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Kapitola 1

Algebra

1.1 Komplexní čísla
Příklad 1.1.1. Číselné množiny, se kterými budeme počítat, jsou přirozená čísla N, celá
čísla Z, racionální čísla Q a reálná čísla R. Stručně si připomeňte vlastnosti sčítání a
násobení na jednotlivých množinách.

Řešení. Na všech množinách je sčítání asociativní, tedy

𝑥+ (𝑦 + 𝑧) = (𝑥+ 𝑦) + 𝑧;

komutativní, tj.

𝑥+ 𝑦 = 𝑦 + 𝑥;

dále v Z, Q a R máme 0 jako neutrální prvek

0 + 𝑥 = 𝑥;

a ke každému prvku 𝑥 máme opačný prvek −𝑥, tj.

𝑥+ (−𝑥) = 0.

Podobně násobení je na všech množinách asociativní

𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧;

komutativní

𝑥 · 𝑦 = 𝑦 · 𝑥;

distributivní vzhledem ke sčítání

𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧;

2



Kapitola 1 Algebra

máme 1 jako neutrální prvek

1 · 𝑥 = 𝑥;

a v Q a v R máme ke každému nenulovému prvku 𝑥 inverzní prvek 1
𝑥
, tj.

𝑥 · 1
𝑥
= 1. △

Příklad 1.1.2. Zaveďte komplexní čísla a popište jejich základní vlastnosti.

Řešení. K reálným číslům přidáme komplexní jednotku i s vlastností i2 = −1; jedná se
o jeden z kořenů polynomu 𝑥2 + 1. Operace zavádíme induktivně. Sčítání i násobení za-
chovávají „reálnost“ čísel, takže zde nic neměníme. Pro libovolné 𝑏 ∈ R a i musíme přidat
i jejich součin 𝑏 · i s tím, že 𝑏′ ·(𝑏 i) = (𝑏′ 𝑏) i a i 𝑏 := 𝑏 i. To zaručí komutativitu a asociativitu
násobení. Nakonec pro 𝑎 ∈ R přidáme součty 𝑎+𝑏 i. Obecné komplexní číslo 𝑧 je tedy tvaru

𝑧 = 𝑎+ 𝑏 i,

kde 𝑎, 𝑏 ∈ R. Číslo 𝑎 nazýváme reálnou částí 𝑧, značíme ℜ(𝑧) (případně Re(𝑧)), číslo 𝑏 pak
imaginární částí 𝑧, značíme ℑ(𝑧) (případně Im(𝑧)). Všimněme si, že pro komplexní číslo
𝑧 jsou ℜ(𝑧) i ℑ(𝑧) ∈ R. Platí, že dvě komplexní čísla jsou si rovna právě tehdy, jsou-li si
rovny jejich reálné i imaginární části. Množinu všech komplexních čísel značíme C.

Vezměme 𝑤 = 𝑐+𝑑 i ∈ C, 𝑐, 𝑑 ∈ R. Prozkoumáme chování součtu a součinu dle pravidel,
která jsme použili při vytvoření komplexních čísel. Součet se chová tak, jak bychom čekali,
tedy

𝑧 + 𝑤 = (𝑎+ 𝑏 i) + (𝑐+ 𝑑 i) = (𝑎+ 𝑐) + (𝑏+ 𝑑) i.
Můžeme tedy říci, že ℜ(𝑧 + 𝑤) = ℜ(𝑧) + ℜ(𝑤), podobně pro ℑ. Pro součin použijeme
pravidlo pro násobení mnohočlenů, tedy pravidlo „každý s každým,“ přičemž následně
vyčíslíme výrazy:

𝑧 · 𝑤 = (𝑎+ 𝑏 i) · (𝑐+ 𝑑 i) = 𝑎 𝑐+ 𝑏 𝑐 i + 𝑎 𝑑 i + 𝑏 𝑑 i2⏟ ⏞ 
−1

= (𝑎 𝑐− 𝑏 𝑑) + (𝑏 𝑐+ 𝑎 𝑑) i

Pak platí, že

ℜ(𝑧 · 𝑤) = ℜ(𝑧)ℜ(𝑤)−ℑ(𝑧)ℑ(𝑤), ℑ(𝑧 · 𝑤) = ℜ(𝑧)ℑ(𝑤) + ℑ(𝑧)ℜ(𝑤). (1.1)

Pro 𝑧 = 𝑎+𝑏 i ∈ C zavedeme číslo k němu komplexně sdružené, značené 𝑧, a definované
jako 𝑧 = 𝑎− 𝑏 i. Přiřazení komplexně sdruženého čísla má následující vlastnosti:

• ¯̄𝑧 = 𝑧;

• 𝑧 = 𝑧 právě když 𝑧 ∈ R;

• aditivita 𝑧 + 𝑤 = 𝑧 + 𝑤̄;
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Kapitola 1 Algebra

• multiplikativita 𝑧 · 𝑤 = 𝑧 · 𝑤̄.

První vlastnost je celkem zřejmá, stejně jako třetí. Druhou vlastnost si ukážeme později
(jedna implikace je zřejmá), poslední se dá napočítat

𝑧 · 𝑤̄ = (𝑎− 𝑏 i) · (𝑐− 𝑑 i) = 𝑎 𝑐− 𝑏 𝑐 i− 𝑎 𝑑 i− 𝑏 𝑑 = (𝑎 𝑐− 𝑏 𝑑)− (𝑏 𝑐+ 𝑎 𝑑) i = 𝑧 · 𝑤.

Spočítejme 𝑧 + 𝑧 a 𝑧 · 𝑧. Máme

𝑧 + 𝑧 = (𝑎+ 𝑏 i) + (𝑎− 𝑏 i) = 2 𝑎 = 2ℜ(𝑧) ∈ R

odtud bychom mohli definovat ℜ(𝑧) jako 𝑧+𝑧
2 , obdobně ℑ(𝑧) = 𝑧−𝑧

2 i . Odtud vidíme, že
pokud 𝑧 = 𝑧, pak 𝑧 = 2 𝑧

2 = ℜ(𝑧) ∈ R. Dále

𝑧 · 𝑧 = (𝑎+ 𝑏 i) · (𝑎− 𝑏 i) = 𝑎2 − 𝑏2 i2 = 𝑎2 + 𝑏2 ∈ R.

a navíc je 𝑧 𝑧 ≥ 0 a rovno nule pouze pro 𝑧 = 0.1 Definujeme absolutní hodnotu komplexního
čísla 𝑧 jako

|𝑧| =
√
𝑧 · 𝑧

(výraz je korektně definován, neboť pod odmocninou je nezáporné reálné číslo, pro něž
máme jednoznačně definovanou reálnou odmocninu). Nejdůležitější vlastností absolutní
hodnoty je multiplikativita, |𝑧 · 𝑤| = |𝑧| · |𝑤|, což plyne rovnou z definice a multiplikativity
reálné odmocniny.

S použitím komplexně sdruženého čísla můžeme spočítat převrácené číslo pro 𝑧 ̸= 0.
Máme

1
𝑧
· 𝑧
𝑧
= 𝑧

|𝑧|2
,

což pomocí 𝑧 = 𝑎+ 𝑏 i dává

1
𝑎+ 𝑏 i =

𝑎− 𝑏 i
𝑎2 + 𝑏2

= 𝑎

𝑎2 + 𝑏2
+ −𝑏
𝑎2 + 𝑏2

i.

Pro 𝑤 ∈ C, 𝑤 = 𝑐+ 𝑑 i máme podíl

𝑤

𝑧
= 𝑤 𝑧

|𝑧|2
= (𝑎 𝑐+ 𝑏 𝑑) + (𝑎 𝑑− 𝑏 𝑐) i

𝑎2 + 𝑏2
.

Zápis 𝑧 = 𝑎 + 𝑏 i nazýváme algebraickým tvarem komplexního čísla 𝑧. Jelikož je 𝑧
určeno dvojicí reálných čísel, můžeme si jej zakreslit do tzv. Gaußovy roviny, viz obrázek
1.1. S použitím pravoúhlého trojúhelníku △(𝑂,ℜ(𝑧), 𝑧) vidíme, že:

1Obecně neexistuje uspořádání komplexních čísel, které by zachovávalo operace. Pokud by bylo napří-
klad i > 0, pak násobení i by nerovnost zachovávalo, tedy bychom dostali −1 = i2 > 0 · i = 0. Obdobně
položili-li bychom i < 0, pak násobení nerovnosti i by ji otáčelo a opět bychom dostali −1 > 0. Píšeme-li
tedy pro nějaké 𝑧, 𝑤 ∈ C výrazy typu 𝑧 ≤ 𝑤, implicitně tím uvažujeme tato čísla reálná.
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Kapitola 1 Algebra

𝑂 ℜ

ℑ

𝑧

|𝑧|

ℜ(𝑧)

ℑ(𝑧)

𝜙

Obrázek 1.1: Zakreslíme si do Gaußovy roviny komplexní číslo 𝑧 = ℜ(𝑧) + iℑ(𝑧) (zde
naznačené pro ℜ(𝑧), ℑ(𝑧) ≥ 0, pro ostatní případy by byl obrázek „překlopený.)“

cos𝜙 = ℜ(𝑧)
|𝑧|

; sin𝜙 = ℑ(𝑧)
|𝑧|

; (1.2)

a odtud pro 𝑧 ̸= 0 máme

𝑧 = |𝑧| · ℜ(𝑧) + iℑ(𝑧)
|𝑧|

= |𝑧| · (cos𝜙+ i sin𝜙).

Tento zápis komplexních čísel se nazývá goniometrický, a kromě již zavedené absolutní
hodnoty je důležitý také úhel 𝜙. Ten se nazývá argumentem čísla 𝑧 a někdy se značí
𝜙 = arg(𝑧). Tento úhel je jednoznačně určen rovnicemi (1.2) až na násobek 2π, což je
perioda funkcí sin a cos. Proto klademe arg(𝑧) ∈ [0, 2π).2

Připomeneme si součtové vzorce pro funkce sin a cos:

sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽)
cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽)− sin(𝛼) sin(𝛽)

(1.3)

(povšimněte si podobnosti s (1.1), což není náhoda). Pomocí nich máme pro 𝑧 = |𝑧| (cos𝜙+
+ i sin𝜙) a 𝑤 = |𝑤| (cos𝜓 + i sin𝜓) součin

𝑧 · 𝑤 = |𝑧| · |𝑤| · (cos𝜙+ i sin𝜙) (cos𝜓 + i sin𝜓)

= |𝑧| |𝑤| ·
(︂(︁

cos(𝜙) cos(𝜓)− sin(𝜙) sin(𝜓)
)︁
+ i

(︁
sin(𝜙) cos(𝜓) + cos(𝜙) sin(𝜓)

)︁)︂
(1.3)= |𝑧| |𝑤| ·

(︁
cos(𝜙+ 𝜓) + i sin(𝜙+ 𝜓)

)︁
. (1.4)

Odtud vidíme důležitou vlastnost argumentu, tedy že

arg(𝑧 · 𝑤) = arg(𝑧) + arg(𝑤) modulo 2 𝑘 π
2Argumet je jednoznačně určen v jakémkoli jednostranně otevřeném intervalu o délce 2π, nejčastěji se

používá [0, 2π) nebo ještě častěji [−π,π).
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Kapitola 1 Algebra

pro 𝑘 ∈ Z. Důsledkem (1.4) je pak Moivrova věta.
Věta (Moivre). Pro 𝑧 ∈ C∖ {0}, arg(𝑧) = 𝜙, a 𝑛 ∈ N platí

𝑧𝑛 = |𝑧|𝑛
(︁
cos(𝑛𝜙) + i sin(𝑛𝜙)

)︁
.

Důsledek. Pro 𝑧 = |𝑧|
(︁
cos(𝜙+2 𝑘 π) + i sin(𝜙+2 𝑘 π)

)︁
∈ C∖ {0}, 𝑘 ∈ Z, a 𝑛 ∈ N platí

𝑛
√︁
𝑧 = 𝑛

√︁
|𝑧|
(︃
cos 𝜙+ 2 𝑘 π

𝑛
+ i sin 𝜙+ 2 𝑘 π

𝑛

)︃

pro 𝑘 ∈ Z, přičemž pro různá 𝑘 existuje právě 𝑛 různých hodnot.
Moivrovu větu a její důsledek pak použijeme při počítání komplexních odmocnin. △

Příklad 1.1.3. Najděte řešení kvadratické rovnice 𝑧2 = 𝑎 pro 𝑎 ∈ R. Najděte řešení
kvadratické rovnice 𝑧2 = 𝑎+ 𝑏 i v algebraickém a goniometrickém tvaru.

Řešení. Je-li 𝑎 ≥ 0, má rovnice 𝑧2 = 𝑎 dvě řešení, 𝑧 = ±
√
𝑎. Je-li 𝑎 < 0, pak je −𝑎 > 0 a

rovnici lze psát jako
𝑧2 = (−𝑎) i2

a odtud vidíme rovnou 𝑧 = ±i
√
−𝑎.

Uvažujme rovnici 𝑧2 = 𝑎+ 𝑏 i. Můžeme psát 𝑧 = 𝑐+ 𝑑 i, odtud

𝑧2 = 𝑐2 − 𝑑2 + 2 𝑐 𝑑 i = 𝑎+ 𝑏 i.

Porovnáním reálných a imaginárních částí přejdeme k soustavě

𝑐2 − 𝑑2 = 𝑎

2 𝑐 𝑑 = 𝑏

dvou rovnic se dvěma reálnými neznámými, kterou vyřešíme. Podrobněji viz Úlohu 1.10
sbírce příkladů z předmětu M6170 Analýza v komplexním oboru.3

Řešíme-li rovnici 𝑧2 = 𝑟 (cos𝜙+ i sin𝜙), máme podle důsledku Moivrovy věty

𝑧 =
√
𝑟

(︃
cos 𝜙+ 2 𝑘 π

2 + i sin 𝜙+ 2 𝑘 π
2

)︃

=
√
𝑟
(︂
cos

(︂
𝜙

2 + 𝑘 π
)︂
+ i sin

(︂
𝜙

2 + 𝑘 π
)︂)︂

,

odkud s použitím (1.3) a vlastností goniometrických funkcí následně dostáváme

= ±
√
𝑟
(︂
cos 𝜙2 + i sin 𝜙2

)︂
△

3https://www.math.muni.cz/˜zemanekp/files/M6170/sbirka M6170 Prochazka.pdf
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Kapitola 1 Algebra

Příklad 1.1.4. Určete všechna 𝑧 taková, že

a) 𝑧3 = 1 + i, b) 𝑧6 = 64.
Řešení. V obou případech použijeme důsledek Moivrovy věty. Začneme a). Nejprve si pře-
vedeme číslo 1 + i do goniometrického tvaru. Vidíme, že

|1 + i| =
√
1 + 1 =

√
2.

Zbývá najít argument. Hledáme 𝜙 takové, že

cos𝜙 = 1√
2
, sin𝜙 = 1√

2
.

Sinus i kosinus 𝜙 musejí být stejné, to nastane pro 𝜙 = π
4 + 2 𝑘 π = 8 𝑘+1

4 π, 𝑘 ∈ Z. Řešíme
tedy rovnici

𝑧3 =
√
2
(︃
cos

(︃
8 𝑘 + 1

4 π

)︃
+ i sin

(︃
8 𝑘 + 1

4 π

)︃)︃

odkud dostaneme

𝑧 = 6√2
(︃
cos

(︃
8 𝑘 + 1
12 π

)︃
+ i sin

(︃
8 𝑘 + 1
12 π

)︃)︃

pro 𝑘 ∈ {0, 1, 2}. Pro 𝑘 = 1 dostaneme argument 3
4 π se snadno vyčíslitelnými hodnotami

sinu a kosinu. Máme

cos 3π4 = − 1√
2

sin 3π
4 = 1√

2
,

odtud
6√2

(︂
cos 3π4 + i sin 3π

4

)︂
= 6√2

(︃
− 1√

2
+ i√

2

)︃
= − 1

3
√
2
+ i

3
√
2
.

Celkem tedy máme

𝑧 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6
√
2
(︁
cos π

12 + i sin π
12

)︁
− 1

3√2 +
i
3√2

6
√
2
(︁
cos 17π

12 + i sin 17π
12

)︁
Nyní řešme část b). Je jasné, že |64| = 64 = 26, podobně je zřejmě argument 64 roven

0 (reálná čísla mají kladná argument 0 a záporná argument ±π podle potřeby). Řešíme
rovnici

𝑧6 = 64
(︁
cos(2 𝑘 π) + i sin(2 𝑘 π)

)︁
,
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Kapitola 1 Algebra

pomocí důsledku Moivrovy věty dostaneme

𝑧 = 2
(︃
cos 𝑘 π3 + i sin 𝑘 π3

)︃

pro 𝑘 ∈ {0, 1, 2, 3, 4, 5}. Zde umíme snadno vyčíslit hodnoty sinů a kosinů pro všechna 𝑘.
Máme

𝑧 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 (cos 0 + i sin 0) = 2
2
(︁
cos π

3 + i sin π
3

)︁
= 1 + i

√
3

2
(︁
cos 2π

3 + i sin 2π
3

)︁
= −1 + i

√
3

2 (cosπ+ i sinπ) = −2
2
(︁
cos 4π

3 + i sin 4π
3

)︁
= −1− i

√
3

2
(︁
cos 5π

3 + i sin 5π
3

)︁
= 1− i

√
3

Podobné úlohy jsou například Úlohy 1.17 – 1.19 ve sbírce úloh z Analýzy v komplexním
oboru M6170.4 △

1.2 Dělitelnost a zbytkové třídy modulo 𝑛

Příklad 1.2.1. Zaveďte kongruence a zbytkové třídy modulo 𝑛 pro 2 ≤ 𝑛 ∈ N.

Řešení. Zafixujme 2 ≤ 𝑛 ∈ N. Řekneme, že 𝑛 dělí 𝑚 ∈ Z, jestliže existuje 𝑞 ∈ Z takové,
že 𝑚 = 𝑞 · 𝑛. Pak píšeme

𝑛 | 𝑚
Pro 𝑚 ∈ Z existují jednoznčná 𝑞, 𝑟 ∈ Z, 0 ≤ 𝑟 < 𝑛 taková, že

𝑚 = 𝑞 · 𝑛+ 𝑟

(věta o dělení se zbytkem). Řekneme, že 𝑎 a 𝑏 jsou kongruentní modulo 𝑛, psáno

𝑎 ≡ 𝑏 (mod 𝑛),

jestliže dávají stejný zbytek po dělení 𝑛, neboli lze li obě psát ve tvaru 𝑎 = 𝑞 𝑛 + 𝑟 a
𝑏 = 𝑞′ 𝑛+ 𝑟. To je zřejmě právě tehdy, když

𝑏− 𝑎 = 𝑛 (𝑞′ − 𝑞)

tedy právě tehdy, když 𝑛 | 𝑏− 𝑎. Je-li 𝑎1 ≡ 𝑏1 a 𝑎2 ≡ 𝑏2 (mod 𝑛), pak

𝑎1 + 𝑎2 ≡ 𝑏1 + 𝑏2 (mod 𝑛), 𝑎1 𝑎2 ≡ 𝑏1 𝑏2 (mod 𝑛). (1.5)

Podle předpokladů můžeme psát 𝑏1 − 𝑎1 = 𝑛 · 𝑞1 a 𝑏2 − 𝑎2 = 𝑛 · 𝑞2 pro nějaká 𝑞1, 𝑞2 ∈ Z.
Pro důkaz první kongruence chceme, aby 𝑛 dělilo 𝑏1 + 𝑏2 − (𝑎1 + 𝑎2), což ovšem můžeme

4https://www.math.muni.cz/˜zemanekp/files/M6170/sbirka M6170 Prochazka.pdf
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psát jako 𝑏1 − 𝑎1 + 𝑏2 − 𝑎2 = (𝑞1 + 𝑞2)𝑛, což je dělitelné 𝑛. Pro důkaz druhé kongruence
chceme, aby výraz 𝑏1 𝑏2−𝑎1 𝑎2 byl dělitelný 𝑛. K němu si přičteme a odečteme výraz 𝑎1 𝑏2,
čímž máme

𝑏1 𝑏2 − 𝑎1 𝑎2 + 𝑎1 𝑏2 − 𝑎1 𝑏2 = (𝑏1 − 𝑎1) 𝑏2 + 𝑎1 (𝑏2 − 𝑎2) = (𝑞1 𝑏2 + 𝑎1 𝑞2)𝑛,

přičemž výraz napravo je dělitelný 𝑛. Kongruence tedy zachovávají sčítání i násobení.
Kongruence modulo 𝑛 je relace ekvivalence, neboť

• 𝑎 ≡ 𝑎 (mod 𝑛), jelikož 𝑛 | 0 = 𝑎− 𝑎,

• 𝑎 ≡ 𝑏 ⇒ 𝑏 ≡ 𝑎 (mod 𝑛), protože 𝑎 − 𝑏 = −(𝑏 − 𝑎) a dělitelnost je zachována bez
ohledu na znaménko,

• 𝑎 ≡ 𝑏 & 𝑏 ≡ 𝑐⇒ 𝑎 ≡ 𝑐 (mod 𝑛) díky tomu, že 𝑐− 𝑎 = (𝑐− 𝑏)+ (𝑏− 𝑎) a kongruence
zachovávají součet (to, že 𝑛 | 𝑚 je ekvivalentní tvrzení 𝑚 ≡ 0 (mod 𝑛)).

Máme tedy třídy rozkladu množiny Z pomocí této relace ekvivalence. Přesněji řešeno,
množina Z je rozdělena na 𝑛 podmnožin tvaru

[𝑟]𝑛 := {𝑛 𝑞 + 𝑟 ∈ Z | 𝑞 ∈ Z}.

To, že každé celé číslo patří (pro dané 𝑛) právě do jedné z množin [𝑟]𝑛 vyplývá z věty
o dělení se zbytkem. Můžeme definovat součet a součin tříd kongruence [𝑟]𝑛 a [𝑟′]𝑛 tak, že
vezmeme libovolná dvě čísla z těchto množin (reprezentanty) a podíváme se, do které třídy
padne jejich součet respektive součin. Právě (1.5) zaručí, že součet i součin reprezentantů
padne vždy do jedné třídy be ohledu na jejich výběr. Takto definované sčítání a násobení
dědí díky své definici některé důležité vlastnosti sčítání a násbení celých čísel – zejména se
jedná o komutativitu a asociativitu obou operací, stejně jako o distributivitu násobení vůči
sčítání. Třída [0]𝑛 se chová jako neutrální prvek vůči sčítání, třída [1]𝑛 jako neutrální prvek
vzhledem k násobení. Dále třída [𝑛− 𝑟]𝑛 je opačným prvkem k [𝑟]𝑛 vůči sčítání. Množinu
tříd kongruence značíme5 Z𝑛.

Na množině Z𝑛 máme definované sčítání i násobení pomocí reprezentantů. Lze zvolit
libovolné, v praxi se však často volí reprezentanti co nejmenší, tedy 0, 1, . . . , 𝑟, . . . , 𝑛− 1,
případně také doplněné o −1, −2, . . . , −𝑛+1. Kladní reprezentanti z tohoto seznamu jsou
právě povolené zbytky po dělení 𝑛 z naší formulace věty o dělení se zbytkem ze začátku
cvičení. Lze tak říci, že na množině zbytků definujeme součet jako zbytek součtu po dělení
𝑛, součin podobně jako zbytek součinu po dělení 𝑛. △

Příklad 1.2.2. Pomocí kongruencí dokažte, že pro libovolná celá čísla 𝑎 platí:

a) 𝑎2 má po dělení 4 zbytek 0 nebo 1,

b) 𝑎2 má po dělení 8 zbytek 0, 1 nebo 4,

c) 𝑎4 má po dělení 16 zbytek 0 nebo 1.

5V tomto předmětu ji budeme značit tak, jinde se lze také setkat s označením Z/(𝑛), Z/𝑛Z nebo Z/𝑛,
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Řešení. Připomeneme si vzorečky pro počítání s mocninami

𝑥𝑎+𝑏 = 𝑥𝑎 𝑥𝑏 𝑥𝑎·𝑏 = (𝑥𝑎)𝑏 =
(︁
𝑥𝑏
)︁𝑎

(1.6)

a binomickou větu.
(𝑥+ 𝑦)𝑚 =

𝑚∑︁
𝑘=0

(︃
𝑚

𝑘

)︃
𝑥𝑘 𝑦𝑚−𝑘 (1.7)

Právě binomická věta nám umožní si počítání zjednodušit. Ptáme-li se, jaký zbytek 𝑟 dává
nějaký výraz 𝑎 po dělení 𝑛, ptáme se vlastně, čemu je 𝑎 kongruentní modulo 𝑛. V zadání
máme mocniny. Libovolné 𝑎 ∈ Z můžeme psát ve tvaru 𝑎 = 𝑛 𝑞 + 𝑟. Dosazením do (1.7),
kde bereme 𝑥 = 𝑛 𝑞 a 𝑦 = 𝑟, dostáváme

(𝑛 𝑞 + 𝑟)𝑚 =
𝑚∑︁
𝑘=0

(︃
𝑚

𝑘

)︃
𝑛𝑘 𝑞𝑘 𝑟𝑚−𝑘.

Vidíme, že jedině člen s 𝑘 = 0, tedy 𝑟𝑚 není dělitelný 𝑛. (To už víme z faktu, že kon-
gruence zachovávají násobení, tj. je-li 𝑎 ≡ 𝑟 (mod 𝑛), je 𝑎𝑚 ≡ 𝑟𝑚 (mod 𝑛).) Navíc však
je u členyůs 𝑘 ̸= 0 koeficient

(︁
𝑚
𝑘

)︁
̸= 1, tudíž hledáme-li zbytek po dělení 𝑎𝑚 nějakým 𝑁 ,

stačí uvažovat třídy kongruence 𝑎 pouze modulo 𝑛 takovým, aby pro každé 𝑘 = 1, 2, . . . ,
𝑚 byl výraz

(︁
𝑚
𝑘

)︁
𝑛𝑘 dělitelný 𝑁 . Přirozeně hledáme 𝑛 mezi děliteli 𝑁 . To si ukážeme na

příkladech.
Začněme a). Máme mocninu 𝑎2, tedy 𝑚 = 2, 𝑁 = 4 a vidíme, že jak

(︁
2
1

)︁
21, tak

(︁
2
2

)︁
22

jsou dělitelné 4. Stačí tedy uvažovat jen třídy kongruence modulo 2. Je-li 𝑎 ≡ 0 (mod 2),
je 𝑎2 ≡ 0 (mod 4). Obdobně je-li 𝑎 ≡ 1 (mod 2), je 𝑎2 ≡ 1 (mod 4).

Pokračujeme b). Zde je 𝑚 = 2 a 𝑁 = 8. Hledáme 𝑛 takové, že pro každé 𝑘 mezi 1 a 4
bylo

(︁
2
𝑘

)︁
𝑛𝑘 dělitelné 8. Snadno se ukáže, že stačí brát 𝑛 = 4. (Pro 𝑛 = 4 máme

(︁
2
1

)︁
4 = 8

dělitelné 8 a pro vyšší 𝑘 již 8 | 4𝑘. Podobně se ukáže, že 𝑛 = 2 nestačí.) Tudíž máme
výsledek.

𝑎 ≡ 0 (mod 4) ⇒ 𝑎2 ≡ 0 (mod 8)
𝑎 ≡ 1 (mod 4) ⇒ 𝑎2 ≡ 1 (mod 8)
𝑎 ≡ 2 (mod 4) ⇒ 𝑎2 ≡ 4 (mod 8)
𝑎 ≡ 3 (mod 4) ⇒ 𝑎2 ≡ 9 ≡ 1 (mod 8)

Nyní vyřešíme c). Máme 𝑚 = 4 a 𝑁 = 16. Hledáme příhodné 𝑛. Vidíme, že 𝑛 = 2 nebude
stačit, neboť

(︁
4
1

)︁
21 = 8 není dělitelné 16. Zkusíme 𝑛 = 4. Máme

(︁
4
1

)︁
41 = 16 dělitelné 16 a

pro 𝑘 > 1 je 4𝑘 dělitelné 16 samo o sobě. Obdobně jako minule máme tedy výsledek.

𝑎 ≡ 0 (mod 4) ⇒ 𝑎4 ≡ 0 (mod 16)
𝑎 ≡ 1 (mod 4) ⇒ 𝑎4 ≡ 1 (mod 16)
𝑎 ≡ 2 (mod 4) ⇒ 𝑎4 ≡ 16 ≡ 0 (mod 16)
𝑎 ≡ 3 (mod 4) ⇒ 𝑎4 ≡ 81 ≡ 1 (mod 16) △

Příklad 1.2.3. Pomocí kongruencí ukažte, že pro každé 𝑛 ∈ N platí:
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a) číslo 3 dělí číslo 4𝑛 − 1,

b) číslo 5 dělí číslo 𝑛5 − 𝑛

c) číslo 5 dělí číslo 33𝑛+1 + 2𝑛+1.

Řešení. Vyřešíme a). Máme 4 ≡ 1 (mod 3), odtud

4𝑛 − 1 ≡ 1𝑛 − 1 = 1− 1 = 0 (mod 3),

tedy je skutečně 4𝑛−1 dělitelné 3. Přejděme k b). Zde již budeme muset uvažovat všechny
zbytkové třídy modulo 5. (Pokud bychom chtěli použít postup z příkladu 1.2.2, zjistili
bychom, že nejmenší 𝑛 je 5.) Pro 𝑛 ≡ 0 (mod 5) je 𝑛5 − 𝑛 ≡ 0 (mod 5) zadarmo. Je-li
𝑛 ≡ 1 (mod 5), máme

𝑛5 − 𝑛 ≡ 15 − 1 = 1− 1 = 0 (mod 5).

Pro 𝑛 ≡ 2 (mod 5) dostaneme

𝑛5 − 𝑛 ≡ 25 − 5 = 32− 2 = 30 ≡ 0 (mod 5),

pro 𝑛 ≡ 3 (mod 5) pak

𝑛5 − 𝑛 ≡ 35 − 3 =
(︁
32
)︁2

· 3− 3 ≡ 42 · 3− 3 = 16 · 3− 3 ≡ 1 · 3− 3 = 0 (mod 5)

a pro 𝑛 ≡ 4 (mod 5) následně

𝑛5 − 𝑛 ≡ 45 − 4 =
(︁
25
)︁2

− 4 = 322 − 4 ≡ 22 − 4 = 4− 4 = 0 (mod 5),

tedy je vždy 𝑛5 − 𝑛 dělitelné 5. Nyní vyřešíme c) podobně jako a), přičemž použijeme
pravidla pro počítání s mocninami (1.6).

