubular neighbourhood V and can define

G :
◦
Dε×M

F−−→ V
r−−→ U ⊆ N

This is clearly a submersion and in particular G t A. Assuming this we consider
G−1(A) and a regular value v for its projection to Rk.

G−1(A) ⊆ Rk ×M −→ Rk

We claim that for this regular value

G(v,−) : M → N
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is transverse to A. This is proved by examining the following diagram.

G−1(A)
y

//
� _

��

A� _

��

{v}×
◦
Dε

y
� � //

��

◦
Dε×M

G
//

pr

��

N

{v} � � //
◦
Dε

Moreover formula (t, x) 7→ G(tv, x) then defines the required homotopy.
Now we describe what has to be changed when K 6= ∅. As was observed it is

enough to alter F so that it is independent of v near K but still transverse to A.
To do this choose a function λ : M → [0, 1] for which λ−1(0) is a neighbourhood
of K where f0 is transverse to A. Then F̃ : (v, x) 7→ f0(x) + λ(x)v is the required
alteration: at poits (v, x) with λ(x) > 0 it is still a submersion while, if λ(x) = 0
then necessarily dλ(x) = 0 too and F̃∗(TvRk × TxM) = (f0)∗(TxM). �

Remark. Again we have a “near a compact subset” version for a compact
subset C ⊆ M of a noncompact manifold M : there is a homotopy g : I × V → N
defined on a neighbourhood V of C with g(0,−) = f0|V and with g(1,−) t A (and
also relative version with K: then f is constant near K ∩ V ). Now we describe a
variant of this version.

Choose a function ρ : M → [0, 1] such that ρ ≡ 1 on a neighbourhood U of C
and with support in V . Now we can define a global homotopy

f : I ×M → N

(t, x) 7→ g(ρ(x)t, x)

This homotopy has the following properties

• f(0,−) = f0

• (f(1,−)|U ) t A
• f is constant near K and outside of a neighbourhood V of C (which in

fact can be chosen arbitrarily)

Using this version we can prove

Theorem 5.5. Let E → M be a smooth bundle over a compact manifold M .
Let E′ ⊆ E be a subbundle (locally a subset of the form F ′ × U ⊆ F × U). For
every section s0 : M → E there exists a homotopy of sections s : I ×M → E with
s(0,−) = s0 and s(1,−) t E′. Again if s0 is transverse to E′ near some closed
subset K then s can be chosen constant near K.

Proof. Cover M by open subsets U1, . . . , Uk over which we have trivializations

E|Ui

��
<<<<<<<

∼= // F × Ui

~~}}}}}}}}

Ui
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identifying E′|Ui
with F ′×Ui. Now observe that a section (f, id) of a trivial bundle

F ×U → U is transverse to F ′×U iff f is transverse to F ′. In this way we translate
the situation over each Ui to one where Theorem 5.4 (or rather the remark following
it) could be applied.

Let λi be a partition of unity subordinate to U1, . . . , Uk. According to The-
orem 5.4 there are homotopies of sections si : I × M → E with the following
properties

• s1(0,−) = s0 and sj+1(0,−) = sj(1,−) for j ≥ 1
• each sj(1,−) t E′ near suppλj
• sj is constant near K ∪

⋃
i<j suppλi

The concatenation of s1, . . . , sk is the required homotopy. �

Serious HW: show that the relation of being smoothly homotopic (relative K,
i.e. by a homotopy constant near K) is transitive.

An application to vector bundles is the following.

5.1. Classifying vector bundles

We study the set of (linear) monomorphisms Rn → Rk by studying its comple-
ment1. Denote by homr(Rn,Rk) the subset of hom(Rn,Rk) of maps of rank r.

Lemma 5.6. homr(Rn,Rk) is a smooth submanifold of hom(Rn,Rk) of codi-
mension (n− r)(k − r).

Proof. Let ϕ0 ∈ hom(Rn,Rk) and assume that

ϕ0 =
(
A0 B0

C0 D0

)
with the block A0 of size r × r invertible. Then ϕ0 ∈ homr(Rn,Rk) iff D0 =

C0A
−1
0 B0. Therefore on a neighbourhood of such ϕ0 every ϕ =

(
A B
C D

)
has A

invertible and we get a chart

Gl(r)× hom(Rn−r,Rr)× hom(Rr,Rk−r) −→ homr(Rn,Rk)

(A,B,C) 7−→
(
A B
C CA−1B

)
with codimension equal to the size of the D-block. As after after a linear change

of coordinates on Rn and Rk we can assume that the topleft r × r block of any
element of homr(Rn,Rk) is invertible this finishes the proof. �

We can now reprove the existence of an inverse of a vector bundle, BUT we get
a relative version which will be crucial in our classification.

Construction 5.7. Let E → M be a vector bundle. Then hom(E,Rk) is a
vector bundle with fibre hom(Ex,Rk) over x. In fact it is canonically isomorphic to
E∗ ⊕ · · · ⊕ E∗ (k-times). We will also need its subbundle hominj(E,Rk) consisting
of all injective homomorphisms.

1More precisely we study connectivity of the set of monomorphisms by studying the codi-
mension of its complement.
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Proposition 5.8. Let E → M be a smooth vector bundle over a compact
manifold M with the dimension of the fibre n. Then every smooth section

s : ∂M → hominj(E,Rk)|∂M

extends to a section over M provided k ≥ m+ n.

Proof. Extend s arbitrarily to a section

s̃ : M → hom(E,Rk)

This is possible using partition of unity and the fact that the fibre is convex
(contractible). Now we can homotope s̃ to a section t which is transverse to all
homr(E,Rk), 0 ≤ r < n. This is done using Theorem 5.5 and an easy fact that
these are subbundles. But as m < (n− r)(k− r) for all such r the transversality is
equivalent to t not meeting homr(E,Rk). Therefore

t : M → hominj(E,Rk)

�

Remark. Such a section is equivalent to an inclusion of vector bundles

E � � // Rk ×M

Any complementary subbundle (e.g. E⊥) gives an inverse of E. We will be inter-
ested in yet another reformulation of a section of hominj(E,Rk).

The fibre of hominj(E,Rk) is hominj(Rn,Rk) = Vk,n, the Stiefel manifold of
n-frames in Rk (n-tuples of linearly independent vectors). Now Vk,n has a natural
transitive action of Gl(n) with the orbit space Gk,n, the Grassmann manifold of all
n-dimensional linear subspaces in Rk. The projection map is identified with

Vk,n −→ Gk,n

(e1, . . . , en) 7−→ span(e1, . . . , en)

There is a description of Gk,n as a homogenous space O(k)/(O(n)×O(k−n)). This
identification is constructed from the obvious transitive action of O(k) on Gk,n. By
acting on the standard subspace Rn ⊆ Rk we obtain a map

O(k)→ Gk,n

sending a matrix to the span of its first n columns (which is clearly smooth). It is
easy to identify the stabilizer of Rn as the group of matrices of the form(

∗ 0
0 ∗

)
This is what is understood by O(n) × O(k − n). The above map O(k) → Gk,n
therefore factorizes through an immersion

O(k)/(O(n)×O(k − n)) −→ Gk,n

which is then easily seen to be injective and thus a diffeomorphism. What will be
important for us is that Gk,n is a closed manifold.
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There is a canonical n-dimensional vector bundle γk,n over Gk,n sometimes also
called tautological2

γk,n

vector
bundle

��

{(P, x) | P ∈ Gk,n, x ∈ P}
� _

��

j

##HHHHHHHHHH

Gk,n Gk,n × Rkoo // Rk

Lemma 5.9. There is a bijection

{fibrewise isomorphisms E
f ′−−→ γk,n}

∼=−−→ {sections of hominj(E,Rk)}
sending f ′ to the composition jf ′ : E → Rk thought of as a section of hominj(E,Rk).

Proof. Given a section t the corresponding f ′ must be

Ex 3 u � // (im t(x), t(x)(u))

E
f ′

//

��

γk,n ⊆ Gk,n × Rk

��

M
f

// Gk,n

and it is enough to show that im t : M → Gk,n is smooth. Locally (when E = Rn×
U → U is trivial) the section t is given by a smooth map U → hominj(Rn,Rk) = Vk,n
and im agrees with the canonical projection Vk,n → Gk,n. �

Remark. More generally for a principal G-bundle P → B and a G-space X
there is a bijection between sections of the associated bundle P ×G X → B and
G-equivariant maps P → X. This specializes to the previous lemma by taking
X = Vk,n after one replaces the vector bundles by the respective principal Gl(n)-
bundles.

If in the diagram

E
f ′

//

��

γk,n

��

M
f

// Gk,n

the homomorphism f ′ is a fibrewise isomorphism we call f : M → Gk,n a classifying
map for E. This is because in such a situation E ∼= f∗γk,n is determined by f .

Theorem 5.10. Let M be a closed(?) smooth manifold. There is a bijection

{homotopy classes of maps M
f−−→ Gk,n}

∼=
��

{isomorphism classes of vector bundles E →M}

sending f to the pullback bundle f∗γk,n provided k > m+ n.

