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Kapitola 1
Algebra

1.1 Komplexni éisla
Priklad 1.1.1. Ciselné mnoziny, se kterymi budeme poéitat, jsou pfirozena &sla N, celd

Cisla Z, racionalni Cisla Q a redlna c¢isla R. Strucné si pripomerite vlastnosti sc¢itani a
nasobeni na jednotlivych mnozinach.

Reseni. Na viech mnozinach je s¢itani asociativni, tedy
T+ y+2)=(z+y)+2
komutativni, tj.
T+y=y+uz;
déle v Z, Q a R mame 0 jako neutralni prvek
0+ 2z =uz;
a ke kazdému prvku r mame opacny prvek —z, tj.
z+ (—z)=0.
Podobné nasobeni je na vSech mnozinach asociativni
z-(y-2)=(z-y) 2
komutativni
TYy=y-;
distributivni vzhledem ke s¢itani
z-(y+z2)=z-y+z-z

2



Kapitola 1 Algebra

méame 1 jako neutralni prvek
l-x=ux;

a v Q a v R mame ke kazdému nenulovému prvku z inverzni prvek %, tj.

1
r-—=1. A
x

Priklad 1.1.2. Zavedte komplexni ¢isla a popiSte jejich zakladni vlastnosti.

Reseni. K realnym &islim piiddme komplexni jednotku i s vlastnosti i> = —1; jedn4 se
o jeden z kofenti polynomu z? + 1. Operace zavadime induktivné. Séitani i ndsobeni za-
chovavaji ,redlnost“ ¢isel, takze zde nic neménime. Pro libovolné b € R a i musime pridat
i jejich souéin b-i s tim, ze b’'- (bi) = (¥’ b)ia ib := bi. To zarudi komutativitu a asociativitu
nasobeni. Nakonec pro a € R priddme souc¢ty a+bi. Obecné komplexni ¢islo 2 je tedy tvaru

z =a+ bi,

kde a, b € R. Cislo a nazyvime redlnou ¢dsti z, znacime R(z) (pfipadné Re(z)), &islo b pak
imagindrni édsti z, znacime (z) (pfipadné Im(z)). VSimnéme si, Ze pro komplexni &islo
z jsou R(2) i () € R. Plati, Ze dvé komplexni ¢isla jsou si rovna pravé tehdy, jsou-li si
rovny jejich redlné i imagindrni ¢asti. Mnozinu vSech komplexnich ¢isel znacime C.

Vezméme w = c+di € C, ¢, d € R. Prozkoumame chovani souctu a soucéinu dle pravidel,
ktera jsme pouzili pfi vytvoreni komplexnich ¢isel. Soucet se chova tak, jak bychom céekali,
tedy

z+w=(a+bi)+ (c+di)=(a+c)+ (b+d)i.

Muzeme tedy fici, ze R(z + w) = R(z) + R(w), podobné pro . Pro soudin pouzijeme
pravidlo pro nasobeni mnohodélenti, tedy pravidlo ,kazdy s kazdym,“ pricemz nasledné
vycislime vyrazy:

z-w:(a+bi)-(c+di):ac+bci+adi+bd\ii,:(ac—bd)+(bc+ad)i

Pak plati, Ze
R(z - w) = R(z) R(w) — H(z) S(w), I(z - w) = R(2z) S(w) + S(z) R(w). (1.1)

Pro z = a+bi € C zavedeme cislo k nému komplexné sdruzené, znacené z, a definované
jako Z = a — bi. Prifazeni komplexné sdruzeného ¢isla méa nasledujici vlastnosti:

|
I
N

o z =z pravé kdyz z € R;

o aditivita z +w = z 4+ w;
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o multiplikativita z-w = z - w.

Prvni vlastnost je celkem zrejma, stejné jako tfeti. Druhou vlastnost si ukazeme pozdéji
(jedna implikace je zfejmd), posledni se d4 napocitat

z-w=(a—"bi)-(c—di)=ac—bci—adi—bd=(ac—bd)— (bc+ad)i=z-w.
Spocitejme z + z a z - z. Mame

z+z=(a+bi)+(a—bdbi)=2a=2R(z) eR

odtud bychom mohli definovat R(z) jako 212, obdobné ¥(z) = %7. Odtud vidime, Ze
pokud z = z, pak z = 2 = R(z) € R. Déle
z-Z=(a+bi) - (a—bi)=a®>-b*i*=a® +b* € R.

anavic je z Z > 0 a rovno nule pouze pro z = 0| Definujeme absolutni hodnotu komplezniho
c¢isla z jako

2| =Vz-2z

(vyraz je korektné definovan, nebot pod odmocninou je nezédporné redlné ¢islo, pro néz
méme jednoznacné definovanou redlnou odmocninu). Nejdilezitéjsi vlastnosti absolutni
hodnoty je multiplikativita, |z - w| = |z|-|w|, coZ plyne rovnou z definice a multiplikativity
realné odmocniny.

S pouzitim komplexné sdruzeného cisla miZzeme spocitat pfevracené cislo pro z # 0.
Mame

1 z Z
.=
coz pomoci z = a + bi dava
1 a—bi a —b

a+bi a2+b? _a2+b2+a2+b21'

Pro w € C, w = ¢+ di mame podil

w_wz_(act+bd)+(ad—bo)i
2 2P a? + b2 '

Zépis z = a + bi nazyvame algebraickym tvarem komplexniho cisla z. Jelikoz je z
urceno dvojici redlnych cisel, muzeme si jej zakreslit do tzv. Gaufovy roviny, viz obrazek
S pouZitim pravothlého trojihelniku A(O, R(z), 2) vidime, Ze:

1Obecné neexistuje usporddani komplexnich &isel, které by zachovavalo operace. Pokud by bylo napfi-
klad i > 0, pak nésobeni i by nerovnost zachovévalo, tedy bychom dostali —1 = i? > 0-i = 0. Obdobné
polozili-li bychom i < 0, pak nasobeni nerovnosti i by ji otacelo a opét bychom dostali —1 > 0. PiSeme-li
tedy pro néjaké z, w € C vyrazy typu z < w, implicitné tim uvazujeme tato ¢isla redlna.
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S
S ) B .
E 3
v 3
O R(2) R

Obrazek 1.1: Zakreslime si do GauBlovy roviny komplexni ¢islo z = R(z) + i3(z) (zde
naznacené pro R(z), X(z) > 0, pro ostatni pfipady by byl obrazek ,ptfeklopeny.)*

R(2).
|2

%%

(2) (1.2)

cosp = ] ;

sinp =

a odtud pro z # 0 mame

R(2) +1S(2)

2 = |z| - (cos ¢ +1i sin p).
z

z = 7|
Tento zapis komplexnich Cisel se nazyva goniometricky, a kromé jiz zavedené absolutni
hodnoty je dulezity také thel . Ten se nazyva argumentem cisla z a nékdy se znaci
¢ = arg(z). Tento thel je jednozna¢né uréen rovnicemi az na nasobek 27, coz je
perioda funkef sin a cos. Proto klademe arg(z) € [0,27) ]
Pripomeneme si souc¢tové vzorce pro funkce sin a cos:

sin(a + B) = sin(a) cos(B) + cos(a) sin(3)
cos(a + B) = cos(a) cos(f) — sin(a) sin(B)

(povsimnéte si podobnosti s ([1.1]), coZ neni ndhoda). Pomoci nich mdme pro z = |z| (cos p+
+ising) a w = |w| (cos® + 1 sin1)) soudin

(1.3)

z-w=|z|-|w|-(cosp+1isiny) (costp +1isin)

— [2] fw] - ((cos(p) cos(®) — sin(i) sin(e$)) + (sinp) cos(w) + cos(y) sin(®))

2] Jw| - (cos(p +) +i sin(p + ). (1.4)

Odtud vidime dilezitou vlastnost argumentu, tedy Ze

arg(z - w) = arg(z) + arg(w) modulo 2k 7

2 Argumet je jednoznaéné uréen v jakémkoli jednostranné otevieném intervalu o délce 27, nejéastéji se
pouziva [0,2 ) nebo jesté Castéji [—m, 7).
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pro k € Z. Dusledkem (1.4)) je pak Moivrova véta.
Véta (Moivre). Pro z € C \ {0}, arg(z) = ¢, an € N plati

2" = |2|" (cos(n ©) +1sin(n go))

Disledek. Pro z = |7 (cos(go+ 2km) +i sin(cp+2k7t)) e C~A{0}, k€ Z, an €N plati

oo m po+2kn . . po+2km
\/; = 1/|2| <cos - +1 sin -

pro k € 7, pricemZ pro ruznd k existuje pravé n ruznych hodnot.
Moivrovu vétu a jeji disledek pak pouzijeme pii pocitani komplexnich odmocnin. A

Piiklad 1.1.3. Najdéte FeSeni kvadratické rovnice 22 = a pro a € R. Najdéte feSeni

kvadratické rovnice 22 = a + bi v algebraickém a goniometrickém tvaru.
Resend. Je-li a > 0, m4 rovnice 22 = a dvé feSeni, 2 = +4/a. Je-li a < 0, pak je —a > 0 a
rovnici 1ze psat jako
a odtud vidime rovnou z = +i+/—a.
UvaZujme rovnici 22 = a + bi. MiiZeme psit z = c + d1i, odtud
2= —d*+2cdi=a+bi.
Porovnanim realnych a imaginarnich ¢asti prejdeme k soustavé

c—d*=a
2¢d=10>
dvou rovnic se dvéma redingmi neznamymi, kterou vyresime. Podrobnéji viz Ulohu 1.10

sbirce pifkladt z predm&tu M6170 Analyza v komplexnim oboruf
Resfme-li rovnici 22 = r (cos ¢ + i sin ), mdme podle disledku Moivrovy véty

2k 2k
z2=4/r (COSSO_FTT[—FiSiIISO_'_T’n)

=\/7_~<cos <§+k7‘t) + 1 sin (%"‘k”))’

odkud s pouzitim ((1.3)) a vlastnosti goniometrickych funkci nasledné dostavame

=47 (cos§+ising) A

3https://www.math.muni.cz/~zemanekp/files/M6170/sbirka M6170 Prochazka.pdf
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Priiklad 1.1.4. Urcete vSechna z takova, ze

a) 25 =1+i, b) 25 = 64.

Reseni. V obou piipadech pouzijeme diisledek Moivrovy véty. Zaéneme @) Nejprve si pre-
vedeme cislo 1 4+ i do goniometrického tvaru. Vidime, ze

1+i=vi+1=+2

Zbyva najit argument. Hleddme ¢ takové, ze

1
\/57

. . . L 7 . I J— —_— 8k+1 5 Y7
Sinus i kosinus ¢ museji byt stejné, to nastane pro ¢ = 7 +2k7 = *5= 7, k € Z. ReSime

tedy rovnici
1 1
z3=\/§ <cos (%T+ﬂ>+isin<8k4+ n))

6 8k+1 .. (8k+1
z-ﬁ(cos( 12 7T>—|-1S111< 2 71))

pro k € {0,1,2}. Pro k = 1 dostaneme argument 2 7t se snadno vy¢islitelnymi hodnotami
sinu a kosinu. Mame

COs @ = Sin(p =

Sl

odkud dostaneme

37 1 37 1

COS — = ——— sin — = —

4 V2 4 V2
odtud
3m 31 1 i 1 i
V2 (cos——l—isin—) =2 -t ==+ .
4 4 V2 V2 V2 V2
Celkem tedy méame
/2 (cos% +1i sin %)
z= —%2 + %
2 (cos117—27T +1i sin 117—2“>
Nyni feSme Cast @ Je jasné, Ze |64 = 64 = 25, podobné je ziejmé argument 64 roven
0 (redlnd cisla maji kladnd argument 0 a zdpornd argument +7t podle potieby). Resime
rovnici

2% =64 (cos(2 k) +1 sin(2 kn)),
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pomoci disledku Moivrovy véty dostaneme

z2=2 cosk7r+isink7t
- 3 3

pro k € {0,1,2,3,4,5}. Zde umime snadno vy¢islit hodnoty sinti a kosind pro vSechna k.
Méame

,

2 (cos0+isin0) = 2
2(cosﬂ—|—isin§ = 1+iv/3
2(cos—+1sm— = —1+4+i/3

2= 2 ( cosrc+1 smrc = -2
2 (cos & +1sm = —1—-i/3
\2 cos 3¢ +1s1n— = 1—iv3

Podobné dlohy jsou naptiklad Ulohy 1.17 — 1.19 ve sbirce tloh z Analyzy v komplexnim
oboru M6170f] A

1.2 Délitelnost a zbytkové tridy modulo n

Priklad 1.2.1. Zavedte kongruence a zbytkové tfidy modulo n pro 2 < n € N.

Resent. Zafixujme 2 < n € N. Rekneme, 7e n déli m € Z, jestlize existuje ¢ € Z takové,
Zze m = q - n. Pak piSeme
n|m

Pro m € 7Z existuji jednoznéna q, r € Z, 0 < r < n takova, ze
m=q-n—+r
(véta o déleni se zbytkem). Rekneme, Ze a a b jsou kongruentni modulo n, psdno
a=b (modn),

jestlize davaji stejny zbytek po déleni n, neboli lze li obé psit ve tvaru a = qn + r a
b=q n+r. To je zfejmé pravé tehdy, kdyz

b—a=n(qd—q)
tedy pravé tehdy, kdyz n | b — a. Je-li a; = by a ay = by (mod n), pak
a;+as =b;+by (mod n), ajas = by by (mod n). (1.5)

Podle predpokladi miizeme psat by —a; = n-q; a by — ay = n - g pro néjaka q, g2 € Z.
Pro dtikaz prvni kongruence chceme, aby n délilo b; + by — (a; + az), coZ ovSem muiZeme

4https://www.math.muni.cz/~zemanekp/files/M6170/sbirka M6170 Prochazka.pdf

8


https://www.math.muni.cz/~zemanekp/files/M6170/sbirka_M6170_Prochazka.pdf

Kapitola 1 Algebra

psét jako by — a1 + bs — az = (¢1 + @2) n, coz je délitelné n. Pro dikaz druhé kongruence
chceme, aby vyraz b, by — a1 as byl délitelny n. K nému si pficteme a odecteme vyraz a; b,
¢imZ mame

biby —aias +arby —ai by = (b1 —a1) by + a1 (ba — a2) = (q1 b2 + a1 ¢2) m,

pricemz vyraz napravo je délitelny n. Kongruence tedy zachovavaji s¢itani i nasobeni.
Kongruence modulo n je relace ekvivalence, nebot

e a=a (mod n), jelikoz n | 0 = a — a,

e a =b= b= a (modn), protoze a —b = —(b — a) a délitelnost je zachovina bez
ohledu na znaménko,

e a=b& b=c= a=c (mod n) diky tomu, Ze c—a = (c—b) + (b— a) a kongruence
zachovévaji soucet (to, Ze n | m je ekvivalentni tvrzeni m =0 (mod n)).

Méame tedy tfidy rozkladu mnoziny Z pomoci této relace ekvivalence. Pfesnéji feseno,
mnozina Z je rozdélena na n podmnozin tvaru

[rln . ={nq+re€Z|qeZ}.

To, Ze kazdé celé ¢islo patii (pro dané n) pravé do jedné z mnozin [r|, vyplyva z véty
o déleni se zbytkem. MuzZeme definovat soucet a souéin t¥id kongruence [r|, a [r'], tak, Ze
vezmeme libovolnd dvé éisla z téchto mnozZin (reprezentanty) a podivame se, do které t¥idy
padne jejich soucet respektive soucin. Pravé (1.5)) zaruci, Ze soucet i soucin reprezentanti
padne vZdy do jedné tfidy be ohledu na jejich vybér. Takto definované s¢itani a nasobeni
dédi diky své definici nékteré dulezité vlastnosti s¢itani a nasbeni celych Cisel — zejména se
jedna o komutativitu a asociativitu obou operaci, stejné jako o distributivitu nasobeni vici
s¢itani. Ttida [0],, se chova jako neutralni prvek vici s¢itani, t¥ida [1],, jako neutralni prvek
vzhledem k nésobeni. Déle t¥ida [n — r], je opa¢nym prvkem k [r], vici s¢itani. Mnozinu
t¥id kongruence znadime| Z,.

Na mnozZiné Z, mame definované sc¢itani i ndsobeni pomoci reprezentanti. Lze zvolit
libovolné, v praxi se vSak ¢asto voli reprezentanti co nejmenst, tedy 0, 1, ..., r, ..., n—1,
pripadné také doplnéné o —1, —2, ..., —n+ 1. Kladni reprezentanti z tohoto seznamu jsou
pravé povolené zbytky po déleni n z nasi formulace véty o déleni se zbytkem ze zacatku
cviceni. Lze tak Fici, Ze na mnoziné zbytki definujeme soucet jako zbytek souctu po déleni
n, soucin podobné jako zbytek souc¢inu po déleni n. A

Priklad 1.2.2. Pomoci kongruenci dokazte, Ze pro libovolna celd ¢isla a plati:

a) a®? m4 po déleni 4 zbytek 0 nebo 1, c) a* ma po déleni 16 zbytek 0 nebo 1.
b) a? m4 po déleni 8 zbytek 0, 1 nebo 4,

>V tomto pfedmétu ji budeme znaéit tak, jinde se lze také setkat s oznadenim Z/(n), Z/nZ nebo Z/n,

9
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Reseni. Pripomeneme si vzorecky pro pocitani s mocninami
. b a
Tt = g 1% = (z%)° = (wb) (1.6)
a binomickou vétu.
YA k
m __ m—
@+y)"=>_1{,]2"y (1.7)
o \k
Praveé binomicka véta nam umozni si poc¢itani zjednodusit. Ptame-li se, jaky zbytek r dava
néjaky vyraz a po déleni n, ptame se vlastné, ¢emu je a kongruentni modulo n. V zadéni

méme mocniny. Libovolné a € Z muzeme psit ve tvaru a = nq + r. Dosazenim do ((1.7)),
kde bereme x = nq a y = r, dostavame

(ng+r)™=>_ <m> nk gk rm=F,
o \ K
Vidime, Ze jediné €len s k = 0, tedy r™ neni délitelny n. (To uz vime z faktu, Ze kon-
gruence zachovévaji ndsobeni, tj. je-li a = r (mod n), je a™ = r™ (mod n).) Navic vSak
je u ¢lenytis k # 0 koeficient (’z) # 1, tudiz hleddme-li zbytek po déleni a™ néjakym N,
staci uvazovat tfidy kongruence a pouze modulo n takovym, aby pro kazdé k =1, 2, ...,
m byl vyraz (Z‘) n* délitelnjy N. P¥irozené hleddme n mezi déliteli N. To si ukadZeme na
prikladech.

Zaénéme @) Méme mocninu a2, tedy m = 2, N = 4 a vidime, Ze jak (f) 2% tak (;) 22
jsou délitelné 4. Stali tedy uvaZovat jen t¥idy kongruence modulo 2. Je-li a = 0 (mod 2),
je a> =0 (mod 4). Obdobné je-lia =1 (mod 2), je a® =1 (mod 4).

Pokracujeme [b). Zde je m = 2 a N = 8. Hleddme n takové, Ze pro kazdé k mezi 1 a 4
bylo (Z) n* délitelné 8. Snadno se ukdZe, Ze stadi brat n = 4. (Pro n = 4 méme (f) 4=28
délitelné 8 a pro vyssi k jiz 8 | 4%. Podobné se ukéZe, Ze n = 2 nestali.) TudiZz méme
vysledek.

a=0 (mod 4) = a>=0 (mod 8)
a=1 (mod 4) = a®>=1 (mod 8)
a=2 (mod 4) = a*=4 (mod 8)
a=3 (mod 4) = a>=9=1 (mod 8)

Nyni vyfesime [c)). Mdme m = 4 a N = 16. Hleddme pfihodné n. Vidime, %e n = 2 nebude
stacit, nebot (‘11 2! = 8 neni délitelné 16. Zkusime n = 4. Mame (‘11) 4! = 16 délitelné 16 a
pro k > 1 je 4% délitelné 16 samo o sob&. Obdobn& jako minule mdme tedy vysledek.

a=0 (mod 4) = a*=0 (mod 16)

a=1 (mod4) = a*=1 (mod 16)

a=2 (mod 4) = a*=16=0 (mod 16)

a=3 (mod 4) = a*=81=1 (mod 16) A

Priklad 1.2.3. Pomoci kongruenci ukazZte, Ze pro kazdé n € N plati:

10
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a) Cislo 3 déli ¢&islo 4™ — 1, c) &islo 5 déli &islo 337+ + 2+,

b) &islo 5 déli &islo n® —n

Resend. Vyfesime[a). Mame 4 = 1 (mod 3), odtud
4"-1=1"-1=1-1=0 (mod 3),

tedy je skuteéné 4™ — 1 délitelné 3. Pfejdéme k[b]). Zde jiz budeme muset uvazovat vechny
zbytkové tfidy modulo 5. (Pokud bychom chtéli pouzit postup z prikladu zjistili
bychom, Ze nejmensi n je 5.) Pro n = 0 (mod 5) je n® —n = 0 (mod 5) zadarmo. Je-li
n=1 (mod 5), mdme

n—-n=1"-1=1-1=0 (mod 5).
Pro n =2 (mod 5) dostaneme
n°—n=2"-5=32—-2=30=0 (mod 5),
pro n =3 (mod 5) pak
n5—nE35—3=(32)2-3—3542-3—3:16-3—351-3—3:0 (mod 5)
a pron =4 (mod 5) nasledné
W on=4—4=(2) —4=32-4=2—4=4-4=0 (mod5),

tedy je vidy n® — n délitelné 5. Nyni vyfesime |c) podobné jako E[), priemz pouzijeme
pravidla pro pocitani s mocninami ({1.6)).

gl 4ot =3.(3%)"+2.2" =3.27"4+2.2" =3.2"42.2" =5-2" =0 (mod 5) A
Priklad 1.2.4. Jak4 je posledni cifra &isel 74 a 3597

Reseni. Hleddme vlastné zbytky po déleni 10, tedy ptame se, emu jsou dand &isla kon-
gruentni modulo 10. Pocitdme postupné:

=7,
7?=9=-1 (mod 10),
?=7.7=-1-T=-7=3 (mod 10),

7"=3.7=21=1 (mod 10).
Vidime, Ze 7* = 1. Pomoci (1.6) mame
=7 (7). P =1 P =7 =9 (mod 10),

11
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tedy posledni cifra &isla 7** je 9. Obdobn& poéitdme s 3:

3 =3, 33=7 (mod 10),

3* =09, 3*=1 (mod 10).
Maéame tedy opét

39 =314 = (3133 =14 . P =P =7 (mod 10)

a posledni cifra &sla 3% je 7. A
Priklad 1.2.5. Jak pozname, Ze je celé ¢islo délitelné 3, 4, 8, 9, 117 Odpovédi odvodte a
zdtivodnéte s vyuzitim kongruenci.

Reseni. Vyuzijeme dekadicky zépisﬁ Libovolné ¢islo z € N lze psat ve tvaru
=Y a10",
k=0

kde ax, € {0,1,2,3,4,5,6,7,8,9} jsou ¢islice. Nejprve odvodime pravidlo pro délitelnost 3
a 9. Vzhledem k tomu, Ze 10 =1 (mod 9) (a tudiz i modulo 3), je

=Y a10"=Ya;1* =3 a; (mod9)i (mod 3)
k=0 k=0 k=0

tedy bude z délitelné 9 nebo 3 pravé tehdy, kdyz bude délitelny jeho ciferny (po iteraci
superciferny) soucet. Obdobné odvodime pravidlo pro délitelnost 11. Jelikoz je 10 = —1
(mod 11), mame

n n
=Y a10F =Y ar (1) = > ar— Y ar (mod 11)
k=0 k=0 k sudé k liché
tedy vidime, Ze z je délitelné 11 pravé tehdy, kdyz je délitelny alternujici soucet jeho éislic
(pfiCemz nezalezi na tom, jestli za¢neme s plus, nebo s minus, protoze znaménko zachovava
délitelnost). Pro délitelnost 4 vyuZijeme faktu, Ze 4 | 10¥ pro k > 2, tedy

=Y a;10"=10a; +ay (mod 4),
k=0
takze x je délitelné 4 tehdy, a jen tehdy, je-li délitelné posledni dvojcisli. Obdobné pro
délitelnost 8 mame 8 | 10* pro k > 3, tudiz

n
z="> a;10*=100a; + 10a; +ay (mod 8)
k=0

a x je délitelné 8 pokud je délitelné posledni trojcéisli. Zajimava jsou také pravidla pro
délitelnost 7 a 13, viz Piiklad 2.8 na strané 15 ve sbirce k pfedmétu MB154 Diskrétni
matematika. A

6Pomoci jinych zapisti by to bylo snazsi. V zépise o zdkladu n se délitelnost n pozné tak, Ze posledni
¢islice je 0.

"https://www.math.muni.cz/~prochazka/vyuka/sbirka.pdf
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Kapitola 1 Algebra

Priklad 1.2.6. Naleznéte cela Cisla x a y tak, aby 883 x + 487y = d byl nejvétsi spolecny
délitel cisel 883 a 487. Spoctéte z a y i pro nasledujici dvojice ¢isel 227, 133 a 3441, 2 665.

Resend. Plati, Ze pro cel4 ¢isla m a n existuji koeficienty k, I takové, Ze
km+in=d

kde d je nejvétsi spolecny délitel cisel m a n. Tato ¢isla nejsou uréena jednoznacéné — existuji
totiz také cisla r, s takova, Ze
rm+sn=0

a pak pri¢tenim nasobki r, resp. s k k, resp. [ dostaneme jiné koeficienty. K nalezeni d,
jakoz i k a | bychom mohli pouzit pfimo Eukleidiv algoritmus, nicméné to byva zdlouhavé
— viz alternativni feSeni. My budeme postupovat metodou tGpravy rovnic. Soustavu

1-m+0-n=m
0O-m+1-n=n

upravime pomoci Uprav ,vymeéna rovnic“, ,vynasobeni jedné rovnice +1“ a ,pri¢teni na-
sobku jedné rovnice k druhé“ (coz jsou elementérni fadkové Gpravy nad Z) upravime na
tvar

k-m+l-n=d

r-m+s-n=0

(tedy vynulujeme jeden z ¢lenti napravo od rovnitka), pfi¢emz dostaneme nejvétsi spolecny
délitel a hledané koeficienty, zvané Bézoutovy. Provadéni uprav odpovida béhu Eukleidova
algoritmu na pravé strané rovnic. Bude se nam hodit maticovy zapis soustavy. Uvazme
prvni dvojici 883 a 487.