33𝑛+1 +2𝑛+1 = 3 ·
(︁
33
)︁𝑛

+2 · 2𝑛 = 3 · 27𝑛 +2 · 2𝑛 ≡ 3 · 2𝑛 +2 · 2𝑛 = 5 · 2𝑛 ≡ 0 (mod 5) △

Příklad 1.2.4. Jaká je poslední cifra čísel 714 a 359?

Řešení. Hledáme vlastně zbytky po dělení 10, tedy ptáme se, čemu jsou daná čísla kon-
gruentní modulo 10. Počítáme postupně:

71 = 7,
72 ≡ 9 ≡ −1 (mod 10),
73 = 72 · 7 ≡ −1 · 7 = −7 ≡ 3 (mod 10),
74 ≡ 3 · 7 = 21 ≡ 1 (mod 10).

Vidíme, že 74 ≡ 1. Pomocí (1.6) máme

714 = 74·3+2 =
(︁
74
)︁3

· 72 ≡ 13 · 72 = 72 ≡ 9 (mod 10),

11
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tedy poslední cifra čísla 714 je 9. Obdobně počítáme s 3:
31 = 3, 33 ≡ 7 (mod 10),
32 = 9, 34 ≡ 1 (mod 10).

Máme tedy opět

359 = 34·14+3 =
(︁
34
)︁14

· 33 ≡ 114 · 33 = 33 ≡ 7 (mod 10)

a poslední cifra čísla 359 je 7. △
Příklad 1.2.5. Jak poznáme, že je celé číslo dělitelné 3, 4, 8, 9, 11? Odpovědi odvoďte a
zdůvodněte s využitím kongruencí.
Řešení. Využijeme dekadický zápis.6 Libovolné číslo 𝑥 ∈ N lze psát ve tvaru

𝑥 =
𝑛∑︁

𝑘=0
𝑎𝑘 10𝑘,

kde 𝑎𝑘 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} jsou číslice. Nejprve odvodíme pravidlo pro dělitelnost 3
a 9. Vzhledem k tomu, že 10 ≡ 1 (mod 9) (a tudíž i modulo 3), je

𝑥 =
𝑛∑︁

𝑘=0
𝑎𝑘 10𝑘 ≡

𝑛∑︁
𝑘=0

𝑎𝑘 1𝑘 =
𝑛∑︁

𝑘=0
𝑎𝑘 (mod 9) i (mod 3)

tedy bude 𝑥 dělitelné 9 nebo 3 právě tehdy, když bude dělitelný jeho ciferný (po iteraci
superciferný) součet. Obdobně odvodíme pravidlo pro dělitelnost 11. Jelikož je 10 ≡ −1
(mod 11), máme

𝑥 =
𝑛∑︁

𝑘=0
𝑎𝑘 10𝑘 ≡

𝑛∑︁
𝑘=0

𝑎𝑘 (−1)𝑘 =
∑︁

𝑘 sudé
𝑎𝑘 −

∑︁
𝑘 liché

𝑎𝑘 (mod 11)

tedy vidíme, že 𝑥 je dělitelné 11 právě tehdy, když je dělitelný alternující součet jeho číslic
(přičemž nezáleží na tom, jestli začneme s plus, nebo s mínus, protože znaménko zachovává
dělitelnost). Pro dělitelnost 4 využijeme faktu, že 4 | 10𝑘 pro 𝑘 ≥ 2, tedy

𝑥 =
𝑛∑︁

𝑘=0
𝑎𝑘 10𝑘 ≡ 10 𝑎1 + 𝑎0 (mod 4),

takže 𝑥 je dělitelné 4 tehdy, a jen tehdy, je-li dělitelné poslední dvojčíslí. Obdobně pro
dělitelnost 8 máme 8 | 10𝑘 pro 𝑘 ≥ 3, tudíž

𝑥 =
𝑛∑︁

𝑘=0
𝑎𝑘 10𝑘 ≡ 100 𝑎2 + 10 𝑎1 + 𝑎0 (mod 8)

a 𝑥 je dělitelné 8 pokud je dělitelné poslední trojčíslí. Zajímavá jsou také pravidla pro
dělitelnost 7 a 13, viz Příklad 2.8 na straně 15 ve sbírce k předmětu MB154 Diskrétní
matematika.7 △

6Pomocí jiných zápisů by to bylo snazší. V zápise o základu 𝑛 se dělitelnost 𝑛 pozná tak, že poslední
číslice je 0.

7https://www.math.muni.cz/˜prochazka/vyuka/sbirka.pdf
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Příklad 1.2.6. Nalezněte celá čísla 𝑥 a 𝑦 tak, aby 883𝑥+ 487 𝑦 = 𝑑 byl největší společný
dělitel čísel 883 a 487. Spočtěte 𝑥 a 𝑦 i pro následující dvojice čísel 227, 133 a 3 441, 2 665.

Řešení. Platí, že pro celá čísla 𝑚 a 𝑛 existují koeficienty 𝑘, 𝑙 takové, že

𝑘𝑚+ 𝑙 𝑛 = 𝑑

kde 𝑑 je největší společný dělitel čísel 𝑚 a 𝑛. Tato čísla nejsou určena jednoznačně – existují
totiž také čísla 𝑟, 𝑠 taková, že

𝑟𝑚+ 𝑠 𝑛 = 0
a pak přičtením násobků 𝑟, resp. 𝑠 k 𝑘, resp. 𝑙 dostaneme jiné koeficienty. K nalezení 𝑑,
jakož i 𝑘 a 𝑙 bychom mohli použít přímo Eukleidův algoritmus, nicméně to bývá zdlouhavé
– viz alternativní řešení. My budeme postupovat metodou úpravy rovnic. Soustavu

1 ·𝑚+ 0 · 𝑛 = 𝑚

0 ·𝑚+ 1 · 𝑛 = 𝑛

upravíme pomocí úprav „výměna rovnic“, „vynásobení jedné rovnice ±1“ a „přičtení ná-
sobku jedné rovnice k druhé“ (což jsou elementární řádkové úpravy nad Z) upravíme na
tvar

𝑘 ·𝑚+ 𝑙 · 𝑛 = 𝑑

𝑟 ·𝑚+ 𝑠 · 𝑛 = 0

(tedy vynulujeme jeden z členů napravo od rovnítka), přičemž dostaneme největší společný
dělitel a hledané koeficienty, zvané Bézoutovy. Provádění úprav odpovídá běhu Eukleidova
algoritmu na pravé straně rovnic. Bude se nám hodit maticový zápis soustavy. Uvažme
první dvojici 883 a 487.(︃

1 0 883
0 1 487

)︃
∼
(︃

1 −2 −91
0 1 487

)︃
∼
(︃

1 −2 −91
5 −9 32

)︃
∼
(︃

16 −29 5
5 −9 32

)︃
∼

∼
(︃

16 −29 5
−91 165 2

)︃
∼
(︃

198 −359 1
−91 165 2

)︃
∼
(︃

198 −359 1
−487 883 0

)︃

Máme tedy rovnost 198 ·883−359 ·487 = 1 a tato čísla jsou nesoudělná. Můžeme obdobně
počítat pro ostatní dvojice. Nejprve 227 a 133.(︃

1 0 227
0 1 133

)︃
∼
(︃

1 −2 −39
0 1 133

)︃
∼
(︃

1 −2 −39
3 −5 16

)︃
∼
(︃

7 −12 −7
3 −5 16

)︃
∼

∼
(︃

7 −12 −7
17 −29 2

)︃
∼
(︃

75 −128 1
17 −29 2

)︃
∼
(︃

75 −128 1
−133 227 0

)︃

Nakonec počítejme pro 3 441 a 2 665.
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(︃
1 0 3 441
0 1 2 665

)︃
∼
(︃

1 −1 776
0 1 2 665

)︃
∼
(︃

1 −1 776
−3 4 337

)︃
∼

∼
(︃

7 −9 102
−3 4 337

)︃
∼
(︃

7 −9 102
−24 31 31

)︃
∼
(︃

79 −102 9
−24 31 31

)︃
∼

∼
(︃

79 −102 9
−261 337 4

)︃
∼
(︃

601 −776 1
−261 337 4

)︃
∼
(︃

601 −776 1
−2 665 3 441 0

)︃
△

Jiné řešení. Jinou metodou je zpětné dosazování do Eukleidova algoritmu. Dělíme po-
stupně větší číslo menším se zbytkem, přičemž se budou hodit záporné zbytky. Čísla si pro
přehlednost vyznačíme barevně.

883 = 2 · 487− 91 ⇝ 91 = 2 · 487− 883
487 = 5 · 91 + 32 ⇝ 32 = 487− 5 · 91
91 = 3 · 32− 5 ⇝ 5 = 3 · 32− 91
32 = 6 · 5 + 2 ⇝ 2 = 32− 6 · 5
5 = 2 · 2 + 1 ⇝ 1 = 5− 2 · 2

Vidíme, že největším společným dělitelem čísel 883 a 487 je 1. Následně počítáme a zpětně
dosazujeme do Eukleidova algoritmu.

1 = 5− 2 · 2 = 5− 2 · (32− 6 · 5) = 13 · 5− 2 · 32
= 13 · (2 · 32− 91)− 2 · 32 = 37 · 32− 13 · 91
= 37 · (487− 5 · 91)− 13 · 91 = 37 · 487− 198 · 91
= 37 · 487− 198 · (2 · 487− 883) = 198 · 883− 359 · 487

Hledaná čísla 𝑥 a 𝑦 jsou 198 a −359, přičemž 𝑑 = 2. Obdobně můžeme postupovat i pro
další dvojice čísel.

227 = 2 · 133− 39
133 = 3 · 39 + 16
39 = 2 · 16 + 7
16 = 2 · 7 + 2
7 = 3 · 2 + 1

I čísla 227 a 133 jsou nesoudělná. Zpětným dosazováním dostaneme koeficienty do Bézou-
tovy rovnosti.

1 = 7− 3 · 2 = 7− 3 · (16− 2 · 7) = 7 · 7− 3 · 16
= 7 · (39− 2 · 16)− 3 · 16 = 7 · 39− 17 · 16
= 7 · 39− 17 · (133− 3 · 39) = 58 · 39− 17 · 133
= 58 · (2 · 133− 227)− 17 · 133 = 99 · 133− 58 · 227

14
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Nakonec nalezneme koeficienty i pro dvojici 3 441 a 2 665.

3 441 = 2 665 + 776
2 665 = 3 · 776 + 337
776 = 2 · 337 + 102
337 = 3 · 102 + 31
102 = 3 · 31 + 9
37 = 3 · 9 + 4
9 = 2 · 4 + 1

Koeficienty dostaneme zpětným dosazováním.

1 = 9− 2 · 4 = 9− 2 · (31− 3 · 9) = 7 · 9− 2 · 31
= 7 · (102− 3 · 31)− 2 · 31 = 7 · 102− 23 · 31
= 7 · 102− 23 · (337− 3 · 102) = 76 · 102− 23 · 337
= 76 · (776− 2 · 337)− 23 · 337 = 76 · 776− 175 · 337
= 76 · 776− 175 · (2 665− 3 · 776) = 601 · 776− 175 · 2 665
= 601 · (3 441− 2 665)− 175 · 2 665 = 601 · 3 441− 776 · 2 665 △

Příklad 1.2.7. Najděte inverzní prvek k číslu 157 modulo 2 475.

Řešení. Hledáme vlastně takové 𝑚, že 157·𝑚 ≡ 1 (mod 2 475). Platí, že modulární inverze
existuje právě tehdy, když jsou daná čísla nesoudělná. Nesoudělnost 157 a 2 475 ověříme
pomocí Eukleidova algoritmu a modulární iniverzi najdeme pomocí Bézoutových koefici-
entů.(︃

1 0 2 475
0 1 157

)︃
∼
(︃

1 −16 −37
0 1 157

)︃
∼
(︃

1 −16 −37
4 −63 9

)︃
∼

∼
(︃

17 −268 −1
4 −63 9

)︃
∼
(︃

−17 268 1
157 −2 475 0

)︃

Protože −17 · 2 475 ≡ 0 (mod 2 475), vidíme, že

268 · 157 ≡ 1 (mod 2 475)

a 268 je inverze k 157 modulo 2 475. △

1.3 Polynomy
Příklad 1.3.1. V oboru komplexních čísel řešte následující kvadratické rovnice:

15
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a) 𝑥2 − 6𝑥+ 58 = 0, b) 9𝑥2 − 8𝑥+ 29 = 0, c) 3𝑥2 + 4𝑥+ 5 = 0.

Řešení. Postupujeme klasicky. Nejprve spočítáme diskriminant, poté jeho odmocninu (vzpo-
meneme si na příklad 1.1.3) a následně zjistíme kořeny podle vzorce. Začneme a). Máme

𝐷 = (−6)2 − 4 · 58 = −196 = −142,

tedy kořeny jsou
𝑥1,2 =

6± 14 i
2 = 3± 7 i.

V b) vyjde diskriminant

𝐷 = (−8)2 − 4 · 9 · 29 = −980 = −4 · 5 · 49

a kořeny

𝑥1,2 =
8± 14 i

√
5

18 = 4± 7 i
√
5

9 .

Při řešení c) máme diskriminant

𝐷 = 42 − 4 · 3 · 5 = −44 = −4 · 11

a kořeny polynomu pak jsou

𝑥1,2 =
−4± 2 i

√
11

6 = −2± i
√
11

3 . △

Příklad 1.3.2. Dokažte následující tvrzení.

a) Jestliže polynom 𝑝(𝑥) = 𝑎𝑛 𝑥
𝑛 + 𝑎𝑛−1 𝑥

𝑛−1 + · · ·+ 𝑎1 𝑥+ 𝑎0 s celočíselnými koeficienty,
𝑎𝑛 ̸= 0, má kořen 𝑥0 ∈ Z, pak 𝑥0 dělí koeficient 𝑎0.

b) Jestliže polynom 𝑝(𝑥) = 𝑎𝑛 𝑥
𝑛 + 𝑎𝑛−1 𝑥

𝑛−1 + · · ·+ 𝑎1 𝑥+ 𝑎0 s celočíselnými koeficienty,
𝑎𝑛 ̸= 0, má racionální kořen 𝑥0 = 𝑟

𝑠
, kde 𝑟 a 𝑠 jsou nesoudělná celá čísla, pak 𝑟 dělí

koeficient 𝑎0 a 𝑠 dělí koeficient 𝑎𝑛.

Řešení. K řešení části a) můžeme použít kongruencí. Pro každé 𝑥1 ∈ Z je 𝑝(𝑥1) ≡ 𝑎0
(mod 𝑥1). Je-li 𝑥0 kořenem polynomu 𝑝, pak

0 = 𝑝(𝑥0) ≡ 𝑎0 (mod 𝑥0),

tudíž 𝑎0 musí být dělitelné 𝑥0.
Nyní vyřešíme část b). Dosaďme kořen 𝑥0 = 𝑟

𝑠
do polynomu 𝑝.

𝑎𝑛
𝑟𝑛

𝑠𝑛
+ 𝑎𝑛−1

𝑟𝑛−1

𝑠𝑛−1 + · · ·+ 𝑎1
𝑟

𝑠
+ 𝑎0 = 0

16
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Vynásobením rovnosti 𝑠𝑛 dostaneme následující tvar.

𝑟·𝑞⏞  ⏟  
𝑎𝑛 𝑟

𝑛 + 𝑎𝑛−1 𝑟
𝑛−1 𝑠+ 𝑎𝑛−2 𝑟

𝑛−2 𝑠2 + · · ·+ 𝑎1 𝑟 𝑠
𝑛−1 + 𝑎0 𝑠

𝑛⏟  ⏞  
𝑠·𝑞′

= 0

Protože rovnost zřejmě impiluje kongruenci modulo libovolné 𝑚, platí zřejmě následující
kongruence.

𝑎0 𝑠
𝑛 ≡ 0 (mod 𝑟) 𝑎𝑛 𝑟

𝑛 ≡ 0 (mod 𝑠)

Jinými slovy 𝑟 | 𝑎0 𝑠𝑛 a 𝑠 | 𝑎𝑛 𝑟𝑛. Protože jsou však 𝑟 a 𝑠 nesoudělná, musí 𝑟 dělit 𝑎0 a 𝑠
dělit 𝑎𝑛. △

Příklad 1.3.3. Na základě předchozího cvičení a s pomocí Hornerova schématu najděte
kořeny následujících polynomů v množině komplexních čísel:

a) 𝑎(𝑥) = 𝑥3 − 𝑥2 − 7𝑥+ 3,

b) 𝑏(𝑥) = 2𝑥4 + 5𝑥3 + 7𝑥2 + 10𝑥+ 6,

c) 𝑐(𝑥) = 5𝑥4 + 8𝑥3 − 14𝑥2 + 19𝑥− 6.

Řešení. Připomeňme si Hornerovo schéma. Mějme polynom

𝑝(𝑥) = 𝑎𝑛 𝑥
𝑛 + 𝑎𝑛−1 𝑥

𝑛−1 + · · ·+ 𝑎1 𝑥+ 𝑎0.

Můžeme si jej pomocí postupného vytýkání 𝑥 ze všech členů kromě „absolutního“ napsat
také následujícím způsobem.

𝑝(𝑥) =
(︃(︂

. . .
(︁
(𝑎𝑛 · 𝑥+ 𝑎𝑛−1) · 𝑥+ 𝑎𝑛−2

)︁
· 𝑥+ · · ·+ 𝑎2

)︂
· 𝑥+ 𝑎1

)︃
· 𝑥+ 𝑎0

Při zjišťování hodnoty 𝑝 v nějakém bodě 𝑥0 proto stačí vzít 𝑎𝑛, vynásobit 𝑥0 a přičíst
𝑎𝑛−1, následně zase vynásobit 𝑥0 a přičíst 𝑎𝑛−2, atd. až nakonec přičteme 𝑎0. Hornerovo
schéma vypadá tak, že si do nultého řádku tabulky zapíšeme koeficienty polynomu 𝑝,
pak do nultého sloupce si zapíšeme 𝑥0 a do řádku tabulky příslušnému danému číslu si
zapisujeme mezivýsledky při počítání funkční hodnoty 𝑝 v bodě 𝑥0. V posledním sloupci
nám vyjde příslušná funkční hodnota. Navíc je-li 𝑥0 kořenem 𝑝 (tedy vyjde-li 0), jsou
příslušné mezivýsledky koeficienty polynomu 𝑝(𝑥)

𝑥−𝑥0
.

Začněme a). Na základě minulého příkladu 1.3.2 víme, že má-li polynom 𝑎 racionální
kořeny, musí (v základním tvaru) jejich čitatel dělit 3 a jmenovatel 1. Jedinými kandidáty
na racionální kořeny jsou tedy ±1 a ±3. Hledejme je tedy pomocí Hornerova schématu,

1 −1 −7 3
1 1 0 −7 −4

−1 1 −2 −5 8
3 1 2 −1 0

17
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Vidíme, že 𝑥0 = 3 je kořenem a navíc

𝑎(𝑥) = 𝑥3 − 𝑥2 − 7𝑥+ 3 = (𝑥− 3) (𝑥2 + 2𝑥− 1).

Zbývající kořeny najdeme pomocí diskriminantu 𝐷 = 4+4 = 8 kvadratického polynomu a
máme

𝑥1,2 =
−2± 2

√
2

2 = −1±
√
2.

Přejděme k b). Všechny koeficienty polynomu 𝑏 jsou kladné, proto musí být 𝑏((0,∞)) ⊆
⊆ (0,∞), proto jediné reálné kořeny polynomu 𝑏 mohou být záporné. Navíc má-li 𝑏 raci-
onální kořeny, musí jejich čitatel dělit 6, jejich jmenovatel 2 a tyto musí být nesoudělné.
Hledejme je tedy pomocí Hornorova schématu. Pakliže narazíme na kořen, můžeme dále
hledat kořeny s tím, že narazíme-li na kořen, můžeme vzít hodnoty v předešlém řádku za
nové koeficienty.

2 5 7 10 6
−1 2 3 4 6 0
−1 2 1 3 3
−2 2 −1 6 −6
−3 2 −3 12 −30
−6 2 −9 58 −342
−1

2 2 2 3 9
2

−3
2 2 0 4 0

Vidíme, že

𝑏(𝑥) = (𝑥+ 1)
(︂
𝑥+ 3

2

)︂
(2𝑥2 + 4) = (𝑥+ 1) (2𝑥+ 3) (𝑥2 + 2),

přičemž kořeny polynomu 𝑥2 + 2 jsou ±i
√
2 (viz příklad 1.1.3). Celkem tedy máme čtyři

kořeny, −1, −3
2 a ±i

√
2.

Nakonec c). Má-li polynom 𝑐 racionální kořeny, musí čitatel dělit 6 a jmenovatel 5.
Polynom 𝑐 již má i záporné koeficienty, proto musíme zkoušet kladné i záporné kandidáty
na kořeny.

5 8 −14 19 −6
1 5 13 −1 18 12
2 5 18 22 63 120
3 5 23 55 184 546
6 5 38 214 1 303 7 812

−1 5 3 −17 36 −42
−2 5 −2 −10 39 −84
−3 5 −7 7 −2 08

1
5 5 −6 29

5 −21
25

−1
5 5 −8 43

5 −93
25

2
5 5 −5 5 0

18
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Máme rozklad

𝑐(𝑥) = (𝑥+ 3)
(︂
𝑥− 2

5

)︂
(5𝑥2 − 5𝑥+ 5) = (𝑥+ 3) (5𝑥− 2) (𝑥2 − 𝑥+ 1)

a poslední dva kořeny najdeme klasicky, tedy 𝐷 = 1 + 4 = 5

𝑥3,4 =
1±

√
5

2 .

Celkem máme kořeny −3, 2
5 a 1±

√
5

2 . △

Příklad 1.3.4. V Z5 a v Z6 najděte všechny kořeny polynomů

a) 𝑥2 + 2𝑥+ 3, b) 𝑥3 − 𝑥2 + 3𝑥+ 2.
Řešení. Protože se pohybujeme v konečných okruzích, můžeme vyzkoušet všechny mož-
nosti, kterých je 5, resp. 6. Můžeme opět použít Hornerovo schéma, přičemž nás zajímají
pouze zbytky po dělení 5, resp. 6. Začněme a).

Z5 1 2 3
0 1 2 3
1 1 3 1
2 1 4 1
3 1 0 3
4 1 1 2

Z6 1 2 3
0 1 2 3
1 1 3 0
2 1 4 5
3 1 5 0
4 1 0 3
5 1 1 2

Vidíme, že v Z5 nemá polynom 𝑥2 + 2𝑥 + 3 kořeny, zatímco v Z6 má kořeny 1 a 3. Tedy
kongruence

𝑥2 + 2𝑥+ 3 ≡ 0 (mod 5)
nemá řešení, zatímco kongruenci

𝑥2 + 2𝑥+ 3 ≡ 0 (mod 6)

řeší jakékoli celé číslo dávající po dělení 6 zbytek 1 nebo 3.
Přejděme k b). Využijeme záporných zbytků. Reprezentanty tříd kongruence tedy budou

v Z5: 0, ±1 a ±2; v Z6 pak 0, ±1, ±2 a 3.

Z5 1 −1 −2 2
0 1 −1 −2 2
1 1 0 −2 0
2 1 1 0 2

−2 1 2 −1 −1
−1 1 −2 0 2

Z6 1 −1 3 2
0 1 −1 3 2
1 1 0 3 −1
2 1 1 −1 0
3 1 2 3 −1

−2 1 3 3 2
−1 1 −2 −1 3

8Protože je −3 kořenem, máme ve schématu koeficienty podílu. Nový odhad na racionální kořeny tedy
říká, že čitatel musí dělit −2 a jmenovatel 5. Proto nemusíme znovu zkoušet −3 ani −6.
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Nad Z5 tedy máme jediný kořen 1 a nad Z6 máme kořen 2. Opět lze říci, že kongruenci

𝑥3 − 𝑥2 + 3𝑥+ 2 ≡ 0 (mod 5)

řeší kterékoli čísla tvaru 5 𝑘 + 3, 𝑘 ∈ Z, kongruenci

𝑥3 − 𝑥2 + 3𝑥+ 2 ≡ 0 (mod 6)

řeší všechna celá čísla kongruentní 2 modulo 6. △

1.4 Soustavy lineárních rovnic
Příklad 1.4.1. Řešte následující soustavu rovnic s neznámými v R.

𝑥1 + 2 𝑥2 + 𝑥3 + 3 𝑥4 + 2 𝑥5 = −8
2𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 3 𝑥5 = 1
𝑥1 + 𝑥3 − 𝑥4 + 2 𝑥5 = 0
𝑥1 + 2 𝑥2 + 2 𝑥3 + 2 𝑥4 + 3 𝑥5 = 0

Řešte stejnou soustavu v Z13, zbytkových třídách modulo 13.

Řešení. Můžeme si soustavu napsat do matice, kde prvky matice jsou koeficienty před
proměnnými. Používáme elementárních řádkových úprav, tj. „prohození dvou řádků ma-
tice“, „vynásobení jednoho z řádků nenulovým9 číslem“ a „přičtení násobku jednoho řádku
k jinému“. Vybereme (pomocí prohazování řádků) vedoucí koeficient – tj. prvek takový,
aby ve všech sloupcích nalevo od něj a zároveň ve všech řádcích pod ním byly nuly. Ná-
sledně se pomocí tohoto prvku a elementárních řádkových úprav snažíme vynulovat všechny
prvky ve sloupci pod vedoucím koeficientem. Poté postup opakujeme – určíme nový ve-
doucí koeficient atd. Tomuto postupu říkáme Gaußova eliminace. Takto matici upravíme
do schodovitého tvaru – kdy před a pod vedoucími koeficienty jsou nuly. Ve sloupcích na-
pravo od vedoucího koeficientu musí být pod daným řádkem buď nuly, nebo nový vedoucí
koeficient.

Ze schodovitého tvaru již umíme vyjádřit řešení – dosadíme za volné proměnné (tedy
ty, v k nimž příslušných sloupcích se nenachází vedoucí koeficient v žádném řádku) para-
metry, následně postupně od nejnižšího řádku nahoru vyjadřujeme vázané proměnné (tj.
příslušné danému vedoucímu keoficientu) pomocí volných a již dříve vyjádřených vázaných
proměnných.

Druhou možností řešení je upravit matici pomocí zětné Gaußovy eliminace do redu-
kovaného schodovitého tvaru, tedy do tvaru kde ve sloupcích s vedoucími koeficienty je
daný vedoucí koeficient jediným nenulovým prvkem. V tomto tvaru již můžeme rovnou
vyjadřovat vázané proměnné pouze pomocí volných, a tudíž v libovolném pořadí.

9obecněji invertibilním

20



Kapitola 1 Algebra

Nejprve prohodíme první a třetí řádek.⎛⎜⎜⎜⎝
1 2 1 3 2 −8
2 1 1 1 3 1
1 0 1 −1 2 0
1 2 2 2 3 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 −1 2 0
1 2 1 3 2 −8
2 1 1 1 3 1
1 2 2 2 3 0

⎞⎟⎟⎟⎠
Následně pomocí nového prvního řádku vynulujeme ostatní čísla v prvním sloupci.

∼

⎛⎜⎜⎜⎝
1 0 1 −1 2 0
0 2 0 4 0 −8
0 1 −1 3 −1 1
0 2 1 3 1 0

⎞⎟⎟⎟⎠
Druhý řádek si vydělíme dvěma, přičemž výsledek bude opět celočíselný.

∼

⎛⎜⎜⎜⎝
1 0 1 −1 2 0
0 1 0 2 0 −4
0 1 −1 3 −1 1
0 2 1 3 1 0

⎞⎟⎟⎟⎠
Následně použijeme druhý řádek k vynulování prvků ve druhém sloupci pod vedoucím
koeficientem.

∼

⎛⎜⎜⎜⎝
1 0 1 −1 2 0
0 1 0 2 0 −4
0 0 −1 1 −1 5
0 0 1 −1 1 8

⎞⎟⎟⎟⎠
Sečtením posledních dvou řádků dospějeme k následující soustavě.

∼

⎛⎜⎜⎜⎝
1 0 1 −1 2 0
0 1 0 2 0 −4
0 0 1 −1 1 −5
0 0 0 0 0 13

⎞⎟⎟⎟⎠
Odtud vidíme, že soustava nemá nad R řešení. Ovšem 13 ≡ 0 (mod 13), tedy nad Z13
můžeme pokračovat. (Soustavu bychom od začátku řešili stejně – vždy jsme přičítali ná-
sobek řádku k jinému a jediný případ, kdy jsme dělili, vyšel celočíselný.) Nad Z13 máme
tedy následující soustavu.

⎛⎜⎜⎜⎝
1 2 1 3 2 −8
2 1 1 1 3 1
1 0 1 −1 2 0
1 2 2 2 3 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 −1 2 0
0 1 0 2 0 −4
0 0 1 −1 1 −5
0 0 0 0 0 0

⎞⎟⎟⎟⎠
21



Kapitola 1 Algebra

Pro zpětnou Gaußovu eliminaci pouze odečteme od prvního řádku třetí.

∼

⎛⎜⎜⎜⎝
1 0 0 0 1 5
0 1 0 2 0 −4
0 0 1 −1 1 −5
0 0 0 0 0 0

⎞⎟⎟⎟⎠
Máme tedy volné proměnné 𝑥4 = 𝑡 a 𝑥5 = 𝑠, následně 𝑥3 = −5 + 𝑡 − 𝑠, 𝑥2 = −4 − 2 𝑡 a
𝑥1 = 5− 𝑠, kde 𝑡, 𝑠 ∈ Z13 a výrazy chápeme nad Z13 – zajímá nás zbytek po dělení 13. △
Příklad 1.4.2. Řešte následující soustavu rovnic.