2An alternative definition goes as follows. The projection Vk,n → Gk,n is in fact a principal

Gl(n)-bundle and γk,n is the associated vector bundle γk,n = Vk,n ×Gl(n) Rn.
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Proof. We will first show that this mapping is well-defined (i.e. f0 ∼ f1 implies
f∗0 γk,n

∼= f∗1 γk,n), a fact usualy proved topologically (in much greater generality).
First observe that it is enough to show that for every vector bundle p : E → I×M ,
E|{0}×M ∼= E|{1}×M . For then a homotopy f : I ×M → Gk,n yields a pullback
bundle f∗γk,n → I ×M with f∗γk,n|{t}×M = f∗t γk,n.

f∗γk,n|{t}×M
y

//

��

f∗γk,n
y

//

��

γk,n

��

{t} ×M � � //

ft

33I ×M
f

// Gk,n

Our idea will be to compare the two restrictions by the flow of some vector field.
We start with I ×M where we can compare3 the two ends via a canonical vector
field

Y (t, x) =
d
ds

∣∣∣∣
s=t

(s, x)

Let X ∈ Γ(TE) be a vector field on E such that
• X|I×M = Y (agrees with Y on the zero section)
• p∗X = Y (projects to Y )

It is easy to find such X locally, on Rn × J × U with J ⊆ I, U ⊆ Rn, we take

X(v, t, x) =
d
ds

∣∣∣∣
s=t

(v, s, x)

As both conditions are affine we can construct X globally using a partition of unity
and get a flow

FlX : W⊆

// E

R× E
(note that W is not open as E has boundary). Using our second condition on X

pFlX(t, v) = FlY (t, p(v)) = (t+ p1(v), p2(v))

Therefore restricting to W ∩ (R× E{0}×M ) we get

ϕ : W ′⊆

// E

[0, 1]× E|{0}×M

now with W ′ open. Also W ′ contains [0, 1]× ({0}×M), therefore a neighbourhood
of the form

[0, 1]×
◦
DεE|{0}×M

In particular restricting to this disc bundle we finally obtain

ψ = ϕ(1,−) :
◦
DεE|{0}×M → E{1}×M

3The comparison is reflected in the fact that the flow of Y (which is FlXs (t, x) = (s + t, x))

produces a diffeomorphism FlY1 = id : {0} ×M → {1} ×M .
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This is a diffeomorphism onto its image (it is defined by a flow, its inverse is given
by following the flow for time −1). Note that ψ is not necessarily linear but we will
linearize it (by taking a derivative) using its 2 properties

• ψ({0} ×M) = {1} ×M (preserves the zero section)

• v ∈
◦
DεE(0,x) ⇒ ψ(v) ∈ E(1,x) (fibrewise over identity)

Taking the derivative at the zero section we get

T (E|{0}×M )|{0}×M ∼=

ψ∗

��

E|{0}×M ⊕ TM(
α 0

0 id

)
��

T (E|{1}×M )|{1}×M ∼= E|{1}×M ⊕ TM

with α : E|{0}×M → E|{1}×M the required isomorphism.
Now we continue with proving the bijectivity of the mapping. We saw in

Proposition 5.8 and Lemma 5.9 that it is surjective and thus it is enough to show
that any two classifying maps f0, f1 : M → Gk,n for E are homotopic. Consider

(I × E)|∂(I×M)
//

**TTTTTTTT

��

γk,n

��

I × E

77n
n

n

��

∂(I ×M)

**UUUUUUUU
// Gk,n

I ×M

66nnn

Here the map ∂(I×M)→ Gk,n is fi on {i}×M . As they are both classifying maps
for E the map (fibrewise isomorphism) on the top exists. According to Lemma 5.9
this determines a section of hominj(I×E,Rk) over ∂(I×M) which can be extended
by Proposition 5.8 to a section over I ×M which in return provides an extension
f : I ×M → Gk,n. �





CHAPTER 6

Degree of a map

Let f : M → N be a smooth map between closed oriented manifolds of the
same dimension n. The degree deg(f, y) is defined in the following way:

• pick a regular value y ∈ N of f
• observe that f−1(y) is a discrete compact subset of N , hence finite

f−1(y) = {x1, . . . , xk}

• at each xi the derivative of f is an isomorphism f∗xi : TxiM → TyN and
define the local degree of f at xi by

degxi
f =

{
1 f∗xi preserves orientation
−1 f∗xi

reverses orientation

• define deg(f, y) =
∑

degxi
f

Observe that changing the orientation of M to the opposite one changes the sign
of deg(f, y), similarly for the orientation of N . Also observe that if M and N are
non-oriented, the degree makes sense mod 2.

To proceed further we need to now how boundary of a manifold inherits an
orientation. Let W be an oriented manifold with boudnary. The orientation of ∂W
is characterized by the following: at x ∈ ∂W choose any outward pointing e ∈ TxW .
Then a basis (e1, . . . , en) in Tx(∂W ) is positive iff (e, e1, . . . , en) is positive in TxW .
Therefore a boundary of Hn+1 = R−×Rn with its standard orientation is Rn with
its standard orientation.

Example 6.1. ∂(I×M) = ({1}×M)∪(−{0}×M) where the minus sign in front
of an oriented manifold denotes the same manifold with the opposite orientation.

Lemma 6.2. Let f : Wn+1 → Nn be a smooth map between compact oriented
manifolds, ∂N = ∅. Let y ∈ N be a regular value for both f and f |∂W . Then
deg(f |∂W , y) = 0.

Proof. f−1(y) is a compact neat 1-dimensional submanifold, therefore a dis-
joint union of circles (which must lie in the interior) and neatly embedded intervals.
If γ : I → W is one of them then γ̇(0) is outward iff γ̇(1) is inward. We have the
following picture

I //
� _

��

{y}
� _

��

I × TyN = ν(γ)
y

//

��

TyN

��

W // N I // {y}

29
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We can think of ν(γ) as a neighbourhood of γ in W and, possibly after reversing γ,
even with the orientations agreing. Then

∂(ν(γ)) = ({1} × TyN) ∪ (−{0} × TyN)

As the derivative of f at γ in the directions “orthogonal” to γ agrees with the
projection I×TyN → TyN (the map of the normal bundles) it is the same (namely
id) on both ends but for opposite orientations of the source. In particular

degγ(0) f |∂W + degγ(1) f |∂W = 0

Summing over all such intervals γ we obtain the result. �

Lemma 6.3. Let f0, f1 : M → N be two smooth homotopic maps (M and N
closed of the same dimension) such that y ∈ N is a regular value for both of them.
Then deg(f0, y) = deg(f1, y).

Proof. Start with any homotopy

f̃ : I ×M → N

we can find an approximation f : I ×M → N transverse to {y} with f ≡ f̃ near
∂(I ×M). Thus both f and f |∂(I×M) have {y} as a regular value and so

deg(f |∂(I×M), y) = 0

As ∂(I ×M) = ({1} ×M) ∪ (−{0} ×M) this means

0 = deg(f |∂(I×M), y) = deg(f1, y)− deg(f0, y)

�

Theorem 6.4. Let f : M → N be a smooth map between closed manifolds of
the same dimension with N connected. If y0, y1 are two regular values of f then

deg(f, y0) = deg(f, y1)

We denote this number by deg f . It only depends on the homotopy class of f .

Proof. The heart of the proof is (a strong form of) homogenity of M . Namely,
there exists a smooth homotopy

ϕ : I ×M → N

with the following properties (where ϕt = ϕ(t,−)):
• each ϕt a diffeomorphism (such ϕ is then called a diffeotopy)
• ϕ0 = id and ϕ1(y1) = y0

Assuming for now that it exists construct a homotopy

F : I ×M → N

(t, x) 7→ ϕ(t, f(x))

Again F0 = f and F1 = ϕ1f and so y0 is a regular value for F |∂(I×M).

{y1}
y

//

��

{y0}

��

M
f

// N
ϕ1 // N

Therefore deg(f, y0) = deg(F0, y0) = deg(F1, y0) = deg(ϕ1, y0) · deg(f, y1) but

deg(ϕ1, y0) = deg(ϕ0, y0) = 1
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as ϕ0 = id. The homotopy invariance follows from the previous lemma.
Now we return to the existence of the diffeotopy ϕ. First we find such a dif-

feotopy locally, but as we would like to extend it, it should be compactly supported
(i.e. nonconstant only on a compact subset). Let y ∈ Rn and assume for simplicity
that y ∈ Dn. Choose a smooth function ρ : Rn → [0, 1] with ρ ≡ 1 near Dn and
with compact supp ρ. This function will extend the standard translation on Dn

into a compactly supported diffeotopy. Namely take a vector field X : Rn → Rn
sending x to −ρ(x) · y. As X is compactly supported the flow

FlX : R× Rn → Rn

is globally defined. Now we can take ϕ = FlX |[0,1]×Rn as X = −y on Dn implies
ϕ(1, y) = 0. If this was in a chart we can extend ϕ by a constant homotopy to get
a global diffeotopy. Now we consider the following equivalence relation:

z ' z′ ⇔ ∃ a smooth diffeotopy from id to a map sending z′ to z

The local construction ensures that the orbits are open and therefore closed (as the
complement is the union of the other orbits). Thus there is only one orbit. �

Remark. Let Mn be a closed oriented connected smooth manifold. Then the
set of homotopy classes of maps M → Sn is in a bijective correspondence with Z
via the degree map

deg : [M,Sn]
∼=−−→ Z

We will prove this result in a much greater generality in the next chapter.





CHAPTER 7

Pontryagin-Thom construction

We start with a geometric reformulation of the degree isomorphism

deg : [M,Sn]
∼=−−→ Z

as for different dimensions the simple counting of preimages could not work. Nev-
ertheless in this reformlulation we do assume m = n. The preimage of a regular
point of a map f : M → Sn is a finite subset of M with signs - describing wether
f preserves or reverses orientation at the point in question.

[M,Sn]
deg

//

��

Z

{finite subsets of M with signs}/ ∼
ε

55kkkkkkkkkkkkkkkkkk

Having in mind that the horizontal map should be an isomorphism and that we
want in our geometric reformulation to have the vertical map an isomorphism, so
must be the map denoted by ε which just add the signs of all the points. This
requirement determines the equivalence relation but we want a more geometric
description.