1 01883 1 -2|-91 1 -2|-91 16 —=29| 5
0 1487 0 1] 487 5 —9| 32 5 =932
N 16 =29|5) (198 —=359|1 ) 198 —-359 |1
-91 165 |2 -91 1652 —487 883 |0

Mame tedy rovnost 198 - 883 — 359 - 487 = 1 a tato cisla jsou nesoudélnd. Muzeme obdobné
pocitat pro ostatni dvojice. Nejprve 227 a 133.

1 0227 S =239 (1 =2{=39) 7T =12 =7 N
0 1]133 0 1] 133 3 —5| 16 3 —-5| 16
N T2 =Ty (75 —12801 ) 75 —128 |1
17 =29 | 2 17 —-29|2 —-133 227 |0
Nakonec pocitejme pro 3441 a 2665.

13
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103441\ (1 -1} 776 1 —11776 \
0 1]2665 0 1|2665 -3 4337
N 7 -9]102 ) 7 91102 9 -102| 9
-3 4337 —-24 31| 31 —24 31|31
N 9 -10219 ) 601 —776 |1\ 601 —776 |1 A
—-261 337 |4 —261 337 |4 —2665 3441 |0
Jiné reseni. Jinou metodou je zpétné dosazovini do Eukleidova algoritmu. Délime po-

stupné vétsi ¢islo mensim se zbytkem, pricemz se budou hodit zaporné zbytky. Cisla si pro
prehlednost vyznacime barevné.

883 = 2487 — 91 ~ 91 = 2. 487 — 883
487 =591 + 32 ~ 32 =487 —5.91
91=3-32— ~ =3.32-91
32=6-5+ - =32-6-
=2.2+41 ~ 1=5-2.

Vidime, Ze nejvétsim spoleénym délitelem cisel 883 a 487 je 1. Nasledné pocitame a zpétné
dosazujeme do Eukleidova algoritmu.

1=5-2.2=5-2-(32—6-5)=13-5—2-32
=13-(2-32-91)—2-32=237-32—13-91

—37- (487 —5-91) — 1391 = 37- 487 — 198 - 91

= 37487 — 198 - (2 - 487 — 883) = 198 - 883 — 359 - 487

Hledana cisla = a y jsou 198 a —359, pficemz d = 2. Obdobné miiZeme postupovat i pro
dalsi dvojice cisel.

227 =2-133 — 39

133=3-39+16

30=2-16+
16=2-7+
=3.2+1

I ¢isla 227 a 133 jsou nesoudélna. Zpétnym dosazovanim dostaneme koeficienty do Bézou-
tovy rovnosti.

1=7-3-2=7-3-(16-2-7)=7-7—3-16
=7-(39—-2-16)—3-16="7-39—17-16
=7-39—17- (133 —3-39) = 5839 — 17- 133
—=58-(2-133—227) — 17133 =99 - 133 — 58 - 227

14
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Nakonec nalezneme koeficienty i pro dvojici 3441 a 2 665.

3441 = 26654 776
2665 =3-776 + 337

776 = 2- 337 +
337 =3-102+
=3.3149
=3.9+4
9=2.1+1

Koeficienty dostaneme zpétnym dosazovanim.

1=9-2. =9-2-(31-3-9)=7-9-2.
=7-(102-3-31)—2-31=7- —923.

=7-102—23-(337—3-102) =76- 102 — 23 - 337

=76 (776 — 2 - 337) — 23 - 337 = 76 - 776 — 175 - 337

= 176776 — 175 - (2665 — 3 - 776) = 601 - 776 — 175 - 2665

= 601 - (3441 — 2665) — 175 - 2665 = 601 - 3441 — 776 - 2665 A

Priklad 1.2.7. Najdéte inverzni prvek k ¢islu 157 modulo 2475.

Resend. Hleddme vlastné takové m, ze 157-m = 1 (mod 2475). Plati, e modulérn{ inverze
existuje pravé tehdy, kdyz jsou dand cisla nesoudélna. Nesoudélnost 157 a 2475 ovérime
pomoci Eukleidova algoritmu a modularni iniverzi najdeme pomoci Bézoutovych koefici-
entu.

1 012475 N 1 -16 | =37 N 1 -16 | =37 N
0 1| 157 0 1| 157 4 —63 9
17 —268 | —1 —17 268 | 1
4 —-63| 9 157 —2475 |0
Protoze —17-2475 =0 (mod 2475), vidime, Ze

268-157 =1 (mod 2475)

a 268 je inverze k 157 modulo 2475. A

1.3 Polynomy

Priklad 1.3.1. V oboru komplexnich ¢isel feste nasledujici kvadratické rovnice:
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a) 2 — 6z +58 =0, b) 922 — 8z +29 =0, c) 3z +4zx+5=0.

Reseni. Postupujeme klasicky. Nejprve spoéitdme diskriminant, poté jeho odmocninu (vzpo-
meneme si na piiklad [1.1.3) a nésledné zjistime kofeny podle vzorce. Zatneme fa)). Méame

D= (—6)—4-58 = —196 = —14?,

tedy kofeny jsou
6+14i

=3+ 7i

T1,2 =
Vb)) vyjde diskriminant
D=(-8)%-4-9-20=-980=—4-5-49

a kofeny
8+14iv5 4+£7iv5
8 9

T1,2 =
Pti FeSeni [c)) mame diskriminant
D=4>—-4.3.5=—-44=—-4-11

a kofeny polynomu pak jsou

—4+2iv11 -24iv/11
T1,2 = 6 = 3 .

Priklad 1.3.2. Dokazte nasledujici tvrzeni.

a) JestliZe polynom p(x) = a, 2" + ap_1 "1 + -+ 4+ a; T + ao s celodiselnymi koeficienty,
a, # 0, ma kofen xg € Z, pak x, déli koeficient ay.

b) Jestlize polynom p(z) = a, 2" + a,_1 "' + -+ - + a1 T + ag s celodiselnymi koeficienty,
a, # 0, mé raciondlni kofen zo = %, kde 7 a s jsou nesoudélnd celd ¢isla, pak r déli
koeficient ag a s déli koeficient a,,.

Reseni. K Yeseni Casti @) muZeme pouzit kongruenci. Pro kazdé z; € Z je p(z1) = ao
(mod z7). Je-li zy kofenem polynomu p, pak

0=p(zg) =ap (mod zy),

tudiz ap musi byt délitelné x,.
Nyni vyresime ¢ast @ Dosadme kofen zo = % do polynomu p.

rn ,,.n—l r

an—n+an_1ﬁ+~~-+a1—+a0=0
S S S
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Vynasobenim rovnosti s” dostaneme néasledujici tvar.

rq

A

AT+ Q1 TV 8+ Apor" 282+ +a178" L +ags"=0

~~
s-q

Protoze rovnost zfejmé impiluje kongruenci modulo libovolné m, plati ziejmé nasledujici
kongruence.

aps" =0 (mod r) a," =0 (mod s)

Jinymi slovy r | aps™ a s | a, r". Protoze jsou vSak r a s nesoudélnd, musi r délit ap a s
délit a,. A

Priklad 1.3.3. Na zékladé predchoziho cviceni a s pomoci Hornerova schématu najdéte
koreny nasledujicich polynomt v mnoziné komplexnich ¢isel:

a) a(z) =23 —2>—-Tx+3, c) c(x) =5z*+8x3 — 1422+ 19z — 6.

b) b(x) =2z*+523+ 722+ 10z + 6,

Reseni. Pripomenme si Hornerovo schéma. Méjme polynom
-1
p(z) =an 2"+ ap_12" " 4+ + a1 x + ao.

MizZeme si jej pomoci postupného vytykani x ze vSech ¢lenti kromé ,,absolutniho“ napsat
také nasledujicim zptisobem.

p(z) = (<...<(an-x+an_1)-:c—i—an_z)-x+---+a2>-x—i—al) -z + ag

Pti zjistovani hodnoty p v néjakém bodé x, proto staci vzit a,, vynasobit x, a pricist
a,_1, nasledné zase vynasobit x, a pric¢ist a,_s, atd. az nakonec pricteme ag. Hornerovo
schéma vypada tak, Ze si do nultého fadku tabulky zapiSeme koeficienty polynomu p,
pak do nultého sloupce si zapiSeme z, a do radku tabulky pfisluSnému danému éislu si
zapisujeme mezivysledky pfi pocitani funkéni hodnoty p v bodé zy. V poslednim sloupci
ndm vyjde pfislusnd funkéni hodnota. Navic je-li zy kofenem p (tedy vyjde-li 0), jsou
prislusné mezivysledky koeficienty polynomu .

Za¢néme [d). Na zdklad€ minulého piikladu vime, Ze mé-li polynom a racionilni
kofeny, musi (v zédkladnim tvaru) jejich Citatel délit 3 a jmenovatel 1. Jedinymi kandidaty
na racionalni kofeny jsou tedy £1 a £3. Hledejme je tedy pomoci Hornerova schématu,

1 -1 -7 3

1|1 0 -7 —4
-1|/1 -2 -5 8
3|1 2 -1 0
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Vidime, Ze zy = 3 je kofenem a navic
a(r)=2*—2> - Tz +3=(z—3)(z*+2z2—1).

Zbyvajici koreny najdeme pomoci diskriminantu D = 4 44 = 8 kvadratického polynomu a

mame /3
—2+2+/2
$1,2=T=—1:|:\/§.

Pfejdéme k [b). VSechny koeficienty polynomu b jsou kladné, proto musi byt b((0, c0)) C
C (0, 00), proto jediné redlné kofeny polynomu b mohou byt zdporné. Navic mé-li b raci-
onalni kofeny, musi jejich citatel délit 6, jejich jmenovatel 2 a tyto musi byt nesoudélné.
Hledejme je tedy pomoci Hornorova schématu. Paklize narazime na koren, miuZzeme dale
hledat kofeny s tim, Ze narazime-li na kofen, muZzeme vzit hodnoty v predeslém radku za

nové koeficienty.

2 5 7 10 6
-1[2 3 4 6 0
-1[2 1 3 3
-2|2 -1 6 -6
-3/2 -3 12 =30
—6 |2 —9 58 —342
-312 2 3 2
-312 0 4 0

Vidime, ze
b(z) = (z+ 1) (x+g) (202 +4) = (z+1) (22 +3) (22 +2),

pricem# kofeny polynomu z? + 2 jsou =+i+/2 (viz piiklad . Celkem tedy méame ctyti
koreny, —1, —% a +iv/2.

Nakonec [d). M&-li polynom c raciondlni kofeny, musi itatel délit 6 a jmenovatel 5.
Polynom c jiz ma i zadporné koeficienty, proto musime zkouset kladné i zaporné kandidaty
na kofeny.

5 8 —-14 19 -6
1[5 13 -1 18 12
2|5 18 22 63 120
3|5 23 55 184 546
6|5 38 214 1303 7812
-1|/5 3 —-17 36 —42
-2|5 -2 -10 39 -84
-3|5 -7 71 =2
IR
-i|s -8 2 -p
2/5 =5 5 0
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Algebra

Méme rozklad

o(@) = (z +3) (x—§> (52 —52+5) = (x+3) (52 —2) (> —z+1)

a posledni dva kofeny najdeme klasicky, tedy D =1+4=5

1++5

T34 = .
2

1+V5

Celkem mame kofeny —3, % a =

Priklad 1.3.4. V Zs5 a v Zg najdéte vSechny kofeny polynomi

a) 2+ 2z + 3, b) 8 — 22+ 3z +2.

Reseni. Protoze se pohybujeme v koneénych okruzich, mizeme vyzkouset vSechny moz-
nosti, kterych je 5, resp. 6. MiZzeme opét pouzit Hornerovo schéma, pricemz nas zajimayji

pouze zbytky po déleni 5, resp. 6. Za¢néme fal).

Zeg |1 2
Zs |1 2 3 0 5

01 2 3
01 2 3

111 3 0
11 3 1

2|1 4 5
2|11 4 1

3|1 5 0
3|1 0 3
41 1 o 411 0 3

51 1 2

Vidime, %e v Zs nem4 polynom z? + 2 + 3 kofeny, zatimco v Z

kongruence
22 +22+3=0 (mod 5)

nema feSeni, zatimco kongruenci
> +22+3=0 (mod 6)

resi jakékoli celé Cislo davajici po déleni 6 zbytek 1 nebo 3.

¢ ma koreny 1 a 3. Tedy

Pfejdéme k[b). VyuZijeme zdporngch zbytkd. Reprezentanty t¥id kongruence tedy budou

v Zs: 0, £1 a £2; v Zg pak 0, =1, £2 a 3.

Ze |1 —1 2
Zs |1 -1 =2 2 6 3

0/1 -1 3 2
01 -1 -2 2

11 0 3 -1
111 0 =2 0

211 1 =1 0
211 1 0 2

3|1 2 3 -1
—21]/1 2 -1 -1
11 2 o o -211 3 3 2

-1/1 -2 -1 3

8Protoze je —3 kofenem, mame ve schématu koeficienty podilu. Novy odhad na raciondln{ kofeny tedy
tika, ze Citatel musi délit —2 a jmenovatel 5. Proto nemusime znovu zkouset —3 ani —6.
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Nad Zs tedy mame jediny koren 1 a nad Zg mame koren 2. Opét lze Fici, Ze kongruenci
2 —2°+3z+2=0 (mod 5)

resi kterékoli ¢isla tvaru 5k + 3, k € Z, kongruenci
2~ 2°+3z+2=0 (mod 6)

resi vSechna celd ¢isla kongruentni 2 modulo 6. A

1.4 Soustavy linearnich rovnic

Priklad 1.4.1. Reste nasledujici soustavu rovnic s nezndmymi v R.

ry + 2 T2 + r3 + 3 T4 + 2 Ty = -8
2 ry + T2 + r3 + T4 + 3 Is = 1
I + r3 — ry + 2 Ir5 = 0
1 + 229 + 223 + 24 + 35 = O

Reste stejnou soustavu v Z;3, zbytkovych tiidach modulo 13.

Reseni. MiZeme si soustavu napsat do matice, kde prvky matice jsou koeficienty pfed
proménnymi. Pouzivame elementdrnich rdadkovych uprav, tj. ,prohozeni dvou radki ma-
tice“, ,vynasobeni jednoho z f4dkt nenulovym|’| &islem“ a , p¥icteni ndsobku jednoho fadku
k jinému“. Vybereme (pomoci prohazovini fadkt) vedouci koeficient — tj. prvek takovy,
aby ve vSech sloupcich nalevo od néj a zdroven ve vSech fadcich pod nim byly nuly. Na-
sledné se pomoci tohoto prvku a elementarnich fadkovych Gprav snazime vynulovat vsechny
prvky ve sloupci pod vedoucim koeficientem. Poté postup opakujeme — uréime novy ve-
douci koeficient atd. Tomuto postupu fikdme Gaufova eliminace. Takto matici upravime
do schodovitého tvaru — kdy pred a pod vedoucimi koeficienty jsou nuly. Ve sloupcich na-
pravo od vedouciho koeficientu musi byt pod danym fadkem bud nuly, nebo novy vedouci
koeficient.

Ze schodovitého tvaru jiz umime vyjadfit feSeni — dosadime za volné promeénné (tedy
ty, v k nimz p¥islusnych sloupcich se nenachdzi vedouci koeficient v Zddném fddku) para-
metry, nasledné postupné od nejnizsiho fddku nahoru vyjadfujeme vdzané proménné (tj.
ptislusné danému vedoucimu keoficientu) pomoci volnych a jiz dfive vyjadfenych vizanych
proménnych.

Druhou moznosti feSeni je upravit matici pomoci zétné Gaufovy eliminace do redu-
kovaného schodovitého tvaru, tedy do tvaru kde ve sloupcich s vedoucimi koeficienty je
dany vedouci koeficient jedinym nenulovym prvkem. V tomto tvaru jiz mizeme rovnou
vyjadfovat vazané proménné pouze pomoci volnych, a tudiz v libovolném poradi.

9obecnéji invertibilnim
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Nejprve prohodime prvni a treti radek.

121 3 2|-8 101 -12| 0
211 13 1 121 3 2[-8
101 -12/ 0] 211 13| 1
122 230 122 230

Néasledné pomoci nového prvniho fadku vynulujeme ostatni éisla v prvnim sloupci.

10 1 -1 2| 0
02 0 4 0|-8
“lo1 -1 3 -1| 1
02 1 3 1] 0

10 1 -1 2] 0
01 0 2 0|-4
“lo1 -1 3 -1| 1
02 1 3 1| 0

Néasledné pouzijeme druhy fadek k vynulovani prvkia ve druhém sloupci pod vedoucim
koeficientem.

10 1 -1 2] 0
01 0 2 0|—4
“100 -1 1 —-1| 5
00 1 -1 1| 8

Sectenim poslednich dvou fadki dospéjeme k nasledujici soustave.

101 —-12| 0
010 20/|-4
“loo01 -1 1|-5
000 O0O0]13

Odtud vidime, Ze soustava nemd nad R feSeni. OvSem 13 = 0 (mod 13), tedy nad Z;3
muzeme pokracovat. (Soustavu bychom od zadatku Fesili stejné — vzdy jsme pficitali na-
sobek faddku k jinému a jediny pfipad, kdy jsme délili, vySel celo¢iselny.) Nad Z;3 méme
tedy nasledujici soustavu.
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Pro zpétnou Gauflovu eliminaci pouze odecteme od prvniho fadku treti.

100 01 5

000 0O O

Mame tedy volné proménné 4, =t a x5 = s, nasledné z3 = -5+t —s, 20 = —4— 2t a
x1 =5b—s, kdet, s € Z3 a vyrazy chdpeme nad Z,3 — zajim4 nés zbytek po déleni 13. A

Piiklad 1.4.2. Reste nésledujici soustavu rovnic.

T + 2 To —+ rs — T4 + rs = 0
2 ry + o + 2 I3 — 2 T4 + 2 Irs = 0
21 + x3 — T4 + 225 = -—1

1 + X2 + 223 — 24 + x5 = 1

Reseni. Postupujeme stejné jako v piikladu — nejprve Gauflovou a poté zpétnou
GaufBlovou eliminaci. (Samozfejmé by stadila pouze ,dopfednd“ eliminace, ale pak bychom
museli dopocitdvat vizané proménné) Opét pouZijeme maticovy zapis. Nejprve pomoci
prvniho fadku vynulujeme ostatni prvky v prvnim sloupci.

121 -11] 0 1 2 1 —-11] 0
212 —-22| 0 0 -3 0 00| 0
201 -12/-1]7]10 -4 -1 10|-1
112 -2 1| 1 0 -1 1 -1 0| 1

Néasledné vidime, Zze o = 0. Vedouci koeficient druhého fadku muizeme vydélit —3, poté
s jeho pomoci vynulujeme ostatni prvky ve druhém sloupci. ProtozZe jsou ostatni prvky
druhého fadku nulové, mizeme rovnou nulovat i prvky nad vedoucim koeficientem.

10 1 -11] O

01 0 00} 0
00 -1 10 -1
00 1 -10| 1
Nyni jen se¢teme posledni dva radky.
101 —-11|0
010 00/0
001 —-10]1
000 0O0]O0
Nakonec odec¢teme tteti fadek od prvniho.
100 O01]-1
010 00 0
001 —-10] 1
000 O0O] O
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Méame tedy volné proménné x4, =t a x5 = s, vazané proménné jsou z; = —1 —s, o =0 a
r3 =1+t tas € R jsou parametry[l’| Ve vektorovém tvaru m4 tedy feSeni tvar

X =[-1,0,1,0,0] +¢-(0,0,1,1,0) + s - (—1,0,0,0,1),
kde hranaté zavorky oznacuji bod a kulaté vektory. A

Priklad 1.4.3. Reste nasledujici soustavu rovnic, nejprve nad R, poté nad Z;.

221 — o + x3 — T4 = 1
2 ry — i) - 3 Ty = 2
3 I - rs -+ Ty = -3
21 + 29 — 223 + bxy = —6

Reseni. Vyuzijeme maticovy zapis a budeme postupova GauBovou eliminaci s vybérem
pivota. Nejprve si za pivota zvolime prvek ve druhém radku a druhém sloupci. Nasledné
pomoci néj vynulujeme ostatni prvky ve druhém sloupci (nad nim i pod nim). Také se
budeme snazit so nejdéle udrzet ¢isla v matici cela.

2 -1 1 —-1] 1 0 0 1 2]-1
2 -1 0 —-3| 2 2 -1 0 -3| 2
3 0 -1 1/-3[713 0 -1 1|-3
2 2 -2 5|-6 6 0 —2 —1|-2

Druhy radek si vynasobime —1. Novym pivotem bude prvek v prvnim radku a tretim
sloupci. Pomoci prvniho fadku tedy vynulujeme ostatni prvky ve tretim sloupci.

001 2|-1

-2 10 3|-2

300 3|4

6 00 3|—4

Nyni odecteme od ¢tvrtého radku treti.

001 2|-1

| 21032

300 3|—-4

3000 O

Ctvrty fadek méizeme vydélit 3 a a prvky budou stile celoéiselné. Vidime, Ze z; = 0.
Naésledné bude pivotem prvek ve ¢tvrtém fadku a prvnim sloupci, pomoci né€jz vynulujeme
zbytek prvniho sloupce.

001 2|-1
010 3|2
“loo0oo0 3|-4
1000| O

10H]edali-li bychom Feseni nad jinym télesem (okruhem), zvolili bychom p¥islu$né parametry. Napiiklad
pro racionélni feseni bychom se omezili na t, s € Q.
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Poslednim pivotem bude prvek ve tretim radku a étvrtém sloupci. Nejprve odeéteme od
druhého radku tteti, nasledné od trojnasobku prvniho fadku dvojnasobek tretiho.

003 0| 5
0100 2
000 3|—4
100 0 O
Méame tedy nad R TeSeni z3 = g, Ty = 2, x4 = —% a xr; = 0. Jak je to s feSenim nad

Z7? Musime délit tfemi, chceme tedy najit modularni inverzi k 3 modulo 7. Vidime, ze
3:-5=15=1 (mod 7), tedy déleni 3 je v Z; totéz co ndsobeni 5. Nad Z; méme FeSeni
21=0,20=2,23=5-5=25=2ax4,=-4-5=-20=1 (mod 7). A

Priklad 1.4.4. Reste soustavu rovnic pro neznamé z, y, z v zdvislosti na hodnotéch
parametru a € R:
z + y + az =1
z + ay + = a (1.8)
az + y + 2z = a

N

Reseni. Postupujeme klasicky s vyuzitim maticového zapisu do chvile, nez musime délit
vyrazem s a. Nejprve pomoci prvniho fadku vynulujeme ostatni slozky v prvnim sloupci.

1 1 al|l 1 1 a 1
1 a 1|a ~]l 0 a—1 1—a | a—1
a 1 1]|a? 0 1—a 1—a?®|a®>—a

Nésledné ke tfetimu fddku pfi¢teme druhy s vyuZitim 1 —a?+ (1 —a) = (14+a) (1 —a) +
+(1-a)=(24a)(—a).

1 1 a 1
~|1 0 a-—-1 l1—a a—1
0 0 2+a)(1—a)|a®—-1

Nyni médme t¥i moznosti. Pro a € R \ {—2,1} mtZeme posledni fadek vydélit vyrazem
(2+a) (1 — a), pfiCemz 1 — a se zkrati, a druhy fadek vyrazem a — 1.

11 a| 1
~[o1 -1] 1
00 1|l

Nésledné zredukujeme tteti sloupec pomoci tietiho radku.

—a2
0 g+a
0 1
1

2+a
_l4a
2+a

2
o o
o = =
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Nakonec zredukujeme druhy sloupec podle druhého radku.

1—a?

2+a

00
10 L
01

2+4a
_1+ta
2+4a

¢
o o =

Ve v v Vv —_— 2 7/ Ve v v z
Méme tedy feSenf 2 = -2, y = 5~ a z = —372. Pro a € (—2,1) méme krivku FeSenf pro

ruzné parametry a, jejiz anaglyf je zndzornén na obrazku [1.2

Obrazek 1.2: Kfivka jednoznaénych feSeni soustavy (1.8)) pro a € (—2,1).

Pro a = 1 dostaneme tfi shodné rovnice tvaru

T+y+z=1
feSené trojicemi tvaru x =1 —t—s,y=1t, 2 = s, t, s € R. Pro a = —2 dostaneme po
upravé soustavu s matici
1 1 -2| 1
0 -3 3|-3
0O 0 0| 3
kterad nem4 reseni. A
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Priiklad 1.4.5. Najdéte vSechny dvojice parametru a, b € R, pro které je mnozina reseni
soustavy rovnic
T + y + az =1

T + ay + 2z =1
ar + y = b
o neznamych z, y, z € R
a) prazdna, b) nekonecni.

V druhém pripadé soustavu vyteste.

Reseni. Opét vyuZijeme maticovy tvar a stejné jako v piikladu budeme postupovat
GauBovou eliminaci dokud nebudeme muset délit vyrazem s a nebo b. Pomoci prvniho
radku zredukujeme prvni sloupec.

11 all 1 1 a 1
1l a 2|1 |~]1]0a—1 2—a 0
a 1 0|b 0 l1—-a —-a® |b—a

Nésledné ke tiretimu fadku priéteme druhy.

1 1 a 1
~]1 0 a-—-1 2—a 0
0 0 2—a—a’|b—a

S vyuZitim rozkladu 2 — a — a® = (2 + a) (1 — a) (viz priklad vidime, ze
o pokud a € {—2,1} a b # a, soustava nem4 Fesent;
o pokud a ¢ {—2,1}, m4 soustava jediné FeSen;
o pokud a € {—2,1} a b = a, m4 soustava nekoneéné mnoho Feseni.

V poslednim piipadé mame pro a = b = 1 nasledujici soustavu, zadanou pomoci matice.
Pomoci druhého fadku zredukujeme treti sloupec.

1111 1 101
001/0f~|00O0T1j0
0 000 0 000

Méme z =0,y=tax =1—t,t € R. Pro a = b = —2 méame soustavu s nasledujici matici.
1 1 =21
0 -3 40
0 0 0/0

Méame Teseni z = 3t, pak y=4tax=1—-2¢t,t € R. A

26



Kapitola 1 Algebra

1.5 Maticovy pocet

Priklad 1.5.1. Uvazujme nésledujici matice.