𝑥1 + 2 𝑥2 + 𝑥3 − 𝑥4 + 𝑥5 = 0
2𝑥1 + 𝑥2 + 2 𝑥3 − 2𝑥4 + 2 𝑥5 = 0
2𝑥1 + 𝑥3 − 𝑥4 + 2 𝑥5 = −1
𝑥1 + 𝑥2 + 2 𝑥3 − 2𝑥4 + 𝑥5 = 1

Řešení. Postupujeme stejně jako v příkladu 1.4.1 – nejprve Gaußovou a poté zpětnou
Gaußovou eliminací. (Samozřejmě by stačila pouze „dopředná“ eliminace, ale pak bychom
museli dopočítávat vázané proměnné) Opět použijeme maticový zápis. Nejprve pomocí
prvního řádku vynulujeme ostatní prvky v prvním sloupci.⎛⎜⎜⎜⎝

1 2 1 −1 1 0
2 1 2 −2 2 0
2 0 1 −1 2 −1
1 1 2 −2 1 1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 2 1 −1 1 0
0 −3 0 0 0 0
0 −4 −1 1 0 −1
0 −1 1 −1 0 1

⎞⎟⎟⎟⎠
Následně vidíme, že 𝑥2 = 0. Vedoucí koeficient druhého řádku můžeme vydělit −3, poté
s jeho pomocí vynulujeme ostatní prvky ve druhém sloupci. Protože jsou ostatní prvky
druhého řádku nulové, můžeme rovnou nulovat i prvky nad vedoucím koeficientem.

∼

⎛⎜⎜⎜⎝
1 0 1 −1 1 0
0 1 0 0 0 0
0 0 −1 1 0 −1
0 0 1 −1 0 1

⎞⎟⎟⎟⎠
Nyní jen sečteme poslední dva řádky.

∼

⎛⎜⎜⎜⎝
1 0 1 −1 1 0
0 1 0 0 0 0
0 0 1 −1 0 1
0 0 0 0 0 0

⎞⎟⎟⎟⎠
Nakonec odečteme třetí řádek od prvního.

∼

⎛⎜⎜⎜⎝
1 0 0 0 1 −1
0 1 0 0 0 0
0 0 1 −1 0 1
0 0 0 0 0 0

⎞⎟⎟⎟⎠
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Máme tedy volné proměnné 𝑥4 = 𝑡 a 𝑥5 = 𝑠, vázané proměnné jsou 𝑥1 = −1− 𝑠, 𝑥2 = 0 a
𝑥3 = 1 + 𝑡, 𝑡 a 𝑠 ∈ R jsou parametry.10 Ve vektorovém tvaru má tedy řešení tvar

𝑋 = [−1, 0, 1, 0, 0] + 𝑡 · (0, 0, 1, 1, 0) + 𝑠 · (−1, 0, 0, 0, 1),
kde hranaté závorky označují bod a kulaté vektory. △
Příklad 1.4.3. Řešte následující soustavu rovnic, nejprve nad R, poté nad Z7.

2𝑥1 − 𝑥2 + 𝑥3 − 𝑥4 = 1
2𝑥1 − 𝑥2 − 3𝑥4 = 2
3𝑥1 − 𝑥3 + 𝑥4 = −3
2𝑥1 + 2 𝑥2 − 2𝑥3 + 5 𝑥4 = −6

Řešení. Využijeme maticový zápis a budeme postupova Gaußovou eliminací s výběrem
pivota. Nejprve si za pivota zvolíme prvek ve druhém řádku a druhém sloupci. Následně
pomocí něj vynulujeme ostatní prvky ve druhém sloupci (nad ním i pod ním). Také se
budeme snažit so nejdéle udržet čísla v matici celá.⎛⎜⎜⎜⎝

2 −1 1 −1 1
2 −1 0 −3 2
3 0 −1 1 −3
2 2 −2 5 −6

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 0 1 2 −1
2 −1 0 −3 2
3 0 −1 1 −3
6 0 −2 −1 −2

⎞⎟⎟⎟⎠
Druhý rádek si vynásobíme −1. Novým pivotem bude prvek v prvním řádku a třetím
sloupci. Pomocí prvního řádku tedy vynulujeme ostatní prvky ve třetím sloupci.

∼

⎛⎜⎜⎜⎝
0 0 1 2 −1

−2 1 0 3 −2
3 0 0 3 −4
6 0 0 3 −4

⎞⎟⎟⎟⎠
Nyní odečteme od čtvrtého řádku třetí.

∼

⎛⎜⎜⎜⎝
0 0 1 2 −1

−2 1 0 3 −2
3 0 0 3 −4
3 0 0 0 0

⎞⎟⎟⎟⎠
Čtvrtý řádek můžeme vydělit 3 a a prvky budou stále celočíselné. Vidíme, že 𝑥1 = 0.
Následně bude pivotem prvek ve čtvrtém řádku a prvním sloupci, pomocí nějž vynulujeme
zbytek prvního sloupce.

∼

⎛⎜⎜⎜⎝
0 0 1 2 −1
0 1 0 3 −2
0 0 0 3 −4
1 0 0 0 0

⎞⎟⎟⎟⎠
10Hledali-li bychom řešení nad jiným tělesem (okruhem), zvolili bychom příslušně parametry. Například

pro racionální řešení bychom se omezili na 𝑡, 𝑠 ∈ Q.
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Posledním pivotem bude prvek ve třetím řádku a čtvrtém sloupci. Nejprve odečteme od
druhého řádku třetí, následně od trojnásobku prvního řádku dvojnásobek třetího.

∼

⎛⎜⎜⎜⎝
0 0 3 0 5
0 1 0 0 2
0 0 0 3 −4
1 0 0 0 0

⎞⎟⎟⎟⎠
Máme tedy nad R řešení 𝑥3 = 5

3 , 𝑥2 = 2, 𝑥4 = −4
3 a 𝑥1 = 0. Jak je to s řešením nad

Z7? Musíme dělit třemi, chceme tedy najít modulární inverzi k 3 modulo 7. Vidíme, že
3 · 5 = 15 ≡ 1 (mod 7), tedy dělení 3 je v Z7 totéž co násobení 5. Nad Z7 máme řešení
𝑥1 ≡ 0, 𝑥2 ≡ 2, 𝑥3 ≡ 5 · 5 = 25 ≡ 2 a 𝑥4 ≡ −4 · 5 = −20 ≡ 1 (mod 7). △

Příklad 1.4.4. Řešte soustavu rovnic pro neznámé 𝑥, 𝑦, 𝑧 v závislosti na hodnotách
parametru 𝑎 ∈ R:

𝑥 + 𝑦 + 𝑎 𝑧 = 1
𝑥 + 𝑎 𝑦 + 𝑧 = 𝑎

𝑎 𝑥 + 𝑦 + 𝑧 = 𝑎2
(1.8)

Řešení. Postupujeme klasicky s využitím maticového zápisu do chvíle, než musíme dělit
výrazem s 𝑎. Nejprve pomocí prvního řádku vynulujeme ostatní složky v prvním sloupci.⎛⎜⎝ 1 1 𝑎 1

1 𝑎 1 𝑎
𝑎 1 1 𝑎2

⎞⎟⎠ ∼

⎛⎜⎝ 1 1 𝑎 1
0 𝑎− 1 1− 𝑎 𝑎− 1
0 1− 𝑎 1− 𝑎2 𝑎2 − 𝑎

⎞⎟⎠
Následně ke třetímu řádku přičteme druhý s využitím 1− 𝑎2 + (1− 𝑎) = (1 + 𝑎) (1− 𝑎) +
+ (1− 𝑎) = (2 + 𝑎) (1− 𝑎).

∼

⎛⎜⎝ 1 1 𝑎 1
0 𝑎− 1 1− 𝑎 𝑎− 1
0 0 (2 + 𝑎) (1− 𝑎) 𝑎2 − 1

⎞⎟⎠
Nyní máme tři možnosti. Pro 𝑎 ∈ R ∖ {−2, 1} můžeme poslední řádek vydělit výrazem
(2 + 𝑎) (1− 𝑎), přičemž 1− 𝑎 se zkrátí, a druhý řádek výrazem 𝑎− 1.

∼

⎛⎜⎝ 1 1 𝑎 1
0 1 −1 1
0 0 1 −1+𝑎

2+𝑎

⎞⎟⎠
Následně zredukujeme třetí sloupec pomocí třetího řádku.

∼

⎛⎜⎜⎝
1 1 0 2−𝑎2

2+𝑎

0 1 0 1
2+𝑎

0 0 1 −1+𝑎
2+𝑎

⎞⎟⎟⎠
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Nakonec zredukujeme druhý sloupec podle druhého řádku.

∼

⎛⎜⎜⎝
1 0 0 1−𝑎2

2+𝑎

0 1 0 1
2+𝑎

0 0 1 −1+𝑎
2+𝑎

⎞⎟⎟⎠
Máme tedy řešení 𝑥 = 1−𝑎2

2+𝑎
, 𝑦 = 1

2+𝑎
a 𝑧 = −1+𝑎

2+𝑎
. Pro 𝑎 ∈ (−2, 1) máme křivku řešení pro

různé parametry 𝑎, jejíž anaglyf je znázorněn na obrázku 1.2.

Obrázek 1.2: Křivka jednoznačných řešení soustavy (1.8) pro 𝑎 ∈ (−2, 1).

Pro 𝑎 = 1 dostaneme tři shodné rovnice tvaru

𝑥+ 𝑦 + 𝑧 = 1

řešené trojicemi tvaru 𝑥 = 1 − 𝑡 − 𝑠, 𝑦 = 𝑡, 𝑧 = 𝑠, 𝑡, 𝑠 ∈ R. Pro 𝑎 = −2 dostaneme po
úpravě soustavu s maticí ⎛⎜⎝ 1 1 −2 1

0 −3 3 −3
0 0 0 3

⎞⎟⎠
která nemá řešení. △
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Příklad 1.4.5. Najděte všechny dvojice parametrů 𝑎, 𝑏 ∈ R, pro které je množina řešení
soustavy rovnic

𝑥 + 𝑦 + 𝑎 𝑧 = 1
𝑥 + 𝑎 𝑦 + 2 𝑧 = 1

𝑎 𝑥 + 𝑦 = 𝑏

o neznámých 𝑥, 𝑦, 𝑧 ∈ R

a) prázdná, b) nekonečná.

V druhém případě soustavu vyřešte.

Řešení. Opět využijeme maticový tvar a stejně jako v příkladu 1.4.4 budeme postupovat
Gaußovou eliminací dokud nebudeme muset dělit výrazem s 𝑎 nebo 𝑏. Pomocí prvního
řádku zredukujeme první sloupec.⎛⎜⎝ 1 1 𝑎 1

1 𝑎 2 1
𝑎 1 0 𝑏

⎞⎟⎠ ∼

⎛⎜⎝ 1 1 𝑎 1
0 𝑎− 1 2− 𝑎 0
0 1− 𝑎 −𝑎2 𝑏− 𝑎

⎞⎟⎠
Následně ke třetímu řádku přičteme druhý.

∼

⎛⎜⎝ 1 1 𝑎 1
0 𝑎− 1 2− 𝑎 0
0 0 2− 𝑎− 𝑎2 𝑏− 𝑎

⎞⎟⎠
S využitím rozkladu 2− 𝑎− 𝑎2 = (2 + 𝑎) (1− 𝑎) (viz příklad 1.4.4) vidíme, že

• pokud 𝑎 ∈ {−2, 1} a 𝑏 ̸= 𝑎, soustava nemá řešení;

• pokud 𝑎 /∈ {−2, 1}, má soustava jediné řešení;

• pokud 𝑎 ∈ {−2, 1} a 𝑏 = 𝑎, má soustava nekonečně mnoho řešení.

V posledním případě máme pro 𝑎 = 𝑏 = 1 následující soustavu, zadanou pomocí matice.
Pomocí druhého řádku zredukujeme třetí sloupec.⎛⎜⎝ 1 1 1 1

0 0 1 0
0 0 0 0

⎞⎟⎠ ∼

⎛⎜⎝ 1 1 0 1
0 0 1 0
0 0 0 0

⎞⎟⎠
Máme 𝑧 = 0, 𝑦 = 𝑡 a 𝑥 = 1− 𝑡, 𝑡 ∈ R. Pro 𝑎 = 𝑏 = −2 máme soustavu s následující maticí.⎛⎜⎝ 1 1 −2 1

0 −3 4 0
0 0 0 0

⎞⎟⎠
Máme řešení 𝑧 = 3 𝑡, pak 𝑦 = 4 𝑡 a 𝑥 = 1− 2 𝑡, 𝑡 ∈ R. △
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1.5 Maticový počet
Příklad 1.5.1. Uvažujme následující matice.

𝐴 =
(︃

3 5 6 7
−2 1 0 5

)︃
𝐵 =

⎛⎜⎝ 2 8
−1 −5
9 11

⎞⎟⎠

𝐶 =
(︁
2 8 3 21 5

)︁
𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝
2

−1
9

−6
3

⎞⎟⎟⎟⎟⎟⎟⎠
Zjistěte, jestli existují součiny 𝐴 ·𝐵, 𝐵 · 𝐴, 𝐶 ·𝐷 a 𝐷 · 𝐶. Pokud ano, určete je.

Řešení. Existuje pouze součin matic tvaru 𝑚×𝑛 a 𝑛× 𝑝, přičemž výsledkem bude matice
tvaru 𝑚 × 𝑝. Protože 𝐴 je tvaru 2 × 4 a 𝐵 tvaru 3 × 2, součin 𝐴 · 𝐵 neexistuje. Součin
𝐵 × 𝐴 existuje.

𝐵 · 𝐴 =

⎛⎜⎝ 2 8
−1 −5
9 11

⎞⎟⎠ ·
(︃

3 5 6 7
−2 1 0 5

)︃
=

⎛⎜⎝ −10 2 12 −26
7 −10 −6 −32
5 56 54 118

⎞⎟⎠
Protože 𝐶 je tvaru 1× 5 a 𝐷 je tvaru 5× 1, existují oba součiny.

𝐶 ·𝐷 =
(︁
2 8 3 21 5

)︁
·

⎛⎜⎜⎜⎜⎜⎜⎝
2

−1
9

−6
3

⎞⎟⎟⎟⎟⎟⎟⎠ =
(︁
−88

)︁

𝐷 · 𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎝
2

−1
9

−6
3

⎞⎟⎟⎟⎟⎟⎟⎠ ·
(︁
2 8 3 21 5

)︁
=

⎛⎜⎜⎜⎜⎜⎜⎝
4 16 6 42 10

−2 −8 −3 −21 −5
18 72 27 189 45

−12 −48 −18 −126 −30
6 24 9 63 15

⎞⎟⎟⎟⎟⎟⎟⎠ △

Příklad 1.5.2. Ukažte, že soustavu 𝑘 lineárních rovnic o neznámých 𝑥1, 𝑥2, . . . , 𝑥𝑛 s
koeficienty 𝑎𝑖,𝑗 a pravou stranou 𝑏𝑗 lze zapsat pomocí maticového násobení takto

𝐴 · 𝑥 = 𝑏,

kde 𝐴 = (𝑎𝑖,𝑗) je matice tvaru 𝑘 × 𝑛, 𝑥 = (𝑥𝑗) je sloupec velikosti 𝑛 a 𝑏 = (𝑏𝑖) je sloupec
velikosti 𝑘.
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Řešení. Máme následující soustavu rovnic.

𝑎1,1 𝑥1 + 𝑎1,2 𝑥2 + · · ·+ 𝑎1𝑛 𝑥𝑛 = 𝑏1

𝑎2,1 𝑥1 + 𝑎2,2 𝑥2 + · · ·+ 𝑎2𝑛 𝑥𝑛 = 𝑏2
...

𝑎𝑘,1 𝑥1 + 𝑎𝑘,2 𝑥2 + · · ·+ 𝑎𝑘 𝑛 𝑥𝑛 = 𝑏𝑘

Podívejme se na 𝑖-tou rovnici. Levá strana je

𝑎𝑖,1 𝑥1 + 𝑎𝑖,2 𝑥2 + · · ·+ 𝑎𝑖 𝑛 𝑥𝑛,

což je ale přesně součin 𝑖-tého řádku matice 𝐴 se sloupcem 𝑥. Pravá strana je 𝑏𝑖, tedy
𝑖-tá složka sloupce 𝑏. Je zřejmé, že porovnáním všech složek dostaneme požadovaný tvar
𝐴𝑥 = 𝑏. △

Příklad 1.5.3. Matice 𝐴 a 𝐵 tvaru 𝑛× 𝑛 jsou dány předpisem:

𝑎𝑖𝑗 =
⎧⎨⎩1, 𝑖 ≥ 𝑗,

2, 𝑖 < 𝑗,
𝑏𝑖𝑗 =

⎧⎨⎩1, 𝑖 ≤ 𝑗,

3, 𝑖 > 𝑗.

Napište je a vypočtěte, čemu se rovná jejich součin.

Řešení. 𝐴 je matice, kde čistě nad hlavní diagonálou jsou 2, jinak 1. 𝐵 má čistě pod hlavní
diagonálou 3, jinak 1.

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2
1 1 2 · · · 2
... . . . ...
1 1 1 · · · 2
1 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ 𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
3 1 · · · 1 1
... . . . ...
3 3 · · · 1 1
3 3 · · · 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Počítejme součin 𝐴 ·𝐵 =: 𝐶. Máme vzorec

𝑐𝑖𝑘 =
𝑛∑︁

𝑗=1
𝑎𝑖𝑗 𝑏𝑗𝑘.

Ze zadání si přepíšeme podmínku na 𝑏𝑗𝑘.

𝑏𝑗𝑘 =
⎧⎨⎩1, 𝑗 ≤ 𝑘

3, 𝑗 > 𝑘

Máme tři případy.

• 𝑖 < 𝑘

𝑖∑︁
𝑗=1

1 · 1 +
𝑘∑︁

𝑗=𝑖+1
2 · 1 +

𝑛∑︁
𝑗=𝑘+1

2 · 3 = 𝑖+ 2 (𝑘 − 𝑖) + 6 (𝑛− 𝑘) = 6𝑛− 4 𝑘 − 𝑖
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• 𝑖 = 𝑘
𝑖∑︁

𝑗=1
1 · 1 +

𝑛∑︁
𝑗=𝑖+1

2 · 3 = 𝑖+ 6 (𝑛− 𝑖) = 6𝑛− 5 𝑖

• 𝑖 > 𝑘

𝑘∑︁
𝑗=1

1 · 1 +
𝑖∑︁

𝑗=𝑘+1
3 · 1 +

𝑛∑︁
𝑗=𝑖+1

2 · 3 = 𝑘 + 3 (𝑖− 𝑘) + 6 (𝑛− 𝑖) = 6𝑛− 3 𝑖− 2 𝑘

Vidíme, že případ, kdy 𝑖 = 𝑘 odpovídá oběma případům s ostrou nerovností nahrazenou
neostrou. Máme tedy vzorec pro součin 𝐴 ·𝐵.

𝑐𝑖𝑗 =
⎧⎨⎩6𝑛− 4 𝑗 − 𝑖 𝑖 ≤ 𝑗

6𝑛− 3 𝑖− 2 𝑗 𝑖 ≥ 𝑗

Počítejme nyní 𝐵 · 𝐴 =: 𝐷 = (𝑑𝑖𝑘). Dosadíme do vzorce pro součin

𝑑𝑖𝑘 =
𝑛∑︁

𝑗=1
𝑏𝑖𝑗 𝑎𝑗𝑘

za 𝑏𝑖𝑗 a 𝑎𝑗𝑘, přičemž si podmínku pro 𝑎𝑗𝑘 zapíšeme pomocí 𝑗 a 𝑘.

𝑎𝑗𝑘 =
⎧⎨⎩1, 𝑗 ≥ 𝑘,

2, 𝑗 < 𝑘,

Opět si výpočet rozdělíme na tři případy.

• 𝑖 < 𝑘

𝑖−1∑︁
𝑗=1

3 · 2 +
𝑘−1∑︁
𝑖=𝑗

1 · 2 +
𝑛∑︁

𝑗=𝑘

1 · 1 = 6 (𝑖− 1) + 2 (𝑘 − 𝑖) + (𝑛− 𝑘 + 1) = 4 𝑖+ 𝑘 + 𝑛− 5

• 𝑖 = 𝑘
𝑖−1∑︁
𝑗=1

2 · 3 +
𝑛∑︁

𝑗=𝑖

1 · 1 = 6 (𝑖− 1) + (𝑛− 𝑖+ 1) = 5 𝑖+ 𝑛− 5

• 𝑖 > 𝑘

𝑘−1∑︁
𝑗=1

2 · 3 +
𝑖−1∑︁
𝑗=𝑘

3 · 1 +
𝑛∑︁

𝑗=𝑖

1 · 1 = 6 (𝑘 − 1) + 3 (𝑖− 𝑘) + (𝑛− 𝑖+ 1) = 3 𝑘 + 2 𝑖+ 𝑛− 5

Stejně jako minule je případ, kdy 𝑖 = 𝑘 zahrnut v ostatních vzorcích, uvažujeme-li je
s neostrou nerovností. Máme tedy i vzorec pro prvky součinu 𝐵 · 𝐴.

𝑑𝑖𝑗 =
⎧⎨⎩𝑛+ 4 𝑖+ 𝑗 − 5 𝑖 ≤ 𝑗

𝑛+ 3 𝑗 + 2 𝑖− 5 𝑖 ≥ 𝑗
△
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Příklad 1.5.4. Uvažujme orientovaný graf s uzly 1, 2, . . . , 𝑛. Tomuto grafu můžeme
přiřadit čtvercovou matici 𝐴 = (𝑎𝑖,𝑗) tak, že 𝑎𝑖,𝑗 = 1 jestliže v grafu existuje orientovaná
hrana z 𝑖 do 𝑗, jinak je 𝑎𝑖,𝑗 = 0. Jaký význam mají mocniny matice 𝐴, to je maticové
součiny

𝐴2 = 𝐴 · 𝐴, 𝐴3 = 𝐴 · 𝐴 · 𝐴?

Řešení. Uvažme matici 𝐴2 = (𝑏𝑖,𝑗). Máme dle definice maticového násobení

𝑏𝑖,𝑗 =
𝑛∑︁

𝑘=1
𝑎𝑖,𝑘 𝑎𝑘,𝑗

přičemž součiny napravo jsou vždy 0 nebo 1 a budou 1 jen pro 𝑘, pro kteráž existuje
orientovaná hrana z 𝑖 do 𝑘 a z 𝑘 do 𝑗. Suma takovýchto jedniček pak dá počet takovýchto
𝑘, tedy počet cest délky právě 2 z 𝑖 do 𝑗. Pro matici 𝐴3 = (𝑐𝑖,𝑗) máme podobně

𝑐𝑖,𝑗 =
∑︁
𝑘,ℓ

𝑎𝑖,𝑘 𝑎𝑘,ℓ 𝑎ℓ,𝑗

kde na pravé straně máme opět buď 0 nebo 1 a 1 jen pro ty dvojice 𝑘, ℓ, kde existuje
orientovaná cesta

𝑖 −→ 𝑘 −→ ℓ −→ 𝑗

a součet nám opět dá počet takovýchto dvojic. Pak 𝑐𝑖,𝑗 zadává počet cest délky právě 3 z 𝑖
do 𝑗. Obecně 𝐴𝑘 zadává počet cest délky právě 𝑘 mezi danými vrcholy. △

Příklad 1.5.5. Uvažujme matici

𝐴 =

⎛⎜⎝ 3 5 6 7
−2 1 0 5
1 3 −2 1

⎞⎟⎠
a označme písmenem 𝑒 postupně tyto elementární řádkové operace

a) vynásobení druhého řádku číslem 3,

b) výměna prvého a třetího řádku,

c) přičtení dvojnásobku prvního řádku ke třetímu.

Nechť 𝐸 je jednotková matice 3× 3. Označme 𝑒(𝐴) a 𝑒(𝐸) matice, které vzniknou aplikací
elementární řádkové operace 𝑒 na matici 𝐴 a 𝐸. Ukažte, že platí

𝑒(𝐸) · 𝐴 = 𝑒(𝐴).
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Řešení. Začněme a). Napišme si, jak vypadá matice 𝑒(𝐸) · 𝐴 a počítejme. Vidíme, že na
konci vyjde 𝑒(𝐴).

𝑒(𝐸) · 𝐴 =

⎛⎜⎝1 0 0
0 3 0
0 0 1

⎞⎟⎠ ·

⎛⎜⎝ 3 5 6 7
−2 1 0 5
1 3 −2 1

⎞⎟⎠ =

⎛⎜⎝ 3 5 6 7
−6 3 0 15
1 3 −2 1

⎞⎟⎠ = 𝑒(𝐴)

Obdobně vyřešíme b).

𝑒(𝐸) · 𝐴 =

⎛⎜⎝0 0 1
0 1 0
1 0 0

⎞⎟⎠ ·

⎛⎜⎝ 3 5 6 7
−2 1 0 5
1 3 −2 1

⎞⎟⎠ =

⎛⎜⎝ 1 3 −2 1
−2 1 0 5
3 5 6 7

⎞⎟⎠ = 𝑒(𝐴)

Nakonec c).

𝑒(𝐸) · 𝐴 =

⎛⎜⎝1 0 0
0 1 0
2 0 1

⎞⎟⎠ ·

⎛⎜⎝ 3 5 6 7
−2 1 0 5
1 3 −2 1

⎞⎟⎠ =

⎛⎜⎝ 3 5 6 7
−2 1 0 5
7 13 10 15

⎞⎟⎠ = 𝑒(𝐴) △

Příklad 1.5.6. Spočtěte inverzní matici k matici⎛⎜⎝ 1 1 2
1 −1 −3
2 1 2

⎞⎟⎠ .
Proveďte zkoušku.

Řešení. Provádíme elementární řádkové úpravy v rozšířené matici. Nejprve pomocí prvního
řádku zredukujeme první sloupec.⎛⎜⎝ 1 1 2 1 0 0

1 −1 −3 0 1 0
2 1 2 0 0 1

⎞⎟⎠ ∼

⎛⎜⎝ 1 1 2 1 0 0
0 −2 −5 −1 1 0
0 −1 −2 −2 0 1

⎞⎟⎠
Následně vynásobíme poslední řádek −1 a poslední dva řádky prohodíme.

∼

⎛⎜⎝ 1 1 2 1 0 0
0 1 2 2 0 −1
0 −2 −5 −1 1 0

⎞⎟⎠
Ke třetímu řádku přičteme dvojnásobek druhého.

∼

⎛⎜⎝ 1 1 2 1 0 0
0 1 2 2 0 −1
0 0 −1 3 1 −2

⎞⎟⎠
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K prvním dvěma řádkům přičteme dvojnásobek posledního, který následně vynásobíme
−1.

∼

⎛⎜⎝ 1 1 0 7 2 −4
0 1 0 8 2 −5
0 0 1 −3 −1 2

⎞⎟⎠
Nakonec od prvního řádku odečteme druhý.

∼

⎛⎜⎝ 1 0 0 −1 0 1
0 1 0 8 2 −5
0 0 1 −3 −1 2

⎞⎟⎠
Zkoušku provedeme pomocí maticového násobení.⎛⎜⎝ 1 1 2

1 −1 −3
2 1 2

⎞⎟⎠ ·

⎛⎜⎝ −1 0 1
8 2 −5

−3 −1 2

⎞⎟⎠ =

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎝ −1 0 1

8 2 −5
−3 −1 2

⎞⎟⎠ ·

⎛⎜⎝ 1 1 2
1 −1 −3
2 1 2

⎞⎟⎠ =

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠ △

Příklad 1.5.7. Spočtěte inverzní matici k matici⎛⎜⎜⎜⎝
1 4 −2 3
2 9 3 −2

−1 −6 −11 4
0 −1 −6 0

⎞⎟⎟⎟⎠ .
Zkoušku proveďte aspoň částečně.

Řešení. Opět upravujeme rozšířenou matici pomocí elementárních řádkových úprav. Nej-
prve pomocí prvního řádku zredukujeme první sloupec.⎛⎜⎜⎜⎝

1 4 −2 3 1 0 0 0
2 9 3 −2 0 1 0 0

−1 −6 −11 4 0 0 1 0
0 −1 −6 0 0 0 0 1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 4 −2 3 1 0 0 0
0 1 7 −8 −2 1 0 0
0 −2 −13 7 1 0 1 0
0 −1 −6 0 0 0 0 1

⎞⎟⎟⎟⎠
Následně pomocí druhého řádku zredukujeme druhý sloupec. Odečteme jeho čtyřnásobek
od prvního řádku, jeho dvojnásobek přičteme k řádku třetímu a nakonec jej přičteme ke
čtvrtému řádku.

∼

⎛⎜⎜⎜⎝
1 0 −30 35 9 −4 0 0
0 1 7 −8 −2 1 0 0
0 0 1 −9 −3 2 1 0
0 0 1 −8 −2 1 0 1

⎞⎟⎟⎟⎠
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Nyní pomocí třetího řádku zredukujeme třetí sloupec. Odečteme jej od čtvrtého řádku, od
druhého jeho sedminásobek a k prvnímu přičteme jeho třicetinásobek.

∼

⎛⎜⎜⎜⎝
1 0 0 −235 −81 56 30 0
0 1 0 55 19 −13 −7 0
0 0 1 −9 −3 2 1 0
0 0 0 1 1 −1 −1 1

⎞⎟⎟⎟⎠
Zbývá zredukovat poslední sloupec pomocí posledního řádku. Ke třetímu přičteme jeho
devítinásobek, k prvnímu zase jeho dvě stě pětatřicetinásobek a od druhého odečteme jeho
pětapadesátinásobek.