It is interesting to describe the Pontryagin-Thom construction in this setting. It
plays an essential role in constructing the inverse of the vertical map. Starting with
a finite subset X of M with signs attached to them we choose disjoint coordinate
discs around each of them and then collapse the complement of their interiors to
get the first map in

M
P-T constr.−−−−−−−−→

∨
X

Sn
class. of VB−−−−−−−−−→ Sn

The second arrow just maps each copy Sn onto Sn by a map of degree equal to the
sign associated to that point.

Let us now start with the general setting. Let M and N be closed smooth
manifolds. We saw the interply between maps and submanifolds: if f : M → N is
transverse to a submanifold A � � //N then f−1(A) ⊆ M is again a submanifold.
For homotopies we get

Lemma 7.1. If f0 ∼ f1 and both are transverse to A then f−1
0 (A) is cobordant

to f−1
1 (A) (in M - to be explained after the proof).

Proof. Let f : I ×M → N be a homotopy from f0 to f1. If it is not smooth
we can smoothen it rel ∂(I ×M) where it already is smooth1. Also we can make

1What we need is a homotopy which is smooth near ∂(I ×M). Such a homotopy can be
constructed from f by pasting the concatenating the constant homotopy on f0 with f and the

constant homotopy on f1. picture

33
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it transverse to A rel ∂(I ×M). Then f−1(A) is a neat submanifold of I ×M and
∂(f−1(A)) =

(
{0}× f−1

0 (A)
)
∪
(
{1}× f−1

1 (A)
)

as for neat submanifolds in general
∂B = (∂W ) ∩B. �

Definition 7.2. Two compact submanifolds B0, B1 ⊆ M , ∂B0 = ∂B1 =
∂M = ∅, are called cobordant in M if there exists a neat submanifold B ⊆ I ×M
such that ∂B =

(
{0} ×B0

)
∪
(
{1} ×B1

)
.

Question. Is it possible to find A ⊆ N of codimension d in such a way that
the mapping t below is a bijection?

t :
{

homotopy classes of
maps f : M → N

}
−→

{
cobordism classes of submanifolds
B ⊆M of codimension d

}
Here start with [f ], make it transverse to A and define t([f ]) = [f−1(A)].

To answer the question we need a construction

Definition 7.3. Let E →M be a vector bundle. Then the Thom space Th(E)
of E is

Th(E) = DE/SE

the quotient of the associated disc bundle by its boundary, the sphere bundle.
Th(E) is only a topological space (not a manifold) but easily the composition

E ∼=
◦
D E

� � //DE → DE/SE = Th(E)

is a topological embedding and so Th(E) = E ∪ {∞} is a smooth manifold away
from ∞. Also if M is compact then Th(E) is the one-point compactification of E.

Remark. There is an alternative way of defining Th(E). Choosing a metric
on E (which is only important in the smooth case anyway) we can now replace the
typical fibre Rd by the one-point compactification (Rd)+ = Sd ⊆ Rd × R where
O(d) acts by O(d) ∼= O(d)× 1 ⊆ O(d+ 1). In this way we obtain a sphere bundle
E+. As the inverse of the stereographic projection Rd � � // Sd is O(d)-equivariant
it induces an embedding

E � � //E+

Now E+ has two sections, the zero section and ∞ : M → E+. We define Th(E) =
E+/∞(M) = E∪{∞}. The main property of Th(E), namely that Th(E)−M ' ∗
can now be easily verified: as the sphere (Rd)+ is symmetric in the R-direction (as
an O(d)-space). Therefore Th(E) −M ∼= E/M and a contraction of this comes
from the homotopy

h : I × E → E

(t, (x, v)) 7→ (x, tv)

which easily passes to E/M .

Now we can answer the question: the solution is

N = Th(γk,d) and A = Gk,d ⊆ γk,d, as the zero section
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Now we will explain why this should be a good choice. If we have a map which is
transverse to A and take pullback

f−1(A)
y

f ′
//

� _

j′

��

A� _

j

��

ν(j′)
y

//

��

ν(j)

��

M
f

// N f−1(A)
f ′

// A

This means that the normal bundle of any submanifold B ⊆M must be a pullback
of ν(j) and the best choice is ν(j) = γk,d, the universal bundle. To construct the
inverse of t we need the Pontryagin-Thom construction.

Let j : B � � //M be a submanifold with a tubular neighbourhood

ι : ν(j) � � //M

Also denote U = im ι. The Pontryagin-Thom construction is the map

j! : M → Th(ν(j))

defined by the following

• j!|U : U ι−1

−−−→ ν(j)→ ν(j)/(ν(j)−
◦
D ν(j)) ∼= Dν(j)/Sν(j) = Th(ν(j))

• j!|M−U is constant onto ∞.
picture This clearly defines a continuous map j! : M → Th(ν(j)). In fact j! is
smooth on a neighbourhood of B. As we prefer to think of the Thom space as
Th(ν(j)) = ν(j) ∪ {∞} we will now alter the definition of j! to

j!|U : U ι−1

−−−→ ν(j) � � // Th(ν(j))

(obtained by replacing ν(j) with
◦
D ν(j) ∼= ν(j), the result remains continuous).

An advantage of this point of view is that any fibrewise isomorphism E → E′ of
vector bundles induces a continuous map Th(E) → Th(E′) which is even smooth
away from ∞.

Aside. One can give a more symmetric description of the map j! by embedding
M into Rk. Choosing a tubular neighbourhood of B ⊆ Rk inside some tubular
neighbourhood of M ⊆ Rk the Pontryagin-Thom construction for the embedding
B ⊆ Rk factors

Rk // //

$$HHHHHHHHHHH Th(ν(M))

j!

��
�
�
�

Th(ν(B))

The Poincaré duality can be expressed as Th(ν(M)) being dual to M . This con-
struction then describes the dual map to j (in homology this map goes to cohomol-
ogy by the Poincaré duality then continues with the induced map j∗ in cohomology
and finally returns to homology by Poincaré duality again).

Theorem 7.4 (Thom). The map

t :
{

homotopy classes of maps
f : M → Th(γk,d)

}
−→

{
cobordism classes of submanifolds
B ⊆M of codimension d

}
is bijective provided k > n.
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To define t let us call a continuous map f : M → Th(γk,d) transverse to Gk,d
if it is smooth near f−1(Gk,d) and transverse to Gk,d in this neighbourhood.

Lemma 7.5. Every f : M → Th(γk,d) is homotopic to a map which is transverse
to Gk,d (plus a relative version).

Proof. Make f smooth near f−1(Dγk,d) and make sure that no points outside

of f−1(
◦
D γk,d) get mapped into Gk,d by the perturbed map. Then make f trans-

verse to Gk,d near f−1(Dγk,d) and again not mapping points outside of f−1(
◦
D γk,d)

into Gk,d. �

With this lemma in mind we define t from the theorem by choosing a repre-
sentative f of the homotopy class with f t Gk,d and then taking f−1(Gk,d). The
relative version of the lemma then guarantees that this prescription is independent
of the choice of f : if two such are homotopic, we can assume this homotopy to be
transverse to Gk,d and thus giving the required cobordism.

Proof. First we prove surjectivity. Let j : B � � //M be a submanifold of
codimension d and considet the Pontryagin-Thom construction

g : M
j!−−→ Th(ν(j))

Th(f ′)−−−−−→ Th(γk,d)

where the second map comes from classifying ν(j):

ν(j)
y
f ′

//

��

γk,d

��

B
f

// Gk,d

The composition g is transverse to Gk,d with g−1(Gk,d) = B.
The proof of injectivity is similar in the spirit but more complicated. Let

B0 = f−1
0 (Gk,d) ∼ f−1

1 (Gk,d) = B1 be cobordant in M . We proceed in few steps:

• First we reduce to the case B0 = B1. Let j : B � � // I×M be a cobordism,

∂B =
(
{0} ×B0

)
∪
(
{1} ×B1

)
and let ι : ν(j) � � // I ×M be its tubular neighbourhood. Considering
the Pontryagin-Thom construction for j gives

I ×M j!−−→ Th(ν(j)) −→ Th(γk,d)

and thus a homotopy g0 ∼ g1 where Bi = g−1
i (Gk,d) Therefore it is enough

to show gi ∼ fi.
• We assume B = f−1

0 (Gk,d) = f−1
1 (Gk,d) with both fi t Gk,d. There are

pullback diagrams

B

y
f ′i //

� _

j

��

Gk,d
� _

��

ν(j)
y
f ′′i //

��

γk,d

��

M
fi // N B

f ′i // Gk,d
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This implies from the classification theorem that f ′0 ∼ f ′1. Moreover this
homotopy is covered by a homomorphism of vector bundles

I × ν(j)
y

f ′′
//

��

γk,d

��

I ×B
f ′

// Gk,d

Our next goal is to extend this homotopy to M .
• The next step is to extend the above homotopy to a tubular neighbourhood

of I × B. The main tool will be a linearization of maps between vector
bundles. First we explain what happens in the case of a single vector
space. Let f : Rd → Rd be a diffeomorphism preserving 0. We can write

f(x) = f(0) + (T 1
0 f)(x) · x

with T 1
0 f : Rd → hom(bbRd,Rd) smooth. The “zoom in” homotopy

h : (t, x) 7→ 1/t · f(tx) = (T 1
0 f)(tx) · x

It follows from the first description that each ht is a diffeomorphism
whereas from the second description it is obvious that h is smooth and
h0 = dh(0). We summarize this in

Theorem 7.6. Every diffeomorphism Rd → Rd preserving 0 is ho-
motopic through such maps to its differential at 0.

Serious HW: Show how the last theorem implies Diff(Rd, 0) ' Gl(d)
(this requires understanding the topology on smooth maps).