2 8
;) B=| -1 -5
9 11

2
1
C=(28321 5) D=| 9
—6

3

Zjistéte, jestli existuji souCiny A- B, B- A, C - D a D - C. Pokud ano, urcete je.

Resend. Existuje pouze souin matic tvaru m x n a n X p, p¥i¢em? vysledkem bude matice
tvaru m X p. Protoze A je tvaru 2 x 4 a B tvaru 3 x 2, soucin A - B neexistuje. Soucin

B x A existuje.
—10 2 12 -26
) = 7 —-10 -6 —32
5 56 54 118

2 8
poac( 1 = |( 39
9 11

Protoze C je tvaru 1 x 5 a D je tvaru 5 x 1, existuji oba souciny.

6 7
0 5

2
1
C-D=(28321 5). 9 :(—88)
—6
3
2 4 16 6 42 10
1 -2 -8 -3 -21 -5
D-C=| 9 -(28321 5): 18 72 21 189 45 A
—6 —12 —48 —18 —126 —30
3 6 24 9 63 15
Priklad 1.5.2. Ukazte, Ze soustavu k linedrnich rovnic o nezndmych zi, xs, ..., x, s

koeficienty a; ; a pravou stranou b; lze zapsat pomoci maticového nésobeni takto
A-z =0,

kde A = (a;;) je matice tvaru k x n, z = (x;) je sloupec velikosti n a b = (b;) je sloupec
velikosti k.
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Reseni. Mame nasledujici soustavu rovnic.

a11%1+ 122+ -+ a1, T, =by

a2,1w1+a2,2x2+~--+aznxn =b2

a1 T1+ ag2To+ -+ app T = by
Podivejme se na i-tou rovnici. Leva strana je
;1 X1+ A2 T2+ + -+ + Qi Ty,

coz je ale presné soucin i-tého fadku matice A se sloupcem z. Prava strana je b;, tedy
i-ta slozka sloupce b. Je zfejmé, Ze porovnanim vsSech slozek dostaneme pozadovany tvar

Ax =b. A
Priklad 1.5.3. Matice A a B tvaru n X n jsou dany predpisem:
L, i27, L, 1<y,
QA5 = . . bz’j = . .
2, <7, 3, ©>7].

Napiste je a vypoctéte, ¢emu se rovna jejich soudin.

Reseni. A je matice, kde ¢isté nad hlavni diagonélou jsou 2, jinak 1. B m4 isté pod hlavni
diagonélou 3, jinak 1.

1 2 2 2 11 - 11

11 2 2 3 1 - 11
A=|: . B=

11 1 2 3 3 - 11

11 1 1 3 3 - 31

Pocitejme soucin A - B =: C. Mame vzorec
n
Cik = Z a,-j bjk.
Jj=1

Ze zadéni si pfepiSeme podminku na bjy.
1, j<k
bjr = ]
3, 7>k
Maéame tii pripady.

o« 1<k

) k n
1.1+ > 2-14 > 2:3=i+2(k—-49)+6(n—k)=6n—4k—1
j=1 j=i+1 j=k+1
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e i=k ,
Y11+ ) 2:3=i+6(n—1i)=6n—>53

j=1 j=i+1

o« 1>k

k 7 n
1.1+ > 31+ > 2:3=k+3(i—k)+6(n—i)=6n—3i—2k
J=1 j=k+1 j=i+1

Vidime, ze pripad, kdy ¢ = k odpovida obéma piipadiim s ostrou nerovnosti nahrazenou
neostrou. Mame tedy vzorec pro soucin A - B.

Lo _Jen—4i—i i<y
Y l6n—3i—25 i>j

Pocéitejme nyni B - A =: D = (d;;). Dosadime do vzorce pro souéin
n
dik = D bij aji
=1

za b;; a aji, pricemZ si podminku pro a;, zapiSeme pomoci j a k.
1 izk
*7 2, j<k,
Opét si vypocet rozdélime na tii pripady.

e 1<k
i—1 k-1 n
324> 124> 1-1=6(—-1)+2(k—-i)+(n—k+1)=4i+k+n—-5
7=1 =] j=k

e 1=k

i—1 n
> 2.3+ 1-1=6(t—-1)+(n—i+1)=5i+n—5
j=1

j=i

e 1>k

k-1 i—1 n
>2:3+>3-1+> 1-1=6(k-1)+3@G—-k)+(n—i+1)=3k+2i+n—>5
j=1 j=k j=i

Stejné jako minule je pripad, kdy ¢ = k zahrnut v ostatnich vzorcich, uvazujeme-li je
s neostrou nerovnosti. Mame tedy i vzorec pro prvky soucinu B - A.

& — n+4t4+j5—-5 1<
7o n+3j+2i—-5 i>j
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Priklad 1.5.4. UvaZujme orientovany graf s uzly 1, 2, ..., n. Tomuto grafu mizZeme
pfifadit ¢tvercovou matici A = (a;;) tak, Ze a;; = 1 jestlize v grafu existuje orientovand
hrana z ¢ do j, jinak je a;; = 0. Jaky vyznam maji mocniny matice A, to je maticové
souciny

A*=A- A, AP=A-A-A?

Resend. Uvazme matici A? = (b; ;). Mdme dle definice maticového nésobeni

n
bij =D ik Ok
k=1

pricemz souéiny napravo jsou vzdy O nebo 1 a budou 1 jen pro k, pro kterdz existuje
orientovana hrana z ¢ do k a z k do j. Suma takovychto jednicek pak d& pocet takovychto
k, tedy podet cest délky pravé 2 z i do j. Pro matici A* = (¢; ;) mdme podobné

Cij = Z Qi k Q0 Oy, j
PY

kde na pravé strané mame opét bud 0 nebo 1 a 1 jen pro ty dvojice k, ¢, kde existuje
orientovana cesta
t—k—00—j

a soucet ndm opét dé pocet takovychto dvojic. Pak c; ; zadava pocet cest délky praveé 3 z 1
do j. Obecnd A* zad4va podet cest délky pravé k mezi danymi vrcholy. A

Priklad 1.5.5. Uvazujme matici

A= -

=N W
W = Ot
N OO
AN |

a ozna¢me pismenem e postupné tyto elementirni fadkové operace
a) vynasobeni druhého faddku ¢islem 3,

b) vyména prvého a tfetiho fadku,

¢) prifteni dvojndsobku prvniho faddku ke tfetimu.

Necht E je jednotkova matice 3 x 3. Oznaéme e(A) a e(E) matice, které vzniknou aplikaci
elementarni fadkové operace e na matici A a E. Ukazte, Ze plati

e(E) - A=e(A).
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Reseni. Za¢néme @) NapiSme si, jak vypad4 matice e(E) - A a politejme. Vidime, Ze na
konci vyjde e(A).

Obdobné vyfesime [b)).

001 35 67 1
eE)-A=|010|-[ 21 05 |=] -2
100 13 -21 3

Nakonec |c).

100 35 67 3 5 6 7
e(B)-A=[0 1 0|-| =21 05|=|-2 1 0 5]|=e4) A
2 0 1 13 -21 7 13 10 15

Priklad 1.5.6. Spoctéte inverzni matici k matici
1 1 2
1 -1 -3 |.
2 1 2

Reseni. Provadime elementarni radkové tipravy v rozsitené matici. Nejprve pomoci prvniho
radku zredukujeme prvni sloupec.

1 1 2|1 00 1 1 2| 100
1 -1 3|01 0)|~]0-2-5/-1120
2 1 2(001 0 -1 -2/-2 01

Nésledné vynasobime posledni fadek —1 a posledni dva rfadky prohodime.

Provedte zkousku.

Ke tretimu fadku pricteme dvojnasobek druhého.

11 2
~1 01 2
0 0 -1
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K prvnim dvéma radkim pri¢teme dvojnasobek posledniho, ktery néasledné vynasobime

—1.
110 7 2 —4
~| 010 8 2 -5
00 1]-3 -1 2
Nakonec od prvniho fadku odec¢teme druhy.
1 00[/-1 0O 1
~| 010 &8 2 -5
00 1]-3 -1 2
Zkousku provedeme pomoci maticového nasobeni.
1 1 2 -1 0 1 100
1 -1 -3 |- 8 2 -5 ]|=1010
2 1 2 -3 -1 2 0 01
-1 0 1 1 1 2 1 00
8 2 51|11 -1 -3|=]1010 A
-3 -1 2 2 1 2 0 01

Priklad 1.5.7. Spoctéte inverzni matici k matici

1 4 -2 3
2 9 3 -2
-1 -6 —-11 4
0 -1 -6 0

Zkousku provedte aspon castecné.

Reseni. Opét upravujeme rozsifenou matici pomoci elementarnich fadkovych tprav. Nej-
prve pomoci prvniho fadku zredukujeme prvni sloupec.

1 4 -2 3/1000 1 4 -2 3] 1000
2 9 3 -2(0100 0 1 7 -8/-2100
-1 -6 —-11 4/00 10| |0 -2 —-13 7/ 1010
0 -1 -6 0/0001 0 -1 -6 0| 0001

Néasledné pomoci druhého fadku zredukujeme druhy sloupec. Odecteme jeho Ctyinasobek
od prvniho fadku, jeho dvojnésobek priéteme k rddku tfetimu a nakonec jej pricteme ke
¢tvrtému radku.

10 —30 35| 9 —4 0 0
01 7 -8/-2 100
“foo 1 -9/-3 210
00 1 -8/-2 101
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Nyni pomoci tfetiho fadku zredukujeme treti sloupec. Odecteme jej od étvrtého radku, od
druhého jeho sedminasobek a k prvnimu pri¢teme jeho tricetinasobek.

0 0 —235|-81 56 30 O
0 95| 19 =13 -7 0
1 -9 -3 2 10
0 1 1 -1 -1 1

O O O
oS O =

Zbyva zredukovat posledni sloupec pomoci posledniho fadku. Ke tretimu pficteme jeho
devitinasobek, k prvnimu zase jeho dvé sté pétatticetindsobek a od druhého odecteme jeho
pétapadesatinasobek.

1 00 0| 154 —179 —205 235
(0 100|-36 42 48 —b5
0010 6 -7 -8 9
0 001 1 -1 -1 1
Zkousku provedeme pomoci maticového nasobeni.
154 —179 —-205 235 1 4 -2 3 1000
—36 42 48 =5 | 2 9 3 =21 0100
6 -7 -8 9 -1 -6 —-11 4 0010
1 -1 -1 1 0 -1 -6 0 0 001

Pri pocitani inverzni matice jsme pouzivali pouze tpravu ,,pri¢teni nasobku jednoho radku
k jinému“, kterd neméni determinant. Mtzeme tedy Tici, Ze determinant nasi matice je 1
a %e m4 inverzi, pfidem# diky vySe spocitanému to musi byt pravé nase matice['] A
Priklad 1.5.8. Spoctéte inverzni matici k matici

1 a 00
0 a

o O O

S O O
O O =
o= Q O
= Qe O O O

Provedte zkousku.

Reseni. Opét postupujeme pomoci fadkovych tprav rozsifené matice. Od ¢tvrtého radku
odeCteme a-nasobek patého. Nasledné od ttfetitho odecteme a-nésobek nového ctvrtého,
atd., nacez dostaneme inverzi.

1 a0O0O0(10O0O0O0 10000|1 —a a? —a® at
01 aO0O001O0O00O0 010000 1 -a a’® —ad
001 a00010O0]~]001O0QO0j0 O 1 -—a a?
0001a/00O0T1O0 0001O00 O 0 1 —a
0 00O01/000°O0T1 000O01/0 O 0 0 1

1M4-li matice inverzi a levou inverzi (coZ jsme spoéitali), pak nutnd se museji tyto rovnat, tedy leva
inverze je i pravou inverzi.
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Zkousku provedeme pomoci nasobeni matic. PTi nasobeni inverze pivodni matici zleva
vlastné ve druhé matici pri¢itAme a-nasobek nasledujiciho fadku k pfedchozimu, ¢imz
méame hned vysledek.

1 a 000 1 —a a> —a® a* 10000
01 a 00 0 1 —a a® —ad 01000
001 a0 O 0 0 1 -—a a2 |=]100100
0001 a 0 0 0 1 —-a 00010
00 0 01 0 0 0 0 1 0 00 O01

Obdobné bychom provedli i opa¢ny soucin — k nasledujicimu sloupci bychom pficitali a-
-nasobek ptredchoziho. A

1.6 Vektorové prostory a podprostory

Priklad 1.6.1. Ukazte si, Ze nasledujici mnoziny jsou s vhodnymi operacemi vektorové
prostory.

a) mnozina n-tic redlnych ¢isel R™,
b) mnozina vSech polynomu s koeficienty v R, oznaceni R[z],
¢) mnozina vSech matic 3 X 3 s prvky v Zs, oznaéeni Matsy3(Zs),

d) mnoZina v8ech posloupnosti redlnych ¢&isel, kterou lze chépat jako mnozinu vSech zob-
razeni mnoziny prirozenych ¢isel N do R.

Reseni. Zaénéme @) Jednotlivé n-tice zapisujeme
x = (%1, %2, . .., Ty,) nebo x = (z;)2;.
Definujme sc¢itani po slozkach, tedy
X+y:= (@1 +yLTet v, T+ Yn) = (T + Yi)iey-
Néasobeni skaldrem definujeme rovnéz po slozkéch,
a-x=(ar,ars,...,ax,) = (az;),.

Ovérime axiomy vektorového prostoru. S¢itani vektoru je asociativni a komutativni diky
tomu, Ze je definovano po slozkach a diky vlastnostem R. Neutralnim prvkem bude vektor

=(0,0,...,0) = (0)™,.
o= ( ) = (0)i,

n

Pak totiz
x+o0=(z;+0), = (z;); = x.
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Opaénym prvkem k x = (z;)"; bude —x = (—z;),, protoZe pak
X+ (=) = (& — z:)izs = (0)izy = o

Ovérme nyni axiomy pro nasobeni skalarem.

a-(x+y)=a- (@t = (a(wity),_ = (@zitay)y=a-x+tay
(a+0b)-x ((a-l-b) ) =(az;+bz)},=a-x+b-x

a-(b-x)=a-(bz;)}, = a(bwz) =((ab)wi)i:1=(ab)-x
)i

Lox=(1z)i, = (z:)is, = x

Vidime, ze R" je vektorovym prostorem nad R.

Prejdéme k @ Mtuzeme se na situaci divat dvéma zpisoby. Prvni je nahliZzet na poly-
nomy jako na funkce R — R. Pak je soucet polynomil definovan tak, ze funkéni hodnota
souctu je souctem funkénich hodnot a skalarni nasobek je definovan jako nasobek funkc-
nich hodnot. Axiomy vektorového prostoru jsou nasledné splnény diky vlastnostem sc¢itani
a nasobeni v R[]

Druhy zptsob je definovat s¢itani polynomu jako polynom, jehoZ koeficienty jsou soucty
koeficientt pfi stejnych mocnindch z, skaldrni nasobeni je pak rovnéz definovano vynéaso-
benim vSech koeficienti. Ovéreni axiomi vektorového prostoru je pak analogické k casti
la)). Vice k tomuto p¥istupu u &sti[d)).

Nyni vyfe$ime [d). Séitdni matic je definovdno po slozkéch, diky tomu (a diky vlastnos-
tem s¢itani v Zs) bude séitdni matic asociativni, komutativni, neutrdlnim prvkem bude
nulové matice a opa¢nym prvkem k matici A = (a;7);,_; bude matice —A = (5 — a;;)? ,_;.
Nésobeni skaldrem je rovnéZ definovano po slozkéch, takze (opét diky vlastnostem nésobeni
a sCitdni v Zs) mame splnény vsechny axiomy vektorového prostoru.

Zajimavé, je ast [d). S¢itani i ndsobeni skaldrem je definovdno po slozkdch, diky tomu
méame splnény vSechny axiomy vektorového prostoru. Ovéreni je analogické jako v E[), jen
s tim rozdilem, Ze vektory piSeme jako x = (z;)$2,, jinak je vSe stejné. S uréitym typem
posloupnosti mizeme identifikovat i polynomy: Polynom p(z) = po + prx + -+ + p 2"
muzeme psat jako posloupnost

(pOapla s 7pna0707 <. ')a

tedy lze polynomy identifikovat s mnozinou vsech posloupnosti, které jsou od jistého indexu
nulové. Tato charakterizace ndm zredukuje ovéfeni [b)) na |[d) (staci si rozmyslet, Ze s¢ité-
nim koneéné mnoha takovych posloupnosti jakozto jejich skaldrnim nasobenim z prostoru
nevypadneme) [ A

12Takto Ize definovat soudet a skalarni nasobek obecngjch funkci R — R. Neni t&zké si rozmyslet, Ze
i prostor vSech funkci R — R je vektorovym prostorem nad redlnymi Cisly. Podobné jsou vektorovymi
prostory i prosotry vSech spojitych funkci, funkci spojité diferencovatelnich apod.

13Vidime tedy, ze polynomy jsou dokonce vektorovym podprostorem prostoru viech posloupnosti redlnych
Cisel.
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Piiklad 1.6.2. Najdéte vSechny vektorové podprostory v R?, resp. v R3. Délejte to ,,geo-
metricky.“

Reseni. UvaZujme nejprve viechny podprostory v R2. Museji obsahovat nulovy vektor o =
= (0,0). Pokud jiny vektor neobsahuji, jedné se o nulovy podprostor. Mé&me tedy vektor
u # o. Kazdy vektorovy podprostor, ktery jej obsahuje, musi obsahovat i vSechny jeho
skaldrni ndsobky t-u, t € R. Podprostor obsahujici u tedy musi obsahovat i pfimku zadanou
u. Uvazme jiny vektor v. Pokud je s vektorem u linedrné zavisly, jedn4a se o jeho skaldrni
nasobek a lezi tedy v primce generované u. Pokud jsou u a v lineadrné nezavislé, tvori jiz
bazi R2. Jedinymi podprostory v R? jsou tedy pocatek, piimky prochéizejici poSatkem a
celé R2.

Obdobné postupujeme v R3. Mame podatek a vsechny piimky prochdzejici podatkem.
Dva, linedrné nezdvislé vektory v R?® uréuji rovinu prochdzejici po¢atkem, tedy takovéto
roviny jsou také vlastnimi vektoroviimi podprostory. Nakonec méame celé R3. A

Priiklad 1.6.3. Rozhodnéte, zda nasledujici mnozZiny jsou vektorové podprostory.
a) U={f eR[z] | f(3) = f(-1) = 0} C R[],

b) V = {A € Matay2(R) | a11 + az2 = 1} C Mataya(R),

c) W ={A € Matax2(R) | a11 + a22 = 0} C Mataxa(R),

d) Z={f:N=>R| f(n+1)=f(n)+ f(n—1)} c{f: N> R}.

Reseni. Nejprve si pripomeneme uréujici vlastnost vektorovych podprostort. Jsou to ne-
prazdné podmnoziny uzaviené na scitani vektoril a jejich nasobeni skalarem. To nastane
pravé tehdy, kdyz je uzaviend na linedrni kombinace délky 2 (nebo na linedrni kombinace
kone¢né délky), tj. T je vektorovy podprostor, jestlize T' # 0 (ekvivalentné o € T') a pro
kazdé vektory u, v € T a kazdé dva skalary o, S platia-u+p8-veT.

Pfejdéme k FeSeni [d). Ziejme 0(3) = 0(—1) = 0. M&jme dva polynomy f, g € U (tj.
fB)=f(-1)=g@)=9(-1)=0) aa, f €R. Pak

(@ f+B-9)( 3)=a-f( 3)+B-9( 3)=0+0=0,
(@-f+B-9)(-1)=a-f(-1)+8-9(-1)=0+0=0.
Je tedy U vektorovym podprostorem v R[z]. Alternativné lze tlohu FeSit pomoci nésle-

dujictho pozorovéni. Polynomy f, g € U pravé tehdy, kdyz f(z) = (z — 3) (z + 1) p(z) a
g9(z) = (x — 3) (z + 1) g(z) pro néjaké p, ¢ € R[z]. Pak

a-f+B-g=@-3)(z+1)(a-p+8-9),
tedy fakt, ze je U vektorovy podprostor, lze ovérit také pomoci vytykani polynomit. Ob-

dobné by byl vektorovym podprostorem i prostor vSech (polynomidlnich) ndsobku néjakého
polynomu.
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Nyni vyfesime [b). Vidime, Ze V neni vektorovym podprostorem v Matoya(RR), nebot
neobsahuje nulovou matici. P¥ejdéme rovnou k [d). MnoZina W zfejmé obsahuje nulovou
matici. Necht tedy A = (a;;), B = (b;;) € W, tj. a11 + a2 =0=b11+ba2, 2 ¢, f €R.
Pak pro matici - A + - B plati

aagn + ﬁbl,l + o 42,2 + ,8b272 = (al,l + 0,2,2) + B (b1,1 + bz,z) =0+0= 0,

takze W je vektorovym podprostorem v Matoya(R).
Nakonec mame @) Pro nulovou posloupnost 0: N — R, o(n) = 0 plati

o(n+1)=0=0+0=o(n) +o(n—1),
tedy o € Z. Necht f, g: N — R jsou prvky Z, tedy
fln+1)=f(n)+ f(n—1) g(n+1) =g(n)+g(n—1).
Pak pro posloupnost a - f + 8- g, o, 8 € R, plati
(@a-f+B-g)n+1)=af(n+1)+Bgn+1)
=a(f(n)+ fn—1)) + B8 (g(n) +g(n— 1))

=af(n)+af(n—1)+pBg(n)+Bg(n—1)
=(a-f+B-g)(n)+(a-f+B-g)(n—1),

tudiz Z je vektorovym podprostorem v prostoru vSech posloupnosti realnych cisel. A

P¥iklad 1.6.4. Zjistéte, zda vektor u = (1,—2,3,4) € R* lezi v linedrnim obalu vektort
vi =(1,0,1,-2), vy = (3,—1,—1,-1) a v = (0,1, —5,4).

Resend. Zjistujeme, zda existuji ki, ko, k3 € R takova, Ze
u=k1'V1+k2'V2+k3'V3.

Vzhledem k tomu, jak je definovdno nisobeni skaldrem na R*, dostdvime v kaZdé sloZce
rovnici pro t¥i neznamé. Celkem mame ¢tyti slozky, tedy ¢tyfi rovnice. Ziskame tak soustavu
¢tyT rovnic o tfech neznamych.

ki + 3k = 1
—ky + k3 = 0

kv — ka — 5k3 = 1
-2k — ky + 4ks = -2

Tu feSime pomoci maticového zapisu. VSimnéte si, Ze sloupce matice odpovidaji souradni-
cim vektora vy, va, V3 a u.
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1 3 0| 1 1 3 0]1

0 -1 1| 0 0 -1 110
1 -1 -5, 1|70 -4 —5|3|"

—2 -1 4]-2 0 5 4|6

1 3 o0l 1 1 3 0] 1

0 -1 1| 0 0 -1 1] 0

“1o o0 -9 10 0 0 —9/|10

0 0 9|—4 0 0 0| 6

Vidime, Ze soustava nema feSeni, tedy vektor u nepatii do linedrniho obalu vektort vy, vo
a vs. A

Jiné reseni. Zjistujeme, zda ma soustava
kl'V1+k2'V2+k3'V3+k4'u:0 (19)

netrividlni feSeni. To mzeme délat po slozkach — dostaneme soustavu Ctyt rovnic o ¢tyfech
neznamych. Matice soustavy bude mit ve sloupcich postupné slozky vektort vy, vo, v3 a
u. V naSem pripadé to bude matice

1 3 0 1

0 -1 1 0

4 1 -1 -5 1
-2 -1 4 -2

Postupovat lze GauBlovou eliminaci, ovSsem v naSem piipadé mame stejny pocet rovnic jako
neznamych, tj. matice je ¢tvercovd a mame definovany determinant této matice. Pomoci
softwaru spocitame, ze det A = 54, tedy matice je regularni a (1.9) ma pro danou pravou
stranu jediné reseni. Vidime, Ze u nelezi v linedrnim obalu vy, v a vs. A

Pozndmka. Postup s determinantem v alternativnim feSeni funguje pouze pro ¢tvercové
matice, tedy pro n — 1 vektori v n-rozmérném prostoru.

Priklad 1.6.5. Necht M je podprostor R® generovany vektory v; = (1,2,1,0,1), vo =
= (2,-1,0,1,1), v = (1,-3,—-1,1,0) a v4, = (1,7,3,—1,2). Rozhodnéte, zda jsou tyto
vektory linedrné nezavislé. Pokud ne, vyberte z nich bazi podprostoru M a zbylé vektory
vyjadiete v této bazi.

Reseni. Zjistujeme, zda méa soustava
ki-vi+ky-vo+ks-vs+ks-vy=o0

netrivialni feSeni. Po slozkach dostaneme soustavu péti rovnic o ¢tyfech neznamych, kterou
si muzeme zapsat do matice. Sloupce levé strany matice budou slozky vektoriu vi, vs, V3 a
v4. Na pravé strané mame vzdy nuly, nemusime ji tedy viibec psat. Postupujeme GauBovou
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eliminaci. Nejprve eliminujeme prvni sloupec podle tfetiho fadku. Nasledné eliminujeme
druhy sloupec podle ¢tvrtého radku

1 2 1 1 0o 2 2 -2 00 0 O
2 -1 -3 7 0 -1 -1 1 00 0 O
1 0 -1 3|~1]1 O0-1 3|~|10 -1 3 (1.10)
0 1 1 -1 0 1 1 -1 01 1 -1
1 1 0 2 0 1 1 -1 00 0 O

Vidime, Ze mame systém feSeni ky = s, ks =t, ks =s—tak; =t—3sprot, s eR.
Vektory jsou linedrné zavislé. Vybereme z nich bazi. Vidime, Ze prvni dva sloupce vSech
matic v jsou linedrn& nezévislé. (Elementérni fadkové pravy zachovavaji dimenzi.)
Systém TesSeni lze pfepsat do tvaru

t-vs+s-va=38s—1t)-vi+(t—s)-Va. (1.11)

Dosazenim ¢t = 1, s = 0 do (1.11) dostaneme vyjadfeni v3 — v; + v, a dosazenim ¢t = 0,
s =1 vyjadieni v4 = 3 - vy — vo. A

Piiklad 1.6.6. Spoctéte soufadnice polynomu 1+ 3z + 5z2 + 1022 v bézi
a=1+z+22>-231+22+2%14+2+32>—2°,2+ 22+ 42> +52%)
prostoru Rs[z].