∼

⎛⎜⎜⎜⎝
1 0 0 0 154 −179 −205 235
0 1 0 0 −36 42 48 −55
0 0 1 0 6 −7 −8 9
0 0 0 1 1 −1 −1 1

⎞⎟⎟⎟⎠
Zkoušku provedeme pomocí maticového násobení.⎛⎜⎜⎜⎝

154 −179 −205 235
−36 42 48 −55

6 −7 −8 9
1 −1 −1 1

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
1 4 −2 3
2 9 3 −2

−1 −6 −11 4
0 −1 −6 0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
Při počítání inverzní matice jsme používali pouze úpravu „přičtení násobku jednoho řádku
k jinému“, která nemění determinant. Můžeme tedy říci, že determinant naší matice je 1
a že má inverzi, přičemž díky výše spočítanému to musí být právě naše matice.11 △
Příklad 1.5.8. Spočtěte inverzní matici k matici⎛⎜⎜⎜⎜⎜⎜⎝

1 𝑎 0 0 0
0 1 𝑎 0 0
0 0 1 𝑎 0
0 0 0 1 𝑎
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Proveďte zkoušku.
Řešení. Opět postupujeme pomocí řádkových úprav rozšířené matice. Od čtvrtého řádku
odečteme 𝑎-násobek pátého. Následně od třetího odečteme 𝑎-násobek nového čtvrtého,
atd., načež dostaneme inverzi.⎛⎜⎜⎜⎜⎜⎜⎝

1 𝑎 0 0 0 1 0 0 0 0
0 1 𝑎 0 0 0 1 0 0 0
0 0 1 𝑎 0 0 0 1 0 0
0 0 0 1 𝑎 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 1 −𝑎 𝑎2 −𝑎3 𝑎4

0 1 0 0 0 0 1 −𝑎 𝑎2 −𝑎3
0 0 1 0 0 0 0 1 −𝑎 𝑎2

0 0 0 1 0 0 0 0 1 −𝑎
0 0 0 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
11Má-li matice inverzi a levou inverzi (což jsme spočítali), pak nutně se musejí tyto rovnat, tedy levá

inverze je i pravou inverzí.
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Zkoušku provedeme pomocí násobení matic. Při násobení inverze původní maticí zleva
vlastně ve druhé matici přičítáme 𝑎-násobek následujícího řádku k předchozímu, čímž
máme hned výsledek.⎛⎜⎜⎜⎜⎜⎜⎝

1 𝑎 0 0 0
0 1 𝑎 0 0
0 0 1 𝑎 0
0 0 0 1 𝑎
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
1 −𝑎 𝑎2 −𝑎3 𝑎4

0 1 −𝑎 𝑎2 −𝑎3
0 0 1 −𝑎 𝑎2

0 0 0 1 −𝑎
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
Obdobně bychom provedli i opačný součin – k následujícímu sloupci bychom přičítali 𝑎-
-násobek předchozího. △

1.6 Vektorové prostory a podprostory
Příklad 1.6.1. Ukažte si, že následující množiny jsou s vhodnými operacemi vektorové
prostory.

a) množina 𝑛-tic reálných čísel R𝑛,

b) množina všech polynomů s koeficienty v R, označení R[𝑥],

c) množina všech matic 3× 3 s prvky v Z5, označení Mat3×3(Z5),

d) množina všech posloupností reálných čísel, kterou lze chápat jako množinu všech zob-
razení množiny přirozených čísel N do R.

Řešení. Začněme a). Jednotlivé 𝑛-tice zapisujeme

x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) nebo x = (𝑥𝑖)𝑛𝑖=1.

Definujme sčítání po složkách, tedy

x + y := (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, . . . , 𝑥𝑛 + 𝑦𝑛) = (𝑥𝑖 + 𝑦𝑖)𝑛𝑖=1.

Násobení skalárem definujeme rovněž po složkách,

𝑎 · x = (𝑎 𝑥1, 𝑎 𝑥2, . . . , 𝑎 𝑥𝑛) = (𝑎 𝑥𝑖)𝑛𝑖=1.

Ověříme axiomy vektorového prostoru. Sčítání vektorů je asociativní a komutativní díky
tomu, že je definováno po složkách a díky vlastnostem R. Neutrálním prvkem bude vektor

o = (0, 0, . . . , 0⏟  ⏞  
𝑛

) = (0)𝑛𝑖=1.

Pak totiž
x + o = (𝑥𝑖 + 0)𝑛𝑖=1 = (𝑥𝑖)𝑛𝑖=1 = x.
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Opačným prvkem k x = (𝑥𝑖)𝑛𝑖=1 bude −x = (−𝑥𝑖)𝑛𝑖=1, protože pak

x + (−x) = (𝑥𝑖 − 𝑥𝑖)𝑛𝑖=1 = (0)𝑛𝑖=1 = o.

Ověřme nyní axiomy pro násobení skalárem.

𝑎 · (x + y) = 𝑎 · (𝑥𝑖 + 𝑦𝑖)𝑛𝑖=1 =
(︁
𝑎 (𝑥𝑖 + 𝑦𝑖)

)︁𝑛
𝑖=1

= (𝑎 𝑥𝑖 + 𝑎 𝑦𝑖)𝑛𝑖=1 = 𝑎 · x + 𝑎 · y

(𝑎+ 𝑏) · x =
(︁
(𝑎+ 𝑏)𝑥𝑖

)︁𝑛
𝑖=1

= (𝑎 𝑥𝑖 + 𝑏 𝑥𝑖)𝑛𝑖=1 = 𝑎 · x + 𝑏 · x

𝑎 · (𝑏 · x) = 𝑎 · (𝑏 𝑥𝑖)𝑛𝑖=1 =
(︁
𝑎 (𝑏 𝑥𝑖)

)︁𝑛
𝑖=1

=
(︁
(𝑎 𝑏)𝑥𝑖

)︁𝑛
𝑖=1

= (𝑎 𝑏) · x
1 · x = (1𝑥𝑖)𝑛𝑖=1 = (𝑥𝑖)𝑛𝑖=1 = x

Vidíme, že R𝑛 je vektorovým prostorem nad R.
Přejděme k b). Můžeme se na situaci dívat dvěma způsoby. První je nahlížet na poly-

nomy jako na funkce R → R. Pak je součet polynomů definován tak, že funkční hodnota
součtu je součtem funkčních hodnot a skalární násobek je definován jako násobek funkč-
ních hodnot. Axiomy vektorového prostoru jsou následně splněny díky vlastnostem sčítání
a násobení v R.12

Druhý způsob je definovat sčítání polynomů jako polynom, jehož koeficienty jsou součty
koeficientů při stejných mocninách 𝑥, skalární násobení je pak rovněž definováno vynáso-
bením všech koeficientů. Ověření axiomů vektorového prostoru je pak analogické k části
a). Více k tomuto přístupu u části d).

Nyní vyřešíme c). Sčítání matic je definováno po složkách, díky tomu (a díky vlastnos-
tem sčítání v Z5) bude sčítání matic asociativní, komutativní, neutrálním prvkem bude
nulová matice a opačným prvkem k matici 𝐴 = (𝑎𝑖𝑗)3𝑖,𝑗=1 bude matice −𝐴 = (5− 𝑎𝑖𝑗)3𝑖,𝑗=1.
Násobení skalárem je rovněž definováno po složkách, takže (opět díky vlastnostem násobení
a sčítání v Z5) máme splněny všechny axiomy vektorového prostoru.

Zajímavá je část d). Sčítání i násobení skalárem je definováno po složkách, díky tomu
máme splněny všechny axiomy vektorového prostoru. Ověření je analogické jako v a), jen
s tím rozdílem, že vektory píšeme jako x = (𝑥𝑖)∞𝑖=1, jinak je vše stejné. S určitým typem
posloupností můžeme identifikovat i polynomy: Polynom 𝑝(𝑥) = 𝑝0 + 𝑝1 𝑥 + · · · + 𝑝𝑛 𝑥

𝑛

můžeme psát jako posloupnost

(𝑝0, 𝑝1, . . . , 𝑝𝑛, 0, 0, . . . ),

tedy lze polynomy identifikovat s množinou všech posloupností, které jsou od jistého indexu
nulové. Tato charakterizace nám zredukuje ověření b) na d) (stačí si rozmyslet, že sčítá-
ním konečně mnoha takových posloupností jakožto jejich skalárním násobením z prostoru
nevypadneme).13 △

12Takto lze definovat součet a skalární násobek obecných funkcí R → R. Není těžké si rozmyslet, že
i prostor všech funkcí R → R je vektorovým prostorem nad reálnými čísly. Podobně jsou vektorovými
prostory i prosotry všech spojitých funkcí, funkcí spojitě diferencovatelných apod.

13Vidíme tedy, že polynomy jsou dokonce vektorovým podprostorem prostoru všech posloupností reálných
čísel.
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Příklad 1.6.2. Najděte všechny vektorové podprostory v R2, resp. v R3. Dělejte to „geo-
metricky.“

Řešení. Uvažujme nejprve všechny podprostory v R2. Musejí obsahovat nulový vektor o =
= (0, 0). Pokud jiný vektor neobsahují, jedná se o nulový podprostor. Mějme tedy vektor
u ̸= o. Každý vektorový podprostor, který jej obsahuje, musí obsahovat i všechny jeho
skalární násobky 𝑡·u, 𝑡 ∈ R. Podprostor obsahující u tedy musí obsahovat i přímku zadanou
u. Uvažme jiný vektor v. Pokud je s vektorem u lineárně závislý, jedná se o jeho skalární
násobek a leží tedy v přímce generované u. Pokud jsou u a v lineárně nezávislé, tvoří již
bázi R2. Jedinými podprostory v R2 jsou tedy počátek, přímky procházející počátkem a
celé R2.

Obdobně postupujeme v R3. Máme počátek a všechny přímky procházející počátkem.
Dva lineárně nezávislé vektory v R3 určují rovinu procházející počátkem, tedy takovéto
roviny jsou také vlastními vektorovými podprostory. Nakonec máme celé R3. △

Příklad 1.6.3. Rozhodněte, zda následující množiny jsou vektorové podprostory.

a) 𝑈 = {𝑓 ∈ R[𝑥] | 𝑓(3) = 𝑓(−1) = 0} ⊂ R[𝑥],

b) 𝑉 = {𝐴 ∈ Mat2×2(R) | 𝑎1,1 + 𝑎2,2 = 1} ⊂ Mat2×2(R),

c) 𝑊 = {𝐴 ∈ Mat2×2(R) | 𝑎1,1 + 𝑎2,2 = 0} ⊂ Mat2×2(R),

d) 𝑍 = {𝑓 : N → R | 𝑓(𝑛+ 1) = 𝑓(𝑛) + 𝑓(𝑛− 1)} ⊂ {𝑓 : N → R}.

Řešení. Nejprve si připomeneme určující vlastnost vektorových podprostorů. Jsou to ne-
prázdné podmnožiny uzavřené na sčítání vektorů a jejich násobení skalárem. To nastane
právě tehdy, když je uzavřená na lineární kombinace délky 2 (nebo na lineární kombinace
konečné délky), tj. 𝑇 je vektorový podprostor, jestliže 𝑇 ̸= 0 (ekvivalentně o ∈ 𝑇 ) a pro
každé vektory u, v ∈ 𝑇 a každé dva skaláry 𝛼, 𝛽 platí 𝛼 · u+ 𝛽 · v ∈ 𝑇 .

Přejděme k řešení a). Zřejme 0(3) = 0(−1) = 0. Mějme dva polynomy 𝑓 , 𝑔 ∈ 𝑈 (tj.
𝑓(3) = 𝑓(−1) = 𝑔(3) = 𝑔(−1) = 0) a 𝛼, 𝛽 ∈ R. Pak

(𝛼 · 𝑓 + 𝛽 · 𝑔)( 3) = 𝛼 · 𝑓( 3) + 𝛽 · 𝑔( 3) = 0 + 0 = 0,
(𝛼 · 𝑓 + 𝛽 · 𝑔)(−1) = 𝛼 · 𝑓(−1) + 𝛽 · 𝑔(−1) = 0 + 0 = 0.

Je tedy 𝑈 vektorovým podprostorem v R[𝑥]. Alternativně lze úlohu řešit pomocí násle-
dujícího pozorování. Polynomy 𝑓 , 𝑔 ∈ 𝑈 právě tehdy, když 𝑓(𝑥) = (𝑥 − 3) (𝑥 + 1) 𝑝(𝑥) a
𝑔(𝑥) = (𝑥− 3) (𝑥+ 1) 𝑞(𝑥) pro nějaké 𝑝, 𝑞 ∈ R[𝑥]. Pak

𝛼 · 𝑓 + 𝛽 · 𝑔 = (𝑥− 3) (𝑥+ 1) (𝛼 · 𝑝+ 𝛽 · 𝑞),

tedy fakt, že je 𝑈 vektorový podprostor, lze ověřit také pomocí vytýkání polynomů. Ob-
dobně by byl vektorovým podprostorem i prostor všech (polynomiálních) násobků nějakého
polynomu.
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Nyní vyřešíme b). Vidíme, že 𝑉 není vektorovým podprostorem v Mat2×2(R), neboť
neobsahuje nulovou matici. Přejděme rovnou k c). Množina 𝑊 zřejmě obsahuje nulovou
matici. Nechť tedy 𝐴 = (𝑎𝑖,𝑗), 𝐵 = (𝑏𝑖,𝑗) ∈ 𝑊 , tj. 𝑎1,1 + 𝑎2,2 = 0 = 𝑏1,1 + 𝑏2,2, a 𝛼, 𝛽 ∈ R.
Pak pro matici 𝛼 · 𝐴+ 𝛽 ·𝐵 platí

𝛼 𝑎1,1 + 𝛽 𝑏1,1 + 𝛼 𝑎2,2 + 𝛽 𝑏2,2 = 𝛼 (𝑎1,1 + 𝑎2,2) + 𝛽 (𝑏1,1 + 𝑏2,2) = 0 + 0 = 0,

takže 𝑊 je vektorovým podprostorem v Mat2×2(R).
Nakonec máme d). Pro nulovou posloupnost 𝑜 : N → R, 𝑜(𝑛) = 0 platí

𝑜(𝑛+ 1) = 0 = 0 + 0 = 𝑜(𝑛) + 𝑜(𝑛− 1),

tedy 𝑜 ∈ 𝑍. Nechť 𝑓 , 𝑔 : N → R jsou prvky 𝑍, tedy

𝑓(𝑛+ 1) = 𝑓(𝑛) + 𝑓(𝑛− 1) 𝑔(𝑛+ 1) = 𝑔(𝑛) + 𝑔(𝑛− 1).

Pak pro posloupnost 𝛼 · 𝑓 + 𝛽 · 𝑔, 𝛼, 𝛽 ∈ R, platí

(𝛼 · 𝑓 + 𝛽 · 𝑔)(𝑛+ 1) = 𝛼 𝑓(𝑛+ 1) + 𝛽 𝑔(𝑛+ 1)
= 𝛼

(︁
𝑓(𝑛) + 𝑓(𝑛− 1)

)︁
+ 𝛽

(︁
𝑔(𝑛) + 𝑔(𝑛− 1)

)︁
= 𝛼 𝑓(𝑛) + 𝛼 𝑓(𝑛− 1) + 𝛽 𝑔(𝑛) + 𝛽 𝑔(𝑛− 1)
= (𝛼 · 𝑓 + 𝛽 · 𝑔)(𝑛) + (𝛼 · 𝑓 + 𝛽 · 𝑔)(𝑛− 1),

tudíž 𝑍 je vektorovým podprostorem v prostoru všech posloupností reálných čísel. △

Příklad 1.6.4. Zjistěte, zda vektor u = (1,−2, 3, 4) ∈ R4 leží v lineárním obalu vektorů
v1 = (1, 0, 1,−2), v2 = (3,−1,−1,−1) a v3 = (0, 1,−5, 4).

Řešení. Zjišťujeme, zda existují 𝑘1, 𝑘2, 𝑘3 ∈ R taková, že

u = 𝑘1 · v1 + 𝑘2 · v2 + 𝑘3 · v3.

Vzhledem k tomu, jak je definováno násobení skalárem na R4, dostáváme v každé složce
rovnici pro tři neznámé. Celkem máme čtyři složky, tedy čtyři rovnice. Získáme tak soustavu
čtyř rovnic o třech neznámých.

𝑘1 + 3 𝑘2 = 1
−𝑘2 + 𝑘3 = 0

𝑘1 − 𝑘2 − 5 𝑘3 = 1
−2 𝑘1 − 𝑘2 + 4 𝑘3 = −2

Tu řešíme pomocí maticového zápisu. Všimněte si, že sloupce matice odpovídají souřadni-
cím vektorů v1, v2, v3 a u.
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⎛⎜⎜⎜⎝
1 3 0 1
0 −1 1 0
1 −1 −5 1

−2 −1 4 −2

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 3 0 1
0 −1 1 0
0 −4 −5 3
0 5 4 6

⎞⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
1 3 0 1
0 −1 1 0
0 0 −9 10
0 0 9 −4

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 3 0 1
0 −1 1 0
0 0 −9 10
0 0 0 6

⎞⎟⎟⎟⎠
Vidíme, že soustava nemá řešení, tedy vektor u nepatří do lineárního obalu vektorů v1, v2
a v3. △

Jiné řešení. Zjišťujeme, zda má soustava

𝑘1 · v1 + 𝑘2 · v2 + 𝑘3 · v3 + 𝑘4 · u = o (1.9)

netriviální řešení. To můžeme dělat po složkách – dostaneme soustavu čtyř rovnic o čtyřech
neznámých. Matice soustavy bude mít ve sloupcích postupně složky vektorů v1, v2, v3 a
u. V našem případě to bude matice

𝐴 =

⎛⎜⎜⎜⎝
1 3 0 1
0 −1 1 0
1 −1 −5 1

−2 −1 4 −2

⎞⎟⎟⎟⎠ .

Postupovat lze Gaußovou eliminací, ovšem v našem případě máme stejný počet rovnic jako
neznámých, tj. matice je čtvercová a máme definovaný determinant této matice. Pomocí
softwaru spočítáme, že det𝐴 = 54, tedy matice je regulární a (1.9) má pro danou pravou
stranu jediné řešení. Vidíme, že u neleží v lineárním obalu v1, v2 a v3. △

Poznámka. Postup s determinantem v alternativním řešení funguje pouze pro čtvercové
matice, tedy pro 𝑛− 1 vektorů v 𝑛-rozměrném prostoru.

Příklad 1.6.5. Nechť 𝑀 je podprostor R5 generovaný vektory v1 = (1, 2, 1, 0, 1), v2 =
= (2,−1, 0, 1, 1), v3 = (1,−3,−1, 1, 0) a v4 = (1, 7, 3,−1, 2). Rozhodněte, zda jsou tyto
vektory lineárně nezávislé. Pokud ne, vyberte z nich bázi podprostoru 𝑀 a zbylé vektory
vyjádřete v této bázi.

Řešení. Zjišťujeme, zda má soustava

𝑘1 · v1 + 𝑘2 · v2 + 𝑘3 · v3 + 𝑘4 · v4 = o

netriviální řešení. Po složkách dostaneme soustavu pěti rovnic o čtyřech neznámých, kterou
si můžeme zapsat do matice. Sloupce levé strany matice budou složky vektorů v1, v2, v3 a
v4. Na pravé straně máme vždy nuly, nemusíme ji tedy vůbec psát. Postupujeme Gaußovou
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eliminací. Nejprve eliminujeme první sloupec podle třetího řádku. Následně eliminujeme
druhý sloupec podle čtvrtého řádku⎛⎜⎜⎜⎜⎜⎜⎝

1 2 1 1
2 −1 −3 7
1 0 −1 3
0 1 1 −1
1 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎜⎜⎜⎝
0 2 2 −2
0 −1 −1 1
1 0 −1 3
0 1 1 −1
0 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 −1 3
0 1 1 −1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (1.10)

Vidíme, že máme systém řešení 𝑘4 = 𝑠, 𝑘3 = 𝑡, 𝑘2 = 𝑠 − 𝑡 a 𝑘1 = 𝑡 − 3 𝑠 pro 𝑡, 𝑠 ∈ R.
Vektory jsou lineárně závislé. Vybereme z nich bázi. Vidíme, že první dva sloupce všech
matic v (1.10) jsou lineárně nezávislé. (Elementární řádkové úpravy zachovávají dimenzi.)
Systém řešení lze přepsat do tvaru

𝑡 · v3 + 𝑠 · v4 = (3 𝑠− 𝑡) · v1 + (𝑡− 𝑠) · v2. (1.11)

Dosazením 𝑡 = 1, 𝑠 = 0 do (1.11) dostaneme vyjádření v3 − v1 + v2 a dosazením 𝑡 = 0,
𝑠 = 1 vyjádření v4 = 3 · v1 − v2. △

Příklad 1.6.6. Spočtěte souřadnice polynomu 1 + 3 𝑥+ 5𝑥2 + 10𝑥3 v bázi

𝛼 = (1 + 𝑥+ 2𝑥2 − 𝑥3, 1 + 2 𝑥+ 𝑥3, 1 + 𝑥+ 3𝑥2 − 𝑥3, 2 + 2 𝑥+ 4𝑥2 + 5𝑥3)

prostoru R3[𝑥].

Řešení. Hledáme 𝑘1, 𝑘2, 𝑘3 a 𝑘4 tak, aby

1 + 3 𝑥+ 5𝑥2 + 10𝑥3 = 𝑘1 · (1 + 𝑥+ 2𝑥2 − 𝑥3) + 𝑘2 · (1 + 2 𝑥+ 𝑥3) +
+ 𝑘3 · (1 + 𝑥+ 3𝑥2 − 𝑥3) + 𝑘4 · (2 + 2 𝑥+ 4𝑥2 + 5𝑥3).

Roznásobením pravé strany a vytknutím mocnin 𝑥 dostaneme následující rovnici.

1 + 3 𝑥+ 5𝑥2 + 10𝑥3 = (𝑘1 + 𝑘2 + 𝑘3 + 2 𝑘4) + (𝑘1 + 2 𝑘2 + 𝑘3 + 2 𝑘4)𝑥+
+ (2 𝑘1 + 3 𝑘3 + 4 𝑘4)𝑥2 + (−𝑘1 + 𝑘2 − 𝑘3 + 5 𝑘4)𝑥3

Dva polynomy jsou si rovny právě tehdy, když se rovnají koeficienty u příslušných mocnin
𝑥. (To je dáno tím, že mocniny 𝑥 tvoří bázi R[𝑥].) Získáváme soustavu čtyř rovnic o čtyřech
neznámých.

𝑘1 + 𝑘2 + 𝑘3 + 2 𝑘4 = 1
𝑘1 + 2 𝑘2 + 𝑘3 + 2 𝑘4 = 3

2 𝑘1 + 3 𝑘3 + 4 𝑘4 = 5
−𝑘1 + 𝑘2 − 𝑘3 + 5 𝑘4 = 10

Tuto soustavu řešíme Gaußovou eliminací pomocí maticového zápisu. Nejprve pomocí prv-
ního řádku zredukujeme první sloupec. Následně podle druhého řádku zredukujeme druhý
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sloupec. ⎛⎜⎜⎜⎝
1 1 1 2 1
1 2 1 2 3
2 0 3 4 5

−1 1 −1 5 10

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 1 1 2 1
0 1 0 0 2
0 −2 1 0 3
0 2 0 7 11

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 2 −1
0 1 0 0 2
0 0 1 0 7
0 0 0 7 7

⎞⎟⎟⎟⎠
Poslední řádek vydělíme sedmi a poté pomocí něj zredukujeme čtvrtý sloupec. Nakonec
pomocí třetího řádku zredukujeme třetí sloupec.

∼

⎛⎜⎜⎜⎝
1 0 1 0 −3
0 1 0 0 2
0 0 1 0 7
0 0 0 1 1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 0 0 −10
0 1 0 0 2
0 0 1 0 7
0 0 0 1 1

⎞⎟⎟⎟⎠
Vidíme, že souřadnice polynomu 1 + 3 𝑥+ 5𝑥2 + 10𝑥3 v bázi 𝛼 jsou (−10, 2, 7, 1). △

Příklad 1.6.7. Najděte bázi a dimenzi podprostoru 𝑈 v R5 všech řešení následující sou-
stavy rovnic.

2𝑥1 − 3𝑥2 + 4 𝑥3 − 8𝑥4 + 𝑥5 = 0
𝑥1 + 2 𝑥2 − 3𝑥3 + 𝑥4 + 5 𝑥5 = 0

Řešení. Řešíme soustavu Gaußovou eliminací s pomocí maticového zápisu, přičemž nulovou
pravou stranu nepíšeme.(︃

2 −3 4 −8 1
1 2 −3 1 5

)︃
∼
(︃

0 −7 10 −10 −9
1 2 −3 1 5

)︃
∼

∼
(︃

0 −7 10 −10 −9
7 14 −21 7 35

)︃
∼
(︃

0 −7 10 −10 −9
7 0 −1 −13 17

)︃

Položme 𝑥3 = 7 𝑟, 𝑥4 = 7 𝑡 a 𝑥5 = 7 𝑠. Pak 𝑥1 = 𝑟 + 13 𝑡 − 17 𝑠 a 𝑥2 = 10 𝑟 − 10 𝑡 − 9 𝑠.
Máme parametrický popis vektorů x = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) z 𝑈 :

x = (𝑟 + 13 𝑡− 17 𝑠, 10 𝑟 − 10 𝑡− 9 𝑠, 7 𝑟, 7 𝑡, 7 𝑠)
= 𝑟 · (1, 10, 7, 0, 0) + 𝑡 · (13,−10, 0, 7, 0) + 𝑠 · (−17,−9, 0, 0, 7)

Položme u1 = (1, 10, 7, 0, 0), u2 = (13,−10, 0, 7, 0) a u3 = (−17,−9, 0, 0, 7). Pak {u1,u2,u3}
tvoří bázi 𝑈 a je vidět, že dim𝑈 = 3. △

Příklad 1.6.8. Najděte báze a dimenze podprostorů

𝑃 = {𝑓 ∈ R4[𝑥] | 𝑓(1) = 𝑓(2) = 0}, 𝑄 = {𝑔 ∈ R4[𝑥] | 𝑔(𝑥) = 𝑔(−𝑥)}.

Řešení. Všimněme si, že všechny polynomy v 𝑃 musí být tvaru

𝑝(𝑥) = (𝑥− 1) (𝑥− 2) 𝑞(𝑥) = (𝑥2 − 3𝑥+ 2) 𝑞(𝑥) (1.12)

40



Kapitola 1 Algebra

kde 𝑞 je vhodný polynom (viz příklad 1.6.3 a)). Aby byl polynom 𝑝 stupně nejvýše 4,
musí být 𝑞 stupně nejvýše 2. (Stupeň součinu polynomů je roven součtu stupňů.) Pak ale
𝑞 ∈ R2[𝑥] a lze psát 𝑞(𝑥) = 𝑞0 + 𝑞1 𝑥+ 𝑞2 𝑥

2. Z (1.12) platí, že polynomy v 𝑃 lze psát jako

𝑝(𝑥) = (𝑥2 − 3𝑥+ 2) (𝑞0 + 𝑞1 𝑥+ 𝑞2 𝑥
2)

= 𝑞0 (𝑥2 − 3𝑥+ 2) + 𝑞1 (𝑥3 − 3𝑥2 + 2𝑥) + 𝑞2 (𝑥4 − 3𝑥3 + 2𝑥2). (1.13)

Vidíme, že dimenze 𝑃 je 3 a báze je (například) (𝑥2−3𝑥+2, 𝑥3−3𝑥2+2 𝑥, 𝑥4−3𝑥3+2 𝑥2).
Ověřme nejprve, že 𝑄 je skutečně lineární podprostor. Nulový polynom jistě do 𝑄 patří,

nechť 𝑓 , 𝑔 ∈ 𝑄, 𝛼, 𝛽 ∈ R.

(𝛼 · 𝑓 + 𝛽 · 𝑞)(−𝑥) = 𝛼 𝑓(−𝑥) + 𝛽 𝑔(−𝑥) = 𝛼 𝑓(𝑥) + 𝛽 𝑔(𝑥) = (𝛼 · 𝑓 + 𝛽 · 𝑔)(𝑥)

𝑄 je vektorovým podprostorem. Podívejme se na charakterizaci polynomů z 𝑄. Je-li 𝑓 ∈ 𝑄,
platí 𝑓(𝑥) = 𝑓(−𝑥). Píšeme-li 𝑓(𝑥) = 𝑓0 + 𝑓1 𝑥+ 𝑓2 𝑥

2 + 𝑓3 𝑥
3 + 𝑓4 𝑥

4, pak

𝑓(−𝑥) = 𝑓0 − 𝑓1 𝑥+ 𝑓2 𝑥
2 − 𝑓3 𝑥

3 + 𝑓4 𝑥
4.

Má-li být 𝑓(𝑥) = 𝑓(−𝑥) pro každé 𝑥, pak musí být 𝑓1 = 𝑓3 = 0. Lze tedy psát 𝑓(𝑥) = 𝑓0 +
+ 𝑓2 𝑥

2 + 𝑓4 𝑥
4. Odtud je zřejmé, že dim𝑄 = 3 a báze 𝑄 je (například) (1, 𝑥2, 𝑥4). △

Poznámka. Z charakzerizace 𝑃 pomocí (1.12) vidíme, že 𝑃 je obraz lineárního zobrazení
R2[𝑥] → R4[𝑥] daného násobením polynomem 𝑥2 − 3𝑥 + 2. Toto zobrazení má (ve stan-
dardních bázích mocnin 𝑥 seřazené shora od největší k nejmenší) předpis s maticí

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

−3 1 0
2 −3 1
0 2 −3
0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

kterou jsme získali pomocí (1.13). Pokud polynom 𝑞(𝑥) = 𝑞2 𝑥
2 + 𝑞1 𝑥 + 𝑞0 ztotožníme

s vektorem q = (𝑞2, 𝑞1, 𝑞0)𝑇 , pak polynom (𝑥2 − 3𝑥+ 2) 𝑞(𝑥) ztotožníme s vektorem 𝐴 · q.
Podobně bychom mohli popsat𝑄. Zobrazení R2[𝑥] → R4[𝑥] zadané předpisem 𝑔(𝑥) ↦→ 𝑔(𝑥2)

je lineární a má (ve stejných bázích jako výše) matici⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Tato charakterizace by fungovala i pro ekvivalenty 𝑃 a 𝑄 v prostoru všech polynomů
R[𝑥], kde však již nemáme popis pomocí matic (byly by nekonečné).
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1.7 Deteminant
Příklad 1.7.1. Připomeňte si základní vlastnosti determinantů matic nad tělesem.

Řešení. Mějme čtvercovou matici 𝐴 = (𝑎𝑖,𝑗)𝑛𝑖,𝑗=1. Definujeme její determinant jako

det𝐴 :=
∑︁
𝜎∈S𝑛

(−1)|𝜎| 𝑎1,𝜎(1) · 𝑎2,𝜎(2) · · · · · 𝑎𝑛,𝜎(𝑛) (1.14)

kde suma probíhá přes všechny permutace 𝑛-prvkové množiny. Na permutace se lze také
dívat jako na výběry prvků matice tak, abychom z každého řádku i sloupce vybrali právě
jeden prvek. Determinant 𝐴 značíme det𝐴 nebo |𝐴|. Číslo (−1)|𝜎| znčíme znaménko per-
mutace a počítáme jej jako −1 na počet transpozic (záměn dvou prvků), kterými utvoříme
𝜎 z identity. (Počet |𝜎| není jednoznačný, ale je vždy buď sudý, nebo lichý.) Protože jsme
místo 𝜎 mohli vzít 𝜎−1 se stejným znaménkem, máme

det𝐴 =
∑︁
𝜎∈S𝑛

(−1)|𝜎| 𝑎𝜎−1(1),1 · 𝑎𝜎−1(2),2 · · · · · 𝑎𝜎−1(𝑛),𝑛 = det𝐴𝑇 , (1.15)

kde 𝐴𝑇 je matice transponovaná, 𝐴𝑇 = (𝑎𝑗,𝑖)𝑛𝑖,𝑗=1. Determinant má následující vlastnosti.