Now we will proceed with a fibrewise version: let f : Rm′ × Rd −→
Rm × Rd be a smooth map with the following two properties:

f(Rm
′
× 0) ⊆ Rm × 0 and f t Rm × 0

We do the linearization fibrewise:

(t, (x, v)) 7→ (f1(x, tv), 1/t · f2(x, tv))

which is again smooth. This prescription makes sense between any vector
bundles and we get

Theorem 7.7. Every smooth map f : E′ → E between total spaces
of vector bundles of the same dimension preserving and transverse to the
zero section is homotopic through such maps to the vector bundle homo-
morphism f ′′.

M ′

y
f

//
� _

j′

��

M� _

j

��

E′ ∼= ν(j′)
y
f ′′

//

��

ν(j) ∼= E

��

E′
f

// E M ′
f ′

// M

Now we return to the proof of injectivity. Denoting by U some tubular
neighbourhood of B where both fi are smooth the vector bundle homo-
morphism f ′′ from the previous step is a homotopy between linearizations
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f ′′i of fi|U . All together on U we have a homotopy, which we denote by
f , as a concatenation of

f0 ∼ f ′′0 ∼ f ′′1 ∼ f1

provided by the linearizations and the homotopy f ′′.
• The last step in the proof is to extend the homotopy f to M . Here we will

make use of the contractibility of Th(γk,d) − Gk,d. Namely we are given
a map(
{0} ×M

)
∪
(
I × U

)
∪
(
{1} ×M

) f0∪f∪f1−−−−−−−→ Th(ν(γk,d))

which we want to extend to I ×M . Replacing U by the subset corre-
sponding to Dν(j) we can cut out the interior

◦
D ν(j) to obtain

N = I × (M−
◦
D ν(j)))

a manifold with corners (to be defined later). Our problem can then be
formulated as extending the map f : ∂N → Th(γk,d) − Gk,d to N . As
Th(γk,d)−Gk,d is contractible f ∼ ∞ is homotopic to the constant map
with value ∞. This constant map can be extended to N easily so the
proof is finished by the next theorem.

�

Definition 7.8 (Manifolds with corners). Manifolds with ccrneres are mod-
elled on (R−)m, the rest is “the same” with a couple of remarks. Unlike for man-
ifolds with boundary, manifolds with corners are closed under products. That is
why the manifold N from the proof of Thom’s theorem is a manifold with corners.
There are also certain disadvantages: e.g. tangent vectors are not represented even
by one-sided curves. More seriously, the boundary of a manifold with corners is not
a manifold

Theorem 7.9. Let N be a compact manifold with corners. Then ∂N � � //N
has a homotopy lifting property.

Proof. Let X be an inward pointing vector field on N with no zeroes on ∂N .
Locally this is easy X = (−1, . . . ,−1) on (R−)m, to get X globally glue the local
ones by the partition of unity. The flow of X is defined on

FlX : R+ ×N → N

Restrict to ∂N to get ϕ : R+ × ∂N → N . Observe that ϕ is injective: if ϕ(t, x) =
ϕ(t′, x′) with t ≤ t′ then FlX(t′ − t, x) = x′ which is impossible as X is pointing
inwards. Also imϕ is an open neighbourhood of ∂N . This is easily seen in a chart.
picture

The neighbourhood of ∂N homeomorphic to R+×∂N is called a collar (ifN only
had a boundary then even diffeomorphic). Start with f : ({0}×N)∪(I×∂N) −→ X.
Using a retraction I × R+ → ({0} × R+) ∪ (I × {0}) we can extend f to a map

f ′ : ({0} ×N) ∪ (I × (R+ × ∂N)︸ ︷︷ ︸
the collar of ∂N

)

Now choose λ : R+ → I such that λ(0) = 1 and suppλ is compact and put

f ′′(t, x) = f ′(ρ(x) · t, x)
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where ρ : N → I is a function defined by

ρ|R+×∂N = λ ◦ pr1

ρ|N−(R+×∂N) ≡ λ ◦ 0

�

7.1. Possible modifications of the Thom’s theorem

• Get rid of the “in M” setting to classify manifolds of dimension d up to an
abstract cobordism. For that we need a manifold where all d-dimensional
manifolds embed and similarly for their cobordisms. S2d+2 will do but we
need further tools, namely the relative embedding theorem.

• Replace Th(γk,d) by the Thom space of a universal vector bundle for
vector bundles with a structure. Examples of these are:

– Th(γ̃k,d) to get cobordism classes of submanifolds B ⊆ M with an
orientation of the normal bundle. It M was oriented this is equivalent
to an orientation of B. Here γ̃k,d is a pullback of the universal as in
the diagram

γ̃k,d
y

//

��

γk,d

��

G̃k,d // Gk,d

with G̃k,d → Gk,d the double covering obtained by considering the
d-dimensional subspaces of Rk together with an orientation. For G̃k,d
we have

[M, G̃k,d] ∼=
{isomorphism classes of ori-

ented vector bundles over M

}
– Sd = Th(Rd → ∗) to get cobordism classes of submanifolds with (a

cobordism class of) a trivialization of the normal bundle. This is
because the pullback

E
y

//

��

Rd

��
M // ∗

provides a trivialization of the vector bundle E ∼= M ×Rd. In partic-
ular [Mn, Sn] is in bijection with finite subsets of M with orientations
of the tangent spaces at the points. Is M is oriented this is equivalent
to a sign. Two such subsets of a connected manifold M are cobordant
iff the total signs agree (if M is oriented) or if the number of points
agree mod 2 (if M is non-orientable). This identifies

[Mn, Sn] ∼=
{

Z M oriented
Z/2 M non-orientable

Serious HW: fill in details.
– complex, symplectic structures





CHAPTER 8

Index of a vector field

The idea behind the index is roughly the same as with degrees: if X ∈ Γ(TM)
we count zeros of X with appropriate signs.

More generally we define an intersection number. Let M , N be smooth man-
ifolds with M closed and j : A � � //N a closed submanifold with m + a = n,
i.e. dimM = codim j. Assume that f : M → N is transverse to A. Then f−1(A)
is a discrete subset of M , hence finite. If we also assume that M , N and A are
oriented then for x ∈ f−1(A) we can say whether the composition

(8.1) TxM
f∗ //

∼=
11

Tf(x)N // // Tf(x)N/Tf(x)A = ν(j)f(x)

preserves or reverses orientation and put #x(f,A) = ±1 accordingly. This is be-
cause ν(j) inherits orientation from N and A. Namely, if (e1, . . . , ea, ea+1, . . . , en)
is positive in Tf(x)N and (e1, . . . , ea) is positive in Tf(x)A then ([ea+1], . . . , [en]) is
positive in ν(j)f(x). We define the intersection number #(f,A) of f with A to be∑

x∈f−1(A)

#x(f,A)

Remark. If A = {y} with its canonical orientation then #(f,A) = deg(f, y).

Theorem 8.1. If f0, f1 : M → N are two homotopic maps, both transverse to
A then #(f0, A) = #(f1, A).

Proof. Make the homotopy transverse to A and take f−1(A), a union of
intervals and circles. For the intervals compare the local intersection numbers at
the two boundary points. �

Therefore the intersection number provides a map

[M,N ]
#(−,A)−−−−−−→ Z

given by first approximating a map by one transverse to A and then taking the
intersection number.

Definition 8.2. Let X ∈ Γ(TM) be a vector field and assume that X t M
(M ⊆ TM as the zero section). The index IndX of X is defined to be #(X,M)
(under the assumption that M is oriented).

Corollary 8.3. If X0, X1 are any two vector fields with X0 t M , X1 t M
then #(X0,M) = #(X1,M).

Proof. The required homotopy X0 ∼ X1 is given by (1− t)X0 + tX1. �

41
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We denote the local index at x ∈ X−1(0) by IndxX. To compute it we choose
a coordinate chart around x and write X in this chart

X : U → U × Rm

Composing with the projection

f : U X−−→ U × Rm pr−−→ Rm

the local index is precisely the degree of this composition IndxX = degx(f) as
the differential df(x) equals the composition (8.1) defining the local intersection
number.

Observe that by changing the orientation of U we correspondingly change the
orientation of Rm and thus the index IndxX does not depend on the orientation.

As sections transverse to a subbundle exist by the bundle version of the transver-
sality theorem the index IndX depends only on M (only if M is closed!) and we
denote it from now on by χ(M) as we will prove shortly that it equals the Eu-
ler characteristics of M . First we describe χ(M) as a (unique) obstruction to the
existence of a nonvanishing (nowhere zero) vector field: obviously if there exists
X ∈ Γ(TM) nowhere zero then χ(M) = 0 as there are no intersections to count.

Theorem 8.4. Let M be a connected closed1 manifold. If χ(M) = 0 then there
exists a nonvanishing vector field on M .