Reseni. Hledame kq, ko, k3 a k4 tak, aby

1+3z+522+102° =k -(1+2+22°> —2°) + ko - (1 + 22 +2°) +
+ks-(1+z+30> —2%) +ky- (2422 +42°+52°).

Roznasobenim pravé strany a vytknutim mocnin x dostaneme nésledujici rovnici.

143z +522+102° = (k) + ko + ks +2ky) + (k1 + 2Ky + ks +2ky) z +
+(2]€1+3k3+4k4)$2+(—k1+k2—k3+5k4)£173

Dva polynomy jsou si rovny pravé tehdy, kdyz se rovnaji koeficienty u prislusnych mocnin
z. (To je déno tim, Ze mocniny z tvori bazi R[z|.) Ziskdvadme soustavu Ctyf rovnic o étyfech
neznamych.

ki + ke + ks + 2k = 1
kv + 2k + ks + 2ky = 3
2k, + 3k + 4ky = 5
—ki + ks — k3 + 5ky = 10

Tuto soustavu fesime Gauflovou eliminaci pomoci maticového zapisu. Nejprve pomoci prv-
niho radku zredukujeme prvni sloupec. Nasledné podle druhého fadku zredukujeme druhy
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sloupec.
11 121 1 11 2|1 101 2 -1
12 123 (0 100 2] 10100 2
20 3 4|5 0 -2 1 0| 3 0010| 7
-1 1 -1 5|10 0 20711 00O0T7| 7

Posledni radek vydélime sedmi a poté pomoci néj zredukujeme ¢tvrty sloupec. Nakonec
pomoci tretitho fadku zredukujeme treti sloupec.

101 0|-3 1 00 0f-10
N 01 00| 2 N 0100 2
0010 7 0010 7
0 001 1 0 001 1
Vidime, Ze soufadnice polynomu 1+ 3z + 5z% + 10z® v bdzi « jsou (—10,2,7,1). A

Piiklad 1.6.7. Najdéte bazi a dimenzi podprostoru U v R® vSech feseni nésledujici sou-
stavy rovnic.
227 — 3x9 + 4x3 — 8x4 + zs = 0
1171+2£I72—3$3+ .’E4+5$5=0

Reseni. Resime soustavu GauBovou eliminaci s pomoci maticového zapisu, pricemz nulovou
pravou stranu nepiseme.

2 -3 4 -8 1 N 0 -7 10 —-10 -9 N
1 2 -3 15 1 2 -3 1 5
N 0O -7 10 —-10 -9 N 0O -7 10 -10 -9
7 14 -21 7 35 7 0 -1 -13 17
Polozme z3 = 7r, x4y = Tt a x5 = 7s. Pak xy = r + 13t — 17s a o = 10r — 10t — 9s.

Méme parametricky popis vektort x = (z1, s, 3, Z4,25) z U:

x=(r+13t—17s,10r — 10t —9s,7r,7t,75)
=r-(1,10,7,0,0) +¢- (13,—10,0,7,0) + s - (—17,-9,0,0,7)

Polozme u; = (1,10,7,0,0), uy = (13,-10,0,7,0) aug = (—17,-9,0,0,7). Pak {u;, us, us}
tvori bazi U a je vidét, ze dimU = 3. A

Priklad 1.6.8. Najdéte baze a dimenze podprostorti
P ={f eRyfa] | f(1) = f(2) = 0}, Q = {9 € Ryfz] | g(z) = g(—2)}.
Reseni. Viimnéme si, Ze vSechny polynomy v P musi byt tvaru
p(@) = (z — 1) (z - 2) q(z) = (2" — 3z +2) ¢(2) (1.12)
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kde ¢ je vhodny polynom (viz piiklad ). Aby byl polynom p stupné nejvyse 4,
musi byt ¢ stupné nejvyse 2. (Stupen sou¢inu polynomi je roven souctu stupni.) Pak ale
q € Ry[z] a lze psét q(z) = qo + q1 = + g2 2. Z (1.12) plati, Ze polynomy v P lze psat jako

p@)=(2"-32+2) (0 + @z + g2’
=q(z*—32+2)+q (2 - 32> +21) + q2 (z* — 32° +227). (1.13)

Vidime, %e dimenze P je 3 a baze je (naptiklad) (22 —3z+2,23 -3 22 +2x,2* —3 13+ 2 2?).
Ovéfme nejprve, ze () je skutecné linearni podprostor. Nulovy polynom jisté do @) patii,
necht f, g€ @, o, B €R.

(- f+B-9)(-2) = af(-z)+L9(—2) = af(x)+fg(z) = (o f+ 5 9)(x)

Q je vektorovym podprostorem. Podivejme se na charakterizaci polynomi z Q. Je-li f € @,
plati f(z) = f(—z). Pieme-li f(z) = fo+ fiz + fox® + fa2® + fyz*, pak

f(=z) :fo—f1$+f2x2—f3x3+f4x4.

Mé-1i byt f(z) = f(—=z) pro kaZdé z, pak musi byt f; = f3 = 0. Lze tedy psét f(z) = fo+
+ fox? + fyz*. Odtud je zfejmé, Ze dim @ = 3 a baze Q je (napiiklad) (1,22, z%). A

Pozndmka. Z charakzerizace P pomoci (1.12)) vidime, Ze P je obraz linedrniho zobrazeni
Ry[z] — Ry4[z] daného ndsobenim polynomem z? — 3z + 2. Toto zobrazeni mé (ve stan-
dardnich bazich mocnin z sefazené shora od nejvétsi k nejmensi) pfedpis s matici

1 0 0
—3 1 0

A=| 2 -3 1],
0 2 -3
0 0 2

kterou jsme ziskali pomoci (I.13). Pokud polynom ¢(z) = g2 2® + ¢1 = + go ztotoZnime

s vektorem q = (g2, g1, q0)”, pak polynom (z2 — 3z + 2) ¢(z) ztotoznime s vektorem A - q.
Podobné bychom mohli popsat Q. Zobrazeni Ry[z] — Ry[z] zadané piedpisem g(z) — g(z?)

je linedrni a mé (ve stejnych bézich jako vyse) matici

OO OO
OO = OO
_ o O O O

Tato charakterizace by fungovala i pro ekvivalenty P a @) v prostoru vsech polynomi
R[], kde vSak jiz neméme popis pomoci matic (byly by nekonecné).
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1.7 Deteminant

Priklad 1.7.1. Pfipomente si zékladni vlastnosti determinanti matic nad télesem.

Reseni. Méjme Ctvercovou matici A = (ai,j)?jzl. Definujeme jeji determinant jako

det A := Z (—1)|U| a170(1) . a2,0(2) ----- an,a(n) (1.14)

oES,

kde suma probiha pies vSechny permutace n-prvkové mnoziny. Na permutace se lze také
divat jako na vybéry prvka matice tak, abychom z kazdého fadku i sloupce vybrali prave
jeden prvek. Determinant A znaéime det A nebo |A|. Cislo (—1)!°! znéime znaménko per-
mutace a politame jej jako —1 na podet transpozic (zdmén dvou prvkir), kterymi utvofime
o 7z identity. (Pocet |o| neni jednoznac¢ny, ale je vzdy bud sudy, nebo lichy.) ProtoZe jsme
misto o mohli vzit c~! se stejnym znaménkem, méme

det A = Z (—1)|0| A5-1(1),1 * Ao—1(2),2 " """ Ao—1(n)n = det AT, (1.15)

gES,
kde A" je matice transponovand, A" = (a;,;)7;_,. Determinant mé nésledujici vlastnosti.
(i) Vyménime-li dva faddky matice A, determinant se vyndsobi —1.

(ii) Vyndsobime-li néjaky fddek matice A éislem a, determinant se vyndsobi tymz Gislem
a.

(iii) Pfi¢teme-li a-ndsobek jednoho fadku k jinému, determinant se nezméni.
(iv) det(A-B) =det A-det B

)
)
(v) det(A™!) = L
)
)

T detA

(vi) Je-li néktery fddek matice nulovy, je determinant matice nulovy.

(vii) Je-li matice A singularni (nemé-li inverzi), je det A = 0.

(viii) Determinant jednotkové matice je 1.
(ix) Determinant horni nebo dolni trojihelnikové matice je soucin prvki na diagonéle.

Dikaz téchto (a jinych) vlastnosti determinatii je mozné najit napiiklad v 10. kapitole
udebnice Linedrna algebra a geometria od P. ZlatoSe['¥] nicméné nékteré lze dokazat po-
meérné jednoduse.

Vlastnost (i) plyne z toho, ze vymeéna fadki po dosazeni do ((1.14)) pfid4 jednu transpo-
zici ke kazdé permutaci, coz znaménka vSech permutaci zméni na opacna, takze —1 miiZzeme
vytknout z ((1.14) a dostaneme determinant piivodni matice. Stejné tak vynasobime-li 74-
dek néjakym cislem a, bude toto ¢islo v kazdém scitanci v pravé jednou, coz dava (ii).

Yhttp://thales.doa.fmph.uniba.sk/zlatos/la/LAG_A4.pdf
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Vynasobime-li celou matici éislem a, je to jako nasobit kazdy z n radkid, tedy determinant
se vynasobi a”. Vlastnosti (il) — maji i své sloupcové obdoby diky (1.15).

Vlastnost (vi)) je zfejm4 — v kazdém s¢itanci v bude 0. Jejim piimym disledkem je
vlastnost (vii), protoZe v singuldrni matici umime pomoci elementérnich ¥adkovych tprav
vyrobit nulovy fddek. Vlastnosti a jsou dokézané obdobné& — jedind transpozice,
ktera nebude mit ani v jednom ciniteli v sou¢inu nulu, bude identita s kladnym znaménkem.
Vlastnost (iv) je zndma jako Cauchyho véta o soucinu determinanti.

Definujme A; ; matici, ktera vznikla z A odebranim i-tého fadku a j-tého sloupce. Poté
pro i- ty fadek matice A plati, Ze

det A = Z(—l)i+j a; 5 det Aiﬂ'. (116)
j=1

Vztah (1.16), dokdzany v sekci 10.4 Linedrne algebry a geometrie a nazyvany Laplaceiv
rozvoj determinantu, ma i svoji sloupcovou variantu. Pro j-ty sloupec A plati

det A = Z(_l)z‘f‘.? ai,j det Ai,j- A
i=1
Priklad 1.7.2. Spoctéte determinant matice
2 -1 0 3
1 0 -20
-1 1 21
-3 -2 11

a) pomoci fadkovych tprav,
b) pomoci Laplaceova rozvoje vhodného fadku.

Reseni. Zaéneme @) Upravujeme matici do horniho trojihelnikového tvaru a pritom sle-
dujeme, jak Gpravy méni determinant. Nejprve pomoci druhého fadku zredukujeme prvni
sloupec, coz determinant nezméni. Néasledné prohodime prvni a druhy fadek, a potom
druhy a novy tfeti. Toto vyndsobi determinant (—1)% = 1, tedy jej op&t nezméni.

2 -1 0 3 0 -1 4 3 1 0 -2 0
1 0 -2 0 1 0 -2 0 0 1 01
-1 1 21 |71o 1 o1 |0 -1 43
3 -2 11 0 -2 —5 1 0 -2 -5 1

Novy druhy radek pricteme ke tfetimu a jeho dvojnasobek ke ¢tvrtému. Ani tato operace
nezméni determinant. Poté treti fadek vydélime ¢tyimi, coz vydéli ¢tyimi i determinant.
Nakonec pricteme k poslednimu fadku pétinasobek predchoziho, coz determinant nezméni.

10 -2 0 10 —20 10 -2 0
01 01 01 01 01 01
“loo 447100 11|00 11
00 —5 3 00 -5 3 00 0 8
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Maéame horni trojihelnikovou matici. Jeji determinant je 8 — soucin prvki na diagonéle.
Protoze pri tpravach se determinant vydélil 4, byl determinant ptivodni matice 32.
Pro b)) postupujeme Laplaceovym rozvojem podle 2. fadku. Mame

e o

det =(=1)*".1-det| 1 2 1
-1 1 21 011
-3 -2 11

2 -1 3
+ (=13 . (=2)-det | -1 1 1
-3 21

2 -1 3 -1 0 3
=2-det| =1 1 1 | —det 1 21
-3 -2 1 -2 11

Spocitame determinanty submatic 3 x 3. Pro prvni matici postupujeme Laplaceovym roz-
vojem podle druhého radku.

2 -1 3
det| =1 1 1 |=(=12""det L 3 ) 412 det| 23
2 1 3 1
-3 -2 1
2 -1
_1\2+3
+(-1) det<_3 _2)

=(-1-1-(-2)-3) + (3-1-(-3)-3)
—(2-(-2) = (=3)- (-1))
= 146+2+9+4+3=23

Determinant druhé matice spoéitdme opét Laplaceovym rozvojem podle prvniho radku.

A 2 1 1 2
det 1 2 1 |=(=1)H det( >+(—1)1+3-3-det< >
011 11 -2 1

=—(2-1-1-1)+3- (1-1-(-2)-2)
=—1+15=14

Celkem tak mame determinant ptivodni matice.

2 -1 03
1 0 -20

det 1 1 921 =2-23-14=32 A
-3 -2 11
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Priklad 1.7.3. Zjistéte, pro které parametry a, b, ¢ € R je soustava rovnic

axr; + bxzs = c
CIq + azx3 = b
cxy + bxrz =

jednoznacné fesitelna. Pro tyto parametry najdéte feSeni pomoci Cramerova pravidla.

Reseni. Soustava je jednoznacné resitelnad pravé tehdy, je-li determinant matice soustavy

nenulovy. Soustava matice je
a b 0

A=1]c 0 a
0 ¢ b

Spocitame det A Laplaceovym rozvojem podle prvniho fadku.
0 a c a
(1 _1\1+2 .
det A=(-1)""-a det(c b>+( 1) b det(0 b)
=a-(—c-a)—b-c-b) =—c(a® +b?)
Vidime tedy, Ze det A = 0 pravé tehdy, kdyz je ¢ = 0 nebo a = b = 0. Obménou vidime, Ze

det A # 0 pravé tehdy, kdyz c # 0 a alespon jedno z a, b je nenulové. Tuto podminku lze
pséat tak, ze a? + b* > 0]F| Pak podle Cramerova pravidla plati

" detA’

kde A; je matice, kde jsme i-ty sloupec matice A nahradili sloupcem z pravé strany rovnice.
Méme

Z;

c b 0
A1=b0a,

a a b

tedy opét pocitame determinant Laplaceovym rozvojem podle prvniho radku.

0 a b a
det A} = (=1)" . c- det <c b) + (=1)"*2 - b-det <a b)

=—ca?—b®+ba®

Obdobné

a pocitame det A, Laplaceovym rozvojem podle prvniho fadku.

b a c a
detA2:a-det<a b)—b-det<0 b)

15Plati totiz a? + b?> > 0 a vyraz je roven nule jen pro a = b = 0.
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=ab?—a®—bc?

Nakonec
a b c

A3=COb,
0 a a

takZe nyni pocitame determinant Laplaceovym rozvojem podle prvniho sloupce.

detA3=a-det(0 b)—c-det<b C)
a a a a

=—a’b—abc+ac’

Maéame tedy reseni

. b —a’b+a’c . _a®+bF—ac? . _a’b+abc—ac®
YT (@ + 1) 27 (a2 +b?) 5T (a2 +b?)
pro viechna a, b € R tak, #e a®> +b*> > 0 a c € R ~ {0}. A

Priklad 1.7.4. Spoctéte determinant matice

Ay =

== ==
_ ==
_ =
_=Q ==
QR ===

a) pomoci fadkovych tprav,
b) pomoci Laplaceova rozvoje 1. fadku a indukce.

Reseni. Oznalme A, = (a;;) matici n x n definovanou predpisem

a 1=
Q5 = .,
7 1 i#j.

Odtud plyne oznaleni nasi matice As. Zaénéme fa). Budeme pouzivat fadkové i sloup-
cové upravy. Nejprve odec¢teme posledni fadek od vSech ostatnich. Néasledné k poslednimu
sloupci pficteme vSechny ostatni. Tyto operace neméni determinant.

al 111 a—1 0 0 0 1—a
1 a1l 11 0 a—1 0 0 1—a
11 all|~ 0 0 a—1 0 l1—a
111al 0 0 0 a—1 1—a
1111a 1 1 1 1 a
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a—1 0 0 0 0
0 a-1 O 0 0
{ 0 0 a-1 0 0
0 0 0 a-—-1 0
1 1 1 1 a+4

Na konci dostaneme dolni trojihlenikovou matici, jejiz determinant je soucin prvka na
diagonale. Dostavame

det As = (a — 1)* (a + 4).
Stejny postup by samoziejmé fungoval pro libovolnou matici A,,, pficemz bychom nejprve
dostali na diagonéle ¢ — 1 a mimo ni 1 — a, nasledné pfi¢tenim prvnich n — 1 sloupci
k poslednimu bychom ziskali v pravém dolnim rohu a + n — 1. Mame tak vzorec

det A, = (a—1)"'(a+n-1).

Vidime napftiklad, Ze A, je invertibilni pro vSechna a s vyjimkoua=1aa=1—n.
Pocitejme [b)).

1111 1 a1 1

1 a 11 1 111

det As = a - det A4 — det 11 a1 + det 11 41
1 11 a 111 a

1 a 11 1 a 11

11 al 11 a'l

—det )y g g Tty 1 g .

111 a 1 111

=a-det Ay — 4 det By

Posledni ¢tyTi matice jsou si vzajemné fadkové podobné, pficemz pro pfevod druhé a ¢tvrté
matice na prvni potfebujeme provést lichy pocet vymeén radku a pro prevod tfeti je to sudy
pocet radku.

Oznacenim B,, = (b; ;) matice nxn, ktera vznikla nahrazenim a; ; v matici A,, jedni¢kou
ziskame posledni fadek. Navic odectenim prvniho fadku od ostatnich je matice B, fadkove
podobna matici s prvnim fadkem samych jednicek, a — 1 jinde na diagonale a 0 jinak, je
tedy det B, = (a — 1), v naSem ptipadé je det By = (a — 1)3.

Indukci pfedpokldddme det A4 = (a — 1)3 (a + 3). Pocitejme

det As =a det Ay —4detBy=a(a—13(a+3)—4(a—1)>*
=(a—-12(@*+3a—-4)=(a—1)*(a+4).
Posledni rovnost mame diky rozkladu a®> + 3a —4 = (a — 1) (a + 4). Obdobné bychom
dostali obecny vzorec — sta¢i pouZit rozklad a®? + (n —2)a—(n—1)=(a—1)(a+n —1).
det A, =adetA,_1 — (n—1) det B,,_;
=a(a—1)"2?(@+n—-2)—(n—1)(a—1)""2
=(@-1)"?@+m-2)a—(n—1)=(@@-1)" (a+n-1) A
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(Geometrie

2.1 Linearni zobrazeni
Priiklad 2.1.1. Rozhodnéte, zda nasledujici zobrazeni mezi vektorovymi prostory jsou
linearni.

3, .3

x%+x§
)

x1+x2

a) ¢: R? = R, o(z1,25) =
b) ¥: R® — R2, ¢(z1, %2, 73) = (271 — T2,2 T2 — T3),

c) &: Rlz] = R?, o(p) = (p(0),7(0)).

Resend. Zaénéme@). Vidime, Ze (0, 0) neni definované. Definujeme hodnotu pomoci limity.

3 3
Ty + x5

lim
(z1,72)—(0,0) a:% + z%

im T1,T2) =
(z1,22)—(0,0) SO( ! 2)

Zavedeme polarni souradnice z; = p cos#, x5 = p sin6.

— lim 0% (cos® 0 + sin®0)
00 g3(cos® @ + sin? §)
S
1
= lim g (sin® @ + cos® @) =0
0—0

Posledni rovnost jsme ziskali, jelikoZ je sin® 6 + cos® @ koneénd hondota pro libovolné 6.
Definujme tedy ¢(0,0) = 0. Vidime (z poc¢itani limity), ze p(kz1,kx2) = ko(x1,z2).
Zobrazeni ¢ vSak neni linedrni, protoze nerespektuje s¢itani vektort. Vidime naptiklad, ze

1+0 0+1
1,0)= - =1=_"" = 0,1
ale
141 2
90(1,1)—1—_|_1—§—1742—90(1,0)+<P(0,1)-
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Pokragujmeb)). Zobrazeni 9 je linedrni. M&jme vektory x = (1,22, 23) ay = (y1, Y2, y3) € R
a skalary a, 8 € R.

Y(a-x+B-y)=v(az+ By, azs+ By, axs+ Bys) =
= (2(az+By) — (az2+ B), 2 (az2 + Byo) — (a5 + Bys)) =
= (@@ — @) + B2y — 1), 0 (222 — 75) + B (292 — 9s)) =
=a-P(x)+B-9(y)

PiSeme-li vektory jako sloupce, pak méa ve standardnich bazich matici

0271 2)

Nakonec [d). Mé&jme polynom
p(z) =po+pizT+-+pu2". (2.1)
Zderivovanim p dostaneme

p(x)=p +2pz+---+np 2" (2.2)
Dosazenim 0 do (2.1)) dostaneme p(0) = 0, do (2.2) pak p'(0) = p;. Mame tedy pfedpis

&(p) = (po, p1)-

Diky vlastnostem s¢itdni polynomi a jejich nésobeni skaldrem je & linedrni (viz piiklad
16.1[)). A

Jiné Teseni|d). Zobrazeni ¢ lze psat jako sloZeni & o &, kde & : Rlz] — R[z]? je dané
pfedpisem p — (p,p') a &: R[z]? — R? pak prepisem (f, g) — (f(0), g(0)). JelikoZ

(af+Bg9) =af +84

pro libovolné polynomy (dokonce diferencovatelné funkce), je zobrazeni £; linedrni. Linea-
rita & se ukaze jako ptivodné. Pak je £ linearni jako sloZeni dvou linearnich zobrazeni. A

P¥iklad 2.1.2. Ve vektorovém prostoru R?® uvazujme bazi u; = (1,—1,1)7, uy = (1,1,0)7,
uz = (2,1,1)T. Necht p: R3 — R3 je linedrn{ zobrazeni, o ném¥ vime, ze

p(ur) = uy, p(uy) = us, p(uz) = u;.

Najdéte matici A tvaru 3 x 3 tak, aby v soufadnicich standardni baze bylo p(x) = A - x.
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Reseni. Ozname a = (uy,up,u3) bazi danou vektory ze zaddni a € = (e, ey, €3) stan-
dardni bazi. Budeme-li mit na vstupu i na vystupu vektory psané v soutfadnicich baze «,
bude ¢ zadané matici

Chceme vsak vektory psat ve standardnich souradnicich. Budeme muset uvazovat zmeénu
bdze. Vezméme matici

jejiz sloupce jsou slozky vektorti baze a. VSimnéme si, Ze budeme-li psat vektory na vstupu
v soufadnicich vzhledem k bézi o, d4 ndm nésobeni matici P, , soufadnice vzhledem k bézi
€. To plyne z nasledujiciho pozorovani. Podivime-li se na vektory u;, us a us, maji vzhledem
k bézi a soufadnice (1,0,0)7, (0,1,0)T a (0,0,1)T. Vyndsobime-li tyto sloupce matici P,,
ziskame ve sloupcich slozky vektorid u;, us a us, jejich souradnice v bazi €. Zbytek plyne
z linearity nasobeni vektorti matici. Umime tedy zménit souradnice z baze a k bazi e.
Matice P, se nazyva matici prechodu od baze a k bazi eE]

Nyni chceme obratit proces, tj. vektory psané ve standardnich souradnicich chceme
psat v souradnicich baze a. Je zfejmé, Zze zménime-li souradnice od baze a k bazi € a pak
zpét, dostaneme identitu. Pak tedy nutné musi byt matice pfechodu P, . inverzni matici
k P.,, tj.

P,.= P .

€,

Inverzni matici najdeme standardnim zpiisobem.
11 2|1 011

-1 110 ~|1 01 2

1 0 1{0 1 01

00 1

10 0

01 0

01 -1 0 0 2 -1 -3
00 2 |1~10 1/1-1 1 2 |~
10 1 0

1/ 10
~ 1/-11
1/ 00 1 1 -1 -1
100 1 -1 -1
~|1 010 2 -1 -3
001|-1 1 2
Vidime, Ze
1 -1 -1
P,.= 2 -1 -3
-1 1 2

Indexy jsou psdny zprava doleva, protoze sloupcové vektory nasobime maticemi zleva, tedy napravo
mame souradnice vzhledem k bazi «, a po vynasobeni matici prechodu zleva dostaneme souradnice v bazi
€.
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Pak mdme A =@, = P.o* Paa - Pae-

11 2 010 1 -1 -1 3 -2 -3
A=l -1 1 11|-|0O0 1] 2 -1 3 |=|-2 1 4 A
1 01 100 -1 1 2 3 -2 -4
Piiklad 2.1.3. Necht ¢ je zobrazeni R3 do sebe, které je symetrii podle roviny p, zadané
rovnici zo + 3 = 0. Najdéte matici B takovou, Ze v soufadnicich standardni béaze je
o(x) =B - x.

Algebraické Teseni. Najdeme si vhodnou bézi prostoru R3, ve které bude mit zobrazeni ¢
vhodnou matici. Poté pomoci zmény baze maticemi pfechodu zjistime matici B. Rovnice
22 + x3 = 0 je zfejmeé TeSena vektory tvaru

x=(t,5,—s)=t-(1,0,00" +s-(0,1,-1)%.

Oznaéme u; := (1,0,0)T = e, uy := (0,1, —1)T. Vektory uy, u, tvoii bazi roviny p. Vektor
u; == (0,1,1)7 je kolmy na p, jedna se o normdlovy vektor roviny p. (Je to vektor, jehoZ
slozky jsou koeficienty zad4vajici rovnice.) Plati, Ze a = (uy, ug, u3) tvori bazi R3. (Vektory
jsou celkem ziejmé linedrné nezévislé.)