(i) Vyměníme-li dva řádky matice 𝐴, determinant se vynásobí −1.

(ii) Vynásobíme-li nějaký řádek matice 𝐴 číslem 𝑎, determinant se vynásobí týmž číslem
𝑎.

(iii) Přičteme-li 𝑎-násobek jednoho řádku k jinému, determinant se nezmění.

(iv) det(𝐴 ·𝐵) = det𝐴 · det𝐵

(v) det(𝐴−1) = 1
det𝐴

(vi) Je-li některý řádek matice nulový, je determinant matice nulový.

(vii) Je-li matice 𝐴 singulární (nemá-li inverzi), je det𝐴 = 0.

(viii) Determinant jednotkové matice je 1.

(ix) Determinant horní nebo dolní trojúhelníkové matice je součin prvků na diagonále.

Důkaz těchto (a jiných) vlastností determinatů je možné najít například v 10. kapitole
učebnice Lineárna algebra a geometría od P. Zlatoše,14 nicméně některé lze dokázat po-
měrně jednoduše.

Vlastnost (i) plyne z toho, že výměna řádků po dosazení do (1.14) přidá jednu transpo-
zici ke každé permutaci, což znaménka všech permutací změní na opačná, takže −1 můžeme
vytknout z (1.14) a dostaneme determinant původní matice. Stejně tak vynásobíme-li řá-
dek nějakým číslem 𝑎, bude toto číslo v každém sčítanci v (1.14) právě jednou, což dává (ii).

14http://thales.doa.fmph.uniba.sk/zlatos/la/LAG A4.pdf
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Vynásobíme-li celou matici číslem 𝑎, je to jako násobit každý z 𝑛 řádků, tedy determinant
se vynásobí 𝑎𝑛. Vlastnosti (i) – (iii) mají i své sloupcové obdoby díky (1.15).

Vlastnost (vi) je zřejmá – v každém sčítanci v (1.15) bude 0. Jejím přímým důsledkem je
vlastnost (vii), protože v singulární matici umíme pomocí elementárních řádkových úprav
vyrobit nulový řádek. Vlastnosti (viii) a (ix) jsou dokázané obdobně – jediná transpozice,
která nebude mít ani v jednom činiteli v součinu nulu, bude identita s kladným znaménkem.
Vlastnost (iv) je známá jako Cauchyho věta o součinu determinantů.

Definujme 𝐴𝑖,𝑗 matici, která vznikla z 𝐴 odebráním 𝑖-tého řádku a 𝑗-tého sloupce. Poté
pro 𝑖- tý řádek matice 𝐴 platí, že

det𝐴 =
𝑛∑︁

𝑗=1
(−1)𝑖+𝑗 𝑎𝑖,𝑗 det𝐴𝑖,𝑗. (1.16)

Vztah (1.16), dokázaný v sekci 10.4 Lineárne algebry a geometríe a nazývaný Laplaceův
rozvoj determinantu, má i svoji sloupcovou variantu. Pro 𝑗-tý sloupec 𝐴 platí

det𝐴 =
𝑛∑︁

𝑖=1
(−1)𝑖+𝑗 𝑎𝑖,𝑗 det𝐴𝑖,𝑗. △

Příklad 1.7.2. Spočtěte determinant matice⎛⎜⎜⎜⎝
2 −1 0 3
1 0 −2 0

−1 1 2 1
−3 −2 1 1

⎞⎟⎟⎟⎠
a) pomocí řádkových úprav,

b) pomocí Laplaceova rozvoje vhodného řádku.

Řešení. Začneme a). Upravujeme matici do horního trojúhelníkového tvaru a přitom sle-
dujeme, jak úpravy mění determinant. Nejprve pomocí druhého řádku zredukujeme první
sloupec, což determinant nezmění. Následně prohodíme první a druhý řádek, a potom
druhý a nový třetí. Toto vynásobí determinant (−1)2 = 1, tedy jej opět nezmění.⎛⎜⎜⎜⎝

2 −1 0 3
1 0 −2 0

−1 1 2 1
−3 −2 1 1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 −1 4 3
1 0 −2 0
0 1 0 1
0 −2 −5 1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 −2 0
0 1 0 1
0 −1 4 3
0 −2 −5 1

⎞⎟⎟⎟⎠
Nový druhý řádek přičteme ke třetímu a jeho dvojnásobek ke čtvrtému. Ani tato operace
nezmění determinant. Poté třetí řádek vydělíme čtyřmi, což vydělí čtyřmi i determinant.
Nakonec přičteme k poslednímu řádku pětinásobek předchozího, což determinant nezmění.

∼

⎛⎜⎜⎜⎝
1 0 −2 0
0 1 0 1
0 0 4 4
0 0 −5 3

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 −2 0
0 1 0 1
0 0 1 1
0 0 −5 3

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 −2 0
0 1 0 1
0 0 1 1
0 0 0 8

⎞⎟⎟⎟⎠
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Máme horní trojúhelníkovou matici. Její determinant je 8 – součin prvků na diagonále.
Protože při úpravách se determinant vydělil 4, byl determinant původní matice 32.

Pro b) postupujeme Laplaceovým rozvojem podle 2. řádku. Máme

det

⎛⎜⎜⎜⎝
2 −1 0 3
1 0 −2 0

−1 1 2 1
−3 −2 1 1

⎞⎟⎟⎟⎠ = (−1)2+1 · 1 · det

⎛⎜⎝ −1 0 3
1 2 1

−2 1 1

⎞⎟⎠

+ (−1)2+3 · (−2) · det

⎛⎜⎝ 2 −1 3
−1 1 1
−3 −2 1

⎞⎟⎠

= 2 · det

⎛⎜⎝ 2 −1 3
−1 1 1
−3 −2 1

⎞⎟⎠− det

⎛⎜⎝ −1 0 3
1 2 1

−2 1 1

⎞⎟⎠
Spočítáme determinanty submatic 3× 3. Pro první matici postupujeme Laplaceovým roz-
vojem podle druhého řádku.

det

⎛⎜⎝ 2 −1 3
−1 1 1
−3 −2 1

⎞⎟⎠ = (−1)2+1+1 det
(︃

−1 3
−2 1

)︃
+ (−1)2+2 det

(︃
2 3

−3 1

)︃

+ (−1)2+3 det
(︃

2 −1
−3 −2

)︃
=
(︁
−1 · 1− (−2) · 3

)︁
+
(︁
3 · 1− (−3) · 3

)︁
−
(︁
2 · (−2)− (−3) · (−1)

)︁
= −1 + 6 + 2 + 9 + 4 + 3 = 23

Determinant druhé matice spočítáme opět Laplaceovým rozvojem podle prvního řádku.

det

⎛⎜⎝ −1 0 3
1 2 1

−2 1 1

⎞⎟⎠ = (−1)1+1+1 det
(︃

2 1
1 1

)︃
+ (−1)1+3 · 3 · det

(︃
1 2

−2 1

)︃

= −
(︁
2 · 1− 1 · 1

)︁
+ 3 ·

(︁
1 · 1− (−2) · 2

)︁
= −1 + 15 = 14

Celkem tak máme determinant původní matice.

det

⎛⎜⎜⎜⎝
2 −1 0 3
1 0 −2 0

−1 1 2 1
−3 −2 1 1

⎞⎟⎟⎟⎠ = 2 · 23− 14 = 32 △
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Příklad 1.7.3. Zjistěte, pro které parametry 𝑎, 𝑏, 𝑐 ∈ R je soustava rovnic

𝑎 𝑥1 + 𝑏 𝑥2 = 𝑐
𝑐 𝑥1 + 𝑎 𝑥3 = 𝑏

𝑐 𝑥2 + 𝑏 𝑥3 = 𝑎

jednoznačně řešitelná. Pro tyto parametry najděte řešení pomocí Cramerova pravidla.

Řešení. Soustava je jednoznačně řešitelná právě tehdy, je-li determinant matice soustavy
nenulový. Soustava matice je

𝐴 :=

⎛⎜⎝𝑎 𝑏 0
𝑐 0 𝑎
0 𝑐 𝑏

⎞⎟⎠ .
Spočítáme det𝐴 Laplaceovým rozvojem podle prvního řádku.

det𝐴 = (−1)1+1 · 𝑎 · det
(︃
0 𝑎
𝑐 𝑏

)︃
+ (−1)1+2 · 𝑏 · det

(︃
𝑐 𝑎
0 𝑏

)︃
= 𝑎 · (−𝑐 · 𝑎)− 𝑏 · 𝑐 · 𝑏) = −𝑐 (𝑎2 + 𝑏2)

Vidíme tedy, že det𝐴 = 0 právě tehdy, když je 𝑐 = 0 nebo 𝑎 = 𝑏 = 0. Obměnou vidíme, že
det𝐴 ̸= 0 právě tehdy, když 𝑐 ̸= 0 a alespoň jedno z 𝑎, 𝑏 je nenulové. Tuto podmínku lze
psát tak, že 𝑎2 + 𝑏2 > 0.15 Pak podle Cramerova pravidla platí

𝑥𝑖 =
det𝐴𝑖

det𝐴 ,

kde 𝐴𝑖 je matice, kde jsme 𝑖-tý sloupec matice 𝐴 nahradili sloupcem z pravé strany rovnice.
Máme

𝐴1 =

⎛⎜⎝𝑐 𝑏 0
𝑏 0 𝑎
𝑎 𝑎 𝑏

⎞⎟⎠ ,
tedy opět počítáme determinant Laplaceovým rozvojem podle prvního řádku.

det𝐴1 = (−1)1+1 · 𝑐 · det
(︃
0 𝑎
𝑐 𝑏

)︃
+ (−1)1+2 · 𝑏 · det

(︃
𝑏 𝑎
𝑎 𝑏

)︃
= −𝑐 𝑎2 − 𝑏3 + 𝑏 𝑎2

Obdobně

𝐴2 =

⎛⎜⎝𝑎 𝑐 0
𝑐 𝑏 𝑎
0 𝑎 𝑏

⎞⎟⎠
a počítáme det𝐴2 Laplaceovým rozvojem podle prvního řádku.

det𝐴2 = 𝑎 · det
(︃
𝑏 𝑎
𝑎 𝑏

)︃
− 𝑏 · det

(︃
𝑐 𝑎
0 𝑏

)︃
15Platí totiž 𝑎2 + 𝑏2 ≥ 0 a výraz je roven nule jen pro 𝑎 = 𝑏 = 0.
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= 𝑎 𝑏2 − 𝑎3 − 𝑏 𝑐2

Nakonec

𝐴3 =

⎛⎜⎝𝑎 𝑏 𝑐
𝑐 0 𝑏
0 𝑎 𝑎

⎞⎟⎠ ,
takže nyní počítáme determinant Laplaceovým rozvojem podle prvního sloupce.

det𝐴3 = 𝑎 · det
(︃
0 𝑏
𝑎 𝑎

)︃
− 𝑐 · det

(︃
𝑏 𝑐
𝑎 𝑎

)︃
= −𝑎2 𝑏− 𝑎 𝑏 𝑐+ 𝑎 𝑐2

Máme tedy řešení

𝑥1 =
𝑏3 − 𝑎2 𝑏+ 𝑎2 𝑐

𝑐 (𝑎2 + 𝑏2) 𝑥2 =
𝑎3 + 𝑏 𝑐2 − 𝑎 𝑐2

𝑐 (𝑎2 + 𝑏2) 𝑥3 =
𝑎2 𝑏+ 𝑎 𝑏 𝑐− 𝑎 𝑐2

𝑐 (𝑎2 + 𝑏2)

pro všechna 𝑎, 𝑏 ∈ R tak, že 𝑎2 + 𝑏2 > 0 a 𝑐 ∈ R∖ {0}. △

Příklad 1.7.4. Spočtěte determinant matice

𝐴5 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎 1 1 1 1
1 𝑎 1 1 1
1 1 𝑎 1 1
1 1 1 𝑎 1
1 1 1 1 𝑎

⎞⎟⎟⎟⎟⎟⎟⎠
a) pomocí řádkových úprav,

b) pomocí Laplaceova rozvoje 1. řádku a indukce.

Řešení. Označme 𝐴𝑛 = (𝑎𝑖,𝑗) matici 𝑛× 𝑛 definovanou předpisem

𝑎𝑖,𝑗 =
⎧⎨⎩𝑎 𝑖 = 𝑗,

1 𝑖 ̸= 𝑗.

Odtud plyne označení naší matice 𝐴5. Začněme a). Budeme používat řádkové i sloup-
cové úpravy. Nejprve odečteme poslední řádek od všech ostatních. Následně k poslednímu
sloupci přičteme všechny ostatní. Tyto operace nemění determinant.⎛⎜⎜⎜⎜⎜⎜⎝

𝑎 1 1 1 1
1 𝑎 1 1 1
1 1 𝑎 1 1
1 1 1 𝑎 1
1 1 1 1 𝑎

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎− 1 0 0 0 1− 𝑎
0 𝑎− 1 0 0 1− 𝑎
0 0 𝑎− 1 0 1− 𝑎
0 0 0 𝑎− 1 1− 𝑎
1 1 1 1 𝑎

⎞⎟⎟⎟⎟⎟⎟⎠
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≀

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎− 1 0 0 0 0
0 𝑎− 1 0 0 0
0 0 𝑎− 1 0 0
0 0 0 𝑎− 1 0
1 1 1 1 𝑎+ 4

⎞⎟⎟⎟⎟⎟⎟⎠
Na konci dostaneme dolní trojúhleníkovou matici, jejíž determinant je součin prvků na
diagonále. Dostáváme

det𝐴5 = (𝑎− 1)4 (𝑎+ 4).
Stejný postup by samozřejmě fungoval pro libovolnou matici 𝐴𝑛, přičemž bychom nejprve
dostali na diagonále 𝑎 − 1 a mimo ni 1 − 𝑎, následně přičtením prvních 𝑛 − 1 sloupců
k poslednímu bychom získali v pravém dolním rohu 𝑎+ 𝑛− 1. Máme tak vzorec

det𝐴𝑛 = (𝑎− 1)𝑛−1 (𝑎+ 𝑛− 1).
Vidíme například, že 𝐴𝑛 je invertibilní pro všechna 𝑎 s výjimkou 𝑎 = 1 a 𝑎 = 1− 𝑛.

Počítejme b).

det𝐴5 = 𝑎 · det𝐴4 − det

⎛⎜⎜⎜⎝
1 1 1 1
1 𝑎 1 1
1 1 𝑎 1
1 1 1 𝑎

⎞⎟⎟⎟⎠+ det

⎛⎜⎜⎜⎝
1 𝑎 1 1
1 1 1 1
1 1 𝑎 1
1 1 1 𝑎

⎞⎟⎟⎟⎠

− det

⎛⎜⎜⎜⎝
1 𝑎 1 1
1 1 𝑎 1
1 1 1 1
1 1 1 𝑎

⎞⎟⎟⎟⎠+ det

⎛⎜⎜⎜⎝
1 𝑎 1 1
1 1 𝑎 1
1 1 1 𝑎
1 1 1 1

⎞⎟⎟⎟⎠
= 𝑎 · det𝐴4 − 4 det𝐵4

Poslední čtyři matice jsou si vzájemně řádkově podobné, přičemž pro převod druhé a čtvrté
matice na první potřebujeme provést lichý počet výměn řádků a pro převod třetí je to sudý
počet řádků.

Označením 𝐵𝑛 = (𝑏𝑖,𝑗) matice 𝑛×𝑛, která vznikla nahrazením 𝑎1,1 v matici 𝐴𝑛 jedničkou
získáme poslední řádek. Navíc odečtením prvního řádku od ostatních je matice 𝐵𝑛 řádkově
podobná matici s prvním řádkem samých jedniček, 𝑎 − 1 jinde na diagonále a 0 jinak, je
tedy det𝐵𝑛 = (𝑎− 1)𝑛−1, v našem případě je det𝐵4 = (𝑎− 1)3.

Indukcí předpokládáme det𝐴4 = (𝑎− 1)3 (𝑎+ 3). Počítejme
det𝐴5 = 𝑎 det𝐴4 − 4 det𝐵4 = 𝑎 (𝑎− 1)3 (𝑎+ 3)− 4 (𝑎− 1)3

= (𝑎− 1)3 (𝑎2 + 3 𝑎− 4) = (𝑎− 1)4 (𝑎+ 4).
Poslední rovnost máme díky rozkladu 𝑎2 + 3 𝑎 − 4 = (𝑎 − 1) (𝑎 + 4). Obdobně bychom
dostali obecný vzorec – stačí použít rozklad 𝑎2 + (𝑛− 2) 𝑎− (𝑛− 1) = (𝑎− 1) (𝑎+ 𝑛− 1).

det𝐴𝑛 = 𝑎 det𝐴𝑛−1 − (𝑛− 1) det𝐵𝑛−1

= 𝑎 (𝑎− 1)𝑛−2 (𝑎+ 𝑛− 2)− (𝑛− 1) (𝑎− 1)𝑛−2

= (𝑎− 1)𝑛−2 (𝑎2 + (𝑛− 2) 𝑎− (𝑛− 1)) = (𝑎− 1)𝑛−1 (𝑎+ 𝑛− 1) △
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2.1 Lineární zobrazení
Příklad 2.1.1. Rozhodněte, zda následující zobrazení mezi vektorovými prostory jsou
lineární.

a) 𝜙 : R2 → R, 𝜙(𝑥1, 𝑥2) = 𝑥3
1+𝑥3

2
𝑥2
1+𝑥2

2
,

b) 𝜓 : R3 → R2, 𝜙(𝑥1, 𝑥2, 𝑥3) = (2 𝑥1 − 𝑥2, 2𝑥2 − 𝑥3),

c) 𝜉 : R[𝑥] → R2, 𝜙(𝑝) = (𝑝(0), 𝑝′(0)).

Řešení. Začněme a). Vidíme, že 𝜙(0, 0) není definované. Definujeme hodnotu pomocí limity.

lim
(𝑥1,𝑥2)→(0,0)

𝜙(𝑥1, 𝑥2) = lim
(𝑥1,𝑥2)→(0,0)

𝑥31 + 𝑥32
𝑥21 + 𝑥22

Zavedeme polární souřadnice 𝑥1 = 𝜚 cos 𝜃, 𝑥2 = 𝜚 sin 𝜃.

= lim
𝜚→0

𝜚3 (cos3 𝜃 + sin3 𝜃)
𝜚3(cos2 𝜃 + sin2 𝜃⏟  ⏞  

1

)

= lim
𝜚→0

𝜚 (sin3 𝜃 + cos3 𝜃) = 0

Poslední rovnost jsme získali, jelikož je sin3 𝜃 + cos3 𝜃 konečná hondota pro libovolné 𝜃.
Definujme tedy 𝜙(0, 0) = 0. Vidíme (z počítání limity), že 𝜙(𝑘 𝑥1, 𝑘 𝑥2) = 𝑘 𝜙(𝑥1, 𝑥2).
Zobrazení 𝜙 však není lineární, protože nerespektuje sčítání vektorů. Vidíme například, že

𝜙(1, 0) = 1 + 0
1 + 0 = 1 = 0 + 1

0 + 1 = 𝜙(0, 1),

ale

𝜙(1, 1) = 1 + 1
1 + 1 = 2

2 = 1 ̸= 2 = 𝜙(1, 0) + 𝜙(0, 1).
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Pokračujme b). Zobrazení 𝜓 je lineární. Mějme vektory x = (𝑥1, 𝑥2, 𝑥3) a y = (𝑦1, 𝑦2, 𝑦3) ∈ R3

a skaláry 𝛼, 𝛽 ∈ R.

𝜓(𝛼 · x + 𝛽 · y) = 𝜓(𝛼𝑥1 + 𝛽 𝑦1, 𝛼 𝑥2 + 𝛽 𝑦2, 𝛼 𝑥3 + 𝛽 𝑦3) =
=
(︁
2 (𝛼𝑥1 + 𝛽 𝑦1)− (𝛼𝑥2 + 𝛽 𝑦2), 2 (𝛼𝑥2 + 𝛽 𝑦2)− (𝛼𝑥3 + 𝛽 𝑦3)

)︁
=

=
(︁
𝛼 (2𝑥1 − 𝑥2) + 𝛽 (2 𝑦1 − 𝑦2), 𝛼 (2𝑥2 − 𝑥3) + 𝛽 (2 𝑦2 − 𝑦3)

)︁
=

= 𝛼 · 𝜓(x) + 𝛽 · 𝜓(y)

Píšeme-li vektory jako sloupce, pak má ve standardních bázích matici

(𝜓)𝜀,𝜀 =
(︃

2 −1 0
0 2 −1

)︃
.

Nakonec c). Mějme polynom

𝑝(𝑥) = 𝑝0 + 𝑝1 𝑥+ · · ·+ 𝑝𝑛 𝑥
𝑛. (2.1)

Zderivováním 𝑝 dostaneme

𝑝′(𝑥) = 𝑝1 + 2 𝑝2 𝑥+ · · ·+ 𝑛 𝑝𝑛 𝑥
𝑛−1. (2.2)

Dosazením 0 do (2.1) dostaneme 𝑝(0) = 0, do (2.2) pak 𝑝′(0) = 𝑝1. Máme tedy předpis

𝜉(𝑝) = (𝑝0, 𝑝1).

Díky vlastnostem sčítání polynomů a jejich násobení skalárem je 𝜉 lineární (viz příklad
1.6.1 b)). △

Jiné řešení c). Zobrazení 𝜉 lze psát jako složení 𝜉2 ∘ 𝜉1, kde 𝜉1 : R[𝑥] → R[𝑥]2 je dané
předpisem 𝑝 ↦→ (𝑝, 𝑝′) a 𝜉2 : R[𝑥]2 → R2 pak přepisem (𝑓, 𝑔) ↦→ (𝑓(0), 𝑔(0)). Jelikož

(𝛼 𝑓 + 𝛽 𝑔)′ = 𝛼 𝑓 ′ + 𝛽 𝑔′

pro libovolné polynomy (dokonce diferencovatelné funkce), je zobrazení 𝜉1 lineární. Linea-
rita 𝜉2 se ukáže jako původně. Pak je 𝜉 lineární jako složení dvou lineárních zobrazení. △

Příklad 2.1.2. Ve vektorovém prostoru R3 uvažujme bázi u1 = (1,−1, 1)𝑇 , u2 = (1, 1, 0)𝑇 ,
u3 = (2, 1, 1)𝑇 . Nechť 𝜙 : R3 → R3 je lineární zobrazení, o němž víme, že

𝜙(u1) = u2, 𝜙(u2) = u3, 𝜙(u3) = u1.

Najděte matici 𝐴 tvaru 3× 3 tak, aby v souřadnicích standardní báze bylo 𝜙(x) = 𝐴 · x.
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Řešení. Označme 𝛼 = (u1,u2,u3) bázi danou vektory ze zadání a 𝜖 = (e1, e2, e3) stan-
dardní bázi. Budeme-li mít na vstupu i na výstupu vektory psané v souřadnicích báze 𝛼,
bude 𝜙 zadané maticí

𝜙𝛼,𝛼 =

⎛⎜⎝ 0 1 0
0 0 1
1 0 0

⎞⎟⎠ .
Chceme však vektory psát ve standardních souřadnicích. Budeme muset uvažovat změnu
báze. Vezměme matici

𝑃𝜖,𝛼 =

⎛⎜⎝ 1 1 2
−1 1 1
1 0 1

⎞⎟⎠ ,
jejíž sloupce jsou složky vektorů báze 𝛼. Všimněme si, že budeme-li psát vektory na vstupu
v souřadnicích vzhledem k bázi 𝛼, dá nám násobení maticí 𝑃𝜖,𝛼 souřadnice vzhledem k bázi
𝜖. To plyne z následujícího pozorování. Podíváme-li se na vektory u1, u2 a u3, mají vzhledem
k bázi 𝛼 souřadnice (1, 0, 0)𝑇 , (0, 1, 0)𝑇 a (0, 0, 1)𝑇 . Vynásobíme-li tyto sloupce maticí 𝑃𝛼,𝜖,
získáme ve sloupcích složky vektorů u1, u2 a u3, jejich souřadnice v bázi 𝜖. Zbytek plyne
z linearity násobení vektorů maticí. Umíme tedy změnit souřadnice z báze 𝛼 k bázi 𝜖.
Matice 𝑃𝜖,𝛼 se nazývá maticí přechodu od báze 𝛼 k bázi 𝜖.1

Nyní chceme obrátit proces, tj. vektory psané ve standardních souřadnicích chceme
psát v souřadnicích báze 𝛼. Je zřejmé, že změníme-li souřadnice od báze 𝛼 k bázi 𝜖 a pak
zpět, dostaneme identitu. Pak tedy nutně musí být matice přechodu 𝑃𝛼,𝜖 inverzní maticí
k 𝑃𝜖,𝛼, tj.

𝑃𝛼,𝜖 = 𝑃−1
𝜖,𝛼 .

Inverzní matici najdeme standardním způsobem.⎛⎜⎝ 1 1 2 1 0 0
−1 1 1 0 1 0
1 0 1 0 0 1

⎞⎟⎠ ∼

⎛⎜⎝ 0 1 1 1 0 −1
0 1 2 0 1 1
1 0 1 0 0 1

⎞⎟⎠ ∼

∼

⎛⎜⎝ 0 1 1 1 0 −1
0 0 1 −1 1 2
1 0 1 0 0 1

⎞⎟⎠ ∼

⎛⎜⎝ 0 1 0 2 −1 −3
0 0 1 −1 1 2
1 0 0 1 −1 −1

⎞⎟⎠ ∼

∼

⎛⎜⎝ 1 0 0 1 −1 −1
0 1 0 2 −1 −3
0 0 1 −1 1 2

⎞⎟⎠
Vidíme, že

𝑃𝛼,𝜖 =

⎛⎜⎝ 1 −1 −1
2 −1 −3

−1 1 2

⎞⎟⎠ .
1Indexy jsou psány zprava doleva, protože sloupcové vektory násobíme maticemi zleva, tedy napravo

máme souřadnice vzhledem k bázi 𝛼, a po vynásobení maticí přechodu zleva dostaneme souřadnice v bázi
𝜖.
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Pak máme 𝐴 = 𝜙𝜖,𝜖 = 𝑃𝜖,𝛼 · 𝜙𝛼,𝛼 · 𝑃𝛼,𝜖.

𝐴 =

⎛⎜⎝ 1 1 2
−1 1 1
1 0 1

⎞⎟⎠ ·

⎛⎜⎝ 0 1 0
0 0 1
1 0 0

⎞⎟⎠ ·

⎛⎜⎝ 1 −1 −1
2 −1 −3

−1 1 2

⎞⎟⎠ =

⎛⎜⎝ 3 −2 −3
−2 1 4
3 −2 −4

⎞⎟⎠ △

Příklad 2.1.3. Nechť 𝜙 je zobrazení R3 do sebe, které je symetrií podle roviny 𝜌, zadané
rovnicí 𝑥2 + 𝑥3 = 0. Najděte matici 𝐵 takovou, že v souřadnicích standardní báze je
𝜙(x) = 𝐵 · x.

Algebraické řešení. Najdeme si vhodnou bázi prostoru R3, ve které bude mít zobrazení 𝜙
vhodnou matici. Poté pomocí změny báze maticemi přechodu zjistíme matici 𝐵. Rovnice
𝑥2 + 𝑥3 = 0 je zřejmě řešena vektory tvaru

x = (𝑡, 𝑠,−𝑠) = 𝑡 · (1, 0, 0)𝑇 + 𝑠 · (0, 1,−1)𝑇 .

Označme u1 := (1, 0, 0)𝑇 = e1, u2 := (0, 1,−1)𝑇 . Vektory u1, u2 tvoří bázi roviny 𝜌. Vektor
u3 := (0, 1, 1)𝑇 je kolmý na 𝜌, jedná se o normálový vektor roviny 𝜌. (Je to vektor, jehož
složky jsou koeficienty zadávající rovnice.) Platí, že 𝛼 = (u1,u2,u3) tvoří bázi R3. (Vektory
jsou celkem zřejmě lineárně nezávislé.)

Zobrazení 𝜙 nechá vektory u1 a u2 na místě, jelikož leží v rovině 𝜌. Vektor u3 se zobrazí
na −u3, neboť je kolmý na 𝜌 a jeho symetrií podle této roviny tak bude vektor k němu
opačný. V bázi 𝛼 tak má 𝜙 matici

𝜙𝛼,𝛼 =

⎛⎜⎝ 1 0 0
0 1 0
0 0 −1

⎞⎟⎠ .
Nyní již můžeme postupovat jako v příkladu 2.1.2. Najdeme matice přechodu a složením
získáme matici 𝐵 = 𝜙𝜖,𝜖, kde 𝜖 = (e1, e2, e3) značí opět standardní bázi. Matice přechodu
od 𝛼 k 𝜖 je

𝑃𝜖,𝛼 =

⎛⎜⎝ 1 0 0
0 1 1
0 −1 1

⎞⎟⎠ ,
matice opačného přechodu 𝑃𝛼,𝜖 = 𝑃−1

𝜖,𝛼 je k ní inverzní.
⎛⎜⎝ 1 0 0 1 0 0

0 1 1 0 1 0
0 −1 1 0 0 1

⎞⎟⎠ ∼

⎛⎜⎝ 1 0 0 1 0 0
0 1 1 0 1 0
0 0 2 0 1 1

⎞⎟⎠ ∼

⎛⎜⎝ 1 0 0 1 0 0
0 1 0 0 1

2 −1
2

0 0 1 0 1
2

1
2

⎞⎟⎠
Máme tedy

𝑃𝛼,𝜖 =

⎛⎜⎝ 1 0 0
0 1

2 −1
2

0 1
2

1
2

⎞⎟⎠ .
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Pak 𝐵 = 𝜙𝜖,𝜖 = 𝑃𝜖,𝛼 · 𝜙𝛼,𝛼 · 𝑃𝛼,𝜖.