Proof. We will give the proof in several steps.
Step I. “reduce to a local problem”: Let X ∈ Γ(TM) be any section transverse

to M and let X−1(0) = {x1, . . . , xk}. We choose a coordinate disc D and move the
points xi inside D one by one. There is a diffeomorphism ϕ1 : M

∼=−−→ M sending
x1 into D. In the next step we use a compactly supported2 diffeomorphism

ϕ2 : M − {ϕ1(x1)}
∼=−−→M − {ϕ1(x1)}

sending x2 into D. Having a compact support, ϕ2 extends to a diffeomorphism

ϕ2 : M
∼=−−→M

preserving ϕ1(x1). The composition

ϕ = ϕk ◦ · · · ◦ ϕ1

is a diffeomorphism of M mapping X−1(0) into D. Therefore

Y = ϕ∗ ◦X ◦ ϕ−1 : M // TM

M
X //

ϕ

OO

TM

ϕ∗

OO

satisfies Y −1(0) ⊆ D and we reduced to a local problem.
Step II. “reduce index of Y to a degree”: In a chart we consider

f : U → Rm Y = (id, f) : U → U × Rm

1This assumption cannot be removed. All noncompact manifolds possess a nonvanishing

vector field, as well as all manifolds with boundary.
2suppψ = {x | ψ(x) 6= x}
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Recall that Indxi
X = degxi

f where xi ∈ Y −1(0). For simplicity we put xi = 0.
Choose a small disc Di around xi not containing any other points of Y −1(0). We
claim that for the map

g : ∂Di → Sm−1

y 7→ f(y)
|f(y)|

Ind0 Y = deg g. This is because on Di we have a homotopy

ft(y) = 1/t · f(ty)

from df(0) to f and therefore the local indices are the same as well as the degrees
of the corresponding maps g. Now df(0) : Di → Rm is a restriction of a linear iso-
morphism and therefore homotopic through such to an orthogonal map (a “movie”
version of Gram-Schidt orthogonalization process). This homotopy applied to both
f and g reduces via homotopy invariance to the case when f itself is orthogonal
and thus g = f |∂Di . In this case deg0 f = det f and as f preserves the outward
pointing vectors deg g = det f too3.

Step III. “putting everything together”: We have in a coordinate chart U a
disc D containing all the zeros {x1, . . . , xk} of a vector field Y and around each
xi a disc Di. We may assume that they are disjoint and contained in D. Putting
W = D −

⋃k
i=1Di the above map g can be extended to W

g : W → Sm−1 y 7→ f(y)
|f(y)|

As g is smooth we know that deg g|∂W = 0. By step II. we have

k∑
i=1

deg g|∂Di
=

k∑
i=1

Ind
xi

Y = χ(M) = 0

and this implies deg g|∂D = 0. But we know (either from algebraic topology or
preferably from the homework) that

[∂D, Sm−1]
deg

∼=
// Z

and hence g|∂D ∼ ∗. Consequently g extends to a map

g̃ : D → Sm−1

As g̃|∂D = g|∂D ∼ f |∂D : ∂D −→ Rm − {0} there is also an extension

f̃ : D → Rm − {0}

of f |∂D (by the homotopy extension property of ∂D ↪→ D) defining a new vector
field Ỹ on D with no zeros. We can extend Ỹ to the whole M by the original Y as
they agree on ∂D. Then Ỹ is nowhere vanishing. �

3A basis (e2, . . . , em) in T (∂Di) is positive iff (e1, e2, . . . , em) is positive in TDi where e1 is

outward pointing. Applying the differential of g we obtain (f(e2), . . . , f(em)). As f(e1) is still
outward pointing this new basis has the same orientation in TSm−1 as (f(e1), f(e2), . . . , f(em))

has in TRm. In particular it is oriented iff f preserves orientation.



44 8. INDEX OF A VECTOR FIELD

8.1. Morse theory

Now we will identify χ(M) with the Euler characteristics. We will consider
special vector fields arising from functions that will provide a cell decomposition.

A function f : M → R is called Morse if for all critical points x ∈ M (points
where df(x)) the second derivative at x

TxM ⊗ TxM
d2f(x)−−−−−→ R

is a nondegenerate summetric bilinear form. Such critical points are called nonde-
generate. The index of f at a nondegenerate critical point x is the index of d2f(x),
i.e. the number of negative eigenvalues.

Aside. To define the second derivative we take the analytic approach. We
express d2f(x) in a chart. If ϕ : Rm → Rm is a local diffeomorphism sending y to
x then

d2(f ◦ ϕ)(y) = · · · = (d2f(x)) · (dϕ(y)⊗ dϕ(y)) + df(x) · d2ϕ(y)

In the case that df(x) = 0 the second term vanishes and the second derivative is
independent of the chart chosen to define it.

Geometrically let X,Y ∈ TxM and extend then to local vector fields. Then
define

d2f(x)(X,Y ) = X(Y (f))(x)

but one has to show independence of the extensions.
In general for maps f : M → Rn the second derivative is defined on

TxM ⊗ TxM → coker df(x)

and to make d2f independent even of the charts on the target manifold (which is
not what we were after with Morse functions) we need to further restrict to

(ker df(x))⊗ (ker df(x))→ coker df(x)

An equivalent condition for f to be Morse is that the differential df : M →
T ∗M is transverse to the zero section M : locally

df : U → U × Rm

x 7→ (x, ∂x1f, . . . , ∂xm
f)

and the nondegeneracy of x translates to d(pr2 ◦ df)(x) being an isomorphism,
which is just the transversality. We will prove later that such functions exist and
even such that f(xi) 6= f(xj) for different critical points xi 6= xj .

a picture of a torus with the height function
From the Taylor expansion near a nondegenerate critical point 0

f(y) = f(0) + 1/2 · d2f(0)(y ⊗ y) + the remainder

In fact we can ignore the remainder completely by choosing a good coordinate chart
around x, the so-called Morse chart.

Theorem 8.5 (Morse’s Lemma). Let x ∈M be a nondegenerate critical point
of index i then there is a chart ϕ around x in which

(f ◦ ϕ−1)(y1, . . . , ym) = f(x)− y2
1 − · · · − y2

i + y2
i+1 + · · ·+ y2

m
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Remark. This means that f is 2-determined at x: for any function agreeing
with f up to derivatives of order 2 at x there is a diffeomorphism relating the two
functions

U

∃g ∼=
��
�
�
�
� f

%%LLLLLL

R

Ũ f̃

99ssssss

This is because f̃ must be Morse too and the Morse charts for f and f̃ combine to
produce the diffeomorphism g. Another point of view is that r-determined functions
are polynomial (but not vice versa), for they agree with their Taylor polynomial
and hence they only differ by a coordinate change.

Proof. Take any chart ψ : M → Rm around x with ψ(x) = 0 and write

(f ◦ ψ−1)(y) = f(x) + T 2
0 (f ◦ ψ−1)(y)(y ⊗ y)

The map T 2
0 (f ◦ ψ−1) : U → homsym(Rm ⊗ Rm,R) is smooth and at 0

T 2
0 (f ◦ ψ−1)(0) = 1/2 · d2(f ◦ ψ−1)(0)

is nondegenerate, thus nondegenerate for all y near 0. For such y one can find a
linear transformation Qy such that

T 2
0 (f ◦ ψ−1)(y) ◦ (Qy ⊗Qy)

is A =
(
−Ei 0

0 Em−i

)
. Setting y = Qyz or z = Q−1

y y

T 2
0 (f ◦ ψ−1)(y)(y ⊗ y) = A(z ⊗ z)

Then η : y 7→ Q−1
y y transforms f into the wanted form

Rm

η

��

M

ψffNNNNNN

xxpppppp f

&&LLLLLL

Rm
z 7→f(x)+A(z⊗z)

// R

Assuming for a bit that Q is smooth we compute

dη(0)(v) = Q−1
0 v =⇒ dη(0) = Q−1

0 invertible

Hence we are left with the smoothness of Q. Let us fix a definite choice of Q0 in the
form of a product of matrices corresponding to elementary column operations. The
entries of each of these matrices is a rational function of the entries of d2(f◦ψ−1)(0).
Therefore in a neighbourhood of 0 one can use the same functions to get Qy. �

Let us call a Riemannian metric g on M compatible with f if there exists a
Morse chart around each critical point (a chart from the Sard’s lemma) in which g
is the standard metric.

Lemma 8.6. Let f be a Morse function on M . Then there exists a Riemannian
metric compatible with f .

Proof. Glue local Riemannian metrics as usual and use compatible local met-
rics near every critical point. �
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A gradient vector field grad f of f is a vector field dual (with respect to the
metric) to df , i.e.

df(X) = 〈grad f,X〉 ∀X ∈ TM

As grad f corresponds to df under the isomorphism TM ∼= T ∗M and df t M so
is grad f t M . Thus we can use the gradient vector field for computing χ(M).
Before doing so we first describe how M is built in steps, a process controlled by
the Morse function f . On the complement of the critical set in addition to grad f
we also consider

X =
grad f
| grad f |

Its main property is that f increases linearly along its flowlines

d
dt

∣∣∣∣
t=t0

f(FlXt (x)) = Xf(FlXt0 (x)) = df(X(FlXt0 (x))) = 〈grad f,X(FlXt0 (x))〉 = 1

Therefore f(FlXt (x)) = f(x) + t. This proves the following theorem

Theorem 8.7. If a < b are such that there is no critical value in [a, b] then

f−1[a, b] ∼= f−1(a)× [a, b]

in a strong sense. Namely the following diagram commutes

(x, t)
_

��

f−1(a)× [a, b]
pr

))SSSSSSSS

∼=

��

[a, b]

FlXt−a(x) f−1[a, b]
f

55kkkkkkkk

picture

Proof. The inverse is given by y 7→ (FlXa−f(y)(y), f(y)). �

The outstanding question is: what happens to the level surface f−1(c) when
passing though a critical level? picture of a cell and the deformation

Theorem 8.8. Let a < b be two regular values of f such that there is precisely
one critical point in f−1[a, b], say of index i. Then there is a i-cell

Di � � ϕ // f−1[a, b]

with ϕ(∂Di) ⊆ f−1(a) such that f−1[a, b] deformation retracts onto f−1(a) ∪ϕ Di.

Proof. The (idea of the) proof was summarized in a picture which I am unable
to draw in TeX. �

Now we will finish the determination of χ(M). For our Morse function f with
all critical points in distinct levels we choose a0, . . . , ak ∈ R such that for the critical
points x1, . . . , xk: f(xj) ∈ (aj−1, aj). Let ij be the index of xj and abbreviate

Mj = f−1(−∞, aj)
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so that M0 = ∅ and Mk = M . picture We showed in the last theorem that

M = Mk ' Mk−1 ∪Dik

...
Mj ' Mj−1 ∪Dij

...
M1 ' Di1

(and i1 = 0, ik = m).