Zobrazeni ¢ neché vektory u; a uy na misté, jelikoz lezi v roviné p. Vektor uj se zobrazi
na —ug, nebot je kolmy na p a jeho symetrii podle této roviny tak bude vektor k nému
opacny. V bazi a tak ma ¢ matici

10 O
Yaa=]101 0
0 0 -1

Nyni jiz mizeme postupovat jako v prikladu Najdeme matice pfechodu a slozenim
ziskdme matici B = ¢, kde € = (e, €2, e3) znali opét standardni bazi. Matice pfechodu
od a k€ je

1 00
P,=10 11],
0 -1 1
matice opa¢ného piechodu P, = P, je k ni inverzni.
1 00100 1 00/1 00 1001 0 O
0 11/010|~|011[010|~|010/0 3 —3
0 -1 1/0 01 00 2|{011 0010%%
Mame tedy

o
L)
|
(e}
NI N O
I
NI NI= O
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Pak B = @5,5 = e ” Qoa,oz : Pa,e-

1 00 10 0 10 0 1 0 0
B=(o 11]-fo1 o]-[0% -2]=[0 0 -1 A
0 -1 1 00 —1 o1l 1 0 -1 0

Geometrické teseni. Zjistime, co déla ¢ s vektory standardni baze. Rovina p obsahuje osu
T1 a s osami x5 a x3 svird thel 45°. Na obrazku je vidét prifez R3 rovinou os y a z, na
obréazku [2.2] je pak 3-D anaglyf situace. Z obrazki je zfejmé, Ze p(e;) = e, p(e;) = —es

a p(e3) = —ey. Diky tomuto vyjaddfeni mame rovnou matici B = ¢ .
1 0 O
B=|0 0 -1 A
0 -1 0

p N Span(ez, e3)

Obrazek 2.1: Prifez R3 rovinou os z5 a x3, tj. osa z; i rovina p je kolm4 na obréazek. Odtud
3
je vidét, Ze ¢ zobrazi e; na —es a e3 na —es.

2.2 Vlastni cisla a vektory

Piiklad 2.2.1. Najdéte vlastni &isla a vlastni vektory zobrazeni ¢: R? — R?

go(x):<§ é)x

Reseni. Nejprve si pripomeneme vlastni ¢isla a vektory. Cislo A je vlastnim cislem zobrazeni
¢, jestlize existuje nenulovy vektor u takovy, ze

e(u) =A-u
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Obrazek 2.2: Anaglyf zachycujici celkovou situaci. Rovina p je zakreslena Sedé. Osy x;, o
a x3 jsou popsany x, y, resp. z. Vektory standardni baze jsou znaceny plnymi Sipkami.
Prerusované Sipky znaci obrazy vektord. Vektor v ose x se zobrazi na sebe, jelikoz lezi
v roviné p. Vektor v ose y se preklopi na zdporny vektor v ose z a analogicky se vektor
v ose z zobrazi na zaporny vektor v ose y.

To nastane pravé tehdy, kdyz ¢(u) — A - u = o, tedy pokud
(o —A-id)(u) = o, (2.3)

coz nastane pro néjaky nenulovy vektor u pravé tehdy, kdyz ¢ — X - id je singluarni. Je-li
¢ zadané matici A, nastane to pravé tehdy, je-li

det(A— \E) = 0. (2.4)

Hleddme-li vlastni ¢isla matice A, spo¢itame determinant , coz bude polynom v A,
nazyvany charakteristicky polynom matice A. Vlastni ¢isla budou pravé koreny charakte-
ristického polynomu. Néasobnost kofent se nazyva algebraickou ndsobnosti vlastnich cisel.
Jim prislusné vlastni vektory pak budou nenulova feSeni rovnice . Jako mnozina feseni
homogenni soustavy rovnic tvori vlastni vektory vektorovy podprostor. Jeho dimenze se na-
zyva geometrickou ndsobnosti onoho vlastniho cisla, ktera je ohranicena zdola 1 a shora
algebraickou nasobnosti. Navic, je-li u vlastni vektor prislusny \ a zaroven u, pak z

A-u=p-u

93



Kapitola 2 Geometrie

a z nenulovosti u plyne A = yu, tedy pruniky vlastnich podprostori jsou trividlni. (Obsahuji
pouze nulovy vektor.)

Prejdéme k feseni tlohy. Poc¢itdme determinant matice 2 x 2, coz mtizeme délat primo
z definice ((1.14)).

det(2;>\ _)1\):(2—)\)(—>\)—3=)\2—2)\—3=(A—S)(A—i—l)

Vidime, Ze mame vlastni ¢isla A\; = 3 a Ay = —1, obé s algebraickou nasobnosti 1. Poc¢itejme
vlastni vektory pro A;.

21_310_—11N1—1

30 01) 3 -3 0 0
Vidime, %e vlastnim vektorem je napiiklad v; = (1,1)T a vSechny jeho nenulové nésobky.
Pocitejme vlastni vektory pro s.

21 10 3 1 3 1
(3 0)“(0 1)‘(3 1)’“(0 0)
Vlastnimi vektory jsou nenulové ndsobky vektoru vo = (1, —3)T. Geometrickd nisobnost

obou vlastnich éisel je 1. A

Piiklad 2.2.2. Najdéte vlastni &isla a vlastni vektory zobrazeni ¢: R? — R?

(X) _ 0 -1 . I
¥ o 1 0 I '
Algebraické Teseni. Pocitejme determinant.

-2 -1\
det( 1 _)\>—>\ +1

Vidime, Ze zobrazeni ¢ nema realné vlastni cisla, tedy ani vlastni vektory.
Jako zobrazeni C?2 — C? mé4 ¢ vlastni &sla +i. Vlastni vektory pfislusné k i jsou

nenulova feseni soustavy
—-i -1 1 —i
1 —i 0 0)’

tedy nenulové ndsobky v; = (i,1)%. Vlastni vektory p¥islusné k —i jsou nenulov FeSen{

soustavy
i —1 1 i
()=o)

nenulové ndsobky v; = (1,1)7T. JAN
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Geometrické reseni. Vlastni vektory prislusné vlastnimu ¢islu A jsou takové, viiéi kterym
se ¢ chova jako stejnolehlost podle pocatku s koeficientem A. Vidime, Ze naSe zobrazeni je
rotaci o +90° podle pocatku, které se jako stejnolehlost chova pouze pro nulovy vektor.
Zobrazeni ¢ tedy nemd vlastni vektory ani vlastni ¢isla. A

Priklad 2.2.3. Najdéte vlastni ¢isla a vlastni vektory matice

210
B=| -10 3 ].
111

Reseni. Poéitdme determinant Laplaceovym rozvojem podle prvniho fadku.

2-X 1 0
( 2 )=<2_A>.det(—; ) (72)
1 11—\
=2-A)N-X1=-3)-(A—-1-3)
=2X —2X—-6-XN+XN+31-)1+4
=-AN+3X2-2=(1-2) (N -2)1-2)

Mame vlastni ¢islo A\; = 1. Zbyvajici vlastni ¢isla uréime pomoci diskriminantu D = 4 +
+ 8 =12, pak
2+2V3 =1++/3.

Aoz = 5

Pocitejme vlastni vektory pro A\; = 1.

1 10 110
B-FE=| -1 -1 3 |~]001
1 10 0 0O
Méme vlastni vektor v; = (1,—1,0)7 (a jeho nenulové ndsobky). Poéitejme vlastni vektory

pro Ay = 1+ /3.
1-+3 1 0
B-—(1+V3)E= -1 -1-+3 3
1 1 —/3
Ke druhému ¥4dku pfi¢teme v/3-nésobek t¥etiho.
1-v3 1 0
~ | -1++v3 -1 0
1 1 —V/3

w
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Prvni radek pricteme ke druhému a odecteme jej od tretiho.

1—v3 1 0 1—-v3 1 0

V3 0 —/3 0 00

Vlastnimi vektory jsou nenulové nasobky ve = (1, v/3 —1,1)T. Nakonec poéitejme vlastni
vektory pro A3 =1 — V3.

1++3 1 0
B-(1-V3)E= -1 -1++/3 3
1 1 V3

Od druhého Fadku odedteme v/3-ndsobek ttetiho.

1+4v/3 1 0
~ -1-v3 -1 0
1 1 /3

Prvni radek pricteme ke druhému a odecteme jej od tretiho.

1+v/3 1 0 1+v/3 1 0
~ 0 0 0|~ -1 01

-3 0 V3 0 00

Vlastnimi vektory jsou nenulové nasobky vs = (1,—1 —+/3,1)T. A

Piiklad 2.2.4. Zjistéte, zda v R? existuje bze tvofend vlastnimi vektory matice

0 -1 2
C=|3 4 -2
3 1 1

Pokud ano, najdéte ji.
Reseni. Béze tvofens vlastnimi vektory existuje, pokud
o charakteristicky polynom m4 plny pocet kofenti v R a

o geometricka nasobnost kazdého vlastniho éisla je rovna té algebraické.

2P¥ipadné v daném télese. Zejména pro C tato podminka odpada.
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Pak totiz miizeme vybrat bazi pro kazdy podprostor vlastnich vektori a tyto vektory
dohromady daji bazi celého prostoru. Pocitejme proto vlastni ¢isla.

-2 -1 2
det(C — A E) = det 34-X -2 |=
3 1 1—-A

4—-XN =2 3 =2 3 4—-)
z—)\det< ] 1_)\>—(—1)det<3 1_)‘>+2det<3 1 )z

=A((A=N(1-N+2)+(B-3X1+6)+2(3-12+3)) =
=X 45X -6A+9-31—18+6)=
=-MN+52-31-9=—-(A+1)(A—3)?

Mame jednoduché vlastni ¢islo \; = —1. Pocitejme jemu prislusné vlastni vektory.

1 -1 2 1 -1 2 1 -1 2 10 1
C+E=|3 5 -2 |~|0 8 8|~|]0 1 -1]~]01 -1
3 1 2 0 4 -4 0 0 O 00 O

Méme vlastni vektor v; = (1, —1,—1)T, ktery generuje podprostor vlastnich vektort. Vi-
dime, Ze algebraickd nasobnost \; je rovna geometrické, coz je u jednoduchych vlastnich
¢isel vzdy. Dale mdme dvojnasobné vlastni éislo Ay = 3. Pocitejme vlastni vektory pro né;.

-3 -1 2 31 =2
C—-3E= 3 1 -2 |~100 O
3 1 =2 00 O

Vidime, Ze soustavu fesf vektory x = (t,2s — 3t,s)7, t, s € R. Oznaéme v, := (1,—3,0)T
a vy = (0,2,1)T. Tyto vektory tvofi bazi podprostoru vlastnich vektori piislusnych 3,
tedy jeho dimenze je 2, stejné jako algebraicka nasobnost 3. Tudiz vi, vo a v3 jsou vlastni
vektory C, které tvori bazi R3. A

Priklad 2.2.5. Spoctéte vlastni ¢isla a vlastni vektory matice

1 1 2 1
1 -2 1 —4
D=1 9 1 -1 21
-1 0 -1 2
Reseni. Poditejme
1—X 1 2 1
1 —2—=A 1 —4
det(D — A\ E) = det 0 1 1o -1
-1 0 -1 2—A
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pomoci fadkovych tprav. Nejprve ke druhému radku pricteme ctvrty.

1-A 1 2 1
0 -2-2A 0 —2-A
0 -1 —-1-A -1
-1 0 -1 2—-A

= det

Néasledné z druhého fadku vytkneme —2 — \.

1-x 1 2 1
0 1 0 1
0 -1 -1-x -1
-1 0 -1 2-A

=(—2—)) det

Novy druhy fadek pouzijeme k eliminaci prvkia ve druhém sloupci.

1-Ax0 2 0
0 1 0 1
=(Z2=Ndetf g a0

-1 0 -1 2-A

Nyni pouzijeme Laplacetiv rozvoj podle druhého sloupce.

1-x 2 0
=(=2—=X) (=1)**? det 0 —-1-X 0
~1 -1 2-2A

Opét pouzijeme Laplaceliv rozvoj, tentokrat podle druhého radku.

1-Xx 0
(9 A (1 — X (1242
=(-2-X)(-1=-X) (-1 det( 1 2_)\)
Mame dolni trojihelnikovou matici, takze determinant bude soucin prvki na diagonéle.

—2+N 1+ (2= (1))

Méme vlastni éisla A\; o = £1 a A3 4 = £2. Pocitejme vlastni vektory pro A; = 1.

o 1 2 1 1 01 -1 101 -1 100 —1
1 -3 1 —4 0 12 1 010 1 010 1
0 -1 -2 11710 -30-3|!"(oo0o2 o[ |]oo1 o

-1 0 -1 1 0 00 O 000 O 000 O
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Méme vlastni vektor v = (1,—1,0,1)T. Pocitejme vlastni vektory pro Ay = —1.
2 1 2 1 1 -3 101 -3 1010
1 -1 1 —4 0 711010 7] 10100
0 -1 0 -1 0 —1 () -1 000 1 0 001
-1 0 -1 3 0 -1 0 -1 000 O 0 00O

Méme vlastni vektor vy = (1,0 — 1,0)T. Pocitejme vlastni vektory pro Az = 2.

o O = O
N— N—

-1 1 2 1 1 0 1 0 1 010 1 00
1 -4 1 —4 0 1 0 1 0101 010
0 -1 -3 -1 o 1 3 1 0010 0 01
-1 0 -1 0 0 -1 -3 -1 0 00O 0 0O
Méme vlastni vektor vz = (0,1,0, —1)T. Pocitejme vlastni vektory pro Ay = —2.
3 1 2 1 01 -1 13 00 O 1 10 10
1 0 1 —4 10 1 —4 10 1 —4 N 01 -10
0 -1 1 -1 01 -1 1 01 -1 1 00 01
-1 0 -1 4 00 0 O 00 0 O 00 0O
Méme vlastni vektor v4 = (1,—1,—1,0)7, A
2.3 Afinni geometrie
Piiklad 2.3.1. Zopakujte definici skaldrniho souéinu v R? a v R3.
Reseni. Standardni skaldrni soudin vektort x = (z1,...,7,) ay = (y1,...,¥n) € R”

definujeme jako
i=1

Zejména v R? méme (X,y) = 71 y1 + T2 y2; v R? pak (X,y) = 21 y1 + T2 y2 + T3 ¥s.
Obecné v R™ plati (x,x) > 0F Mtizeme definovat velikost vektoru jako

X[ = /{x,%). (2.6)

Velikost ([2.6)) je definovana jednoznaéné pro vSechny vektory jako jedind nezdporna odmoc-
nina. Vzddlenost dvou vektori pak definujeme jako ||x —y||. Odchylku dvou nenulovych
vektort definujeme pomoci (2.5) a (2.6) pomoci

__xy)
1= e Ty &0

3Totéz plati pro komplexni prostory. Na C™ definujeme skalarni soudin vektorii podobné jako (2.5)),
v n —_— .72 v v
ovSem klademe (x,y) =) . ; z; - §;. Pak vidime, Ze opét (x,x) > 0.
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Uhel |<xy]| € [0, 7] je jednoznaéné uréen (2.7). Kolmost dvou vektord miiZeme definovat i
bez znalosti kosinu. Kolmost dvou (ne nutné nenulovych) vektort definujeme pomoci

xly < (x,y)=0. (2.8)

Vidime, Ze jakykoli vektor je kolmy na nulovy vektor. Navic, jelikoz je diky definici skaldrni
soucin s pevnym vektorem linedrni zobrazeni, tak je-li vektor kolmy na mnozinu jinych
vektort, je kolmy na cely podprostor jimi generovany. Ortogondini doplnék mnoziny M C V
ve vektorovém prostoru V' definujeme jako

M+ ={xeV|(Yme€ M)(x L m)}. (2.9)

Ortogonélni doplnék mnoziny je stejny jako doplnék podprostoru ji generovaného. Chceme-li
tedy urcit ortogonalni doplnék néjakého podprostoru, staci urcit doplnék libovolné jeho ge-
nerujici mnoziny, nebo néjaké jeho baze. Stejné tak je ortogonalni doplnék néjaké mnoziny
vektorovy podprostor. Ke hled4ni kolmych vektorti v R? lze pouZit jednoduché pozorovani:
vektor (—z2,z1) je kolmy na (z1, x2). A

Priklad 2.3.2. Napiste nejdiive parametricky a potom implicitni popis nejmensiho afin-
niho podprostoru v A3, ktery obsahuje body A = [5,2,1], B =[4,1,0],a C =[-3,1,0].

Resend. Spocitejme si vektory AB=B-A= (-1,-1,-1)a AC=C-A= (—8,-1,-1).
Vidime, Ze jsou linedrné nezévislé, afinnim obalem bodi A, B, C (jak se takovy prostor
nazyva) bude rovina zadand parametrickou rovnici

A+t-AB+s-AC=[521]+t-(—1,—-1,—1) +s- (=8,—1,—1),

s,t € R Pro implicitni popis potrebujeme najit vektor n kolmy na oba vektory AB i
AC (vzhledem ke standardnimu skaldrnimu soudinu). Vidime, 7e mtZeme vzit napiiklad
n = (0,1, —1). Zadévajici rovnice pak bude

To —x3 =1,

kde koeficienty na levé strané jsou slozky vektoru n a pravou stranu jsme ziskali dosazenim
bodu A. Skute¢né pro body roviny, parametrizované jako [5 — s — 8¢,2 — s —t,1 — s — ]
plati

2—s—t—1+s+t=1 A

Piiklad 2.3.3. Najdéte prinik rovin M a N v A3z zadanych parametricky
M={[2,3,4+a-(1,1,1)+b-(0,0,1) € A3 | a,b € R},
N ={2,2,4+c-(1,0,1) +d- (2,0,1) € A3 | c,d € R}.

Resend. Je vyhodné mit jednu rovinu zadanou implicitné, kupifkladu rovinu M. Najdéme
normélovy vektor m, ktery je kolmy na vektory (1,1,1) a (0,0, 1). Celkem snadno se vidi,
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Ze muzeme vzit m = (1,—1,0). (Normélovy vektor M neni kolmy na smérové vektory N.
Roviny jsou proto rtiznobézné.) Mame zadavajici rovnici pro rovinu M, kde pravou stranu
jsme ziskali dosazenim bodu [2, 3, 4].

r1 — T = -1 (210)

Body roviny /' mdme vyjadfeny parametricky.

.’L'1=2+C+2d
Ty =2 (2.11)
xz3=4+c+d

Dosazenim (2.11) do (2.10) dostaneme rovnici pro parametry c¢ a d, kterou vyfesime na-
priklad vici c.

2+c+2d—2=-1
c=-1-2d

Parametrické vyjadieni priniku ziskdme dosazenim ¢ = —1 — 2d do (2.11), ¢imz ziskdme
parametrické vyjadieni prisecnice rovin M a N.

MON ={12,2,4 - (1+2d)-(1,0,1) +d- (2,0,1)}

={[1,2,3] - d-(0,0,1)} A

Priklad 2.3.4. V A3 urdete vzajemnou polohu roviny
p={[3,-1,0+s-(-1,1,1)+¢-(2,1,0) € A3 | s,t € R}

a primek p, q a r, které maji parametrickd vyjadreni
a) p={[7,4,2]+a-(5,-2,-3) € As | a € R},
b) ¢={[1,2,3]+b-(1,5,3) € As | b€ R},
o) r={[1,2,3]+¢-(1,1,1) € A3 | c € R}.
Reseni. Nez zaéneme se samotnym FeSenfm, bude vyhodné si vyjadiit p implicitné. Vidime,
ze normdlovy vektor je napfiklad n = (1,—2,3). (Je jisté kolmy na (2,1, 0), tfeti soufad-
nici dopoéitdme tak, aby byl kolmy i na (—1,1,1).) Dosazenim bodu [3,—1,0] ziskdme

zadévajici rovnici pro p.
z—2y+32=5 (2.12)

Za¢néme FeSenim [a]). Parametrizaci p dosadime do (2.12). Na levé strané mdme

T+5a—-2(4—-2a)+3(2—-3a)=7+5a—-8+4a+6—9a =25,
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zatimco na pravé strané mame 5. Rovnice je splnéna vzdy a proto p C p. Skute¢né, smérovy
vektor p je kolmy na n a proto jej lze vyjadrit jako linearni kombinaci smérovych vektori

’ (5,—2,-3) = (2,1,0) = 3- (=1,1,1)

a bod [7,4,2] € p, nebot spliiuje zadévajici rovnici p (jako vSechny body p).
A% @ dostaneme po dosazeni na pravé strané opét 5, na levé pak

1+b—2(2+5b)+3(3+3b) =6,

tudiz rovnice nem4 TeSeni, neexistuje prunik a q a p jsou rovnobézné. Skutecné, smérovy
vektor ¢ je kolmy na n, lze jej tedy vyjadrit jako linedrni kombinaci smérovych vektort p.

(1,5,3) =3-(—=1,1,1) +2- (2,1,0)

Bod [1, 2, 3] vSak nepatii do p, nebot nespliiuje (2.12).
Cést |c) FeSime stejné, dosazenim parametrického vyjadieni r do (2.12)). Na pravé strané
mame 5, na levé pak

1+4¢c—22+¢)+3B+c¢)=14+c—4—-2¢c+9+3c=6+2c

Porovnénim dostaneme rovnici
2c=—1,

tedy prinikem bude jediny bod, prisecik P se soufadnicemi

1 135
P:[1a273]_§(171a1):|:§a§a§:|

a T a p jsou riznobézné. A

Priklad 2.3.5. V Aj3 urcete vzdjemnou polohu pfimky p a roviny p, pfi¢emz pfimka p je
zadana implicitné rovnicemi

3.’L'1+$2+2.’E3:5
5.’131—.’132 = 3

a rovina p je zadana parametricky.

p={[-3,0,0+a-(3,1,2) +b- (5,—1,0) € As | a,b € R}

Reseni. Zadévajici rovnice ptimky p ¥ikaji, Ze vektory u; = (3,1,2) a uy = (5, —1,0) jsou
kolmé na p. Tyto vektory jsou ovSsem smérovymi vektory roviny p. Proto nutné musi byt
p L p, tedy budou p a p riiznobézné a bude existovat jediny prisecik. Spocitejme jej dvéma
zpusoby.

Jednou moznosti je zjistit implicitni zadani roviny p. Normalovy vektor n bude kolmy na
oba smérové vektory u; a uy. Je zfejmé, Ze kazdy vektor (1, 5, z) bude kolmy na u,. Hodnotu
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z zjistime pomoci skaldrniho soufinu s uy, ktery musi dat nulu. Vidime, ze n = (1,5, —4).
Dosazenim bodu [—3, 0, 0] ziskdme zadavajici rovnici.

1 +5x9 —4x3=—-3

Prisecik P bude lezet v pruniku, bude tedy vyhovovat vSem tfem rovnicim. Jeho hledani
se tedy redukuje na TeSeni soustavy rovnic. V maticovém tvaru ji feSime pomoci Gaulovy

eliminace s vybérem pivota.

3 1 2] 5 8 0 2] 8 4 01| 4
5 -1 0 3|~ -1 0 3|~ & -10 3|~
1 5 —4|-3 26 0 —4]12 21 0 0|14
12 0 3| 12 0 0 3|4
~| =15 3 0|-9 [~ 0 3 0|1
3 00 2 3 0 02

Vidime, ze P = [%, %,% .
Druhym zpiisobem reSeni je dosadit parametrické vyjadieni p do zadévajicich rovnic p.
Tim ziskdme soustavu dvou rovnic pro dva neznamé parametry.

3(=3+3a+5b)+(a—b)+2(2a)=5
5(-3+3a+5b)—(a—b)=3
Upravou vyrazi dostaneme nésledujici soustavu.

14a+14b=14
14a+26b=18

Tuto soustavu feSime po zkraceni v maticovém zapisu pomoci GauBlovy eliminace.
1 1|1 1 1)1 3 02
7 13|9 0 6|2 0 3|1

Vidime, Ze musime vzit a = % ab= % Dosazenim do parametrického vyjadreni p ziskdme
souradnice priseciku.

9 1 91 4
P:[—3,0,0]+§-(3,1,2)+§-(5,—1,()):[5,— —] A

3’3
Priklad 2.3.6. Urcete pricku mimobézek
p= {[1,2,0]+a-(1,—1,1) € As | aeR},
g={[0,9,—2]+b-(1,0,0) € A3 | b € R}

takovou, Ze piimka ji uréend prochézi bodem [1,—7,4].
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Reseni. Oznaéme A = [1,2,0], B=[0,9,—2] a C = [1,—7,4]; u = (1,—1,1) a standardng
e; = (1,0,0). Pficka bude jisté obsaZena v roviné p urcené pfimkou p a bodem C. Rovinu
p miZeme zadat parametricky pomoci bodu a smérového vektoru p a druhého vektoru AC.

p={A+a~u+c-A—C’)€A3|a,c€R}

Chceme najit implicitni zadani p. Vektor AC je (0,—9,4). Je zfejmé, ze vektory (z1,4,9)
na néj budou kolmé. Prvni slozku ziskdme pomoci skaldrniho souéinu s u. Mame tak
n = (—5,4,9). Dosazenim bodu A ziskdme rovnici zadavajici p.

Dosazenim bodi pfimky ¢ do (2.13)) ziskdme rovnici pro b, kterou vyfesime.

—5b4+9:-9-9-2=3

—5b+18=3
—5b=-15
b=3

Priseéikem p a ¢ bude bod @ = [3,9, —2]. Pfimka r tak bude uréena body C a Q. Mame
jeji parametrické vyjadreni.
r={C+1t-CJ e 4 |teR}

={[1,-7,4 +t-(2,15,—6) € A3 | t € R}
Prinik P := pNr # 0, protoZe r C p D p a jejich smérové vektory jsou linedrné nezdvislé.
Chceme-li zjistit pouze pfimku 7, jsme hotovi. Pfickou mimobézek vsak nékdy rozumime
pouze tisecku spojujici jejich nékteré body. Pokud chceme nalézt tuto tisecku, musime zjistit
P. Postupujeme stejné jako u Q. Pfimka r je prisecnici roviny p a roviny o, zadané bodem
C a smérovymi vektory e; a BC' = (1, —16,6). Za normalovy vektor mizeme vzit napiiklad
(0, 3,8) a rovnici zadavajici o ziskdme dosazenim C.

31172"}‘8.’173 =11 (214)
Dosazenim parametrizace p do (2.14) dostaneme rovnici pro a.

3(2—a)+8a=11
5a=25

a=1

Vidime, ze pak P = [2,1,1] a mame parametrizaci pficky mimobézek jako tsecky. Rozdil
je jen v tom, Ze parametr bereme jen z uzavieného intervalu.

{(P+t-PQ|telo1]} A
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Pozndmka. Jinou moznosti hledani priniku je pouzit vyjadreni vektori pomoci baze. Pri-
nik musi byt vyjadritelny jak pomoci parametri roviny p, tak pomoci téch pro q. Musi
tedy platit N
A4+a-u+c-AC=B+b-e;
pro néjaké (jednozna¢né uréené) hodnoty a, b a c. Pfevedenim dostaneme vektorovou rov-
nici N —
a-u+c-AC—-b-eg=B—-A=: AB.