𝐵 =

⎛⎜⎝ 1 0 0
0 1 1
0 −1 1

⎞⎟⎠ ·

⎛⎜⎝ 1 0 0
0 1 0
0 0 −1

⎞⎟⎠ ·

⎛⎜⎝ 1 0 0
0 1

2 −1
2

0 1
2

1
2

⎞⎟⎠ =

⎛⎜⎝ 1 0 0
0 0 −1
0 −1 0

⎞⎟⎠ △

Geometrické řešení. Zjistíme, co dělá 𝜙 s vektory standardní báze. Rovina 𝜌 obsahuje osu
𝑥1 a s osami 𝑥2 a 𝑥3 svírá úhel 45∘. Na obrázku 2.1 je vidět průřez R3 rovinou os 𝑦 a 𝑧, na
obrázku 2.2 je pak 3-D anaglyf situace. Z obrázků je zřejmé, že 𝜙(e1) = e1, 𝜙(e2) = −e3
a 𝜙(e3) = −e2. Díky tomuto vyjádření máme rovnou matici 𝐵 = 𝜙𝜖,𝜖.

𝐵 =

⎛⎜⎝ 1 0 0
0 0 −1
0 −1 0

⎞⎟⎠ △

−2 −1 1 2

−1

1
𝜌 ∩ Span(e2, e3)

𝑂

e2

e3

𝜙(e3)

𝜙(e2)

45∘

Obrázek 2.1: Průřez R3 rovinou os 𝑥2 a 𝑥3, tj. osa 𝑥1 i rovina 𝜌 je kolmá na obrázek. Odtud
je vidět, že 𝜙 zobrazí e2 na −e3 a e3 na −e2.

2.2 Vlastní čísla a vektory
Příklad 2.2.1. Najděte vlastní čísla a vlastní vektory zobrazení 𝜙 : R2 → R2

𝜙(x) =
(︃

2 1
3 0

)︃
· x.

Řešení. Nejprve si připomeneme vlastní čísla a vektory. Číslo 𝜆 je vlastním číslem zobrazení
𝜙, jestliže existuje nenulový vektor u takový, že

𝜙(u) = 𝜆 · u.
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Obrázek 2.2: Anaglyf zachycující celkovou situaci. Rovina 𝜌 je zakreslena šedě. Osy 𝑥1, 𝑥2
a 𝑥3 jsou popsány 𝑥, 𝑦, resp. 𝑧. Vektory standardní báze jsou značeny plnými šipkami.
Přerušované šipky značí obrazy vektorů. Vektor v ose 𝑥 se zobrazí na sebe, jelikož leží
v rovině 𝜌. Vektor v ose 𝑦 se překlopí na záporný vektor v ose 𝑧 a analogicky se vektor
v ose 𝑧 zobrazí na záporný vektor v ose 𝑦.

To nastane právě tehdy, když 𝜙(u)− 𝜆 · u = o, tedy pokud

(𝜙− 𝜆 · id)(u) = o, (2.3)

což nastane pro nějaký nenulový vektor u právě tehdy, když 𝜙 − 𝜆 · id je singluární. Je-li
𝜙 zadané maticí 𝐴, nastane to právě tehdy, je-li

det(𝐴− 𝜆𝐸) = 0. (2.4)

Hledáme-li vlastní čísla matice 𝐴, spočítáme determinant (2.4), což bude polynom v 𝜆,
nazývaný charakteristický polynom matice 𝐴. Vlastní čísla budou právě kořeny charakte-
ristického polynomu. Násobnost kořenů se nazývá algebraickou násobností vlastních čísel.
Jim příslušné vlastní vektory pak budou nenulová řešení rovnice (2.3). Jako množina řešení
homogenní soustavy rovnic tvoří vlastní vektory vektorový podprostor. Jeho dimenze se na-
zývá geometrickou násobností onoho vlastního čísla, která je ohraničena zdola 1 a shora
algebraickou násobností. Navíc, je-li u vlastní vektor příslušný 𝜆 a zároveň 𝜇, pak z

𝜆 · u = 𝜇 · u
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a z nenulovosti u plyne 𝜆 = 𝜇, tedy průniky vlastních podprostorů jsou triviální. (Obsahují
pouze nulový vektor.)

Přejděme k řešení úlohy. Počítáme determinant matice 2× 2, což můžeme dělat přímo
z definice (1.14).

det
(︃

2− 𝜆 1
3 −𝜆

)︃
= (2− 𝜆) (−𝜆)− 3 = 𝜆2 − 2𝜆− 3 = (𝜆− 3) (𝜆+ 1)

Vidíme, že máme vlastní čísla 𝜆1 = 3 a 𝜆2 = −1, obě s algebraickou násobností 1. Počítejme
vlastní vektory pro 𝜆1.(︃

2 1
3 0

)︃
− 3

(︃
1 0
0 1

)︃
=
(︃

−1 1
3 −3

)︃
∼
(︃

1 −1
0 0

)︃

Vidíme, že vlastním vektorem je například v1 = (1, 1)𝑇 a všechny jeho nenulové násobky.
Počítejme vlastní vektory pro 𝜆2.(︃

2 1
3 0

)︃
+ 1

(︃
1 0
0 1

)︃
=
(︃

3 1
3 1

)︃
∼
(︃

3 1
0 0

)︃

Vlastními vektory jsou nenulové násobky vektoru v2 = (1,−3)𝑇 . Geometrická násobnost
obou vlastních čísel je 1. △

Příklad 2.2.2. Najděte vlastní čísla a vlastní vektory zobrazení 𝜙 : R2 → R2

𝜙(x) =
(︃

0 −1
1 0

)︃
·
(︃
𝑥1
𝑥2

)︃
.

Algebraické řešení. Počítejme determinant.

det
(︃

−𝜆 −1
1 −𝜆

)︃
= 𝜆2 + 1

Vidíme, že zobrazení 𝜙 nemá reálná vlastní čísla, tedy ani vlastní vektory.
Jako zobrazení C2 → C2 má 𝜙 vlastní čísla ±i. Vlastní vektory příslušné k i jsou

nenulová řešení soustavy (︃
−i −1
1 −i

)︃
∼
(︃

1 −i
0 0

)︃
,

tedy nenulové násobky v1 = (i, 1)𝑇 . Vlastní vektory příslušné k −i jsou nenulová řešení
soustavy (︃

i −1
1 i

)︃
∼
(︃

1 i
0 0

)︃
,

nenulové násobky v1 = (1, i)𝑇 . △
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Geometrické řešení. Vlastní vektory příslušné vlastnímu číslu 𝜆 jsou takové, vůči kterým
se 𝜙 chová jako stejnolehlost podle počátku s koeficientem 𝜆. Vidíme, že naše zobrazení je
rotací o +90 ∘ podle počátku, které se jako stejnolehlost chová pouze pro nulový vektor.
Zobrazení 𝜙 tedy nemá vlastní vektory ani vlastní čísla. △

Příklad 2.2.3. Najděte vlastní čísla a vlastní vektory matice

𝐵 =

⎛⎜⎝ 2 1 0
−1 0 3
1 1 1

⎞⎟⎠ .
Řešení. Počítáme determinant Laplaceovým rozvojem podle prvního řádku.

det

⎛⎜⎝ 2− 𝜆 1 0
−1 −𝜆 3
1 1 1− 𝜆

⎞⎟⎠ = (2− 𝜆) · det
(︃

−𝜆 3
1 1− 𝜆

)︃
− det

(︃
−1 3
1 1− 𝜆

)︃

= (2− 𝜆) (𝜆2 − 𝜆− 3)− (𝜆− 1− 3)
= 2𝜆2 − 2𝜆− 6− 𝜆3 + 𝜆2 + 3𝜆− 𝜆+ 4
= −𝜆3 + 3𝜆2 − 2 = (1− 𝜆) (𝜆2 − 2𝜆− 2)

Máme vlastní číslo 𝜆1 = 1. Zbývající vlastní čísla určíme pomocí diskriminantu 𝐷 = 4 +
+ 8 = 12, pak

𝜆2,3 =
2± 2

√
3

2 = 1±
√
3.

Počítejme vlastní vektory pro 𝜆1 = 1.

𝐵 − 𝐸 =

⎛⎜⎝ 1 1 0
−1 −1 3
1 1 0

⎞⎟⎠ ∼

⎛⎜⎝ 1 1 0
0 0 1
0 0 0

⎞⎟⎠
Máme vlastní vektor v1 = (1,−1, 0)𝑇 (a jeho nenulové násobky). Počítejme vlastní vektory
pro 𝜆2 = 1 +

√
3.

𝐵 − (1 +
√
3)𝐸 =

⎛⎜⎝ 1−
√
3 1 0

−1 −1−
√
3 3

1 1 −
√
3

⎞⎟⎠
Ke druhému řádku přičteme

√
3-násobek třetího.

∼

⎛⎜⎝ 1−
√
3 1 0

−1 +
√
3 −1 0

1 1 −
√
3

⎞⎟⎠
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První řádek přičteme ke druhému a odečteme jej od třetího.

∼

⎛⎜⎝ 1−
√
3 1 0

0 0 0√
3 0 −

√
3

⎞⎟⎠ ∼

⎛⎜⎝ 1−
√
3 1 0

−1 0 1
0 0 0

⎞⎟⎠
Vlastními vektory jsou nenulové násobky v2 = (1,

√
3− 1, 1)𝑇 . Nakonec počítejme vlastní

vektory pro 𝜆3 = 1−
√
3.

𝐵 − (1−
√
3)𝐸 =

⎛⎜⎝ 1 +
√
3 1 0

−1 −1 +
√
3 3

1 1
√
3

⎞⎟⎠
Od druhého řádku odečteme

√
3-násobek třetího.

∼

⎛⎜⎝ 1 +
√
3 1 0

−1−
√
3 −1 0

1 1
√
3

⎞⎟⎠
První řádek přičteme ke druhému a odečteme jej od třetího.

∼

⎛⎜⎝ 1 +
√
3 1 0

0 0 0
−
√
3 0

√
3

⎞⎟⎠ ∼

⎛⎜⎝ 1 +
√
3 1 0

−1 0 1
0 0 0

⎞⎟⎠
Vlastními vektory jsou nenulové násobky v3 = (1,−1−

√
3, 1)𝑇 . △

Příklad 2.2.4. Zjistěte, zda v R3 existuje báze tvořená vlastními vektory matice

𝐶 =

⎛⎜⎝ 0 −1 2
3 4 −2
3 1 1

⎞⎟⎠ .
Pokud ano, najděte ji.

Řešení. Báze tvořená vlastními vektory existuje, pokud

• charakteristický polynom má plný počet kořenů v R a2

• geometrická násobnost každého vlastního čísla je rovna té algebraické.
2Případně v daném tělese. Zejména pro C tato podmínka odpadá.
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Pak totiž můžeme vybrat bázi pro každý podprostor vlastních vektorů a tyto vektory
dohromady dají bázi celého prostoru. Počítejme proto vlastní čísla.

det(𝐶 − 𝜆𝐸) = det

⎛⎜⎝ −𝜆 −1 2
3 4− 𝜆 −2
3 1 1− 𝜆

⎞⎟⎠ =

= −𝜆 det
(︃

4− 𝜆 −2
1 1− 𝜆

)︃
− (−1) det

(︃
3 −2
3 1− 𝜆

)︃
+ 2 det

(︃
3 4− 𝜆
3 1

)︃
=

= 𝜆
(︁
(4− 𝜆) (1− 𝜆) + 2

)︁
+ (3− 3𝜆+ 6) + 2 (3− 12 + 3𝜆) =

= −𝜆3 + 5𝜆2 − 6𝜆+ 9− 3𝜆− 18 + 6𝜆 =
= −𝜆3 + 5𝜆2 − 3𝜆− 9 = −(𝜆+ 1) (𝜆− 3)2

Máme jednoduché vlastní číslo 𝜆1 = −1. Počítejme jemu příslušné vlastní vektory.

𝐶 + 𝐸 =

⎛⎜⎝ 1 −1 2
3 5 −2
3 1 2

⎞⎟⎠ ∼

⎛⎜⎝ 1 −1 2
0 8 −8
0 4 −4

⎞⎟⎠ ∼

⎛⎜⎝ 1 −1 2
0 1 −1
0 0 0

⎞⎟⎠ ∼

⎛⎜⎝ 1 0 1
0 1 −1
0 0 0

⎞⎟⎠
Máme vlastní vektor v1 = (1,−1,−1)𝑇 , který generuje podprostor vlastních vektorů. Vi-
díme, že algebraická násobnost 𝜆1 je rovna geometrické, což je u jednoduchých vlastních
čísel vždy. Dále máme dvojnásobné vlastní číslo 𝜆2 = 3. Počítejme vlastní vektory pro něj.

𝐶 − 3𝐸 =

⎛⎜⎝ −3 −1 2
3 1 −2
3 1 −2

⎞⎟⎠ ∼

⎛⎜⎝ 3 1 −2
0 0 0
0 0 0

⎞⎟⎠
Vidíme, že soustavu řeší vektory x = (𝑡, 2 𝑠− 3 𝑡, 𝑠)𝑇 , 𝑡, 𝑠 ∈ R. Označme v2 := (1,−3, 0)𝑇
a v3 = (0, 2, 1)𝑇 . Tyto vektory tvoří bázi podprostoru vlastních vektorů příslušných 3,
tedy jeho dimenze je 2, stejně jako algebraická násobnost 3. Tudíž v1, v2 a v3 jsou vlastní
vektory 𝐶, které tvoří bázi R3. △

Příklad 2.2.5. Spočtěte vlastní čísla a vlastní vektory matice

𝐷 =

⎛⎜⎜⎜⎝
1 1 2 1
1 −2 1 −4
0 −1 −1 −1

−1 0 −1 2

⎞⎟⎟⎟⎠ .

Řešení. Počítejme

det(𝐷 − 𝜆𝐸) = det

⎛⎜⎜⎜⎝
1− 𝜆 1 2 1
1 −2− 𝜆 1 −4
0 −1 −1− 𝜆 −1
−1 0 −1 2− 𝜆

⎞⎟⎟⎟⎠
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pomocí řádkových úprav. Nejprve ke druhému řádku přičteme čtvrtý.

= det

⎛⎜⎜⎜⎝
1− 𝜆 1 2 1
0 −2− 𝜆 0 −2− 𝜆
0 −1 −1− 𝜆 −1
−1 0 −1 2− 𝜆

⎞⎟⎟⎟⎠
Následně z druhého řádku vytkneme −2− 𝜆.

= (−2− 𝜆) det

⎛⎜⎜⎜⎝
1− 𝜆 1 2 1
0 1 0 1
0 −1 −1− 𝜆 −1
−1 0 −1 2− 𝜆

⎞⎟⎟⎟⎠
Nový druhý řádek použijeme k eliminaci prvků ve druhém sloupci.

= (−2− 𝜆) det

⎛⎜⎜⎜⎝
1− 𝜆 0 2 0
0 1 0 1
0 0 −1− 𝜆 0
−1 0 −1 2− 𝜆

⎞⎟⎟⎟⎠
Nyní použijeme Laplaceův rozvoj podle druhého sloupce.

= (−2− 𝜆) (−1)2+2 det

⎛⎜⎝ 1− 𝜆 2 0
0 −1− 𝜆 0
−1 −1 2− 𝜆

⎞⎟⎠
Opět použijeme Laplaceův rozvoj, tentokrát podle druhého řádku.

= (−2− 𝜆) (−1− 𝜆) (−1)2+2 det
(︃

1− 𝜆 0
−1 2− 𝜆

)︃

Máme dolní trojúhelníkovou matici, takže determinant bude součin prvků na diagonále.

= (2 + 𝜆) (1 + 𝜆) (2− 𝜆) (1− 𝜆)

Máme vlastní čísla 𝜆1,2 = ±1 a 𝜆3,4 = ±2. Počítejme vlastní vektory pro 𝜆1 = 1.
⎛⎜⎜⎜⎝

0 1 2 1
1 −3 1 −4
0 −1 −2 −1

−1 0 −1 1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 −1
0 1 2 1
0 −3 0 −3
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 −1
0 1 0 1
0 0 2 0
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 0 −1
0 1 0 1
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠
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Máme vlastní vektor v1 = (1,−1, 0, 1)𝑇 . Počítejme vlastní vektory pro 𝜆2 = −1.⎛⎜⎜⎜⎝
2 1 2 1
1 −1 1 −4
0 −1 0 −1

−1 0 −1 3

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 −3
0 1 0 7
0 −1 0 −1
0 −1 0 −1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 −3
0 1 0 7
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 0
0 1 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠
Máme vlastní vektor v2 = (1, 0− 1, 0)𝑇 . Počítejme vlastní vektory pro 𝜆3 = 2.⎛⎜⎜⎜⎝

−1 1 2 1
1 −4 1 −4
0 −1 −3 −1

−1 0 −1 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 0
0 1 0 1
0 1 3 1
0 −1 −3 −1

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠
Máme vlastní vektor v3 = (0, 1, 0,−1)𝑇 . Počítejme vlastní vektory pro 𝜆4 = −2.⎛⎜⎜⎜⎝

3 1 2 1
1 0 1 −4
0 −1 1 −1

−1 0 −1 4

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 1 −1 13
1 0 1 −4
0 1 −1 1
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 0 0 1
1 0 1 −4
0 1 −1 1
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 1 0
0 1 −1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠
Máme vlastní vektor v4 = (1,−1,−1, 0)𝑇 . △

2.3 Afinní geometrie
Příklad 2.3.1. Zopakujte definici skalárního součinu v R2 a v R3.

Řešení. Standardní skalární součin vektorů x = (𝑥1, . . . , 𝑥𝑛) a y = (𝑦1, . . . , 𝑦𝑛) ∈ R𝑛

definujeme jako
⟨x,y⟩ =

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑦𝑖. (2.5)

Zejména v R2 máme ⟨x,y⟩ = 𝑥1 𝑦1 + 𝑥2 𝑦2; v R3 pak ⟨x,y⟩ = 𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3.
Obecně v R𝑛 platí ⟨x,x⟩ ≥ 0.3 Můžeme definovat velikost vektoru jako

‖x‖ =
√︁
⟨x,x⟩. (2.6)

Velikost (2.6) je definována jednoznačně pro všechny vektory jako jediná nezáporná odmoc-
nina. Vzdálenost dvou vektorů pak definujeme jako ‖x− y‖. Odchylku dvou nenulových
vektorů definujeme pomocí (2.5) a (2.6) pomocí

cos |∢xy| = ⟨x,y⟩
‖x‖ · ‖y‖

. (2.7)

3Totéž platí pro komplexní prostory. Na C𝑛 definujeme skalární součin vektorů podobně jako (2.5),
ovšem klademe ⟨x,y⟩ =

∑︀𝑛
𝑖=1 𝑥𝑖 · 𝑦𝑖. Pak vidíme, že opět ⟨x,x⟩ ≥ 0.

59



Kapitola 2 Geometrie

Úhel |∢xy| ∈ [0,π] je jednoznačně určen (2.7). Kolmost dvou vektorů můžeme definovat i
bez znalosti kosinu. Kolmost dvou (ne nutně nenulových) vektorů definujeme pomocí

x ⊥ y ⇐⇒ ⟨x,y⟩ = 0. (2.8)

Vidíme, že jakýkoli vektor je kolmý na nulový vektor. Navíc, jelikož je díky definici skalární
součin s pevným vektorem lineární zobrazení, tak je-li vektor kolmý na množinu jiných
vektorů, je kolmý na celý podprostor jimi generovaný. Ortogonální doplněk množiny𝑀 ⊆ 𝑉
ve vektorovém prostoru 𝑉 definujeme jako

𝑀⊥ = {x ∈ 𝑉 | (∀m ∈𝑀)(x ⊥ m)}. (2.9)

Ortogonální doplněk množiny je stejný jako doplněk podprostoru jí generovaného. Chceme-li
tedy určit ortogonální doplněk nějakého podprostoru, stačí určit doplněk libovolné jeho ge-
nerující množiny, nebo nějaké jeho báze. Stejně tak je ortogonální doplněk nějaké množiny
vektorový podprostor. Ke hledání kolmých vektorů v R2 lze použít jednoduché pozorování:
vektor (−𝑥2, 𝑥1) je kolmý na (𝑥1, 𝑥2). △

Příklad 2.3.2. Napište nejdříve parametrický a potom implicitní popis nejmenšího afin-
ního podprostoru v 𝒜3, který obsahuje body 𝐴 = [5, 2, 1], 𝐵 = [4, 1, 0], a 𝐶 = [−3, 1, 0].

Řešení. Spočítejme si vektory #    »

𝐴𝐵 = 𝐵−𝐴 = (−1,−1,−1) a #    »

𝐴𝐶 = 𝐶−𝐴 = (−8,−1,−1).
Vidíme, že jsou lineárně nezávislé, afinním obalem bodů 𝐴, 𝐵, 𝐶 (jak se takový prostor
nazývá) bude rovina zadaná parametrickou rovnicí

𝐴+ 𝑡 · #    »

𝐴𝐵 + 𝑠 · #    »

𝐴𝐶 = [5, 2, 1] + 𝑡 · (−1,−1,−1) + 𝑠 · (−8,−1,−1),

𝑠, 𝑡 ∈ R. Pro implicitní popis potřebujeme najít vektor n kolmý na oba vektory #    »

𝐴𝐵 i
#    »

𝐴𝐶 (vzhledem ke standardnímu skalárnímu součinu). Vidíme, že můžeme vzít například
n = (0, 1,−1). Zadávající rovnice pak bude

𝑥2 − 𝑥3 = 1,

kde koeficienty na levé straně jsou složky vektoru n a pravou stranu jsme získali dosazením
bodu 𝐴. Skutečně pro body roviny, parametrizované jako [5− 𝑠− 8 𝑡, 2− 𝑠− 𝑡, 1− 𝑠− 𝑡]
platí

2− 𝑠− 𝑡− 1 + 𝑠+ 𝑡 = 1. △

Příklad 2.3.3. Najděte průnik rovin ℳ a 𝒩 v 𝒜3 zadaných parametricky

ℳ =
{︁
[2, 3, 4] + 𝑎 · (1, 1, 1) + 𝑏 · (0, 0, 1) ∈ 𝒜3 | 𝑎, 𝑏 ∈ R

}︁
,

𝒩 =
{︁
[2, 2, 4] + 𝑐 · (1, 0, 1) + 𝑑 · (2, 0, 1) ∈ 𝒜3 | 𝑐, 𝑑 ∈ R

}︁
.

Řešení. Je výhodné mít jednu rovinu zadanou implicitně, kupříkladu rovinu ℳ. Najděme
normálový vektor m, který je kolmý na vektory (1, 1, 1) a (0, 0, 1). Celkem snadno se vidí,
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že můžeme vzít m = (1,−1, 0). (Normálový vektor ℳ není kolmý na směrové vektory 𝒩 .
Roviny jsou proto různoběžné.) Máme zadávající rovnici pro rovinu ℳ, kde pravou stranu
jsme získali dosazením bodu [2, 3, 4].

𝑥1 − 𝑥2 = −1 (2.10)

Body roviny 𝒩 máme vyjádřeny parametricky.

𝑥1 = 2 + 𝑐+ 2 𝑑
𝑥2 = 2
𝑥3 = 4 + 𝑐+ 𝑑

(2.11)

Dosazením (2.11) do (2.10) dostaneme rovnici pro parametry 𝑐 a 𝑑, kterou vyřešíme na-
příklad vůči 𝑐.

2 + 𝑐+ 2 𝑑− 2 = −1
𝑐 = −1− 2 𝑑

Parametrické vyjádření průniku získáme dosazením 𝑐 = −1− 2 𝑑 do (2.11), čímž získáme
parametrické vyjádření průsečnice rovin ℳ a 𝒩 .

ℳ∩𝒩 =
{︁
[2, 2, 4]− (1 + 2 𝑑) · (1, 0, 1) + 𝑑 · (2, 0, 1)

}︁
=
{︁
[1, 2, 3]− 𝑑 · (0, 0, 1)

}︁
△

Příklad 2.3.4. V 𝒜3 určete vzájemnou polohu roviny

𝜌 = {[3,−1, 0] + 𝑠 · (−1, 1, 1) + 𝑡 · (2, 1, 0) ∈ 𝒜3 | 𝑠, 𝑡 ∈ R}

a přímek 𝑝, 𝑞 a 𝑟, které mají parametrická vyjádření

a) 𝑝 =
{︁
[7, 4, 2] + 𝑎 · (5,−2,−3) ∈ 𝒜3 | 𝑎 ∈ R

}︁
,

b) 𝑞 =
{︁
[1, 2, 3] + 𝑏 · (1, 5, 3) ∈ 𝒜3 | 𝑏 ∈ R

}︁
,

c) 𝑟 =
{︁
[1, 2, 3] + 𝑐 · (1, 1, 1) ∈ 𝒜3 | 𝑐 ∈ R

}︁
.

Řešení. Než začneme se samotným řešením, bude výhodné si vyjádřit 𝜌 implicitně. Vidíme,
že normálový vektor je například n = (1,−2, 3). (Je jistě kolmý na (2, 1, 0), třetí souřad-
nici dopočítáme tak, aby byl kolmý i na (−1, 1, 1).) Dosazením bodu [3,−1, 0] získáme
zadávající rovnici pro 𝜌.

𝑥− 2 𝑦 + 3 𝑧 = 5 (2.12)
Začněme řešením a). Parametrizaci 𝑝 dosadíme do (2.12). Na levé straně máme

7 + 5 𝑎− 2 (4− 2 𝑎) + 3 (2− 3 𝑎) = 7 + 5 𝑎− 8 + 4 𝑎+ 6− 9 𝑎 = 5,
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zatímco na pravé straně máme 5. Rovnice je splněna vždy a proto 𝑝 ⊆ 𝜌. Skutečně, směrový
vektor 𝑝 je kolmý na n a proto jej lze vyjádřit jako lineární kombinaci směrových vektorů
𝜌

(5,−2,−3) = (2, 1, 0)− 3 · (−1, 1, 1)
a bod [7, 4, 2] ∈ 𝜌, neboť splňuje zadávající rovnici 𝜌 (jako všechny body 𝑝).

V b) dostaneme po dosazení na pravé straně opět 5, na levé pak

1 + 𝑏− 2 (2 + 5 𝑏) + 3 (3 + 3 𝑏) = 6,

tudíž rovnice nemá řešení, neexistuje průnik a 𝑞 a 𝜌 jsou rovnoběžné. Skutečně, směrový
vektor 𝑞 je kolmý na n, lze jej tedy vyjádřit jako lineární kombinací směrových vektorů 𝜌.

(1, 5, 3) = 3 · (−1, 1, 1) + 2 · (2, 1, 0)

Bod [1, 2, 3] však nepatří do 𝜌, neboť nesplňuje (2.12).
Část c) řešíme stejně, dosazením parametrického vyjádření 𝑟 do (2.12). Na pravé straně

máme 5, na levé pak

1 + 𝑐− 2 (2 + 𝑐) + 3 (3 + 𝑐) = 1 + 𝑐− 4− 2 𝑐+ 9 + 3 𝑐 = 6 + 2 𝑐.

Porovnáním dostaneme rovnici
2 𝑐 = −1,

tedy průnikem bude jediný bod, průsečík 𝑃 se souřadnicemi

𝑃 = [1, 2, 3]− 1
2 · (1, 1, 1) =

[︂1
2 ,

3
2 ,

5
2

]︂
a 𝑟 a 𝜌 jsou různoběžné. △

Příklad 2.3.5. V 𝒜3 určete vzájemnou polohu přímky 𝑝 a roviny 𝜌, přičemž přímka 𝑝 je
zadána implicitně rovnicemi

3𝑥1 + 𝑥2 + 2 𝑥3 = 5
5𝑥1 − 𝑥2 = 3

a rovina 𝜌 je zadaná parametricky.

𝜌 =
{︁
[−3, 0, 0] + 𝑎 · (3, 1, 2) + 𝑏 · (5,−1, 0) ∈ 𝒜3 | 𝑎, 𝑏 ∈ R

}︁
Řešení. Zadávající rovnice přímky 𝑝 říkají, že vektory u1 = (3, 1, 2) a u2 = (5,−1, 0) jsou
kolmé na 𝑝. Tyto vektory jsou ovšem směrovými vektory roviny 𝜌. Proto nutně musí být
𝑝 ⊥ 𝜌, tedy budou 𝑝 a 𝜌 různoběžné a bude existovat jediný průsečík. Spočítejme jej dvěma
způsoby.

Jednou možností je zjistit implicitní zadání roviny 𝜌. Normálový vektor n bude kolmý na
oba směrové vektory u1 a u2. Je zřejmé, že každý vektor (1, 5, 𝑧) bude kolmý na u2. Hodnotu
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𝑧 zjistíme pomocí skalárního součinu s u1, který musí dát nulu. Vidíme, že n = (1, 5,−4).
Dosazením bodu [−3, 0, 0] získáme zadávající rovnici.

𝑥1 + 5𝑥2 − 4𝑥3 = −3

Průsečík 𝑃 bude ležet v průniku, bude tedy vyhovovat všem třem rovnicím. Jeho hledání
se tedy redukuje na řešení soustavy rovnic. V maticovém tvaru ji řešíme pomocí Gaußovy
eliminace s výběrem pivota.⎛⎜⎝ 3 1 2 5

5 −1 0 3
1 5 −4 −3

⎞⎟⎠ ∼

⎛⎜⎝ 8 0 2 8
5 −1 0 3
26 0 −4 12

⎞⎟⎠ ∼

⎛⎜⎝ 4 0 1 4
5 −1 0 3
21 0 0 14

⎞⎟⎠ ∼

∼

⎛⎜⎝ 12 0 3 12
−15 3 0 −9

3 0 0 2

⎞⎟⎠ ∼

⎛⎜⎝ 0 0 3 4
0 3 0 1
3 0 0 2

⎞⎟⎠
Vidíme, že 𝑃 =

[︁
2
3 ,

1
3 ,

4
3

]︁
.

Druhým způsobem řešení je dosadit parametrické vyjádření 𝜌 do zadávajících rovnic 𝑝.
Tím získáme soustavu dvou rovnic pro dva neznámé parametry.