Remark. This implies that M is homotopy equivalent to a CW-complex with
cells of dimensions i1, . . . , ik. For the above homotopy equivalences can be expressed
in saying that

Sij−1
fj

//
� _

��

Mj−1

��

Dij // Mj

is a homotopy pushout. By induction Mj−1 is homotopy equivalent to a CW-
complex Xj−1 with cells of dimensions i1, . . . , ij−1. The homotopy invariance of
the homotopy pushout together with a homotopy of fj to a cellular map f̃j gives
Mj ' Xj−1 ∪f̃j

Dij = Xj . Now Xj is a CW-complex as the Dij is glued to the
(ij − 1)-skeleton.

In the proceeding we will only need a weaker version. We denote the usual
(homological) Euler characteristics by

χh(M) =
m∑
j=0

(−1)j dimHj(M)

Proposition 8.9. With the notation from above χh(M) =
∑k
j=1(−1)j.

Proof. Denoting the inclusion Sij−1 → Mj−1 by fj let us consider the map-
ping cylinder Mfj

of fj . Obviously Mfj
'Mj−1 and contains a copy of Sij−1 and

we form a long exact reduced homology sequence of the pair (Mfj
, Sij−1):

· · · // H̃p(Sij−1) // H̃p(Mfj
) // H̃p(Mfj

/Sij−1) // · · ·

As Mfj 'Mj−1 and Mfj/S
ij−1 'Mj for the Euler characteristics we get

(χh(Mj−1)− 1) = (−1)i1−1 + (χh(Mj)− 1)

or in other words χh(Mj) = χh(Mj−1) + (−1)ij . By induction and M = Mk,
χh(M0) = 0 we obtain the result. �

To identify χ(M) with χh(M) we only need

Proposition 8.10. The index of the vector field grad f at xj equals (−1)ij .
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Proof. Locally in the Morse chart (with xj = 0)

f(y, z) = f(xj)− |y|2 + |z|2 (y, z) ∈ Rij × Rm−ij

Then (grad f)(y, z) = (−2y, 2z) and Ind0 grad f = (−1)ij as the sign of the deter-
minant of grad f . �



CHAPTER 9

Function spaces

To proceed further we need to topologize the set C∞(M,N) of smooth maps
between manifoldsM , N . This topology should reflect all the differentiable qualities
of maps: then maps transverse to a closed submanifold A ⊆ N will form an open
subset as transversality is an open condition on the first derivative. It would not
be open if only the values of maps were considered. Similarly Morse functions are
defined by conditions on the first and second derivative.

To get hold of smooth maps and in particular to their derivatives, we need to
describe these geometrically. Namely we define Jr(M,N) to be the set (of r-jets of
maps M → N) of equivalence classes of pairs (x, f) where x ∈ M and f : U → N
a smooth map defined on a neighbourhood U of x. The equivalence relation is:
(x, f) ∼ (x′, f ′) iff x = x′ and f agrees with f ′ at x = x′ up to derivatives of
order r (expressed in but independent of charts around x and f(x)). We denote
[(x, f)] = jrxf . The point x is called the source and f(x) the target of the jet jrxf .
In this way we obtain the map

Jr(M,N)
(σ,τ)−−−−→M ×N

and denote Jrx(M,N) = σ−1(x), the jets with source x. Locally for open sets
U ⊆ Rm, V ⊆ Rn

Jr(U, V ) ∼= U × V ×
r∏

k=1

homsym

(
(Rm)⊗k,Rn

)
The factor U corresponds to the source, V to the target and homsym

(
(Rm)⊗k,Rn

)
to the k-th derivative. The canonical identification is therefore

jrxf 7→ (x, f(x),df(x), . . . ,drf(x))

(and the inverse map could be realized by polynomials as there is exactly one
polynomial or degree at most r with prescribed value and derivatives up to order r
at a given point x). Varying these over charts on M and N we obtain an atlas on
Jr(M,N) and in fact a bundle structure1 on

Jr(M,N)
(σ,τ)−−−−→M ×N

We will need later the composition of jets: we define jryf ◦ jrxg := jrx(f ◦ g) provided
that y = g(x). One needs to check that this is well-defined and therefore provides
a canonical map

Jr(N,P )×N Jr(M,N)→ Jr(M,P )

1Moreover the chain Jr(M,N) → · · · → J1(M,N) → J0(M,N) = M ×N consists of affine
bundles.

49
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which is moreover smooth2. Another important tool is the jet prolongation

jr : Cr(M,N) −→ C0(M,Jr(M,N))
f 7−→ (x 7→ jrxf) =: jrf

In fact jrf is a section of the bundle σ : Jr(M,N) → M and captures all the
derivatives of f . It is good for inducing topology on Cr(M,N) once we say what
the right topology on C0(M,N) is. In fact it turns out to be equally easy to
topologize the set of continuous sections, the situation we would like to consider
anyway.

For this part let X be a topological space and p : Y → X a space over X, one
may think of it as a bundle. We would like to describe a convenient topology on
the set Γ(Y ) of continuous sections of p : Y → X. If X is compact Hausdorff and
Y metric (in fact one only needs metric on each fibre) then Γ(Y ) could be equipped
with a metric

d(f, g) = max
x∈X

d(f(x), g(x))

In the case of the product projection X × Z → X we use the notation C(X,Z)
instead of Γ(X × Z) (which does not tell what the map p is).

Lemma 9.1. The topology induced by the above metric on Γ(Y ) is generated by
the open sets

O(W ) = {f ∈ Γ(Y ) | the image of f lies in W}
with W ⊆ Y varying over all open subsets3.

Proof. Let g ∈ Γ(Y ) and ε > 0. Defining W as {y | d(y, g(p(y))) < ε}
we easily verify O(W ) = Bε(g). On the other hand for g ∈ O(W ) we take ε =
infy/∈W d(y, g(p(y))) and verify that ε > 0: this is because ε ≥ d(Y −W, g(X)) > 0.
Clearly Bε(g) ⊆ O(W ). �

This topology behaves nicely (with respect to composition, evaluation, etc.). It
extends to noncompact spaces in two ways

• the strong topology ΓS(Y ) is generated again by sets O(W ) as W ⊆ Y
varies over all open subsets. Alternatively for X paracompact and Y
metric we can exhaust a neighbourhood basis of a fixed g via sets of the
form

N(g, ε) = {f ∈ Γ(Y ) | d(f(x), g(x)) < ε(x)}
with ε ranging over all positive functions X → (0,∞). To verify this we
are required to find for every open neighbourhood W of the image of g a
positive function ε such that

{y ∈ Y | d(y, g(p(y))) < ε(p(y))} ⊆W
Choose for each x ∈ X some εx > 0 such that B2εx

(g(x)) ⊆W . Then for
z ∈ Ux := g−1Bεx(g(x)) we have Bεx(g(z)) ⊆ W . Let λx be a partition
of unity subordinate to (Ux). Then the required ε is ε =

∑
x∈X λxεx.

2Locally one takes two polynomials of degree r and then substitutes one into the other,
truncating the part of degree bigger then r. The coefficients of the result are smooth functions of
the coefficients of the original polynomials.

3Typically neighbourhoods of the image of a fixed section g : X → Y . In this case the set of
all such O(W ) provide a neighbourhood basis of g.
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• the weak topology ΓW (Y ) is generated by res−1
K O(W ) where K is a com-

pact subset of X and W an open subset of Y |K = p−1(K). Here

resK : Γ(Y )→ Γ(Y |K)

is the restriction map. The weak topology is usually referred to as the
compact-open topology.

Homework: show that a sequence (fi) in CS(M,N) converges iff fi are eventu-
ally constant outside of some compact subset of M where it converges uniformly.

Remark. Another point of view on the weak topology is as the limit topology

C(X,Y ) = lim
K⊆X

C(K,Y )

which is necessary (if one wants to have a categorically well-behaved internal hom
functor) at least on the category of compactly generated Hausdorff spaces:

X compactly generated⇐⇒ X = colim
K⊆X

K

What we are describing here is an extension of C(−, Y ) from the category of com-
pact Hausdorff spaces to its closure CGHaus under colimits in the category of all
Hausdorff spaces. Again CW (−,−) turns CGHaus into a cartesian closed category,
a very useful property.

For the purpouses of differential topology the strong topology is better, we will
therefore restrict ourselves just to that and drop the index “S”. We can now use
the map

jr : Cr(M,N) −→ Γ(Jr(M,N))

to induce topology from the right hand side, i.e. endow Cr(M,N) with the subspace
topology. The topology on C∞(M,N) is defined as a limit (intersection)

C∞(M,N) = lim
r
Cr(M,N)

In concrete terms, the neighbourhood basis of g ∈ C∞(M,N) consists of (the
intersections with C∞(M,N) of) the neighbourhoods of g in Cr(M,N), r ≥ 0.
Alternatively one can define

J∞(M,N) = lim
r
Jr(M,N)

together with j∞ : C∞(M,N)→ Γ(J∞(M,N)) and induce the topology from there
(which is the best way). The most useful property of C∞(M,N) happens to be
that it satisfies the Baire property.

Definition 9.2. A subset of a topological space X is called residual if it
contains a countable intersection of open dense subsets of X. A topological space
X is called Baire if every residual subset is dense.

Recall that every complete metric space is Baire. We will now generalize this
significantly. Let Y → X be a space over X with Y equipped with a metric. A
subset Q ⊆ Γ(Y ) is called uniformly closed if it contains the limit of any uniformly
convergent sequence in Q.