Po slozkéach dostaneme soustavu t¥{ rovnic o t¥ech nezndmych. ReSenfm obdrzime konkrétni
hodnoty a, b a c. Resenim bychom obdrzZeli rovnou hodnoty a a b, tedy bychom rovnou
zjistili P a @) a odtud parametrizaci pricky, at jako piimky ¢i jako tsecky.

Priklad 2.3.7. Osa dvou mimobéZznych pfimek p a ¢ v afinnim prostoru A; je pfimka,
ktera obé primky protind a je na né kolma. Najdéte osu mimobézek

p= {[1,2,3]+a-(1,2,—1) € As | aeR}
g={2,-3,4+b-(2,-1,-2) € A; | b€ R}
a body P € pa Q € q, ve kterych tyto pfimky protina.

Reseni. Oznaéme A = [1,2,3], B =[2,-3,4], u = (1,2,-1) a v = (2,—1,—2). Osa bude
urcena body P € p a @ € q. Ty budou mit souradnice

P=[1+a,2+2a,3—q] Q=[2+2b—-3—-0,4—20 (2.15)
pro néjaka a a b. Smérovy vektor osy bude
PG=(1+2b—a,-5—b—2a,1—2b+a). (2.16)

—> —_—>
Hodnoty a, b uréime z podminek PQ) 1 u a PQ L v, coz zajistime pomoci skalarniho
soucinu s témito vektory, které polozime nule. Dostaneme soustavu linearnich rovnic pro a
a b.

1-(1+2b—a)+2-(-5—-b—2a)—1-(1—-2b+a)=0
2-(1+2b—a)—1-(-5—b—2a)—2-(1—2b+a)=0

Po roznasobeni a secteni vyrazt a pfevedeni absolutnich ¢lent na druhou stranu dostaneme
nasledujici soustavu.

—6a+2b=10
—2a+9b=-5

Tu feSime s uzitim maticového zapisu GauBlovou eliminaci s vybérem pivota.

=3 1, &) (=31 5) (0 1]-1
-2 9|5 25 0| =30 1 0]-2
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Méme tedy vysledek: a = —2 a b = —1. Dosazenim do (2.16]) dostaneme slozky vektoru
PQ = (1,0,1), dosazenim do ([2.15) pak soufadnice bodd P = [-1,—2,5] a Q = [0, —2, 6].
Maéame i parametrické vyjadreni osy.

{[_1a_275]+t'(170a1)€-/43|t€R} JAN

Priklad 2.3.8. Pomoci determinantu uréete obsah trojihelnika AABC v Ay, kde A =
=[1,3], B =[-2,101], C =[-8, 11]. Zjistéte, které ze stran tohoto trojihelnika jsou vidét
z bodu D = [200, —300].

Reseni. Determinant matice, jejimiZ sloupci (nebo f4dky) budou slozky vektori AB , AC ,
bude orientovanym obsahem rovnobéznosténu zadaného body A, B, A + AB+ AC a C.
Znaménko odpovidé pouze orientaci. Polovina absolutni hodnoty | tohoto determinantu tak
bude odpovidat ploge trojthelnika. Méme AB = (—3,98) a AC = (—9,8). Méme tak i
obsah.

SaaBc = 98 8

1 — 1
3 det( 3 9)‘ -|—3-8+9-98| == - 858 =429

Strana AB je viditelnd z D pravé tehdy, kdyz baze AB AC je opacné orientovand
nez baze AB AD. Orientaci pozname podle znaménka determinantu matice, jejiz sloupce
budou slozky vektorti. Baze AB AC je kladné orientovana. Mame vektor AD = (199, —
—303).

-3 199
d t( 98 —303 ) =303-3—-199-98 = —18593

Béze AB AD je zdporné orientovand, proto strana AB je z D vidét. Béze AC AB je
orientovand opacné nez AB AC’ tedy zaporné. Zjistéme orientaci baze AC AD.

-9 199
det( 3 _303>:9-303—8-199=1135

Baze AC , AD je orientovana kladné. Proto je i strana AC' z bodu D vidét. Strana BC tak

byt vidét nemize, protoze v roviné lze z jednoho bodu pozorovat maximéalné dvé strany
trojihelnika. A

2.4 Eukleidovska geometrie

Piiklad 2.4.1. V R3 najdéte ortogonalni doplnék podprostoru M = Span((l, 2,-1),(1,—
~2,5)).
Reseni. Mame podle (2.9)

M* = {(z1,22,23) € R® | (21,72, 23) L (1,2, 1), (z1,22,23) L (1,-2,5)}.
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Kolmost spo¢itdme pomoci skaldrniho sou¢nu (£2.5). Dostaneme soustavu rovnic.

1 + 2z — x3 =

0
.’L'1—2$2+5ZL'3=0

Tuto fesime pomoci maticového zapisu.

1 2 -1\ (1 2 -1\ (2 4 -2) (20 4
1 -2 5 0 -4 6 0 -4 6 0 2 -3
Méame z3 = 2t, o = 3t, x; = —4t, t € R. Vidime, Ze
Mt = Span((—4,3,2)). A

Piiklad 2.4.2. Spoctéte kolmou projekci vektoru u = (7,—16,9) do podprostoru M a
jeho ortogonalniho doplitku M+ z ptredchoziho piikladu m

Reseni. Vime, 7e M = M = Span((1,2,—1),(1,—2,5)) a M+ = Span((—4, 3, 2)) Vy-
jadfime si u jako linedrni kombinaci vektoru (1,2,—1), (1,—2,5) a (—4,3,2). Dostaneme
soustavu rovnic pro koeficienty.

kv + ke — 4ks = 7
2ky — 2ky + 3k = -—16
—k‘l + 5 k2 + 2 k‘3 = 9

Tu fesime v maticovém zapisu GauBovou eliminaci s vybérem pivota.

1 1 -4 7 1 1 -4 7
2 -2 3|-16 |~| 0 —4 11]|-30 |~
-1 5 2 9 0 6 -2 16
1 —11 0] —-25 1 0 0-3
~10 29 0 88 |~ 0 1 0| 2
0 -3 1| -8 0 0 1]|-2
Vidime, zZe
u=-3-(1,2,-1)+2-(1,-2,5)+(=2) - (—4,3,2)
Pas(u) P,,1 (u)
a Py(u) = (—1,-10,13) a Py (u) = (8,—6,—4). A

Piiklad 2.4.3. Necht ¢: R® — R? je kolmé projekce na rovinu p, zadanou implicitné
rovnici

21,'1—.1'24-2.%3:0.

Najdéte matici A tvaru 3 x 3 takovou, Ze v soufadnicich standardni baze je

p(x) =A-x.
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Reseni. Normélovy vektor roviny p je n = (2,—1,2). Za smérové vektory miizeme vzit
napiiklad u = (1,2,0) a v = (0,2,1). V bézi a tvofené vektory u, v a n mé ¢ matici

Opacénd matice prechodu P, . je matice k ni inverzni. Inverzi spocitdme pomoci determi-
nant.
Je-li B = (b;;)};=; invertibilni matice, pak definujme matici algebraickyjch doplﬁkﬁﬁ
b@j = (—1)Z+J det Bz',j,
je algbraicky doplnék b; ; a det B, ; je determinant matice vzniklé z B vynechanim i-tého
radku a j-tého sloupce. Plati, ze

-1 _ 1 BT
det B

(Souéin i-tého fadku B a j-tého sloupce B davéa Laplaceiv rozvoj determinantu podle
j-tého fadku matice vzniklé z B nahrazenim j-tého fadku i-tym. Vidime, Ze dostaneme
det B pro i = j a 0 jinak.)

Pomoci Sarrusova pravidla spo¢itdme det P., = 4+4+0—-0—-0— (—1) = 9. Pak
ziskdme adjungovanou matici.

B 5 —4 2
P..,= 2 2 -1
-4 5 2
Inverze tedy je
5 2 —4
Paezl-ﬁ§a=$- -4 2 5
2 -1 2

Pak jednodusSe spocitdme A = @, = P. o - Pa,0 * Pae-

1 5 —4 2 1 00 5 2 —4 1 5 2 —4
A= 9 2 2 -11]-1010|-| 4 2 5 |= 9 2 8 2 A
-4 5 2 0 00O 2 -1 2 -4 2 5

4Té7 zvané adjungovand matice.
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Piiklad 2.4.4. V &; spoditejte vzdalenost bodu A = [5,7, 1] od roviny p zadané implicitné
rovnici

Soucasné najdéte bod C € p takovy, Ze dist(A, C) = dist(A4, p).

Analytické Teseni. Zjistime paramterické vyjadieni roviny p. Mdme normélovy vektor (1, 3, —
—2) a z néj zjistime smérové vektory, napfiklad (3,—1,0) a (2,0, 1). Body p tedy lze vyjadfit
jako

X(t,s) =[-4,0,0] +¢t-(3,-1,0) +s-(2,0,1) = [-4+ 3t +2s,—t, 9

pro t, s € R. Vektory z bodu A do p pak lze parametrizovat pomoci
X(t,s)A=(9—-3t—2s,7+1t,1—5).

Snazime se minimalizovat realnou funkci HX (¢, s)AH realnych proménnych ¢ a s. ProtoZe
je druhd mocnina rostouci bijekei [0, 00) do sebe, bude se velikost vektrou minimalizovat
pravé tehdy, kdyz se bude minimalizovat jeji druha mocnina. Mame

_ > 2
Xt 9)A| = (9-3t—25)2+(7T+1)2 + (1 - 5)% (2.18)
Zjistime stacionarni body. Derivaci (2.18) podle ¢ mame

o|x 94| )

5 (9—3t—25)(=3)+2(7+t) =20t + 12 s — 40, (2.19)
derivaci podle s pak
- 2
0| Xt 9)A|
—— 5 =29-3t—-2s)(-2)+2(1—s)(-1) =12t + 10s — 38. (2.20)

0s

Polozime obé derivace nule. Pak ziskdme soustavu dvou linedrnich rovnic o dvou nezné-
mych, kterou reSime pomoci maticového zapisu.

201240N 5 3/10) (5 3/10)
12 10 | 38 6 5|19 1 219

NO—7—35N015N015
1 2 9 1 219 1 0f-1
Méme jediny staciondrni bod. Zjistime druhé derivace (2.18) pomoci derivovani (2.19) a
(12.20]).

o | XA ,

ot? 0
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O |XG A"

Ot 0s , 12
0| X (¢, 9)A|
0s? =10

Matice druhych derivaci je

20 12

12 10
Jeji hlavni minory jsou 20 a 20 - 10 — 122 = 200 — 144 = 56, oba kladné, takZe je matice
pozitivné definitni a ve staciondrnim bodé méame lokalni minimum. Vzdalenost se tak

minimalizuje v bodé
X(-1,5)=3,1,5]

a je rovna “X(—1,5)AH = \/(3 —5)24+(1—7)2 442 =56 =2V14. A

Pozndmka. Jinou moznosti analytického FeSent je vzit obecny bod X (x1, z2, z3) = [21, 2, X3)

a minimalizovat funkci HAX (x1, x2, x3)H za podminky z; + 3x9 — 23 + 4 = 0 napfiklad
metodou Lagrangeovych multiplikatori.

Geometrické reseni. Vzdalenost se minimalizuje v bodé P, ktery je kolmou projekci bodu
A na rovinu p. Normélovy vektor roviny je n = (1,3, —2). P bude prinikem piimky

p={A+t-nec&|teR} (2.21)

a roviny p, tedy bude tvaru (2.21) a bude vyhovovat rovnici (2.17)). Dosazenim ziskdme
rovnici pro t, kterou vyresime.

(5+8)+3(7T+3t)—2(1—2¢)+4=0
5+t4+21+9t—2+4t=-4

14t = —28
t=—2

Méme P = [3,1,5] a

dist(4, p) = AP = /B8 + (1 =72 + 4 = V36 = 2\/14. A
Priklad 2.4.5. V &; spocitejte vzdalenost piimek p a q.

p={l444+a-(2,1,-1) €& |a R}
¢={[1,15,12] +b- (1,-2,1) € & | b€ R}.

Déale najdéte body K € p a L € g, v nichz se vzdalenost primek realizuje, tj. plati
dist(K, L) = dist(p, q).
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Pozndmka. Samoziejmé bychom mohli TeSit situaci analyticky. Parametrizovali bychom si

body obou pfimek a pak minimalizovali vzdalenost jako funkci obou parametri pomoci
hledani stacionarnich bodi podobné jako v ptikladu Priklad jiz vSak budeme
resit pouze geometricky.

Reseni. Vzdalenost se bude realizovat na ose mimobézek. Hleddme ji tedy podobné jako
v prikladu Parametrizujeme si body obou primek.

P=[4+2a,4+a,4—d Q=[1+b,15—2b,12+ |

Méme vektor P_Q) =(—3+b—2a,1—2b—a,8+b+a). Vektor P—Cj musi byt kolmy na obé
primky. Skaldrnim soucinem s jejich smérovymi vektory ziskdme rovnice pro parametry a,

b.

2(-3+b—2a)+11-2b—a—8—-b—a=0
—3+b—2a—2(11—2b—a)+8+b+a=0

Upravou vyrazi ziskdme nasledujici soustavu.

a+6b=17
6a+b=-3

Soustavu feSime pomoci maticového zapisu.

<1 6 17)N(—35 0 35>N<1 0—1)
6 1| -3 6 1|-3 01| 3
Méme tedy P = [2,3,5], Q = [4,9,15], PG = (2,6,10) a
dist(p, q) = HP—Q)H = 4+ 36+ 100 = V140 = 2/35. A
Priklad 2.4.6. V &; urcete odchylku roviny p od piimky p.
p={[1,35]+a-(1,1,1)+b-(1,3,2) € & | a,b € R}
p={[-3,1,7+c-(1,0,-1) € & | c € R}
Resend. Zjistime si normalovy vektor roviny p. Musi byt kolmy na (1,1,1) a (1,3,2).
(1 1 1>N<1 1 1>N<1 -1 0)
13 2 021 0 21

Vidime, ze mtzeme brat napiiklad n = (1,1, —2) za normélovy vektor. Z obrazku vi-
dime, Ze staci pocitat odchylku smérového vektoru p a n a misto arkuskosinu vzit arkussinus
(nebo dopocitat do 7). Mame

(n,(1,0,-1)) =1-1+(-1)- (-2) =3,
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déle

Pak vidime, Ze

~ VB _
a odchylka je arcsin *3* = Z. A

w

|<tpp| pio

|<mnp| |1

Obrézek 2.3: Nakres obrazku v roviné o kolmé na p a obsahujici p. Vidime, zZe |<pp| = § —
— |<tnp|. Proto cos |<tpp| = sin |<tnp|.

Pozndmka. Jinou moznosti by bylo spocditat si kolmou projekci primky p do roviny p,
nasledné pocitat odchylku téchto primek.
Priklad 2.4.7. V &; urcete odchylku rovin p a o, kde p je zadand implicitné

p= {[2,3,4] +a-(2,2,1)+b-(3,3,-2) €& |abe R}

a o je zadana rovnici
T —2x9 + 23 = 4.

Reseni. MiiZeme najit n&jakou rovinu kolmou na obé roviny a pak po¢itat odchylky priised-
nic. Otoéime-li celou situaci o 7, tloha se pfevede na odchylku normédl. Mdme normalovy
vektor s = (1, —2, 1) roviny o. Zjistime normélovy vektor r roviny p, ktery je kolmy na oba

smérové vektory.
2 2 1 2 21 0 01
3 3 -2 7T 70 110
MuZeme bréat napiiklad r = (1,—1,0). Méme

(r,s) =1-14+(-1)-(-2) =3,
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el = v2,
sl = V6,

takze

cos |<tpo| = —— =

V12

— V3 _
a |<po| = arccos 5° = %. A

Priklad 2.4.8. V R?® spoctéte velikosti a vzdjemnou odchylku vektord u = (2,2,-1) a
v = (—2,0,2). Spoctéte vzdjemnou odchylku pfimek generovanych témito vektory.
Reseni. Mame vektory u = (2,2,—1) a v = (—2,0,2). Spocitdme jejich skalarni soudin
(a,v)=2-(-2)4+2-0—1-2=—6,
a jejich velikosti.
lul =v22+22+12=v9=3 vl =v22+ 02+ 22 =v8=2V2

Pak mame vztah pro odchylku.

-6 1 V2
6v2 V2 2
Kosinus odchylky je zaporny, proto |<uv| € (g,ﬂ] a vidime, Ze TeSenim je |<uv| = 2.
Ptame-li se na odchylku primek, vime, Ze berem mensi z uhliu. Toho docilime tak, zZe
ve vztahu (2.7) ddme do ditatele absolutni hodnotu. (Druhou moZnosti je spoéitat od-
chylku smérovych vektort a je-li vic nez 7 odpocitat od 7t.) V naSem piipadé vyjde kosinus
odchylky piimek “2 a tihel Z. A

cos |<uv| =
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Teorie ¢isel

3.1 Pocéitani v Z,,

Priklad 3.1.1. Najdéte inverzni prvek k ¢islu 157 modulo 2475, a to

a) pomoci Bezoutovy véty,

b) pomoci soustavy kongruenci, kterd vychézi z rozkladu 2475 =9 - 11 - 25,

c¢) pomoci Eulerovy véty.

Reseni. Cést @) jsme vytesili jiz v prikladu Maéame spocitané koeficienty Bézoutovy
rovnosti. Vime, Ze

268 - 157 —17-2475 =1
a inverze je tedy 268. Pocitejme proto ¢ast [b)). Hleddme inverzi z takovou, Ze 157z
(mod 2475). Tato kongruence musi platit i modulo déliteli 2475, takze zejména

11l
—_

1572 =1 (mod 9),
157z =1 (mod 11),
157z =1 (mod 25).

Vyfesime jednotlivé kongruence. Protoze 157 = 4 (mod 9), 157 = 3 (mod 11) a 157 = 7
(mod 25), mame postupné

4z=1 (mod9),

3z=1 (mod 11),

7r=1 (mod 25).
Nyni mtzeme zjistit feSeni jednotlivych kongruenci. Néktera lze diky malym modulim

uhddnout. Prvné 4-2 =8 = —1, proto 4- (—2) =1 (mod 9). Déle 4-3 =12=1 (mod 11)
a nakonec 7-7=49= —1, tudiz 7- (=7) =1 (mod 25). Mdme tedy soustavu

z=-2 (mod?9),
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z= 4 (mod 11),
z=-7 (mod 25).

Plati, Ze soustava mé jediné feseni modulo 9 - 11 - 25 = 2475, protoze ¢isla 9, 11 a 25 jsou
nesoudélné. Soustavu vyfesime dosazovaci metodou. ProtoZze x = —2 (mod 9), musi byt
x = 9t — 2. Dosazenim do druhé kongruence fesime néasledujici kongruenci pro ¢ pomoci
ekvivalentnich tprav.

9t—2= 4 (mod 11)
—2t= 6 (mod 11)
=-3 (mod 11)

V poslednim kroku jsme mohli vydeélit dvéma, protoze 2 a 11 jsou nesoudélna. Mame tedy
t=11s— 3, takze
z=9t—2=9-(11s—-3)—2=99s5—29.

Dosazenim do treti kongruence fesime pro s.

99s—-29=-7 (mod 25)
—s=22=-3 (mod 25)
s=3 (mod 25)

Vidime, ze s = 25k + 3. Pak
z=99s—29=99-(25k+3) —29 =2475k + 268.
Dostéavame (nepfekvapivé) stejny vysledek jako v @) Nyni vyfesime . Cisla 157 a 2475
jsou nesoudélné (napiiklad proto, Ze 157 je prvoéislo). Muzeme tedy pouzit Eulerovu vétu.
Vime, Ze pokud (a,m) = 1, pak
a?™ =1 (mod m) (3.1)

kde ¢(m) je hodnota Eulerovy funkce v m. Tato funkce udéva pocet ¢isel mensich nez m
s m nesoudélnych. Pro jeji vypocet pouzijeme nasledujici pravidla:

o pro m a n nesoudélnd je p(m - n) = p(m) - p(n);
e je-li p prvocislo a k pfirozené &islo (ne nula), pak ¢(p*) = p*~1- (p —1).
Vidime Ze 2475 =9-11-25 =3%.11-5% Pak
©(2475) = p(3%) - p(11) - p(5*) = (3-2) - 10 - (5 - 4) = 1200.

Vidime, Ze 157'2%° =1 (mod 2475), takZe moduldrni inverzi bude 1571 1%, coz spoéitame
pomoci softwaru jako 268. A
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Piiklad 3.1.2. Pomoci malé Fermatovy véty najdéte zbytek po déleni &isla 297 &islem
26.

Reseni. Méme rozklad 26 = 2 - 13. Cislo 297 je sudé, zbytek modulo 2 bude nula. Zbjva
najit zbytek modulo 13. Protoze 13 je prvocislo, lze pouzit malou Fermatovu vétu. Je-li p
prvocislo a a ¢islo s nim nesoudélné, pak

a?'=1 (mod p).

Vidime, Ze p(p) = p — 1. , Jednd se tak vlastné o specidlni pfipad Eulerovy véty (3.1)).
Méme ¢(13) = 12. Chceme naji zbytek ¢&isla 97%° po déleni 12. ProtozZe vak 96 = 12 - 8, je
97 =1 (mod 12), tudiz 97%° = 1 (mod 12). Potom vidime, Ze

297" =21 =2 (mod 13).

Dohromady existuje jediné feseni soustavy kongruenci z = 0 (mod 2) a z = 2 (mod 13)
modulo 26, a to x =2 (mod 26). Celkem tak mame

27 =2 (mod 26). A

Piiklad 3.1.3. Najdéte posledni dvé cifry &isla 397" . Hledéme zbytek po déleni 4 a pomoci
Eulerovy véty zbytek po déleni 25.

Reseni. Protoze 3 = —1 (mod 4) a exponent je lichy, mdme rovnou
397 = (-1)"" = —1=3 (mod 4).

Spocitame ¢(25) = ¢(5%) = 5 -4 = 20. Hleddme zbytek 97%° po d&leni 20. Nejprve si
viimneme, Ze 97 = —3, proto 97%° = (—3)% (mod 20). Déle opakujeme stejny postup
s Eulerovou funkei — ¢(20) = ¢(22-5) = 2-1-4 = 8. Hleddme zbytek po d&leni 99 osmi.
Protoze 12 - 8 = 96, médme 99 = 3 (mod 8), odtud

97 = (-3)¥ = (-3)° = -2T=-7=13 (mod 20).

Nyni médme dvé moznosti: bud zjistime inverzi ke tfem modulo 25 (vyjde —8) a tu umoc-
nime na sedmou, nebo pifmo trojku umocnime na 13 = 8 + 4 + 1. Mame 3% = 9,

3*=92=81=6,3=62=36=11 (mod 25). Pak
37 =313 =341 =11.6.3=66-3=16-3 =48 = —2 (mod 25).

Resime soustavu z = —1 (mod 4), z = —2 (mod 25). Z druhé kongruence mime z =
= 25k — 2, dosazenim do prvni ziskdme k.

25k—2=-1 (mod 4)
k=1 (mod 4)

Pak médme k =44+ 1, tedy x = 25- (4£+ 1) — 2 = 100£ + 23 a posledni dvé cifry ¢isla
9799 .
3°" jsou 23. A

76



Kapitola 3 Teorie cisel

Priklad 3.1.4. Najdéte vSsechny primitivni kofeny modulo 26.

Reseni. Zopakujme si definici primitivnich kofent. Primitivni koren modulo n je g takové,
7e pro kazdé b nesoudélné s n existuje k takové, ze g* = b (mod n). Plati, e primitivni
koreny modulo prvocisly existuji, naopak je-li n délitelné dvéma lichymi prvocisly, pri-
mitivni kofeny neexistuji. Obecnou podminku vSak nemame. Cislo r nazveme 7ddem a
modulo n (bereme nesoudélné a a n), jestlize r je nejmensi takové, Ze

a"=1 (mod p).

Plati, ze r déli p(n) (Lagrangeova véta). Primitivni kofeny modulo n budou ty prvky,
jejichz fad je pravé ¢(n). V nasem pfipadé mame 26 = 2 - 13, ¢(26) = 1-12 = 12. Méme
12 c¢isel mensich nez 26 s nim nesoudélnych. Hledame prvek fadu 12. Staéi ovérovat, Ze
a* a a® nejsou kongruentni 1. (To jsou maximalni délitelé 12, ktefi nejsou 12. Pokud by
nékterd mensi mocnina a byla 1, pak by jisté i nékterd z téchto mocnin byla 1.) ZkouSejme
postupné c¢isla nesoudélnd s 26:

¢ 33=27=1 (mod 26), tedy 3 neni primitivni kofen;
e 52=25=—1, proto 5* = (—1)? = 1 (mod 26), ani 5 neni primitivn{ kofen;

e ?=49= -3, proto 7" =(-3)2=9#1 (mod 26); 7 = (-3)3 = -27T=-1#£1
(mod 26), tedy 7 je primitivni kofen modulo 26.

Pokud zname jeden primitivni kofen modulo n, umime popsat vSechny. Budou to ty jeho
mocniny, jejichZ exponent je nesoudélny s ¢(n), jejich pocet tedy bude ¢(¢p(n)). V nasem
pfipadé budou 4, coZ je ¢(12). Exponenty budou 1, 5, 7 a 11, primitivni kofeny budou
N=7,7=9.-7=63=11,7=-7=19a 7" = —11 =15 (mod 26). JAN

3.2 Sifrovani

Priklad 3.2.1. Sifrou RSA s vefejnym klicem n = 95 a e = 49 bylo poslano &islo Z = 42.
Sifru prolomte a urcete zaslanou zpravu M € {1,2,...,94}.

Reseni. Zopakujeme si Sifru RSA. Pro generovani kli¢t zvoli Gcastnik dvé velkd prvodisla
p aq, spoCitdi n =p-q, p(n) = (p — 1) (¢ — 1), déle zvoli e nesoudélné s p(n) a spocita
(napriklad pomoci Eukleidova algoritmu) modularni inverzi d, tedy d-e =1 (mod ¢(n)).
Vefejnym klicem je pak dvojice (n,e), soukromym kli¢em je S = d. P¥{ Sifrovani zprévy
M spocitdme C = M® (mod n). Pfi deSifrovani Sifrované zpravy C pak tcastnik spodité
M = C? (mod n).