3 (−3 + 3 𝑎+ 5 𝑏) + (𝑎− 𝑏) + 2 (2 𝑎) = 5
5 (−3 + 3 𝑎+ 5 𝑏)− (𝑎− 𝑏) = 3

Úpravou výrazů dostaneme následující soustavu.

14 𝑎+ 14 𝑏 = 14
14 𝑎+ 26 𝑏 = 18

Tuto soustavu řešíme po zkrácení v maticovém zápisu pomocí Gaußovy eliminace.(︃
1 1 1
7 13 9

)︃
∼
(︃

1 1 1
0 6 2

)︃
∼
(︃

3 0 2
0 3 1

)︃

Vidíme, že musíme vzít 𝑎 = 2
3 a 𝑏 = 1

3 . Dosazením do parametrického vyjádření 𝜌 získáme
souřadnice průsečíku.

𝑃 = [−3, 0, 0] + 2
3 · (3, 1, 2) + 1

3 · (5,−1, 0) =
[︂2
3 ,

1
3 ,

4
3

]︂
△

Příklad 2.3.6. Určete příčku mimoběžek

𝑝 =
{︁
[1, 2, 0] + 𝑎 · (1,−1, 1) ∈ 𝒜3 | 𝑎 ∈ R

}︁
,

𝑞 =
{︁
[0, 9,−2] + 𝑏 · (1, 0, 0) ∈ 𝒜3 | 𝑏 ∈ R

}︁
takovou, že přímka jí určená prochází bodem [1,−7, 4].
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Řešení. Označme 𝐴 = [1, 2, 0], 𝐵 = [0, 9,−2] a 𝐶 = [1,−7, 4]; u = (1,−1, 1) a standardně
e1 = (1, 0, 0). Příčka bude jistě obsažena v rovině 𝜌 určené přímkou 𝑝 a bodem 𝐶. Rovinu
𝜌 můžeme zadat parametricky pomocí bodu a směrového vektoru 𝑝 a druhého vektoru #    »

𝐴𝐶.

𝜌 =
{︁
𝐴+ 𝑎 · u+ 𝑐 · #    »

𝐴𝐶 ∈ 𝒜3 | 𝑎, 𝑐 ∈ R
}︁

Chceme najít implicitní zadání 𝜌. Vektor #    »

𝐴𝐶 je (0,−9, 4). Je zřejmé, že vektory (𝑥1, 4, 9)
na něj budou kolmé. První složku získáme pomocí skalárního součinu s u. Máme tak
n = (−5, 4, 9). Dosazením bodu 𝐴 získáme rovnici zadávající 𝜌.

− 5𝑥1 + 4𝑥2 + 9𝑥3 = 3 (2.13)

Dosazením bodů přímky 𝑞 do (2.13) získáme rovnici pro 𝑏, kterou vyřešíme.

−5 𝑏+ 9 · 9− 9 · 2 = 3
−5 𝑏+ 18 = 3

−5 𝑏 = −15
𝑏 = 3

Průsečíkem 𝜌 a 𝑞 bude bod 𝑄 = [3, 9,−2]. Přímka 𝑟 tak bude určena body 𝐶 a 𝑄. Máme
její parametrické vyjádření.

𝑟 =
{︁
𝐶 + 𝑡 · #    »

𝐶𝑄 ∈ 𝒜3 | 𝑡 ∈ R
}︁

=
{︁
[1,−7, 4] + 𝑡 · (2, 15,−6) ∈ 𝒜3 | 𝑡 ∈ R

}︁
Průnik 𝑃 := 𝑝 ∩ 𝑟 ̸= ∅, protože 𝑟 ⊆ 𝜌 ⊇ 𝑝 a jejich směrové vektory jsou lineárně nezávislé.
Chceme-li zjistit pouze přímku 𝑟, jsme hotovi. Příčkou mimoběžek však někdy rozumíme
pouze úsečku spojující jejich některé body. Pokud chceme nalézt tuto úsečku, musíme zjistit
𝑃 . Postupujeme stejně jako u 𝑄. Přímka 𝑟 je průsečnicí roviny 𝜌 a roviny 𝜎, zadané bodem
𝐶 a směrovými vektory e1 a #    »

𝐵𝐶 = (1,−16, 6). Za normálový vektor můžeme vzít například
(0, 3, 8) a rovnici zadávající 𝜎 získáme dosazením 𝐶.

3𝑥2 + 8𝑥3 = 11 (2.14)

Dosazením parametrizace 𝑝 do (2.14) dostaneme rovnici pro 𝑎.

3 (2− 𝑎) + 8 𝑎 = 11
5 𝑎 = 5
𝑎 = 1

Vidíme, že pak 𝑃 = [2, 1, 1] a máme parametrizaci příčky mimoběžek jako úsečky. Rozdíl
je jen v tom, že parametr bereme jen z uzavřeného intervalu.

{𝑃 + 𝑡 · #    »

𝑃𝑄 | 𝑡 ∈ [0, 1]} △
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Poznámka. Jinou možností hledání průniku je použít vyjádření vektorů pomocí báze. Prů-
nik musí být vyjádřitelný jak pomocí parametrů roviny 𝜌, tak pomocí těch pro 𝑞. Musí
tedy platit

𝐴+ 𝑎 · u+ 𝑐 · #    »

𝐴𝐶 = 𝐵 + 𝑏 · e1
pro nějaké (jednoznačně určené) hodnoty 𝑎, 𝑏 a 𝑐. Převedením dostaneme vektorovou rov-
nici

𝑎 · u+ 𝑐 · #    »

𝐴𝐶 − 𝑏 · e1 = 𝐵 − 𝐴 =: #    »

𝐴𝐵.

Po složkách dostaneme soustavu tří rovnic o třech neznámých. Řešením obdržíme konkrétní
hodnoty 𝑎, 𝑏 a 𝑐. Řešením bychom obdrželi rovnou hodnoty 𝑎 a 𝑏, tedy bychom rovnou
zjistili 𝑃 a 𝑄 a odtud parametrizaci příčky, ať jako přímky či jako úsečky.

Příklad 2.3.7. Osa dvou mimoběžných přímek 𝑝 a 𝑞 v afinním prostoru 𝒜3 je přímka,
která obě přímky protíná a je na ně kolmá. Najděte osu mimoběžek

𝑝 =
{︁
[1, 2, 3] + 𝑎 · (1, 2,−1) ∈ 𝒜3 | 𝑎 ∈ R

}︁
𝑞 =

{︁
[2,−3, 4] + 𝑏 · (2,−1,−2) ∈ 𝒜3 | 𝑏 ∈ R

}︁
a body 𝑃 ∈ 𝑝 a 𝑄 ∈ 𝑞, ve kterých tyto přímky protíná.

Řešení. Označme 𝐴 = [1, 2, 3], 𝐵 = [2,−3, 4], u = (1, 2,−1) a v = (2,−1,−2). Osa bude
určena body 𝑃 ∈ 𝑝 a 𝑄 ∈ 𝑞. Ty budou mít souřadnice

𝑃 = [1 + 𝑎, 2 + 2 𝑎, 3− 𝑎] 𝑄 = [2 + 2 𝑏,−3− 𝑏, 4− 2 𝑏] (2.15)

pro nějaká 𝑎 a 𝑏. Směrový vektor osy bude
#    »

𝑃𝑄 = (1 + 2 𝑏− 𝑎,−5− 𝑏− 2 𝑎, 1− 2 𝑏+ 𝑎). (2.16)

Hodnoty 𝑎, 𝑏 určíme z podmínek #    »

𝑃𝑄 ⊥ u a #    »

𝑃𝑄 ⊥ v, což zajistíme pomocí skalárního
součinu s těmito vektory, které položíme nule. Dostaneme soustavu lineárních rovnic pro 𝑎
a 𝑏.

1 · (1 + 2 𝑏− 𝑎) + 2 · (−5− 𝑏− 2 𝑎)− 1 · (1− 2 𝑏+ 𝑎) = 0
2 · (1 + 2 𝑏− 𝑎)− 1 · (−5− 𝑏− 2 𝑎)− 2 · (1− 2 𝑏+ 𝑎) = 0

Po roznásobení a sečtení výrazů a převedení absolutních členů na druhou stranu dostaneme
následující soustavu.

−6 𝑎+ 2 𝑏 = 10
−2 𝑎+ 9 𝑏 = −5

Tu řešíme s užitím maticového zápisu Gaußovou eliminací s výběrem pivota.(︃
−3 1 5
−2 9 −5

)︃
∼
(︃

−3 1 5
25 0 −50

)︃
∼
(︃

0 1 −1
1 0 −2

)︃
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Máme tedy výsledek: 𝑎 = −2 a 𝑏 = −1. Dosazením do (2.16) dostaneme složky vektoru
#    »

𝑃𝑄 = (1, 0, 1), dosazením do (2.15) pak souřadnice bodů 𝑃 = [−1,−2, 5] a 𝑄 = [0,−2, 6].
Máme i parametrické vyjádření osy.{︁

[−1,−2, 5] + 𝑡 · (1, 0, 1) ∈ 𝒜3 | 𝑡 ∈ R
}︁

△

Příklad 2.3.8. Pomocí determinantu určete obsah trojúhelníka △𝐴𝐵𝐶 v 𝒜2, kde 𝐴 =
= [1, 3], 𝐵 = [−2, 101], 𝐶 = [−8, 11]. Zjistěte, které ze stran tohoto trojúhelníka jsou vidět
z bodu 𝐷 = [200,−300].

Řešení. Determinant matice, jejímiž sloupci (nebo řádky) budou složky vektorů #    »

𝐴𝐵, #    »

𝐴𝐶,
bude orientovaným obsahem rovnoběžnostěnu zadaného body 𝐴, 𝐵, 𝐴 + #    »

𝐴𝐵 + #    »

𝐴𝐶 a 𝐶.
Znaménko odpovídá pouze orientaci. Polovina absolutní hodnoty tohoto determinantu tak
bude odpovídat ploše trojúhelníka. Máme #    »

𝐴𝐵 = (−3, 98) a #    »

𝐴𝐶 = (−9, 8). Máme tak i
obsah.

𝑆△𝐴𝐵𝐶 = 1
2 ·
⃒⃒⃒⃒
⃒det

(︃
−3 −9
98 8

)︃⃒⃒⃒⃒
⃒ = 1

2 · |−3 · 8 + 9 · 98| = 1
2 · 858 = 429

Strana 𝐴𝐵 je viditelná z 𝐷 právě tehdy, když báze #    »

𝐴𝐵, #    »

𝐴𝐶 je opačně orientovaná
než báze #    »

𝐴𝐵, #    »

𝐴𝐷. Orientaci poznáme podle znaménka determinantu matice, jejíž sloupce
budou složky vektorů. Báze #    »

𝐴𝐵, #    »

𝐴𝐶 je kladně orientovaná. Máme vektor #    »

𝐴𝐷 = (199,−
−303).

det
(︃

−3 199
98 −303

)︃
= 303 · 3− 199 · 98 = −18 593

Báze #    »

𝐴𝐵, #    »

𝐴𝐷 je záporně orientovaná, proto strana 𝐴𝐵 je z 𝐷 vidět. Báze #    »

𝐴𝐶, #    »

𝐴𝐵 je
orientovaná opačně než #    »

𝐴𝐵, #    »

𝐴𝐶, tedy záporně. Zjistěme orientaci báze #    »

𝐴𝐶, #    »

𝐴𝐷.

det
(︃

−9 199
8 −303

)︃
= 9 · 303− 8 · 199 = 1 135

Báze #    »

𝐴𝐶, #    »

𝐴𝐷 je orientována kladně. Proto je i strana 𝐴𝐶 z bodu 𝐷 vidět. Strana 𝐵𝐶 tak
být vidět nemůže, protože v rovině lze z jednoho bodu pozorovat maximálně dvě strany
trojúhelníka. △

2.4 Eukleidovská geometrie
Příklad 2.4.1. V R3 najděte ortogonální doplněk podprostoru 𝑀 = Span

(︁
(1, 2,−1), (1,−

−2, 5)
)︁
.

Řešení. Máme podle (2.9)

𝑀⊥ = {(𝑥1, 𝑥2, 𝑥3) ∈ R3 | (𝑥1, 𝑥2, 𝑥3) ⊥ (1, 2,−1), (𝑥1, 𝑥2, 𝑥3) ⊥ (1,−2, 5)}.

66



Kapitola 2 Geometrie

Kolmost spočítáme pomocí skalárního součnu (2.5). Dostaneme soustavu rovnic.

𝑥1 + 2 𝑥2 − 𝑥3 = 0
𝑥1 − 2𝑥2 + 5 𝑥3 = 0

Tuto řešíme pomocí maticového zápisu.(︃
1 2 −1
1 −2 5

)︃
∼
(︃

1 2 −1
0 −4 6

)︃
∼
(︃

2 4 −2
0 −4 6

)︃
∼
(︃

2 0 4
0 2 −3

)︃

Máme 𝑥3 = 2 𝑡, 𝑥2 = 3 𝑡, 𝑥1 = −4 𝑡, 𝑡 ∈ R. Vidíme, že

𝑀⊥ = Span
(︁
(−4, 3, 2)

)︁
. △

Příklad 2.4.2. Spočtěte kolmou projekci vektoru u = (7,−16, 9) do podprostoru 𝑀 a
jeho ortogonálního doplňku 𝑀⊥ z předchozího příkladu 2.4.1.

Řešení. Víme, že 𝑀 = 𝑀 = Span
(︁
(1, 2,−1), (1,−2, 5)

)︁
a 𝑀⊥ = Span

(︁
(−4, 3, 2)

)︁
. Vy-

jádříme si u jako lineární kombinaci vektorů (1, 2,−1), (1,−2, 5) a (−4, 3, 2). Dostaneme
soustavu rovnic pro koeficienty.

𝑘1 + 𝑘2 − 4 𝑘3 = 7
2 𝑘1 − 2 𝑘2 + 3 𝑘3 = −16
−𝑘1 + 5 𝑘2 + 2 𝑘3 = 9

Tu řešíme v maticovém zápisu Gaußovou eliminací s výběrem pivota.⎛⎜⎝ 1 1 −4 7
2 −2 3 −16

−1 5 2 9

⎞⎟⎠ ∼

⎛⎜⎝ 1 1 −4 7
0 −4 11 −30
0 6 −2 16

⎞⎟⎠ ∼

∼

⎛⎜⎝ 1 −11 0 −25
0 29 0 58
0 −3 1 −8

⎞⎟⎠ ∼

⎛⎜⎝ 1 0 0 −3
0 1 0 2
0 0 1 −2

⎞⎟⎠
Vidíme, že

u = −3 · (1, 2,−1) + 2 · (1,−2, 5)⏟  ⏞  
𝑃𝑀 (u)

+(−2) · (−4, 3, 2)⏟  ⏞  
𝑃
𝑀⊥ (u)

a 𝑃𝑀(u) = (−1,−10, 13) a 𝑃𝑀⊥(u) = (8,−6,−4). △

Příklad 2.4.3. Nechť 𝜙 : R3 → R3 je kolmá projekce na rovinu 𝜌, zadanou implicitně
rovnicí

2𝑥1 − 𝑥2 + 2𝑥3 = 0.
Najděte matici 𝐴 tvaru 3× 3 takovou, že v souřadnicích standardní báze je

𝜙(x) = 𝐴 · x.
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Řešení. Normálový vektor roviny 𝜌 je n = (2,−1, 2). Za směrové vektory můžeme vzít
například u = (1, 2, 0) a v = (0, 2, 1). V bázi 𝛼 tvořené vektory u, v a n má 𝜙 matici

𝜙𝛼,𝛼 =

⎛⎜⎝ 1 0 0
0 1 0
0 0 0

⎞⎟⎠ .
Hledáme matici 𝐴 = 𝜙𝜖,𝜖. Matice přechodu od 𝛼 k 𝜖 je

𝑃𝜖,𝛼 =

⎛⎜⎝ 1 0 2
2 2 −1
0 1 2

⎞⎟⎠ .
Opačná matice přechodu 𝑃𝛼,𝜖 je matice k ní inverzní. Inverzi spočítáme pomocí determi-
nantů.

Je-li 𝐵 = (𝑏𝑖,𝑗)𝑛𝑖,𝑗=1 invertibilní matice, pak definujme matici algebraických doplňků4̃︀𝐵 = (̃︀𝑏𝑖,𝑗)𝑛𝑖,𝑗=1, kde ̃︀𝑏𝑖,𝑗 = (−1)𝑖+𝑗 det𝐵𝑖,𝑗,

je algbraický doplněk 𝑏𝑖,𝑗 a det𝐵𝑖,𝑗 je determinant matice vzniklé z 𝐵 vynecháním 𝑖-tého
řádku a 𝑗-tého sloupce. Platí, že

𝐵−1 = 1
det𝐵 · ̃︀𝐵𝑇 .

(Součin 𝑖-tého řádku 𝐵 a 𝑗-tého sloupce ̃︀𝐵 dává Laplaceův rozvoj determinantu podle
𝑗-tého řádku matice vzniklé z 𝐵 nahrazením 𝑗-tého řádku 𝑖-tým. Vidíme, že dostaneme
det𝐵 pro 𝑖 = 𝑗 a 0 jinak.)

Pomocí Sarrusova pravidla spočítáme det𝑃𝜖,𝛼 = 4 + 4 + 0 − 0 − 0 − (−1) = 9. Pak
získáme adjungovanou matici.

̃︀𝑃𝜖,𝛼 =

⎛⎜⎝ 5 −4 2
2 2 −1

−4 5 2

⎞⎟⎠
Inverze tedy je

𝑃𝛼,𝜖 =
1
9 · ̃︀𝑃 𝑇

𝜖,𝛼 = 1
9 ·

⎛⎜⎝ 5 2 −4
−4 2 5
2 −1 2

⎞⎟⎠ .
Pak jednoduše spočítáme 𝐴 = 𝜙𝜖,𝜖 = 𝑃𝜖,𝛼 · 𝜙𝛼,𝛼 · 𝑃𝛼,𝜖.

𝐴 = 1
9 ·

⎛⎜⎝ 5 −4 2
2 2 −1

−4 5 2

⎞⎟⎠ ·

⎛⎜⎝ 1 0 0
0 1 0
0 0 0

⎞⎟⎠ ·

⎛⎜⎝ 5 2 −4
−4 2 5
2 −1 2

⎞⎟⎠ = 1
9 ·

⎛⎜⎝ 5 2 −4
2 8 2

−4 2 5

⎞⎟⎠ △

4Též zvaná adjungovaná matice.
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Příklad 2.4.4. V ℰ3 spočítejte vzdálenost bodu 𝐴 = [5, 7, 1] od roviny 𝜌 zadané implicitně
rovnicí

𝑥1 + 3𝑥2 − 2𝑥3 + 4 = 0. (2.17)
Současně najděte bod 𝐶 ∈ 𝜌 takový, že dist(𝐴,𝐶) = dist(𝐴, 𝜌).

Analytické řešení. Zjistíme paramterické vyjádření roviny 𝜌. Máme normálový vektor (1, 3,−
−2) a z něj zjistíme směrové vektory, například (3,−1, 0) a (2, 0, 1). Body 𝜌 tedy lze vyjádřit
jako

𝑋(𝑡, 𝑠) = [−4, 0, 0] + 𝑡 · (3,−1, 0) + 𝑠 · (2, 0, 1) = [−4 + 3 𝑡+ 2 𝑠,−𝑡, 𝑠]
pro 𝑡, 𝑠 ∈ R. Vektory z bodu 𝐴 do 𝜌 pak lze parametrizovat pomocí

#                »

𝑋(𝑡, 𝑠)𝐴 = (9− 3 𝑡− 2 𝑠, 7 + 𝑡, 1− 𝑠).

Snažíme se minimalizovat reálnou funkci
⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦

reálných proměnných 𝑡 a 𝑠. Protože
je druhá mocnina rostoucí bijekcí [0,∞) do sebe, bude se velikost vektrou minimalizovat
právě tehdy, když se bude minimalizovat její druhá mocnina. Máme⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦2

= (9− 3 𝑡− 2 𝑠)2 + (7 + 𝑡)2 + (1− 𝑠)2. (2.18)

Zjistíme stacionární body. Derivací (2.18) podle 𝑡 máme

𝜕
⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦2

𝜕𝑡
= 2 (9− 3 𝑡− 2 𝑠) (−3) + 2 (7 + 𝑡) = 20 𝑡+ 12 𝑠− 40, (2.19)

derivací podle 𝑠 pak

𝜕
⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦2

𝜕𝑠
= 2 (9− 3 𝑡− 2 𝑠) (−2) + 2 (1− 𝑠) (−1) = 12 𝑡+ 10 𝑠− 38. (2.20)

Položíme obě derivace nule. Pak získáme soustavu dvou lineárních rovnic o dvou nezná-
mých, kterou řešíme pomocí maticového zápisu.
(︃

20 12 40
12 10 38

)︃
∼
(︃

5 3 10
6 5 19

)︃
∼
(︃

5 3 10
1 2 9

)︃
∼

∼
(︃

0 −7 −35
1 2 9

)︃
∼
(︃

0 1 5
1 2 9

)︃
∼
(︃

0 1 5
1 0 −1

)︃

Máme jediný stacionární bod. Zjistíme druhé derivace (2.18) pomocí derivování (2.19) a
(2.20).

𝜕2
⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦2

𝜕𝑡2
= 20
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𝜕2
⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦2

𝜕𝑡 𝜕𝑠
= 12

𝜕2
⃦⃦⃦

#                »

𝑋(𝑡, 𝑠)𝐴
⃦⃦⃦2

𝜕𝑠2
= 10

Matice druhých derivací je (︃
20 12
12 10

)︃
Její hlavní minory jsou 20 a 20 · 10 − 122 = 200 − 144 = 56, oba kladné, takže je matice
pozitivně definitní a ve stacionárním bodě máme lokální minimum. Vzdálenost se tak
minimalizuje v bodě

𝑋(−1, 5) = [3, 1, 5]

a je rovna
⃦⃦⃦

#                      »

𝑋(−1, 5)𝐴
⃦⃦⃦
=
√︁
(3− 5)2 + (1− 7)2 + 42 =

√
56 = 2

√
14. △

Poznámka. Jinou možností analytického řešení je vzít obecný bod𝑋(𝑥1, 𝑥2, 𝑥3) = [𝑥1, 𝑥2, 𝑥3]
a minimalizovat funkci

⃦⃦⃦
#                               »

𝐴𝑋(𝑥1, 𝑥2, 𝑥3)
⃦⃦⃦

za podmínky 𝑥1 + 3𝑥2 − 2𝑥3 + 4 = 0 například
metodou Lagrangeových multiplikátorů.

Geometrické řešení. Vzdálenost se minimalizuje v bodě 𝑃 , který je kolmou projekcí bodu
𝐴 na rovinu 𝜌. Normálový vektor roviny je n = (1, 3,−2). 𝑃 bude průnikem přímky

𝑝 =
{︁
𝐴+ 𝑡 · n ∈ ℰ3 | 𝑡 ∈ R

}︁
(2.21)

a roviny 𝜌, tedy bude tvaru (2.21) a bude vyhovovat rovnici (2.17). Dosazením získáme
rovnici pro 𝑡, kterou vyřešíme.

(5 + 𝑡) + 3 (7 + 3 𝑡)− 2 (1− 2 𝑡) + 4 = 0
5 + 𝑡+ 21 + 9 𝑡− 2 + 4 𝑡 = −4

14 𝑡 = −28
𝑡 = −2

Máme 𝑃 = [3, 1, 5] a

dist(𝐴, 𝜌) =
⃦⃦⃦

#    »

𝐴𝑃
⃦⃦⃦
=
√︁
(3− 5)2 + (1− 7)2 + 42 =

√︁
56 = 2

√︁
14. △

Příklad 2.4.5. V ℰ3 spočítejte vzdálenost přímek 𝑝 a 𝑞.

𝑝 =
{︁
[4, 4, 4] + 𝑎 · (2, 1,−1) ∈ ℰ3 | 𝑎 ∈ R

}︁
𝑞 =

{︁
[1, 15, 12] + 𝑏 · (1,−2, 1) ∈ ℰ3 | 𝑏 ∈ R

}︁
.

Dále najděte body 𝐾 ∈ 𝑝 a 𝐿 ∈ 𝑞, v nichž se vzdálenost přímek realizuje, tj. platí
dist(𝐾,𝐿) = dist(𝑝, 𝑞).
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Poznámka. Samozřejmě bychom mohli řešit situaci analyticky. Parametrizovali bychom si
body obou přímek a pak minimalizovali vzdálenost jako funkci obou parametrů pomocí
hledání stacionárních bodů podobně jako v příkladu 2.4.4. Příklad 2.4.5 již však budeme
řešit pouze geometricky.

Řešení. Vzdálenost se bude realizovat na ose mimoběžek. Hledáme ji tedy podobně jako
v příkladu 2.3.7. Parametrizujeme si body obou přímek.

𝑃 = [4 + 2 𝑎, 4 + 𝑎, 4− 𝑎] 𝑄 = [1 + 𝑏, 15− 2 𝑏, 12 + 𝑏]

Máme vektor #    »

𝑃𝑄 = (−3+ 𝑏− 2 𝑎, 1− 2 𝑏−𝑎, 8+ 𝑏+𝑎). Vektor #    »

𝑃𝑄 musí být kolmý na obě
přímky. Skalárním součinem s jejich směrovými vektory získáme rovnice pro parametry 𝑎,
𝑏.

2 (−3 + 𝑏− 2 𝑎) + 11− 2 𝑏− 𝑎− 8− 𝑏− 𝑎 = 0
−3 + 𝑏− 2 𝑎− 2 (11− 2 𝑏− 𝑎) + 8 + 𝑏+ 𝑎 = 0

Úpravou výrazů získáme následující soustavu.

𝑎+ 6 𝑏 = 17
6 𝑎+ 𝑏 = −3

Soustavu řešíme pomocí maticového zápisu.(︃
1 6 17
6 1 −3

)︃
∼
(︃

−35 0 35
6 1 −3

)︃
∼
(︃

1 0 −1
0 1 3

)︃

Máme tedy 𝑃 = [2, 3, 5], 𝑄 = [4, 9, 15], #    »

𝑃𝑄 = (2, 6, 10) a

dist(𝑝, 𝑞) =
⃦⃦⃦

#    »

𝑃𝑄
⃦⃦⃦
=

√
4 + 36 + 100 =

√
140 = 2

√
35. △

Příklad 2.4.6. V ℰ3 určete odchylku roviny 𝜌 od přímky 𝑝.

𝜌 =
{︁
[1, 3, 5] + 𝑎 · (1, 1, 1) + 𝑏 · (1, 3, 2) ∈ ℰ3 | 𝑎, 𝑏 ∈ R

}︁
𝑝 =

{︁
[−3, 1, 7] + 𝑐 · (1, 0,−1) ∈ ℰ3 | 𝑐 ∈ R

}︁
Řešení. Zjistíme si normálový vektor roviny 𝜌. Musí být kolmý na (1, 1, 1) a (1, 3, 2).(︃

1 1 1
1 3 2

)︃
∼
(︃

1 1 1
0 2 1

)︃
∼
(︃

1 −1 0
0 2 1

)︃

Vidíme, že můžeme brát například n = (1, 1,−2) za normálový vektor. Z obrázku 2.3 vi-
díme, že stačí počítat odchylku směrového vektoru 𝑝 a n a místo arkuskosinu vzít arkussinus
(nebo dopočítat do π

4 ). Máme⟨
n, (1, 0,−1)

⟩
= 1 · 1 + (−1) · (−2) = 3,
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dále

‖n‖ =
√
6 ‖(1, 0,−1)‖ =

√
2.

Pak vidíme, že

sin |∢𝜌𝑝| =
⃒⃒⃒⃒
⃒ 3√

12

⃒⃒⃒⃒
⃒ = 3

2
√
3
=

√
3
2

a odchylka je arcsin
√
3
2 = π

3 . △

𝜌 ∩ 𝜎

𝑝

n

|∢𝜌𝑝|

|∢n𝑝|

Obrázek 2.3: Nákres obrázku v rovině 𝜎 kolmé na 𝜌 a obsahující 𝑝. Vidíme, že |∢𝜌𝑝| = π
4 −

− |∢n𝑝|. Proto cos |∢𝜌𝑝| = sin |∢n𝑝|.

Poznámka. Jinou možností by bylo spočítat si kolmou projekci přímky 𝑝 do roviny 𝜌,
následně počítat odchylku těchto přímek.

Příklad 2.4.7. V ℰ3 určete odchylku rovin 𝜌 a 𝜎, kde 𝜌 je zadaná implicitně

𝜌 =
{︁
[2, 3, 4] + 𝑎 · (2, 2, 1) + 𝑏 · (3, 3,−2) ∈ ℰ3 | 𝑎, 𝑏 ∈ R

}︁
a 𝜎 je zadaná rovnicí

𝑥1 − 2𝑥2 + 𝑥3 = 4.

Řešení. Můžeme najít nějakou rovinu kolmou na obě roviny a pak počítat odchylky průseč-
nic. Otočíme-li celou situaci o π

4 , úloha se převede na odchylku normál. Máme normálový
vektor s = (1,−2, 1) roviny 𝜎. Zjistíme normálový vektor r roviny 𝜌, který je kolmý na oba
směrové vektory. (︃

2 2 1
3 3 −2

)︃
∼
(︃

2 2 1
7 7 0

)︃
∼
(︃

0 0 1
1 1 0

)︃
Můžeme brát například r = (1,−1, 0). Máme

⟨r, s⟩ = 1 · 1 + (−1) · (−2) = 3,
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‖r‖ =
√
2,

‖s‖ =
√
6,

takže

cos |∢𝜌𝜎| = 3√
12

=
√
3
2

a |∢𝜌𝜎| = arccos
√
3
2 = π

6 . △

Příklad 2.4.8. V R3 spočtěte velikosti a vzájemnou odchylku vektorů u = (2, 2,−1) a
v = (−2, 0, 2). Spočtěte vzájemnou odchylku přímek generovaných těmito vektory.

Řešení. Máme vektory u = (2, 2,−1) a v = (−2, 0, 2). Spočítáme jejich skalární součin

⟨u,v⟩ = 2 · (−2) + 2 · 0− 1 · 2 = −6,

a jejich velikosti.