Proposition 9.3. If X is paracompact and Y complete metric then any uni-
formly closed Q ⊆ Γ(Y ) is Baire (in the strong topology).
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Remark. By taking X = ∗ and Q = C(∗, Y ) = Y we deduce that every
complete metric space is Baire.

Proof. Let U ⊆ Q be a nonempty open subset and (Ui) a sequence of open
dense subsets of Q. We must show that U ∩

⋂∞
i=0 Ui 6= ∅. To achieve this we

inductively construct a sequence of sections fi ∈ Q together with positive functions
εi : M → (0,∞) in such a way that ε0 ≤ 1, εi ≤ 1/2 · εi−1 and

Q ∩N(fi, 2εi) ⊆ Ui ∩N(fi−1, εi−1)

This is possible because Ui being open dense must intersect N(fi−1, εi−1) in a
nonempty open subset. Choosing any fi from this intersection εi is guaranteed by
the fact that N(fi, ε) form a neighbourhood basis of fi (as X is paracompact). By
our choice the distance d(fi(x), fj(x)), i < j, is uniformly bounded by εi ≤ 2−i.
Hence (fi) converges uniformly (as Y is complete) and the limit f = lim fi ∈ Q.
Finally, for j > i, fj ∈ N(fi, εi) and thus

f ∈ Q ∩N(fi, εi) ⊆ Q ∩N(fi, 2εi) ⊆ Ui
�

We are trying to complete the proof of the space Cr(M,N) being Baire. First
we find a complete metric on every smooth manifold, in particular on Jr(M,N).

Lemma 9.4. Let M be a manifold. Then there exists a proper function f :
M → R+.

Proof. By definition f is proper if f−1(K) is compact for all K compact.
Recall the decomposition of M into a union

M =
∞⋃
i=0

Ki

of compact subsets Ki with Ki lying in the interior of Ki+1. Take Li =
◦
Ki −Ki−2

and consider its corresponding partition of unity λi. Then f =
∑∞
i=1 λi · i is the

required proper function - outside of Ki, f(x) > i, thus f−1[0, i] ⊆ Ki. �

Theorem 9.5. Every smooth manifold admits a complete metric.

Proof. Let d : M ×M → R+ be any metric on M . Define

d′(x, y) = d(x, y) + |f(x)− f(y)|

where f is any proper function on M . Easily d′ is a metric and for the corresponing
balls around x, B′ε(x) ⊆ Bε(x). On the other hand B′ε(x) = {y | d′(x, y) < ε} is
open (with respect to the usual topology) and so the topologies induced by d and
d′ coincide. It remains to show that the metric d′ is complete. Hence let (xi) be
a sequence which is Cauchy with respect to d′. Then f(xi) is necessarily bounded,
say by L, and therefore {xi} ⊆ f−1[0, L], a compact set. Consequently (xi) has a
limit point and converges. �

Remark. This metric satisfies an additional property: the closed balls in this
metric are all compact. This is because BL(x) ⊆ f−1[0, f(x) + L].

The last piece of the puzzle is the following proposition
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Proposition 9.6. The image of

jr : Cr(M,N)→ Γ(Jr(M,N))

is uniformly closed. In particular it is a Baire space.

Proof. Let (jrfi) be a uniformly convergent sequence, converging to g : M →
Jr(M,N). Then we claim that g = jr(τ ◦ g). This is a local problem where this
means that when all the derivatives dkfi, k = 0, . . . , r, converge uniformly to gk

then gk = dkg0, a well-known fact. �

Observe that the proof also works for r =∞. We will state this as a theorem

Theorem 9.7. The space C∞(M,N) is Baire.

Proof. As noted before the statement it only remains to show that J∞(M,N)
admits a complete metric. By definition as a limit there is an inclusion

J∞(M,N) ⊆
∞∏
r=0

Jr(M,N)

as a susbet of compatible jets. This subset is clearly closed and thus the proof
is finished by refering to the standard fact that a countable product of complete
metric spaces has a complete metric. If the complete metrics on the factors are di
with di ≤ 2−i (which can be achieved by replacing di by max{2−i, di}) then the
metric on the product is e.g.

d((xi), (yi)) =
∞∑
i=0

di(xi, yi)

�

Now we discuss certain naturality properties. From the diagram

C∞(M,N) � � //

f∗

��
�
�
�

Γ(J∞(M,N))

f∗

��

C∞(M,P ) � � // Γ(J∞(M,P ))

the map f∗ on the left is continuous. It is not the case that g∗ is continuous (unless
g is proper).

Theorem 9.8. The canonical map

jr : C∞(M,N)→ C∞(M,Jr(M,N))

is an embedding of a subspace.

Proof. There is a retraction τ∗ : C∞(M,Jr(M,N)) → C∞(M,N), induced
by the target map. What we are left with is the continuity of

C∞(M,N)
jr

−−→ C∞(M,Jr(M,N))
js

−−→ Γ(Js(M,Jr(M,N)))

This composition can be also written as

C∞(M,N)
jr+s

−−−−→ Γ(Jr+s(M,N)) α∗−−−→ Γ(Js(M,Jr(M,N)))

where α∗ is induced by the canonical map α : Jr+s(M,N) → Js(M,Jr(M,N))
sending jr+sx f to jsx(jrf) once one checks this to be independent of the representing
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map f (within the maps with the same (r + s)-jet at x) and also smooth. Both
facts are easily verified using polynomials. �

We can now make certain statements involving “close” maps and “small” ho-
motopies precise. Let f : M → N be a smooth map and A ⊆ N a submanifold.
We say that f is transverse to A on K ⊆ A if f is transverse to A at each point
x ∈ f−1(K).

Proposition 9.9. Let M , N be smooth manifolds and A ⊆ N a submanifold.
Let K ⊆ A be a compact subset (or more generally K closed in N). Then the set

X = {f : M → N | f t A on K}

is open in C∞(M,N).

Proof. Clearly transversality is a condition on a 1-jet of f (i.e. condition on
the values and the first derivatives). Therefore we consider J1(M,N) and its subset
of jets fulfilling our condition

W = {j1
xf | f(x) /∈ K or f∗(TxM) + Tf(x)A = Tf(x)N}

Then the set X from the statement can be also described as X = (j1)−1(O(W ))
with

j1 : C∞(M,N)→ Γ(J1(M,N))

It suffices to show that W is open as then X will be one of the generating open sets
in C∞(M,N). As openness is a local property we can work in one of the charts on
J1(M,N), i.e. reduce to the case

W ⊆ Rm × Rn × hom(Rm,Rn)

with A corresponding to a linear subspace Rk ⊆ Rn and K ⊆ Rk a closed subset.
Then W is defined by the requirement: either the component in Rn lies in the
complement of K or the component in hom(Rm,Rn) when composed with the
projection Rn → Rn/Rk is surjective, a union of two open subsets. �

Corollary 9.10. Let M , N be smooth manifolds and A ⊆ Jr(M,N) a sub-
manifold. Let K ⊆ A be a compact subset (or more generally K closed in Jr(M,N)).
Then the set

X = {f : M → N | jrf t A on K}
is open in C∞(M,N).

Proof. One reduces to the previous proposition via the canonical continuous
map jr : C∞(M,N)→ C∞(M,Jr(M,N)). �

The situation of the previous corollary is called a jet transversality. A lot of
situations we were studying can be described by jet transversality.

Example 9.11. We saw that a smooth function f : M → R is Morse iff
df : M → T ∗M is transverse to the zero section. It is not hard to identify J1(M,R)
with R× T ∗M and under this identification j1f : M → J1(M,R) becomes (f, df).
Thus a function f is Morse iff j1f t R×M with R×M ⊆ J1(M,R) as the subset of
all jets (at various points) of all constant functions. In particular Morse functions
form an open subset of C∞(M,R).
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Example 9.12. A map f : M → N between two smooth manifolds is an
immersion iff j1f does not meet the subset of J1(M,N) of the non-immersive jets.
Locally

J1(Rm,Rn) ∼= Rm × Rn × hom(Rm,Rn

and f is an immersion iff j1f misses all Rm×Rn×homr(Rm,R) for the rank r < m.
We computed earlier that each homr(Rm,Rn) is a submanifold of hom(Rm,Rn) with
the lowest codimension n − m + 1 for r = m − 1. Therefore when n ≥ 2m this
condition is equivalent to jet transversality (in this case with respect to a finite
number of submanifolds).

The main theorem on jet transversality is the following.

Theorem 9.13 ((Thom’s) Jet Transversality Theorem). Let M , N be smooth
manifolds, ∂N = ∅, and A ⊆ Jr(M,N) a submanifold. Then the set

X = {f : M → N | jrf t A}
is residual in C∞(M,N). It is moreover open provided that A is closed (as a subset).

Proof. We cover A by a countable number of compact subsets Ai with the
following properties.

• σ(Ai) lies in a coordinate chart Rm ∼= Ui on M .
• τ(Ai) lies in a coordinate chart Rn ∼= Vi on N .

We will show that each of the sets

Xi = {f : M → N | jrf t A on Ai}
is open dense. The openness part was proved in Corollary 9.10 so we are left with
the density.