Hleddme rozklad 95 na prvocinitele. Vidime, ze 95 = 5 - 19, tedy ¢(95) =4 -18 = 72.
Hled4me inverzi k 49 modulo 72. Refme nésledujici soustavu ekvivalentnimi tpravami/|

49d=1 (mod 72)

1Samoziejmé bychom mohli také poéitat pomoci rozkladu 72 = 8 - 9 jako v piikladu [3.1.1} coZ by bylo
i jednodussi.
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72d=0 (mod 72)
49d=1 (mod 72)
23d=-1 (mod 72)
3d=3 (mod 72)
23d=-1 (mod 72)
3d=3 (mod 72)
—d=-25 (mod 72)
0d=T2 (mod 72)
d=25 (mod 72)

Vidime, %e d = 25. Spocitdme 42% modulo 95. Vime, Ze 42 = 4 (mod 19) a 25 = 7
(mod 18), takZe chceme spocitat 47 modulo 19 s tim, Ze 7 = 4+2+1. Vime, Ze 42 = 16 = -3,
odtud 4* = (-3)? = 9 a vysledn8 4" = —3-9-4 = —3-36 = —3-—2 = 6 (mod 19). Obdobné
42 = 2 (mod 5) a 25 = 1 (mod 4), tedy 42%° = 2! = 2 (mod 5). Hleddme M takové, Ze
M =6 (mod 19) a M =2 (mod 5). Z prvni kongruence mdme M = 19k + 6, dosazenim
do druhé zjistime k.

19k+6=2 (mod 5)
—k=-4 (mod 5)
=-1 (mod 5)k =5(—-1

Tedy M =19k+6=19-(5£—1)+6 =95£—19+4+6 = 95¢ — 13, z Cisel mezi 1 a 94
rovnici vyhovuje 82. A

Priklad 3.2.2. V Sifrovacim systému RSA s vefejnym klicem sklddajicim se z modulu
n = 2021 a exponentu e = 11 doslo k prozrazeni faktorizace n = p-q = 43-47. S jeji pomoci
deSifrujte zpréavu ¢ = 21. P¥i vypoétu mocniny ¢? mod 2021 poditejte zvlast modulo 43 a
modulo 47 a tyto mezivysledky pak dejte dohromady.

Reseni. Umime spocitat ©(2021) = 42 -46 = 1932 = 4 -3 - 7 - 23. Hleddme inverzi k 11
modulo 1932. Jednou moznosti je pouzit Eulerovu vétu. Mame
©(1932) = p(22-3-7-23) =(2-1)-2-6-22 = 528,

takZe inverz{ bude 115%7, coz spoéitdme na poécitaci. Pokud chceme poéitat ruéné, poéitame
inverzi modulo 4, 3, 7 a 23. tj. feSime nasledujici soustavu.

11d=1 (mod 4)

11d=1 (mod 3)

11d=1 (mod 7)
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11d=1 (mod 23)

ProtoZze 11 = —1 (mod 4), mdme d = —1 (mod 4). Stejnd kongruence plati i modulo 3.
TudiZ musi byt d = —1 i modulo 12=3-4.11-2=22=1 (mod 7), tedy d =2 (mod 7).
Nakoncec 11 - (—2) = —22 = 1 (mod 23). Re$ime tak nasledujici soustavu.

=—-1 (mod 12)
d= 2 (mod?7)
=—2 (mod 23)

Z prvni kongruence mdme d = 12¢ — 1. Dosazenim do druhé kongruence zjistime .

12t —1=2 (mod 7)
—2t=3 (mod 7)
=-12=2 (mod 7)

Méme t =7s+ 2, tedy d =12 (7s+2) — 1 = 84 s + 23. Dosadime do tfeti kongruence a
spocitame s.

84s+23=-2 (mod 23)
155 = -2 (mod 23)

Vynésobenim —3 dostaneme na levé strané —45 =1 (mod 23).
s= 6 (mod 23)

Tudiz s =23k+6ad=284-(23k+6)+23 =1932k+527. Vidime, Ze d = 527 a ndhodou
vyslo 11527 = 527 (mod 1932).

Nyni zjistime 2152”7 modulo 2021. Nejprve modulo 43. ProtoZe 527 = 23 (mod 42),
poditdme 72 a 3% (mod 43). Vidime, ze 7' = 7, 72 = 49 = 6 (mod 43), ? =6-7 =
=42 = —1, tudiz 7 =1 = ™8 (mod 43). Nakonec 7 = 7> =6 - (—1) = —6 (mod 43).
Déle 3* =81 = —5,3° = —15,3° = —45 = -2, 318 = -8, tek¥e 32 = —15- (—8) = -9
(mod 43). Nakonec

¢*=—-6-—-9=11 (mod 43).

Obdobn& modulo 47. ProtoZe 527 = 21 (mod 46), stadi pocitat 7' a 32.. Vidime, Ze
7?2 = 49 = 2 (mod 47), takze 7® = 2* = 16 a 72 = 26 = 64 = 17 (mod 47), tudiz
7'=17-16-7=—10-7= —70 = 24 (mod 47). Dale 3* = 81 = —13, tedy 3° = -39 =8
(mod 47), 39 =64 =17, 3% = 172 = 7, tedy 3*' = 21 (mod 47). Celkem

¢ =21-24=504=34 (mod 34).
Resime soustavu kongruenci pro M = ¢ (mod 2021).

M =11 (mod 43)
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M =34 (mod 47)
Vyjadfenim M = 47t + 34 a dosazenim Tesime pro ¢.

47t +34=11 (mod 43)
4t=—-23=20 (mod 43)
t=5 (mod 43)

Takzet =43s+5a M = 2021 s + 249. A

Priklad 3.2.3. V ElGamalové Sifrovacim systému si Alice zvolila vefejny kli¢ sestavajici
z prvocisla p = 997, primitivniho kofene g = 11 a jeho mocniny ¢® (kde exponent z = 23
je soukromy). Bartolomé;j si pro komunikaci s Alici zvolil soukromy kli¢ y = 25 a poslal ji
svij verejny kli¢ g¥. Pomoci spoleéného soukromého klice g*¥ pak zaSifroval zpravu m a
vyslednou zpravu ¢ = 20 poslal Alici. Jak ji bude Alice desifrovat?

Reseni. P¥ipomeneme si ElGamalovu Sifru, kterd vychazi z DH protokolu pro vyménu
kli¢t pro symetrickou kryptografii, kde obé strany komunikace se dohodnou na prvocisle p
a primitivnim kofenu g modulo p. Kazdy z ucastnikt vybere a, respektive b, a posle druhé
strané g%, resp. g° modulo p. Spoleénym kli¢em pro komunikaci je pak g*° = (g%)° = (¢°)¢,
kteryzto mohou oba tcastnici spocitat bez toho, aby jej mohl zjistit kdokoli jiny.

Pti pouziti ElGamalovy Sifry tcastnik zvoli prvocislo p, primitivni kofen g modulo p,
nédhodné a a spoc¢itd h = g* (mod p). Vefejnym kli¢em pak je trojice (p, g, h) a soukromym
klicem je a. P¥i Sifrovani zpravy M zvolime ndhodné b a spoéitdme C; = ¢ (mod p) a
Co = M -h® (mod p); nésledné posleme C = (Cy, Cy). Pro deSifrovani pak tdastnik spoéita
M = Cy/C¢ (mod p).

V nasem piikladu bude spoleénym klidem 112325 (mod 997). Po&itdme 11°® (mod 997).
Pomoci pocitace spocitdme, ze je to 950 = —47 (mod 997). Ali¢in vefejny kli¢ bude
1123 = 659 (mod 997). Naopak Bartoloméjiiv vefejny kli¢ bude 11%° = 976 = —21 (mod 997).
Jak Alice tak Bartoloméj jsou schopni zjistit soukromy kli¢ jako

950 = 659%° = 976 (mod 997).

ProtoZe jsme zprévu zaifrovali (modulédrnim) nédsobenim spoleénym klidem, pro deSifrovani
budeme modularné délit, tj. ndsobit modularni inverzi spole¢ného kli¢e. Tu zjistime jako
9509 = 700 (mod 997), takZe ptivodni zprava byla 700-20 = 14000 = 42 (mod 997). A
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4.1 Rekurentni posloupnosti
Priklad 4.1.1. Najdéte explicitni vyjadieni ¢lend posloupnosti spliiujici rekurentni vztah
Tyl = Tp +6Tp_1
s poc¢ateénimi ¢leny zo = 5, z; = 0.
Resent pomoct vlastnich ¢isel. Ptidejme si k rekurenci jesté druhou trividlni rovnici.
Ty = T
Dostaneme nasledujici soustavu rovnic, kterd je linearni.

Tpy1 = Tp + 6$n—1 (4 1)
T = z, ’

PiSme sloupcovy vektor (Z,,1,%,)7 dvou po sob& nasledujicich &lenii posloupnosti. S po-
moci tohoto zdpisu muZeme psét (4.1) ve vektorovém tvaru.

(i:“)=(}§)(§:_l> (4.2)

Ozna¢me matici z (4.2) P. Pak miZeme s pomoci (4.2) psét rekurenci nésledujicim zpuso-

bem.
Tntr \ _ p. [ Tn - e R I T (4.3)
Zn Tn—1 Tn—2 %o |

Nyni nalezneme vlastni ¢isla a vektory k matici P. V¢i nim se totiz P chova jako
nasobeni vlastnim éislem, a tudiz P™ bude mit stejné vlastni vektory a vlastni éisla n-té
mocniny vlastnich ¢isel matice P.

1-X 6

det(P—)\E)zdet< Y

>=>\2—>\—6:(A—3)(A+2)
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Maéame vlastni ¢islo \; = 3, spocitdme k nému prislusny vlastni vektor.

2 ¢ 1 -3
P_3E:< 1—3)"’(0 0)

Méme vlastni vektor v; = (3,1)7. Druhym vlastnim &slem je Ay = —2, spoéitdme jeho

vlastni vektor.
3 6 1 2
P+2E_<1 2)”(0 0)

Druhym vlastnim vektorem je v, = (—2,1)7. VSimnéte si, e prvni slozku vlastnich vektort
jsme stejné jako dané vlastni ¢islo a pak druhé slozka vysla 1. To plyne z (4.2)).

Chceme si vektor (z1,70)7 vyjadfit v soufadnicich baze a = (v, vs). Matici pfechodu
od standardni béaze € k bazi a tvori po sloupcich slozky vektori a.

3 -2
e (1)

Opacnd matice prechodu (od € k ) bude matice inverzni, kterou miZeme spocitat pomoci
determinantt, viz priklad V pripadé matice 2 x 2 inverzni matici spocitame tak,
Ze prvky na hlavni diagonéle prohodime, na antidiagondle (vedlejsi diagonéle) zménime
znaménko a vysledek vydélime determinantem.

1 1 2
—_ p-1_ —
Pa,e_Pe,a_5 (_1 3)

Nésledng mame vyjadieni (z1,z0)T = z;1 €; + z¢ €.

2 3T —
1 =zx1€ +Zp€r = To + o1 v+ %o ! Vo (44)
Zo ) 5)

Nyni muzeme dosadit (4.4) do (4.3) a ziskdme nésledujici vztah.

Tn+1 _ pn. 21170+IL'1 31170—1'1
() [

3 —
proy, 4 200
. 2$0+J71 3170—.’171

) 5

Porovnanim druhych slozek vektori na obou stranich ziskdme vzorec pro n-ty ¢len po-
sloupnosti.

_ 2xmo+ 1

.
5 V2

3" vi + (_2)n Vo

220+ 171 ., 3To—T1

Ty = 5 3"+ —5

Vzhledem k tomu, jak jsme volili vlastni vektory, ziskdme porovndnim prvnich slozek vek-

tort vzorec pro n plus prvni ¢len, ktery bude souhlasit s (4.5). Vidime, Ze posloupnost

zadand rekurenci zavisi na pocatecnich podminkach, tedy na tom, jak zaddme xy a x;.
V naSem piipadé je o = 5 a z; = 0, tedy z méme FeSeni.

T, =2-3"4+3-(-2)" A

(=2)" (4.5)
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Jiné reseni. Rekurence je linedrni s konstatnimi koeficienty. Jejim feSenim bude proto li-
nearni kombinace posloupnosti tvaru A”. Pro né mé platit

)\n+1 — )\n + 6 )\n—l

pro vechna n. Po vydéleni A"~! a pfesunuti &leni na levou stranu dostaneme kvadratickou
rovnici.

X -A=-6=0

(VSimnéte si, Ze rovnice odpovidé charakteristickému polynomu matice P z pfedchoziho
feSeni ulohy.) Vidime, Ze FeSenimi jsou A\; = 3 a Ay = —2. Obecné pak bude

Tp=a-3"+b-(-2)"

pro néjaka a, b € R. Dosazenim n = 0 dostaneme zy = a + b, ze zadani mame xq = 5.
Obdobné pro n = 1 mame z rovnice x; = 3a—2b a ze zadani x; = 0. Mame tedy soustavu
dvou rovnic pro dvé neznamé a, b, kterou vyresime klasicky.

2

3

I 115) (1 1 5)y (10
3 =210 0 =5|-15 01

Vidime, Ze a =2,b=3ax,=2-3"+3-(-2)". A

Priklad 4.1.2. Urcete explicitni vyjadfeni ¢lent posloupnosti vyhovujici rekurentni rovnici
Tp42 = 2xn+1 - zxn
se Cleny 1 = 2, x5 = 2.

Reseni. Rekurence je linedrni s konstatnimi koeficienty. Hleddme feSeni tvaru A", ktera
museji spliovat
A2 = 2\t _ 9\,

Po vydéleni A" a prevedeni dostaneme rovnici
N —2X+2=0
s diskriminantem D =4 — 8 = —4 a kofeny A1 2 = % = 141i. Musi tedy platit
Tp=a-(1+1)"+b-(1-1i)"
Dosazenim n = 1 médme z; = (1 +i)a+ (1 —i) b= 2 s pravou stranou ze zadni. ProtoZe

(1+£i)?=1+2i—1=242i, mdme pro n = 2 ze zadéni o = 2 = 2ia — 2ib. Celkem tak
mame nasledujici soustavu rovnic.

1+i)a + (1—i)b = 2
2ia — 2ib = 2
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Tuto soustavu resime v maticovém tvaru. Druhy fadek matice vydélime dvéma. Nasledné
jej vynasobime —i s tim, ze —i-i=—(—-1)=1a (—i)? = —1.
2
—i

1+1 1—-1|2 1+1 1-1
i i |1 1 -1

i —i
Od prvniho fddku odeéitdme (14i)-nésobek druhého. V prvnim sloupci mdme 0, ve druhém
l—i+(1+i)=2avetfetim2+i(1+i)=2+i—-1=1+1

0 2|1+4i
1 -1] —i

(0 1|
1 —1]—i

Nakonec pricteme prvni fadek ke druhému. Na pravé strané mame —i—l—% =

(Fol )
10| 4%

Vidime, Ze a = % ab= % Mame tak vztah

Novy prvni fadek vydélime dvéma.

—2it1+i _ 1—i
2 2

1—i 1—i
Tp=— -14+1)"+— -(1-1"
Zajimavé je, Zze a¢ mame ve vyjadfeni komplexni ¢isla, vysledek bude nejen realny, ale
dokonce celoéiselny. Podivejme se, pro¢. Nejprve si koeficienty i mocnénce prevedeme do
goniometrického tvaru. Vidime, 7e |1 £i| = v/2 a %e argument maji +7, coz je ziejmé
z obrazku. Mame tak

T (con (<) (<T)) - (o i)
ITp = COS 4 1S 4 COS 4 S 4
+1

T (o frion ) (oo () wron ()
B COS4 S 4 COSs 4 S 4

n+1
2 —1 -1 1-— 1-—

coz, protoze je sinus liché a kosinus sudé funkce, dava

n+1 nT T
=1/2 B
CRC S
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nésledné s pouzitim souctového vzorce cos(x — y) = cosz cosy + sinz siny a faktu, Ze
m_ g L -
cosy =sinj = dostavame

—\/_ (COST—I- sm%).

Podivame se na hodnoty kosinu a sinu. ProtoZe jsou funkce 2 7m-periodické, budou se hod-
noty opakovat pro n modulo 8. Mame

n =0 (mod 8): sinus vyjde 0 a kosinus 1, v souétu 1;

/3

« n =1 (mod 8): sinus i kosinus vyjdou %, v souctu V2

e n =2 (mod 8): sinus vyjde 1 a kosinus 0, v souctu 1;

V2

e n =23 (mod 8): sinus vyjde 4 a kosinus —=, v souctu 0;

V2

« n =5 (mod 8): sinus i kosinus vyjdou —¥%%, v souctu —V2:

e n=06 (mod 8

):
)
)

e n=4 (mod 8): sinus vyjde 0 a kosinus —1, v souctu —1;
)
): sinus vyjde —1 a kosinus 0, v sou¢tu —1;
)

V2

: sinus vyjde —‘/75 a kosinus 5%, v souctu 0.

n=7 (mod 8

Pro n = 3 (mod 4) dostaneme 0, pro n sud4 aZ na znaménko sudou mocninu /2, tedy

néjakou mocninu 2. Pokud n = 1 (mod 4), pak dostavime \/54 S V2 = \/§4k+2, tedy
opét (az na znaménko) mocninu 2. A

4.2 Markovské procesy

Priklad 4.2.1. Roc¢ni Albertek Einsteint stavi se 4 kostkami véz. Ta mu ale kazdou chvilku
spadne. Kdyz ji méa cerstvé spadlou, vezme néjakou kostku a snazi se ji postavit na nékterou
jinou, coz se mu podafi s pravdépodobnosti =. Kdyz ma véz ze dvou nebo tti kostek, snazi se
postavit dalsi kostku na jeji vrchol, coz se mu opét s pravdepodobnostl podafi. Pokude se
mu to nepodaii, véz spadn a Albertek zacne znovu. Pokud mé véz ze ctyr kostek, radostné
zatleskd a véz zbofi. Takto pokracuje pordd dokola. Maminka se na néj po dostateéné
dlouhé dobé prijde podivat. Jaka je pravdépodobnost, Ze uvidi stat véz o ¢tyrech kostkach?

Reseni. V& se miize skladat z jedné, dvou, t¥{ nebo &tyt kostek. Oznaéme tyto stavy &isly
1 az 4. Podivejme se nyni na mozné prechody mezi stavy.

1. MizZeme prejit do stavu 2 nebo 1, oboji s pravdépodobnosti

2. Muzeme prejit do stavu 3 nebo 1, oboji s pravdépodobnosti

N NI= N

3. Muzeme prejit do stavu 4 nebo 1, oboji s pravdépodobnosti
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4. Jisté prejdeme do stavu 1.

Méjme prechodovou matici P = (pi’j)i j=1, kde p; ; znaci pravdépodobnost pfechodu z j-
-tého stavu do i-tého. (Sloupce odpovidaji vstupnim hodnotdm, fadky vystupnim. To je
proto, ze vektory uvazujeme sloupcové a maticemi je ndsobime zleva.)

32 2 1
1
p_|2000
0 ;00
0030

Ta méa automaticky dominantni vlastni ¢islo 1, nebudeme to ovéfovat. Spocitame k nému
vlastni vektor.

-1 1 1 2 -1 1 1 2 -1 0 0 8
1 -2 0 0 0 -1 1 2 0 -1 0 4
2(P-E)= 0 1 -2 o0o]"~ 0 0 -1 21" 0 0 —1 2
0 0 1 -2 0 0 00 0 0 00

Méme pravdépodobnostni vlastni vektor p = (1%, 22 %) Pravdépodobnost, Ze ma-
minka uvidf véZ se Gtyfmi kostkami je ;:.
MizZeme také spocitat stfedni vysku véze. To bude primér vSech moznych vysek vaze-
nych pravdépodobnostmi jejich vyskytu.
8 4 2 1 28 _
E=—-14—-24+—-34+4—-4=—=186~1,87 A
T TR TR TR TR
Pozndmka. ReSeni by §lo rozsffit na tlohu o n kostkéach. Piechodova matice méla rozméry
n X n a byla definovina podobné jako v tloze. Jeji pravdépodobnostni vlastni vektor by

byl
2n—1 2n—2 1
oan—1'2n—1"" "7 —1 )"

Nyni chceme ipoéitat stfedni vysku véze. Jisté plati, ze pravdépodobnost vyskytu véze
vysky k je % Potom pocitame stredni vysku véze.
2n—k -k 2n—1 n k

E = — .
k; m—1  2n—1 ,;2'6—1

Po vytknuti konstanty ziskdme napravo ¢astec¢ny soucet aritmeticko-geometrické rady s kvo-
cientem % Podivejme se, jak ji secist. Mame

S=1+2¢+3¢+ - +ng"*
Po vynésobeni ¢ dostaneme druhou rovnici.
g-S=q+2¢+--+(n—-1)¢""+ng"
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Odectenim ziskdme ¢astecny soucet geometrické rady.

1-¢)S=1+qg+¢+ - +¢" " —ng"

1—q" n
Odtud jiz ziskdme potfebny vzorec.
1—qg" nq"

S = -

(1-9?® 1-g¢

_1-(n+1)¢"+ng*™!
(1—g)

V naSem pripadé je q = % = 27!, Dosazenim do vzorce tedy spoéitdme stiedni hodnotu.

2t 1—(n+1)2"+n2!

E= :
S
2
_ 2n+1 . (1 —92. 2—n—1 —2n - 2—n—1 +n- 2—n—1)
N on — 1

2l —p—2
S on—

Zajimavosti je, ze pri limitnim pfechodu n — oo bychom dostali pravdépodobnostni vektor

(111 )
2°4°8" "

a stfedni hodnota vysky véze budou 2 kostky.

Priklad 4.2.2. Roztrzity profesor s sebou nosi destnik, ale s pravdépodobnosti % jej za-
pomene tam, odkud zrovna odchézi. Rano odchazi do prace. V poledne chodi z prace do
restaurace, z ni se vraci zpét do prace a veCer jde domil. Pro jednoduchost uvazujeme,
Ze nikam jinam po dlouhou dobu nechodi a Ze v restauraci zistava destnik na misté od-
kud si ho pristé muze zase vzit. Uvazujte tuto situaci jako Markovovuv proces a napiste
jeho matici. Jaka je pravdépodobnost, Ze po mnoha dnech bude destnik po ranu nalézat
v restauraci? (UvaZujte ¢asovou jednotku jeden den — od rédna do réna.)

Reseni. Oznaéme si stavy postupné D (destnik se nachzi doma), P (v praci) a R (v restau-
raci). Rozdélme si den na podiseky urdenymi misty, mezi kterymi se profesor pohybuje.
Plati, Ze pokud se destnik na jeho zacatku nachazi na stejném misté jako profesor, se stej-
nou pravdépodobnosti odejde na nasledujici misto nebo zde ztustane. Nachazi-li se destnik
na jiném misté nez profesor, setrva zde s jistotou.

Uvazujme nejprve, Ze je deStnik rano doma. Nakresleme si graf, kde jednotlivé tirovné
predstavuji shora doli denni doby — rano pred odchodem do prace, pred obédem, po obédé,
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pied odchodem domi a po p¥ichodu domd. Sipky v grafu pak odpovidaji prechodfim mezi
stavy, jejich popisky pak pravdépodobnostem.

D
Ny
D

f\R
b AL
/P R

Pravdépodobnost prechodu po dané cesté je souc¢inem ohodnoceni jednotlivych Sipek. Prav-
dépodobnost, Ze destnik skon¢i na daném misté je rovna souctu pravdépodobnosti cest

v onom misté koncicich. Mame tedy pravdépodobnosti
1,1, 1 _ 11,
e D—D: 3 tsti16= 16
1,1 _ 3.
e D P: g + 16 — 16’
e D—R:

Obdobné grafy si mzeme kreslit i pro stavy, kdy je destnik rano v préci. Protoze vSak
musi byt v praci minimalné do profesorova odchodu na obéd, stav rano v grafu vynechame.

00|

P
ia\R
b AL
P R
A

Stejné si napiSeme i pravdépodobnosti prechodi.

« PoD:l141=38
e PoP:lylos
. P—)R:}1
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Nakonec si situaci rozepiSeme pro pripad, kdy je destnik rano v restauraci, kde musi
zlistat nejméné do profesorova odchodu z restaurace!]

Al

R

P
D P

Maéme také pravdépodobnosti pfechodi: R — D i R — P s pravdépodobnosti i aR—R

s pravdépodobnosti % Celkem tedy muZzeme psat matici prechodu. Stavy méame sefazené

1. D, 2. P a 3. R a (i, j)-ta slozka odpovid4 pravdépodobnosti pfechodu z j-tého stavu do
i-tého.

11

16

_| 3

P=1 3%

1

8
Pro nalezeni vlastniho vektoru prislusného jednicce fadkové upravujeme matici 16 (P — E).

1= 0010 00l
TN

-5 6 4 1 —-14 12
16(P—FE)= 3 -10 4 |~|3 —-10 4|~
2 4 -8 2 4 -8
1 —14 12 1 0 -2
~10 32 -32|~]01 -1
0 32 -32 00 O
Pravdépodobnostni vlastni vektor je p = (%, i, i), destnik se tedy rano nachazi doma
s pravdépodobnosti %, v praci respektive v restauraci pak s pravdépodobnosti %. A

Priklad 4.2.3. Rodina Novakova kazdoroc¢né jezdi na cely srpen na dovolenou. Bud nalozi
auto kempingovym vybavenim a cestuje po Evropé, nebo nalozi kola a jedou k babic¢ce na
Vysocinu. Kazdy rok se rozhoduji podle toho, jak travili dovolenou posledni dva roky, a to
¢astecné nahodné za pouziti klasické kostky. Rozhoduji se podle nésledujicich pravidel.

e Pokud byli posledni dva roky kempovat po Evropé, jedou na Vysocinu.
e Pokud byli posledni dva roky na Vysociné, tak jedou po Evropé.

o Pokud byli loni kempovat po Evropé a predloni u babicky, pak hazi kostkou, a kdyz
padne liché cislo, tak jedou po Evropé, a kdyz sudé cislo, tak jedou na Vysodéinu.

e Pokud byli loni na Vysoéiné a predloni po Evropé, pak héazi kostkou. Kdyz padne 1
nebo 2, pak jedou na Vysocinu, jinak jedou po Evropé.

1Samozfejmé jsme mohli psat viechny piipady do jednoho grafu, ale tento postup je piehledn&jsi.
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Timto zplsobem se o dovolené rozhoduji cely zivot. V srpnu letosniho roku je pfijel do
mista jejich bydlisté navstivit kamarad, s kterym se nevidéli po mnoho let. Soused, ktery
védél, Ze jsou bud na Vysociné nebo cestuji po Evropé, ale nevédél, kde byli posledni roky,
jej poslal na Vysocinu. Urcete, jaké je pravdépodobnost, Ze tam rodinu Novakovu najde.

Reseni. Oznaéme si E stav, Ze Novakovi jedou kempovat po Evropé a V stav, Ze pojedou
k babicce na Vysocinu. Diky tomu, zZe se Novakovi rozhoduji podle predchozich dvou let,
musime uvazovat usporadané dvojice téchto stavi. Zjistime si prechodovou matici.

o Ze stavu EE pfejdeme jisté do stavu EV (tedy napied jeli kempovat a poté na Vy-
so¢inu).

o Ze stavu VYV jisté prejdeme do stavu VE.

e Ze stavu EV jedou se stejnou pravdépodobnosti % (pro sudé a lich4 ¢isla na kostce)
do stavu bud VE nebo VV.

o Ze stavu VE prechazeji do stavu EV s pravdépodobnosti % (na kostce padla 1 nebo
2) nebo do stavu EE s pravdépodobnosti %

Stavy si sefadime EE, EV, VE, VV. Pak mame matici prechodu.

0030
p_| 10 5 0
0201
000

Protoze je proces Markovsky, méa matice pfechodu dominantni vlastni ¢islo 1. Spocitejme
k nému vlastni vektor. (P¥i prvni Gpravé si vyndsobime prvni dva fadky dvéma a druhé
dva tfemi.)

2 0 1 0 2 0 1 0
2 2 1 0 0 -2 2 0
P—E~ 0 2 -3 3|7 0 2 -3 3|7

0 1 0 -3 0 1 0 -3

2 0 1 0 2 0 0 —3

N 0-1 1 0| |010 -3

0 0 —1 3 001 —3

0 0 1 -3 000 O

Jako (celo¢iselny) vlastni vektor miizeme vzit naptiklad v = (3,6,6,2)7, pravdépodob-
nostni vektor pak bude p = %7 v. Pravdépodobnost, Ze pojedou na vysoucinu pak bude
sou¢tem pravdépodobnosti, Ze jedou na Vysocinu za predpokladu, Ze loni jeli také na Vy-
socinu, a za predpokladu, Ze loni jeli kempovat po Evropé, tedy souctem pravdépodobnosti
stavi EV a VV, coZ je £ + 2 = £ A
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Priklad 4.2.4. Které z matic jsou primitivni, tj. nékterd jeji mocnina obsahuje pouze
kladné cleny?

0 1 5 0 3 010

7 1 1 1
“(1%) S =10
: 0 & 1 0 3

Resend. Spoéitejme si A2.

e (D-(1)

Matice A je tedy primitivni. Jak to ale poznat obecnéji? Piedstavme si matici M typu
n X n, kterd popisuje Markovsky proces na n stavech, které si oznacime 1 az n. Matici M
muzeme prifadit ohodnoceny orientovany graf G,;, jehoz vrcholy budou stavy 1 az n, a
hrana z % do j bude ohodnocena m;;. Hrany ohodnocené 0 pro piehlednost vynechdme.
Cesta je pak ohodnocena souc¢inem ohodnoceni jednotlivych hran. Nyni si vzpomeneme na
priklad V matici M* je prvek m;; sou¢tem ohodnoceni vSech cest délky k vedoucich
z 1 do j. Plati, Ze toto Cislo je nenulové pravé tehdy, kdyz néjaka takova cesta existuje.
Pokud mezi kazdymi dvéma vrcholy grafu existuje orientovand cesta, nazyvame takovy
graf silné souvislym. Déle mame nésledujici tvrzeni: Matice M je primitivni prdvé tehdy,
kdyZ Gy je silné sowvisly a délky orientovangjch kruznic jsou nesoudéInéf| Uk4Zeme si to
pro pripad matice A.

o NI
IS =
~lomal
NN

BB

201

Vidime, Ze mezi libovolnymi dvéma vrcholy existuji cesty a cykly maji délky 1 a 2, matice
A je proto primitivni. Nyni miiZeme pfejit k matici B, ktera zadava nasledujici graf.

\%/ . 2 D1

Vidime, Ze naptiklad ze stavu 2 neexistuji cesty do stavi 1 a 3, matice B proto nemiize

Zhttps://www.sciencedirect.com/science/article/pii/S0024379514001062
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byt primitivni. Nakonec vyresme tlohu pro matici C.

[a—
> ENTE
[\]

[y

N

Vidime, Ze mezi kazdymi dvéma vrcholy vede cesta a mame smycku, tedy matice C je
primitivni, coz si miZeme ovérit pocitanim.

C? =

C? =

PN N I N L ML e
Bl R O RlweiRr O

1
0
0
1
0
0

0010 001CO ix = W[ i l= O
PN N ) o O =
NI NR O NIENIR O
0Ol x| 00| 00O 0Ol x|
olw 0lw = BIW BRI O
(SIS N LN Ll M

4.3 Leslieho popula¢ni model

Priklad 4.3.1. Farméaf chova ovce. Jejich porodnost je ddna pouze vékem a je primeérné
2 ovce na jednu ovci mezi jednim a dvéma lety véku, 4 ovce na jednu ovci mezi dvéma a
tfemi lety véku a 2 ovce na jednu ovci mezi tfemi a Ctyfmi roky véku. Ovce do jednoho
roku nerodi. Z roku na rok umfe vzdy polovina ovci a to rovnomérné ve vSech vékovych
skupinéch. Po 4 letech posila farmar ovce na jatka. Jakou ¢ast jehnatek mize kazdy rok
prodat, aby mu velikost stada ziistavala stejna? V jakém vékovém pomeéru budou rozdéleny
pocty ovci v jednotlivych vékovych skupinach?

Reseni. Méme stavy 0 aZ 3 podle toho, kolika let se jiz ovce dozily. Nasledné uréime matici
prechodu. Ze stavi 0, 1 a 2 vzdy prejde % ovci do stavu o jedna vyssiho. Pro ovce ve stavech
1 a 3 vzdy pribude jejich dvojnasobek do stavu 0, do stavu 0 také vzdy pribude ¢tyinasobek
ovcl ve stavu 2. Navic jesté chceme prodéavat roéni ovce feknéme p € [O, %] z celkového
poctu tak, aby byl chov stabilni. (Hodnota p je shora ohranicena %, protoze pouze tolik
ovci se dozije druhého vé€ku.) To znamend, Ze ze stavu 0 do stavu 1 ve skuteénosti bude
prechazet % — p celkového poctu ovci.

0 2 4 2
l-p0o0o
L=1"9 1900
0o o01lo
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Populace bude stagnovat, bude-li mit Lesliecho matice vlastni ¢islo 1. Musi tedy platit
det(L — E) = 0. Spocitejme tento determinant napiiklad Laplaceovym rozvojem podle

posledniho sloupce.

-1 2 4 2
%—p -1 0 O
det(L — E) = det 0 L1 o
0 0 1 -1

i-p -1 0 -1 2 4

=-2-det| O : -1 |—det| 1—p -1 0

0 0 1 0o 1 -1

Prvni matice je horni trojihelnikova. Pro determinant druhé matice pouzijeme opét La-
placetv rozvoj podle posledniho sloupce.

2 /1 1_p -1 -1 2
=—2.(Z—p)—4-det| 2 det
v (o) -wan (357 7)) a2, 7)

p 1 9 5
==—-—1+4+2 1-142p==-p—-=
271 +2p+ +2p 2p 1 0

Vidime, Ze posledni rovnost nastane pro p = 1%, tedy farmar by mél prodavat 1% ro¢nich
A

ovci.
Priklad 4.3.2. Popula¢ni model je dan Leslieho matici L.

1 2

00
a 0

L =

oNi= O

Pro kterd a € (0,1] populace expanduje, pro kterd sméfuje k vyhynuti a pro kterd se
stabilizuje?

Reseni. Hledame vlastni ¢isla matice L. PoloZime tedy determinant matice L — A E roven
nule. Pocitdme naptiklad Laplaceovym rozvojem podle posledniho sloupce.

. 1 2
det(L — A E) = det T =20
0 a —A
L) -2 1
_ 2 ).
—2det<0 a) Adet( %_)\)
9.0 _ 2_1)__3 1 _
=2 A(A 5) =X+ 5A+a=0
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Pribéh det(L — A E) jako funkce A v zévislosti na parametru a je mozné vidét napiiklad
v souboru pro Geogebruﬂ Odtud je vidét, Ze dominantni vlastni &islo bude pro a € (0, 1]
kladné.

Vidime, Ze ma-li byt det(L — AE) = 0, musi byt samoziejmé a = A3 — I \. Pokud
populace stagnuje, je kofen A = 1, tedy a = % Pro A > 1 populace roste a a > % Jestlize
populace klesa, je A < 1 aa < % Obracené implikace plati také (napiiklad z analyzy
protoze derivace a jako funkce A je na okoli 1 nenulova, nebo si sta¢i uvédomit, Ze pro

1

a > 5 staci pfirtstky na stagnaci a jeSté mame néco navic), mizeme tedy fici, Ze pro

a€ (0, %) populace klesd, pro a = ; stagnuje a pro a € (%, 1] roste. A

Priklad 4.3.3. V jezeru zije populace bilych ryb. Pfedpokladame, Ze druhého roku se
dozije 20 % pliadku a od tohoto véku jsou ryby schopné se reprodukovat. Z mladych ryb
prezije do t¥etiho roku do stadia velké ryby 60 %. Umrtnost velkych ryb je zanedbateln.
Dale predpoklddame, Ze roc¢ni prirustek ryb je trojndsobkem poctu ryb schopnych repro-
dukce.

Tato populace by evidentné jezirko preplnila. Rovnovahu chceme dosahnout nasazenim
stik. Kazda stika sni ro¢né 500 velkych ryb. Kolik $tik mame do jezera nasadit, aby populace
ryb stagnovala?

Reseni. Pfedpokladejme, Ze $tiky jedi pouze velké ryby a Ze jejich populace bude kon-
stantni. Stavy si ozna¢ime P (plidky), M (malé ryby) a V (velké ryby). Zjistime Leslieho
madtici.

« Z P do M piejde ; populace.

e Z Mdo V prejdou % populace a vytvori se trojnasobek populace novych pladku, tedy
z M do P prejdou 3 populace.

e 7Z V stiky snédi neznamé mnozstvi, p, populace, do V tedy pfejde 1 — p populace.
Z V do P prejdou opét 3 populace.

Maéme tak Leslicho matici.
3

0
l1—p
Chceme, aby méla vlastni ¢islo 1, tedy aby det(L — E) = 0. Determinant spo¢itdme napii-
klad Laplaceovym rozvojem podle posledniho sloupce, ktery zac¢ina kladnym znaménkem.

L=

oul= O
glw O W

-1 3 3
det(L — E) = -1 0
0 2 —-p

1 —
:3det(5 3>—p-det(
0 3

3https://math.muni.cz/~prochazka/vyuka/11_6.ggb

U=
|

— W
N——
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9 2

25 5
Vidime, ze musi platit p = %. Stiky tedy musi snist kazdj rok 90 % velkych ryb. Jestlize
jedna Stika sni kazdy rok 500 velkych ryb, musime nasadit jednu stiku na

% - 500 = 555,5 ~ 556

velkych ryb ff A

4.4 Linearni programovani

Priklad 4.4.1. Firma planuje reklamni kampan, ve které chce pouzit inzerci v radiu,
televizi a novinach. Cena jednoho uvedeni reklamy v radiu je 10 000 K¢, v televizi 30 000 K¢,
v novinach 20000 K¢é. Firma mize za reklamni kampan utratit nejvyse 350 000 K¢. Pocet
uvedeni reklamy v televizi chce omezit na nejvyse 5. Déle firma chce, aby v novinach
byla nejvyse ¢tvrtina z celkového poctu uvedeni ve vSech mediich. Pocet lidi zasazZenych
reklamou je nasledujici: jedno uvedeni reklamy v radiu slysi 10000 lidi, jedno uvedeni
reklamy v televizi vidi 60000 lidi a jeden inzerat v novinach precte 30000 lidi. Firma
predpoklada, Zze nikdo neni reklamou zasaZen vicekrat.

Pri kolika uvedenich reklamy v radiu, televizi a novindch maximalizuje firma pocet lidi
zasazenych reklamou? Jaky tento pocet bude? Zformulujte problém jako tlohu linearni
optimalizace a pak dlohu vyteste.

Reseni. Vsechna cisla v zadani vydélime 10 000. Pocty uvedeni postupné v radiu, televizi
a novinach, oznaCme postupné z;, o a x3. V tloze jde o maximalizaci funkce

f(@1,22,23) = 21 + 622 + 313

za podminek

1+ 22+
1 +3x2+ 223 < 35, To < 5, xgg%.
Posledni podminku mtzeme pomoci vynasobeni 4 a pfevedeni na levou stranu prepsat do
tvaru 43 —x1 — o —x3 = —1 — 22+ 33 < 0. Pfidanim novych proménnych ti, t5, t3 > 0
muzeme podminky pfepsat do tvaru rovnic.

$1+3l‘2+21‘3+t1:35, $2+t2=5, —$1—$2+3$3+t3:0.

Ulohu zapiSeme do simplexové tabulky, kde &isla odpovidaji koeficienttim u proménnych
v rovnicich. V prvnim f4dku méme funkci, kterou minimalizujeme (tedy — f). Ostatni fadky

4Py tomto zaokrouhlovéni by populace mirné klesala. Pro korekce bychom museli nasadit jednu Stiku
na 556 > 555,5 velkych ryb, ale jakmile by rozdil pfesahl 555,5, stiku bychom nenasadili, atd.
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pak odpovidaji rovnicim.

I ) T3 tl t2 t3

-1 -6 -3 0 0 0] O
1 3 2 1 0 035
0 1 0 0 1 0] 5

-1 -1 3 0 0 1] O

Evidentné je moznym feSenim z; = 2o = z3 = 0, t; = 35, to = 5 a t3 = 0. Chceme najit
reSeni pomoci proménnych z;, 5 a x3. Snazime se postupné vynulovat zaporné éisla v za-
hlavi prvnich t¥{ sloupct. Za vedouci koeficient (pivot) v daném sloupci (postupujeme zleva.
doprava) ur¢ime kladné éislo takové, Ze pomér posledniho éisla jeho fadku a tohoto éisla
je minimélni (pokud bychom nemohli pouzit prvni sloupec, pouzili bychom nésledujici).
Pomoci fadku s pivotem vynulujeme radkovymi tpravami ostatni ¢isla v prvnim sloupci.
Takto pokracujeme s dals§imi dvéma sloupci. Pivot je pro dany sloupec je oznacéen ¢ervené.

-1 -6 =300 0] 0 0 -3 -1 10 0]35
1 3 2100|35 1 3 2100|35
0 1 0010/5[7]o 1 oo10|5]"
1 -1 300T1]0 0 2 510 1|35
00 —-11 3 0[50 000 ¢ —%2 2|55
10 21 =302 1002 0010
01 00 10|65 0100 105
00 51 -2 1|25 001%_5%5

Reseni je z; = 10, 25 = 5, £3 = 5. Maximalni podet divaki zasaZenych reklamou je 550 000,
tedy deseti tisici ndsobek hodnoty funkce f. A

Priklad 4.4.2. Kvétinarstvi odebira kazdy tyden kvétiny od dvou stalych dodavateli
Anny a Bofivoje. Pro tento tyden méa smysl brat nejvyse jednu doddavku od Anny a jednu
od Boftivoje. Pii jedné doddvce doveze Anna maximalné 50 svazki kvétin, pficemz nabizi
dovoz rizi a tulipani. Také Borivoj doveze pri jedné dodévce nejvyse 50 svazkl kvétin a
nabizi rovnéz rize a tulipany. Kvétinarstvi mize uskladnit maximéalné 70 svazki rtzi a 60
svazki tulipani. Vedouci vi, Ze proda vSechny dodané kvétiny. Zisk z jednoho svazku rizi
od Anny je 60K¢, z jednoho svazku tulipani od Anny 80K¢, z jednoho svazku ruzi od
Borivoje je 100 K¢ a z jednoho svazku tulipani od Borivoje 110 K¢.

Kolik a jakych svazki méa vedouci pro tento tyden objednat, aby maximalizoval sviij
zisk? A jaky tento zisk bude? Zformulujte problém jako tlohu line4drni optimalizace a pak
tlohu vyfteste.

Reseni. Céstky miZeme vydélit deseti. Oznaéme poéty svazkil rizi, resp. tulipind, od
Anny a;, resp. as. Obdobné pro Bofivoje mame b; a bs. Pak maximalizujeme funkci

f(al,ag,bl,bz) = 6(1,1 + 8(12 + 10b1 + 11 b2
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(tedy minimalizujeme funkci —f) za podminek

CL1+CL2S50 b1+b2S50
(pouze tolik mohou Anna i Bofivoj dodat)

a1+b1§70 a2+b2§60

(tolik svazki kvétin daného druhu muze kvétinafstvi uskladnit). Pfiddme si nové proménné
t1, ta, t3 a ty > 0, abychom z nerovnosti v podminkach dostali rovnosti. Nyni jiZ mtzeme
postupovat jako v prikladu simplexovou metodou, snazime se vynulovat zdporné cisla
v prvnim Faddku. Pivot pro dany sloupec je opét oznacéen Cervené. (VSimnéte si, Ze pivot pro
prvni i druhy sloupce vySel v témz fadku, nejedné se tedy o klasickou GauBovu eliminaci.)

—6 —8 —10 —11 0 0 0 0| O
1 1 0 0100 0[50
0 0 1 10100[5 |~
1 0 1 000 10|70
0 1 0 1000 1[60
0 —2 —10 —11 6 0 0 0300
1 1 0 01 00050
~l0 0o 1 10 10050 |~
0 -1 1 00 -110/|20
0 1 0 10 00 1|60
2 0 —10 —11 8 0 0 0400
11 0 0 1000 50
~| o0 1 1 01005 |~
10 1 0 0010 70
10 0 1-1001/10
200 -1 8 00 0900
110 0 1 00 0| 50
~| o001 1 0 10050 |~
100 -1 0-110| 20
100 1 -1 00 1] 10
2000 7 100 0910
1100 1 00 0 50
~| 0010 1 10 —-1]40
0000 -1 —-11 1| 30
1001 -1 00 1|10

V prvnim faddku méame v prvnim sloupci 2, proto a; = 0. Déle ay = 50, b; = 40 a by = 10.
Odebirame tedy 50 tulipanti od Anny a 40 riazi a 10 tulipant od Bofivoje. Maximalni zisk
bude 9100 K¢é. A
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Priklad 4.4.3. Firma Defekt vyrabéjici jizdni kola chce napldnovat optimalni mési¢ni
vyrobu. Produkuje t¥i typy kol: silni¢ni, horskd a zimni. Vyroba je rozdélena na montaz
a testovani kvality, pficemz firma mé k dispozici 520 hodin provozu montazni linky a
100 hodin testovaci laboratore za jeden mésic. Pro vyrobu silniéniho kola jsou potteba 4
hodiny montéaze, pro vyrobu jednoho horského kola 5 hodin montéze a pro vyrobu jednoho
zimniho kola 6 hodin montaze. Pro kazdé kolo je potfeba 1 hodina testovani. Firma chce,
aby zimni kola tvofila maximélné polovinu mési¢ni produkce vSech kol. Zisk z prodeje
jednoho silni¢niho kola je 4000 K¢, z prodeje jednoho horského kola 6 000 K¢ a z prodeje
jednoho zimniho kola 7000 K¢. Firma vzdy prodéa vSechna vyrobena kola.

Pri jakém poétu vyrobenych silni¢nich, horskych a zimnich kol za jeden mésic maxi-
malizuje firma svij zisk? A jaky tento zisk bude? Zformulujte problém jako tlohu linedrni
optimalizace a tlohu vyreste.

Resend. Castky vydélime 1000. Ozna¢ime si proménné s (podet silniénich kol), h (pocet
horskych kol) a z (polet zimnich kol). Maximalizujeme funkci

f(s,h,2) =4s+6h+T7z
(minimalizujeme — f). Méme omezeni
4s5+5h+62 <520 s+h+2<100

pro hodinovou dotaci na vyrobu a testovani a

z<s+h+z
- 2
aby zimni kola tvorila maximélné polovinu produkce. Posledni nerovnice je ekvivalentni
s —s — h+ z < 0. Priddanim pomocnych proménnych ¢, t; a t3 > 0 docilime toho, aby
podminky mély tvar rovnic. Nyni jiZ mizZeme postupovat simplexovou metodou pomoci
tabulky. Pivota opét znaCime Cervené.

4 -6 =700 0| O 0 -2 —3 0 4 0]400

4 5 610 0|52 0 1 21 —4 0]120

1 1 1010100 |1 1 10 1010 |~

1 -1 1001| 0 0 0 20 1 1]|100
20 -1 0 6 0600 100 1 1 0/620
10 11 -5 0] 20 101 1 -5 0] 20
11 10 1010 ]| | 210 -1 60| 80
00 20 1 1/100 200 —2 11 1| 60

V prvnim sloupci méme v prvnim fadku kladné éislo, tedy s = 0. Dale h = 80 a z = 20,
mésicné tedy budeme vyrabét 80 horskych kol a 20 zimnich. Zisk pak bude 620000 K¢ za
mésic. A
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Priklad 4.4.4. Truhlarstvi vyrabi stoly, zidle a policky. Na vyrobu jednoho stolu potfebuje
3 hodiny, jedné zidle 2 hodiny a jedné policky 1 hodinu. Vyrobni kapacita truhlaistvi je
60 hodin a celkové 1ze vyrobit nejvyse 40 vyrobki. Policek vyrobi nejvyse tolik, kolik
dohromady vyrobi stold a zidli. Zisk z jednoho stolu je 1000 K¢, z jedné Zidle 800 K¢ a z
jedné policky 600 Ké.

Zformulujte problém jako tlohu linedrniho programovani. Uréete optiméalni skladbu
vyroby a spoctéte maximalni zisk simplexovou metodou.

Reseni. Céstky vydélime stem. Oznadme si s, z a p podty vyrobenych stold, zidli a polic.
Maximalizujeme funkci
f(s,2,p) =10s+82z+6p

za podminek
3s+22z+p<60 s+z+p<40 p<s+z
coz si za pomoci pomocnych nezapornych proménnych zapiSeme jako rovnice.
3s+2z+p+1t; =60 s+z+p+ta=40 —s—2+p+it3=0

Nésledné resime lohu pomoci simplexového algoritmu. Pivota znac¢ime cervené.

~10 -8 -6 0 0 0] 0 0 —3 —5 ¥ 0 0]200
3 2 110 0|60 3 2 1 100/ 60
1 1 1010[4 |70 & 2 —310] 2|7
-1 -1 1001]0 0 —3 3 3 01|20
2 0 -2 4 0 0]240 000 2 0 0280
32 1 100/ 60 420 2 -2 0] 40
“l-10 1 -120/2 ]| |-101-1 20|2]|"
10 3 10 2| 60 400 4 02 0
000 2 0 0]280
020 —2 —2 —2/| 40
“loo1 o 2 1 20
200 2 0 1| 0

(Posledni krok je GauBova eliminace pro skladbu vyroby. To, Ze s = 0 vidime jiz z pfed-
posledniho kroku. Pouzili-li bychom modrého pivota, vyslo by v prvnim fadku v prvnim
sloupci kladné é&islo.) Optimalné bychom neméli vyrabét zddné stoly a vyrdbét po dvaceti
zidlich a policich. Zisk bude 28 000 K¢. A

Priiklad 4.4.5. Radio vysild hudbu, moderatora nebo pohadku a potiebuje zaplnit hodinu
vysilaciho ¢asu. Alesponi 50 % Casu musi byt hudba, alespori 10 minut pohddka. Néklady
na minutu vysilani jsou u hudby 200 K¢, u moderatora 100 K¢, u pohadky 150 Ké. Zisk
radia za minutu vysilani je 300 K¢.

Zformulujte ptiklad jako tlohu linedrniho programovani. Uzitim simplexového algo-
ritmu urcéete optimalni skladbu programu a celkovy zisk.
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Kapitola 4 Aplikace

Reseni. Hudba m4 zabirat nejméné polovinu programu, co? je z 60 minut 30. Pohddka m4,
zabirat minimalné 10 minut. Jedinym jinym omezenim je, Ze celkové vysilame 60 minut
(ticho nevysilame). Cisté zisky za minutu vysilani zjistime odectenim nékladi:

e 300 — 200 = 100 K¢ za hudbu;
e 300 — 150 = 150 K¢ za pohadku;
e 300 — 100 = 100 K¢ za moderatora.

Vzhledem k omezenim bychom intuitivné odhadli, Ze nejvyssich ziskii dosdhneme, kdyz
budeme vysilat 30 minut hudby a 10 minut pohddek (tedy pfedepsand minima) a zbytek

svv/

bude 30 - 100 + 10 - 150 + 20 - 200 = 8 500 K¢.
Zjistéme, zda je nas odhad spravny pomoci linedrniho programovani. Oznac¢me h, p a
m poCty minut vysilani hudby, pohddek a moderatora. Maximalizujeme funkci

f(h,p,m) =100h + 150 p 4+ 200 m
za omezeni

h+p+m=60 h > 30 p>10

pricemz druhé dvé podminky si zménime na rovnice odectenim novych kladnych promén-
nych.

h—t1=30 p—t2=10

MizZeme tlohu fesit pomoci simplexového algoritmu. Pivota znacime éervené.

—~100 —150 —200 O O] 0 0 —150 —200 —100 0| 3000
1 1 1 0 060 0 1 1 1 0| 30

1 0 0 -1 0/3 |71 0 0 -1 0| 3|~
0 1 0 0 —1]|10 0 1 0 0 —1| 10

0 0 —200 —100 —150 | 4500 0 0 0 100 50]8500

0 0 1 1 1] 20 001 1 1| 20

~l1o0 0 -1 o] 307100 -1 o] 30

01 0 0 -1/ 10 010 0 —1] 10

Vidime, Ze optiméalniho zisku za danych podminek dosdhneme vysilanim 30 minut hudby,
10 minut pohadky a 20 minut moderatora a maximélni zisk bude opravdu 8 500 Ké. A
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