We identify Ui with Rm and Vi with Rn using the charts (and thus reduce to a
local problem). Let f0 : M → N be a smooth map, we will find an arbitrarily close
map which is transverse to A on Ai. First we denote Wi = Ui ∩ f−1

0 (Vi) ⊆ Rm the
open subset where f0 can be written in the charts Ui and Vi. Let λ : Wi → R+

be a function with compact support and which equals 1 on a neighbourhood Zi of
σ(Ai) ∩ f−1

0 (τ(Ai)). Consider the following family of smooth maps Wi → Rn

F : Jr0 (Rm,Rn)×Wi −→ Rn

(jr0p, x) 7−→ f0(x) + λ(x) · p(x)

Here p is the unique polynomial representative of the jet in question. Since λ
is compactly supported we can extend this family to a globally defined one, still
denoted by F

F : Jr0 (Rm,Rn)×M −→ N

For each α ∈ Jr0 (Rm,Rn) take the r-jet of Fα to obtain a map

G : Jr0 (Rm,Rn)×M −→ Jr(M,N)

Our goal is to show that G t A on a neighbourhood of Ai so that we can apply
the parametric transversality theorem to conclude that there is a sequence (αk) in
Jr0 (M,N) converging to 0 so that each Gαk

t A on Ai. This will finish the proof
of density of Xi as limk→∞ Fαk

= f0 in4 C∞(M,N). To achieve this observe that

4This is because the association α 7→ Fα is continuous. This on the other hand follows from
the fact that the family F is constant outside of a compact set.
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on Zi we can express G in the charts and, as λ ≡ 1 there,

G(jr0p, x) = jrx(f0 + p)

Thus G is in fact submersive on Jr0 (Rm,Rn)×Zi. Now f0(σ(Ai)−Zi) is a compact
subset disjoint with τ(Ai). Therefore even for α ∈ Jr0 (Rm,Rn) small the same will
be true5 for Fα. As for such α, G−1

α (Ai) is a subset of σ(Ai) disjoint with Zi and the
transversality holds on Zi the restricted map G is transverse to A on Ai. If we start
instead of Ai with its compact neighbourhood Bi ⊆ A (still with σ(Bi) ⊆ Ui and
τ(Bi) ⊆ Vi) we get that the (now even more) restricted map G is even transverse
to A on Bi and in particular on the interior of Bi - a manifold. Therefore we can
invoke the parametric transversality theorem to conclude the proof. �

Therefore Morse functions form a residual subset of C∞(M,R) and, for n ≥ 2m,
so do the immersions in C∞(M,N).

Next we discuss a relative version of the jet transversality theorem. Let F ⊆M
be a closed subset and s0 : F → Jr(M,N) a section of the jet bundle over F . Then
clearly

{s ∈ Γ(Jr(M,N)) | s|F = s0}
is a uniformly closed subset (observe that this works even for r = ∞). Therefore
the corresponding subspace

C∞(M,N)s0 = {f ∈ C∞(M,N) | jrf |F = s0}

is a Baire space. We then obtain the following generalization of Theorem 9.13:

Theorem 9.14. Let M , N be smooth manifolds, ∂N = ∅, A ⊆ Jr(M,N) a
submanifold and s0 : B → Jr(M,N) a smooth section over some fixed closed (as a
subset) submanifold B ⊆M for which s0 t A. Then the set

X = {f ∈ C∞(M,N)s0 | jrf t A}

is residual in C∞(M,N)s0 . It is moreover open provided that A is closed (as a
subset).

Proof. First note that when σ(A) ⊆ M − B this is proved by the same
argument as Theorem 9.13. Then write M − B as a countable union of compact
subsets Ki and denote Ai = A ∩ σ−1(Ki) and correspondingly

Xi = {f ∈ C∞(M,N)s0 | jrf t A on Ai}

Clearly X =
⋂

Xi while each of the terms is residual (in fact open dense). �

Corollary 9.15. Let M be a smooth manifold and B ⊆ M a closed (as a
subset) submanifold. Then every immersion f : B → Rn extends to an immersion
M → Rn provided n ≥ 2m.

Proof. Suppose first that f extends to a smooth map f̃ : M → Rn which is an
immersion near B. Then the last theorem applies to s0 = (j1f̃)|B to conclude that
the set X of immersions M → Rn is residual in a nonempty space C∞(M,Rn)s0 (it
contains f̃). In particular X itself is nonempty.

5As α 7→ Fα is continuous this follows from the openness of the corresponding subset
O (M × (N − τ(Ai)) ∪ (M − (σ(Ai)− Zi))×N) in C0(M,N) = Γ(M ×N →M).
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Thus it remains to find an extension f̃ . We assume here that B has codimen-
sion 0, the only case we will need later6. Then f extends locally at each point of ∂B
and hence to a neigbhbourhood of ∂B in M by the means of the partition of unity.
The required extension to M , automatically an immersion near B, is guaranteed
by the contractibility of Rn. �

To describe injective immersions (and later embeddings) in a way similar to
immersions we need a notion of a multijet. A multijet is a number of jets with
different sources. More formally denote by M (k) the subset of the cartesian power
Mk of pairwise distinct k-tuples. We define

J r
k (M,N) = (Jr(M,N))k|M(k)

An element of J r
k (M,N) is called a multijet. Again we have a multijet prolongation

map7

j r
k : C∞(M,N)→ C∞(M (k), J r

k (M,N))

Theorem 9.16 (Multijet Transversality Theorem). Let M , N be smooth man-
ifolds, ∂N = ∅, and A ⊆ J r

k (M,N) a submanifold. Then the set

X = {f : M → N | j r
k f t A}

is residual in C∞(M,N).

Proof. The proof follows that of Theorem 9.13 with the following modifica-
tions: we require σ(Ai) to be contained in a product U1

i ×· · ·×Uki of disjoint charts
on M . Then in the density part we embed simlarly f0 into a family of maps

F : (Jr0 (Rm,Rn))k ×M −→ N

and proceed analogously.8 �

Example 9.17 (injective maps). Let A ⊆ J 0
2 (M,N) ∼= M (2) × N2 consists

exactly of those (x1, x2, y1, y2) with y1 = y2. Then f is injective iff j 0
2 f misses A.

The codimension of A is precisely n and thus for n > 2m, f is injective iff j 0
2 f t A.

In particular the set of injective maps is residual in these dimensions. Combining
with the result for immersions, injective immersions are residual for n > 2m. To
solve the problem for embeddings note that f : M → N is an embedding as a closed
submanifold of N iff f is a proper injective immersion. We will prove that proper
maps form an open subset. Then the existence of embeddings of any manifold Mm

into R2m+1 follows from the previous.
Let N be equipped with a complete metric with compact balls (like the one

constructed in Theorem 9.5) and g : M → N be a proper map. Then

{f : M → N | d(f(x), g(x)) < 1}
is clearly an open neighbourhood of g and for any f in this set

f−1(BL(y)) ⊆ g−1(BL+1(y))

6In the general case one assumes some nice position of B in M . This means that either B

lies in the interior of M or in the boundary or is a neat submanifold. In any case one extends f
to a tubular neighbourhood by a vector bundle argument which is left as a HW.

7A serious homework: explain why j r
k is NOT continuous.

8A proof of openness should go as follows: the map

(jr)k : C∞(M,N)→ C∞(Mk, (Jr(M,N))k)

is continuous and Xi is a preimage of an open subset.
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a compact subset.

Example 9.18 (special Morse functions). Let A ⊆ J 1
2 (M,R) consist precisely

of the pairs (j1
x1
f, j1

x2
f) with both x1 and x2 critical points of f and with f(x1) =

f(x2). The codimension of A is 2m+ 1 and therefore a function f satisfies j 1
2 f t

A iff all the critical points are in different levels and the set of such is residual.
Together with the residuality of the set of Morse functions, the same holds for
these special Morse functions.

In fact special Morse functions are also stable: any function close to a special
Morse function f in C∞(M,R) is equivalent to f (i.e. there are diffeomorphisms of
M and R relating the two functions).

Injective immersions are also stable. To get a stable version of immersions one
needs to restrict only to immersions with normal crossings picture.

The relative version of the multijet transversality theorem is hard even to state
so we content ourselves with the case of injective immersions. Let M be a compact
manifold with boundary and s0 : ∂M → N an injective smooth map.

Theorem 9.19. Assuming that n > 2m the set

X = {f ∈ C∞(M,N)s0 | f is injective}

is residual in C∞(M,N)s0 .

Proof. Filling M − ∂M by a countable number of compact subsets Ki we
again form

Xi = {f ∈ C∞(M,N)s0 | f is injective on ∂M ∪Ki}

Obvously X =
⋂

Xi. By an easy modification of the proof of Theorem 9.16 we now
prove that each Xi is residual (or even open dense). We make sure that none of the
charts used on M meets both ∂M and Ki. We then have three possibilities on the
pair U1

i , U
2
i : if both miss ∂M then we use the same argument, if both hit ∂M then

f0 does not need to be perturbed and in the mixed case we create a family only
indexed by a single copy of Jr(Rm,Rn) which is still transverse to the diagonal. �

Corollary 9.20. The forgetful map{
the cobordism classes of closed
m-dimensional submanifolds of S2m+2

}
−→

{
the cobordism classes of closed
m-dimensional manifolds

}
is a bijection.

Proof. The surjectivity was proved already in Theorem 2.12. To prove injec-
tivity let W be a cobordism between two m-dimensional submanifolds M0,M1 of
S2m+2 which we think of as an embedding ι : ∂W � � // ∂(I×S2m+2). Removing a
point from S2m+2 not contained in M0 ∪M1 we can replace S2m+2 by R2m+2. We
extend the embedding ι to a neat embedding, also denoted by ι, of a collar V of ∂W
in an obvious way. Denoting by U a collar with U ⊆ V (e.g. the one corresponding
to [0, 1) ⊆ R+) we are then asked to extend an embedding

U − ∂W � � // (0, 1)× R2m+2

to W − ∂W . The extension is provided by Corollary 9.15 and Theorem 9.19. �
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Corollary 9.21. There is a natural bijection

πm+d(Th(γk,d))
∼=−−→

{
the cobordism classes of closed
m-dimensional manifolds

}
provided that d > m+ 1 and k > m+ d.