‖u‖ =
√
22 + 22 + 12 =

√
9 = 3 ‖v‖ =

√
22 + 02 + 22 =

√
8 = 2

√
2

Pak máme vztah pro odchylku.

cos |∢uv| = −6
6
√
2
= − 1√

2
= −

√
2
2

Kosinus odchylky je záporný, proto |∢uv| ∈
(︁
π
2 ,π

]︁
a vidíme, že řešením je |∢uv| = 3π

4 .
Ptáme-li se na odchylku přímek, víme, že berem menší z úhlů. Toho docílíme tak, že

ve vztahu (2.7) dáme do čitatele absolutní hodnotu. (Druhou možností je spočítat od-
chylku směrových vektorů a je-li víc než π

2 odpočítat od π.) V našem případě vyjde kosinus
odchylky přímek

√
2
2 a úhel π

4 . △
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Teorie čísel

3.1 Počítání v Z𝑚
Příklad 3.1.1. Najděte inverzní prvek k číslu 157 modulo 2 475, a to

a) pomocí Bezoutovy věty,

b) pomocí soustavy kongruencí, která vychází z rozkladu 2 475 = 9 · 11 · 25,

c) pomocí Eulerovy věty.

Řešení. Část a) jsme vyřešili již v příkladu 1.2.7. Máme spočítané koeficienty Bézoutovy
rovnosti. Víme, že

268 · 157− 17 · 2 475 = 1
a inverze je tedy 268. Počítejme proto část b). Hledáme inverzi 𝑥 takovou, že 157𝑥 ≡ 1
(mod 2 475). Tato kongruence musí platit i modulo děliteli 2 475, takže zejména

157𝑥 ≡ 1 (mod 9),
157𝑥 ≡ 1 (mod 11),
157𝑥 ≡ 1 (mod 25).

Vyřešíme jednotlivé kongruence. Protože 157 ≡ 4 (mod 9), 157 ≡ 3 (mod 11) a 157 ≡ 7
(mod 25), máme postupně

4𝑥 ≡ 1 (mod 9),
3𝑥 ≡ 1 (mod 11),
7𝑥 ≡ 1 (mod 25).

Nyní můžeme zjistit řešení jednotlivých kongruencí. Některá lze díky malým modulům
uhádnout. Prvně 4 · 2 = 8 ≡ −1, proto 4 · (−2) ≡ 1 (mod 9). Dále 4 · 3 = 12 ≡ 1 (mod 11)
a nakonec 7 · 7 = 49 ≡ −1, tudíž 7 · (−7) ≡ 1 (mod 25). Máme tedy soustavu

𝑥 ≡ −2 (mod 9),
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𝑥 ≡ 4 (mod 11),
𝑥 ≡ −7 (mod 25).

Platí, že soustava má jediné řešení modulo 9 · 11 · 25 = 2 475, protože čísla 9, 11 a 25 jsou
nesoudělná. Soustavu vyřešíme dosazovací metodou. Protože 𝑥 ≡ −2 (mod 9), musí být
𝑥 = 9 𝑡 − 2. Dosazením do druhé kongruence řešíme následující kongruenci pro 𝑡 pomocí
ekvivalentních úprav.

9 𝑡− 2 ≡ 4 (mod 11)
−2 𝑡 ≡ 6 (mod 11)

𝑡 ≡ −3 (mod 11)

V posledním kroku jsme mohli vydělit dvěma, protože 2 a 11 jsou nesoudělná. Máme tedy
𝑡 = 11 𝑠− 3, takže

𝑥 = 9 𝑡− 2 = 9 · (11 𝑠− 3)− 2 = 99 𝑠− 29.
Dosazením do třetí kongruence řešíme pro 𝑠.

99 𝑠− 29 ≡ −7 (mod 25)
−𝑠 ≡ 22 ≡ −3 (mod 25)
𝑠 ≡ 3 (mod 25)

Vidíme, že 𝑠 = 25 𝑘 + 3. Pak

𝑥 = 99 𝑠− 29 = 99 · (25 𝑘 + 3)− 29 = 2 475 𝑘 + 268.

Dostáváme (nepřekvapivě) stejný výsledek jako v a). Nyní vyřešíme c). Čísla 157 a 2 475
jsou nesoudělná (například proto, že 157 je prvočíslo). Můžeme tedy použít Eulerovu větu.
Víme, že pokud (𝑎,𝑚) = 1, pak

𝑎𝜙(𝑚) ≡ 1 (mod 𝑚) (3.1)

kde 𝜙(𝑚) je hodnota Eulerovy funkce v 𝑚. Tato funkce udává počet čísel menších než 𝑚
s 𝑚 nesoudělných. Pro její výpočet použijeme následující pravidla:

• pro 𝑚 a 𝑛 nesoudělná je 𝜙(𝑚 · 𝑛) = 𝜙(𝑚) · 𝜙(𝑛);

• je-li 𝑝 prvočíslo a 𝑘 přirozené číslo (ne nula), pak 𝜙(𝑝𝑘) = 𝑝𝑘−1 · (𝑝− 1).

Vidíme že 2 475 = 9 · 11 · 25 = 32 · 11 · 52. Pak

𝜙(2 475) = 𝜙(32) · 𝜙(11) · 𝜙(52) = (3 · 2) · 10 · (5 · 4) = 1 200.

Vidíme, že 1571 200 ≡ 1 (mod 2 475), takže modulární inverzí bude 1571 199, což spočítáme
pomocí softwaru jako 268. △

75



Kapitola 3 Teorie čísel

Příklad 3.1.2. Pomocí malé Fermatovy věty najděte zbytek po dělení čísla 29799 číslem
26.

Řešení. Máme rozklad 26 = 2 · 13. Číslo 29799 je sudé, zbytek modulo 2 bude nula. Zbývá
najít zbytek modulo 13. Protože 13 je prvočíslo, lze použít malou Fermatovu větu. Je-li 𝑝
prvočíslo a 𝑎 číslo s ním nesoudělné, pak

𝑎𝑝−1 ≡ 1 (mod 𝑝).

Vidíme, že 𝜙(𝑝) = 𝑝 − 1. , Jedná se tak vlastně o speciální případ Eulerovy věty (3.1).
Máme 𝜙(13) = 12. Chceme nají zbytek čísla 9799 po dělení 12. Protože však 96 = 12 · 8, je
97 ≡ 1 (mod 12), tudíž 9799 ≡ 1 (mod 12). Potom vidíme, že

29799 ≡ 21 = 2 (mod 13).

Dohromady existuje jediné řešení soustavy kongruencí 𝑥 ≡ 0 (mod 2) a 𝑥 ≡ 2 (mod 13)
modulo 26, a to 𝑥 ≡ 2 (mod 26). Celkem tak máme

29799 ≡ 2 (mod 26). △

Příklad 3.1.3. Najděte poslední dvě cifry čísla 39799 . Hledáme zbytek po dělení 4 a pomocí
Eulerovy věty zbytek po dělení 25.

Řešení. Protože 3 ≡ −1 (mod 4) a exponent je lichý, máme rovnou

39799 ≡ (−1)9799 = −1 ≡ 3 (mod 4).

Spočítáme 𝜙(25) = 𝜙(52) = 5 · 4 = 20. Hledáme zbytek 9799 po dělení 20. Nejprve si
všimneme, že 97 ≡ −3, proto 9799 ≡ (−3)99 (mod 20). Dále opakujeme stejný postup
s Eulerovou funkcí – 𝜙(20) = 𝜙(22 · 5) = 2 · 1 · 4 = 8. Hledáme zbytek po dělení 99 osmi.
Protože 12 · 8 = 96, máme 99 ≡ 3 (mod 8), odtud

9799 ≡ (−3)99 ≡ (−3)3 = −27 ≡ −7 ≡ 13 (mod 20).

Nyní máme dvě možnosti: buď zjistíme inverzi ke třem modulo 25 (vyjde −8) a tu umoc-
níme na sedmou, nebo přímo trojku umocníme na 13 = 8 + 4 + 1. Máme 32 = 9,
34 = 92 = 81 ≡ 6, 38 ≡ 62 = 36 ≡ 11 (mod 25). Pak

39799 ≡ 313 = 38+4+1 ≡ 11 · 6 · 3 = 66 · 3 ≡ 16 · 3 = 48 ≡ −2 (mod 25).

Řešíme soustavu 𝑥 ≡ −1 (mod 4), 𝑥 ≡ −2 (mod 25). Z druhé kongruence máme 𝑥 =
= 25 𝑘 − 2, dosazením do první získáme 𝑘.

25 𝑘 − 2 ≡ −1 (mod 4)
𝑘 ≡ 1 (mod 4)

Pak máme 𝑘 = 4 ℓ + 1, tedy 𝑥 = 25 · (4 ℓ + 1) − 2 = 100 ℓ + 23 a poslední dvě cifry čísla
39799 jsou 23. △
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Příklad 3.1.4. Najděte všechny primitivní kořeny modulo 26.

Řešení. Zopakujme si definici primitivních kořenů. Primitivní kořen modulo 𝑛 je 𝑔 takové,
že pro každé 𝑏 nesoudělné s 𝑛 existuje 𝑘 takové, že 𝑔𝑘 ≡ 𝑏 (mod 𝑛). Platí, že primitivní
kořeny modulo prvočísly existují, naopak je-li 𝑛 dělitelné dvěma lichými prvočísly, pri-
mitivní kořeny neexistují. Obecnou podmínku však nemáme. Číslo 𝑟 nazveme řádem 𝑎
modulo 𝑛 (bereme nesoudělná 𝑎 a 𝑛), jestliže 𝑟 je nejmenší takové, že

𝑎𝑟 ≡ 1 (mod 𝑝).

Platí, že 𝑟 dělí 𝜙(𝑛) (Lagrangeova věta). Primitivní kořeny modulo 𝑛 budou ty prvky,
jejichž řád je právě 𝜙(𝑛). V našem případě máme 26 = 2 · 13, 𝜙(26) = 1 · 12 = 12. Máme
12 čísel menších než 26 s ním nesoudělných. Hledáme prvek řádu 12. Stačí ověřovat, že
𝑎4 a 𝑎6 nejsou kongruentní 1. (To jsou maximální dělitelé 12, kteří nejsou 12. Pokud by
některá menší mocnina 𝑎 byla 1, pak by jistě i některá z těchto mocnin byla 1.) Zkoušejme
postupně čísla nesoudělná s 26:

• 33 = 27 ≡ 1 (mod 26), tedy 3 není primitivní kořen;

• 52 = 25 ≡ −1, proto 54 ≡ (−1)2 = 1 (mod 26), ani 5 není primitivní kořen;

• 72 = 49 ≡ −3, proto 74 ≡ (−3)2 = 9 ̸≡ 1 (mod 26); 76 ≡ (−3)3 = −27 ≡ −1 ̸≡ 1
(mod 26), tedy 7 je primitivní kořen modulo 26.

Pokud známe jeden primitivní kořen modulo 𝑛, umíme popsat všechny. Budou to ty jeho
mocniny, jejichž exponent je nesoudělný s 𝜙(𝑛), jejich počet tedy bude 𝜙(𝜙(𝑛)). V našem
případě budou 4, což je 𝜙(12). Exponenty budou 1, 5, 7 a 11, primitivní kořeny budou
71 = 7, 75 ≡ 9 · 7 = 63 ≡ 11, 77 ≡ −7 ≡ 19 a 711 ≡ −11 ≡ 15 (mod 26). △

3.2 Šifrování
Příklad 3.2.1. Šifrou RSA s veřejným klíčem 𝑛 = 95 a 𝑒 = 49 bylo posláno číslo 𝑍 = 42.
Šifru prolomte a určete zaslanou zprávu 𝑀 ∈ {1, 2, . . . , 94}.

Řešení. Zopakujeme si šifru RSA. Pro generování klíčů zvolí účastník dvě velká prvočísla
𝑝 a 𝑞, spočítá 𝑛 = 𝑝 · 𝑞, 𝜙(𝑛) = (𝑝 − 1) (𝑞 − 1), dále zvolí 𝑒 nesoudělné s 𝜙(𝑛) a spočítá
(například pomocí Eukleidova algoritmu) modulární inverzi 𝑑, tedy 𝑑 · 𝑒 ≡ 1 (mod 𝜙(𝑛)).
Veřejným klíčem je pak dvojice (𝑛, 𝑒), soukromým klíčem je 𝑆 = 𝑑. Pří šifrování zprávy
𝑀 spočítáme 𝐶 ≡ 𝑀 𝑒 (mod 𝑛). Při dešifrování šifrované zprávy 𝐶 pak účastník spočítá
𝑀 ≡ 𝐶𝑑 (mod 𝑛).

Hledáme rozklad 95 na prvočinitele. Vidíme, že 95 = 5 · 19, tedy 𝜙(95) = 4 · 18 = 72.
Hledáme inverzi k 49 modulo 72. Řešíme následující soustavu ekvivalentními úpravami.1

49 𝑑 ≡ 1 (mod 72)
1Samozřejmě bychom mohli také počítat pomocí rozkladu 72 = 8 · 9 jako v příkladu 3.1.1, což by bylo

i jednodušší.
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72 𝑑 ≡ 0 (mod 72)

49 𝑑 ≡ 1 (mod 72)
23 𝑑 ≡ −1 (mod 72)

3 𝑑 ≡ 3 (mod 72)
23 𝑑 ≡ −1 (mod 72)

3 𝑑 ≡ 3 (mod 72)
−𝑑 ≡ −25 (mod 72)

0 𝑑 ≡ 72 (mod 72)
𝑑 ≡ 25 (mod 72)

Vidíme, že 𝑑 = 25. Spočítáme 4225 modulo 95. Víme, že 42 ≡ 4 (mod 19) a 25 ≡ 7
(mod 18), takže chceme spočítat 47 modulo 19 s tím, že 7 = 4+2+1. Víme, že 42 = 16 ≡ −3,
odtud 44 ≡ (−3)2 = 9 a výsledně 47 ≡ −3·9·4 = −3·36 ≡ −3·−2 = 6 (mod 19). Obdobně
42 ≡ 2 (mod 5) a 25 ≡ 1 (mod 4), tedy 4225 ≡ 21 = 2 (mod 5). Hledáme 𝑀 takové, že
𝑀 ≡ 6 (mod 19) a 𝑀 ≡ 2 (mod 5). Z první kongruence máme 𝑀 = 19 𝑘 + 6, dosazením
do druhé zjistíme 𝑘.

19 𝑘 + 6 ≡ 2 (mod 5)
−𝑘 ≡ −4 (mod 5)
𝑘 ≡ −1 (mod 5)𝑘 = 5 ℓ− 1

Tedy 𝑀 = 19 𝑘 + 6 = 19 · (5 ℓ − 1) + 6 = 95 ℓ − 19 + 6 = 95 ℓ − 13, z čísel mezi 1 a 94
rovnici vyhovuje 82. △

Příklad 3.2.2. V šifrovacím systému RSA s veřejným klíčem skládajícím se z modulu
𝑛 = 2021 a exponentu 𝑒 = 11 došlo k prozrazení faktorizace 𝑛 = 𝑝·𝑞 = 43·47. S její pomocí
dešifrujte zprávu 𝑐 = 21. Při výpočtu mocniny 𝑐𝑑 mod 2 021 počítejte zvlášť modulo 43 a
modulo 47 a tyto mezivýsledky pak dejte dohromady.

Řešení. Umíme spočítat 𝜙(2 021) = 42 · 46 = 1 932 = 4 · 3 · 7 · 23. Hledáme inverzi k 11
modulo 1 932. Jednou možností je použít Eulerovu větu. Máme

𝜙(1 932) = 𝜙(22 · 3 · 7 · 23) = (2 · 1) · 2 · 6 · 22 = 528,

takže inverzí bude 11527, což spočítáme na počítači. Pokud chceme počítat ručně, počítáme
inverzi modulo 4, 3, 7 a 23. tj. řešíme následující soustavu.

11 𝑑 ≡ 1 (mod 4)
11 𝑑 ≡ 1 (mod 3)
11 𝑑 ≡ 1 (mod 7)
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11 𝑑 ≡ 1 (mod 23)

Protože 11 ≡ −1 (mod 4), máme 𝑑 ≡ −1 (mod 4). Stejná kongruence platí i modulo 3.
Tudíž musí být 𝑑 ≡ −1 i modulo 12 = 3 · 4. 11 · 2 = 22 ≡ 1 (mod 7), tedy 𝑑 ≡ 2 (mod 7).
Nakoncec 11 · (−2) = −22 ≡ 1 (mod 23). Řešíme tak následující soustavu.

𝑑 ≡ −1 (mod 12)
𝑑 ≡ 2 (mod 7)
𝑑 ≡ −2 (mod 23)

Z první kongruence máme 𝑑 = 12 𝑡− 1. Dosazením do druhé kongruence zjistíme 𝑡.

12 𝑡− 1 ≡ 2 (mod 7)
−2 𝑡 ≡ 3 (mod 7)

𝑡 ≡ −12 ≡ 2 (mod 7)

Máme 𝑡 = 7 𝑠+ 2, tedy 𝑑 = 12 · (7 𝑠+ 2)− 1 = 84 𝑠+ 23. Dosadíme do třetí kongruence a
spočítáme 𝑠.

84 𝑠+ 23 ≡ −2 (mod 23)
15 𝑠 ≡ −2 (mod 23)

Vynásobením −3 dostaneme na levé straně −45 ≡ 1 (mod 23).

𝑠 ≡ 6 (mod 23)

Tudíž 𝑠 = 23 𝑘+6 a 𝑑 = 84 · (23 𝑘+6)+23 = 1 932 𝑘+527. Vidíme, že 𝑑 = 527 a náhodou
vyšlo 11527 ≡ 527 (mod 1 932).

Nyní zjistíme 21527 modulo 2 021. Nejprve modulo 43. Protože 527 ≡ 23 (mod 42),
počítáme 723 a 323 (mod 43). Vidíme, že 71 = 7, 72 = 49 ≡ 6 (mod 43), 73 ≡ 6 · 7 =
= 42 ≡ −1, tudíž 76 ≡ 1 ≡ 718 (mod 43). Nakonec 723 ≡ 75 ≡ 6 · (−1) = −6 (mod 43).
Dále 34 = 81 ≡ −5, 35 ≡ −15, 36 ≡ −45 ≡ −2, 318 ≡ −8, tekže 323 ≡ −15 · (−8) ≡ −9
(mod 43). Nakonec

𝑐𝑑 ≡ −6 · −9 ≡ 11 (mod 43).
Obdobně modulo 47. Protože 527 ≡ 21 (mod 46), stačí počítat 721 a 321. Vidíme, že
72 = 49 ≡ 2 (mod 47), takže 78 ≡ 24 = 16 a 712 ≡ 26 = 64 ≡ 17 (mod 47), tudíž
721 ≡ 17 · 16 · 7 ≡ −10 · 7 = −70 ≡ 24 (mod 47). Dále 34 = 81 ≡ −13, tedy 35 ≡ −39 ≡ 8
(mod 47), 310 ≡ 64 ≡ 17, 320 ≡ 172 ≡ 7, tedy 321 ≡ 21 (mod 47). Celkem

𝑐𝑑 ≡ 21 · 24 = 504 ≡ 34 (mod 34).

Řešíme soustavu kongruencí pro 𝑀 ≡ 𝑐𝑑 (mod 2 021).

𝑀 ≡ 11 (mod 43)
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𝑀 ≡ 34 (mod 47)

Vyjádřením 𝑀 = 47 𝑡+ 34 a dosazením řešíme pro 𝑡.

47 𝑡+ 34 ≡ 11 (mod 43)
4 𝑡 ≡ −23 ≡ 20 (mod 43)
𝑡 ≡ 5 (mod 43)

Takže 𝑡 = 43 𝑠+ 5 a 𝑀 = 2021 𝑠+ 249. △

Příklad 3.2.3. V ElGamalově šifrovacím systému si Alice zvolila veřejný klíč sestávající
z prvočísla 𝑝 = 997, primitivního kořene 𝑔 = 11 a jeho mocniny 𝑔𝑥 (kde exponent 𝑥 = 23
je soukromý). Bartoloměj si pro komunikaci s Alicí zvolil soukromý klíč 𝑦 = 25 a poslal jí
svůj veřejný klíč 𝑔𝑦. Pomocí společného soukromého klíče 𝑔𝑥 𝑦 pak zašifroval zprávu 𝑚 a
výslednou zprávu 𝑐 = 20 poslal Alici. Jak ji bude Alice dešifrovat?

Řešení. Připomeneme si ElGamalovu šifru, která vychází z DH protokolu pro výměnu
klíčů pro symetrickou kryptografii, kde obě strany komunikace se dohodnou na prvočísle 𝑝
a primitivním kořenu 𝑔 modulo 𝑝. Každý z účastníků vybere 𝑎, respektive 𝑏, a pošle druhé
straně 𝑔𝑎, resp. 𝑔𝑏 modulo 𝑝. Společným klíčem pro komunikaci je pak 𝑔𝑎 𝑏 = (𝑔𝑎)𝑏 = (𝑔𝑏)𝑎,
kterýžto mohou oba účastníci spočítat bez toho, aby jej mohl zjistit kdokoli jiný.

Při použití ElGamalovy šifry účastník zvolí prvočíslo 𝑝, primitivní kořen 𝑔 modulo 𝑝,
náhodné 𝑎 a spočítá ℎ ≡ 𝑔𝑎 (mod 𝑝). Veřejným klíčem pak je trojice (𝑝, 𝑔, ℎ) a soukromým
klíčem je 𝑎. Při šifrování zprávy 𝑀 zvolíme náhodné 𝑏 a spočítáme 𝐶1 ≡ 𝑔𝑏 (mod 𝑝) a
𝐶2 ≡𝑀 ·ℎ𝑏 (mod 𝑝); následně pošleme 𝐶 = (𝐶1, 𝐶2). Pro dešifrování pak účastník spočítá
𝑀 ≡ 𝐶2/𝐶

𝑎
1 (mod 𝑝).

V našem příkladu bude společným klíčem 1123·25 (mod 997). Počítáme 11575 (mod 997).
Pomocí počítače spočítáme, že je to 950 ≡ −47 (mod 997). Aličin veřejný klíč bude
1123 ≡ 659 (mod 997). Naopak Bartolomějův veřejný klíč bude 1125 ≡ 976 ≡ −21 (mod 997).
Jak Alice tak Bartoloměj jsou schopni zjistit soukromý klíč jako

950 ≡ 65925 ≡ 97623 (mod 997).

Protože jsme zprávu zašifrovali (modulárním) násobením společným klíčem, pro dešifrování
budeme modulárně dělit, tj. násobit modulární inverzí společného klíče. Tu zjistíme jako
950995 ≡ 700 (mod 997), takže původní zpráva byla 700 ·20 = 14 000 ≡ 42 (mod 997). △
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4.1 Rekurentní posloupnosti
Příklad 4.1.1. Najděte explicitní vyjádření členů posloupnosti splňující rekurentní vztah

𝑥𝑛+1 = 𝑥𝑛 + 6𝑥𝑛−1

s počátečními členy 𝑥0 = 5, 𝑥1 = 0.

Řešení pomocí vlastních čísel. Přidejme si k rekurenci ještě druhou triviální rovnici.

𝑥𝑛 = 𝑥𝑛

Dostaneme následující soustavu rovnic, která je lineární.

𝑥𝑛+1 = 𝑥𝑛 + 6 𝑥𝑛−1
𝑥𝑛 = 𝑥𝑛

(4.1)

Pišme sloupcový vektor (𝑥𝑛+1, 𝑥𝑛)𝑇 dvou po sobě následujících členů posloupnosti. S po-
mocí tohoto zápisu můžeme psát (4.1) ve vektorovém tvaru.(︃

𝑥𝑛+1
𝑥𝑛

)︃
=
(︃

1 6
1 0

)︃
·
(︃
𝑥𝑛
𝑥𝑛−1

)︃
(4.2)

Označme matici z (4.2) 𝑃 . Pak můžeme s pomocí (4.2) psát rekurenci následujícím způso-
bem. (︃

𝑥𝑛+1
𝑥𝑛

)︃
= 𝑃 ·

(︃
𝑥𝑛
𝑥𝑛−1

)︃
= 𝑃 2 ·

(︃
𝑥𝑛−1
𝑥𝑛−2

)︃
= · · · = 𝑃 𝑛 ·

(︃
𝑥1
𝑥0

)︃
(4.3)

Nyní nalezneme vlastní čísla a vektory k matici 𝑃 . Vůči nim se totiž 𝑃 chová jako
násobení vlastním číslem, a tudíž 𝑃 𝑛 bude mít stejné vlastní vektory a vlastní čísla 𝑛-té
mocniny vlastních čísel matice 𝑃 .

det(𝑃 − 𝜆𝐸) = det
(︃

1− 𝜆 6
1 −𝜆

)︃
= 𝜆2 − 𝜆− 6 = (𝜆− 3) (𝜆+ 2)
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Máme vlastní číslo 𝜆1 = 3, spočítáme k němu příslušný vlastní vektor.

𝑃 − 3𝐸 =
(︃

−2 6
1 −3

)︃
∼
(︃

1 −3
0 0

)︃

Máme vlastní vektor v1 = (3, 1)𝑇 . Druhým vlastním číslem je 𝜆2 = −2, spočítáme jeho
vlastní vektor.

𝑃 + 2𝐸 =
(︃

3 6
1 2

)︃
∼
(︃

1 2
0 0

)︃
Druhým vlastním vektorem je v2 = (−2, 1)𝑇 . Všimněte si, že první složku vlastních vektorů
jsme stejně jako dané vlastní číslo a pak druhá složka vyšla 1. To plyne z (4.2).

Chceme si vektor (𝑥1, 𝑥0)𝑇 vyjádřit v souřadnicích báze 𝛼 = (v1,v2). Matici přechodu
od standardní báze 𝜖 k bázi 𝛼 tvoří po sloupcích složky vektorů 𝛼.

𝑃𝜖,𝛼 =
(︃

3 −2
1 1

)︃
Opačná matice přechodu (od 𝜖 k 𝛼) bude matice inverzní, kterou můžeme spočítat pomocí
determinantů, viz příklad 2.4.3. V případě matice 2 × 2 inverzní matici spočítáme tak,
že prvky na hlavní diagonále prohodíme, na antidiagonále (vedlejší diagonále) změníme
znaménko a výsledek vydělíme determinantem.

𝑃𝛼,𝜖 = 𝑃−1
𝜖,𝛼 = 1

5 ·
(︃

1 2
−1 3

)︃

Následně máme vyjádření (𝑥1, 𝑥0)𝑇 = 𝑥1 e1 + 𝑥0 e0.(︃
𝑥1
𝑥0

)︃
= 𝑥1 e1 + 𝑥0 e2 =

2𝑥0 + 𝑥1
5 v1 +

3𝑥0 − 𝑥1
5 v2 (4.4)

Nyní můžeme dosadit (4.4) do (4.3) a získáme následující vztah.(︃
𝑥𝑛+1
𝑥𝑛

)︃
= 𝑃 𝑛 ·

[︃
2𝑥0 + 𝑥1

5 v1 +
3𝑥0 − 𝑥1

5 v2

]︃

= 2𝑥0 + 𝑥1
5 𝑃 𝑛 · v1 +

3𝑥0 − 𝑥1
5 𝑃 𝑛 · v2

= 2𝑥0 + 𝑥1
5 3𝑛 v1 +

3𝑥0 − 𝑥1
5 (−2)𝑛 v2

Porovnáním druhých složek vektorů na obou stranách získáme vzorec pro 𝑛-tý člen po-
sloupnosti.

𝑥𝑛 = 2𝑥0 + 𝑥1
5 3𝑛 + 3𝑥0 − 𝑥1

5 (−2)𝑛 (4.5)

Vzhledem k tomu, jak jsme volili vlastní vektory, získáme porovnáním prvních složek vek-
torů vzorec pro 𝑛 plus první člen, který bude souhlasit s (4.5). Vidíme, že posloupnost
zadaná rekurencí závisí na počátečních podmínkách, tedy na tom, jak zadáme 𝑥0 a 𝑥1.
V našem případě je 𝑥0 = 5 a 𝑥1 = 0, tedy z (4.5) máme řešení.

𝑥𝑛 = 2 · 3𝑛 + 3 · (−2)𝑛 △
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Jiné řešení. Rekurence je lineární s konstatními koeficienty. Jejím řešením bude proto li-
neární kombinace posloupností tvaru 𝜆𝑛. Pro ně má platit

𝜆𝑛+1 = 𝜆𝑛 + 6𝜆𝑛−1

pro všechna 𝑛. Po vydělení 𝜆𝑛−1 a přesunutí členů na levou stranu dostaneme kvadratickou
rovnici.

𝜆2 − 𝜆− 6 = 0
(Všimněte si, že rovnice odpovídá charakteristickému polynomu matice 𝑃 z předchozího
řešení úlohy.) Vidíme, že řešeními jsou 𝜆1 = 3 a 𝜆2 = −2. Obecně pak bude

𝑥𝑛 = 𝑎 · 3𝑛 + 𝑏 · (−2)𝑛

pro nějaká 𝑎, 𝑏 ∈ R. Dosazením 𝑛 = 0 dostaneme 𝑥0 = 𝑎 + 𝑏, ze zadání máme 𝑥0 = 5.
Obdobně pro 𝑛 = 1 máme z rovnice 𝑥1 = 3 𝑎−2 𝑏 a ze zadání 𝑥1 = 0. Máme tedy soustavu
dvou rovnic pro dvě neznámé 𝑎, 𝑏, kterou vyřešíme klasicky.(︃

1 1 5
3 −2 0

)︃
∼
(︃

1 1 5
0 −5 −15

)︃
∼
(︃

1 0 2
0 1 3

)︃

Vidíme, že 𝑎 = 2, 𝑏 = 3 a 𝑥𝑛 = 2 · 3𝑛 + 3 · (−2)𝑛. △

Příklad 4.1.2. Určete explicitní vyjádření členů posloupnosti vyhovující rekurentní rovnici

𝑥𝑛+2 = 2𝑥𝑛+1 − 2𝑥𝑛

se členy 𝑥1 = 2, 𝑥2 = 2.

Řešení. Rekurence je lineární s konstatními koeficienty. Hledáme řešení tvaru 𝜆𝑛, která
musejí splňovat

𝜆𝑛+2 = 2𝜆𝑛+1 − 2𝜆𝑛.
Po vydělení 𝜆𝑛 a převedení dostaneme rovnici

𝜆2 − 2𝜆+ 2 = 0

s diskriminantem 𝐷 = 4− 8 = −4 a kořeny 𝜆1,2 = 2±2 i
2 = 1± i. Musí tedy platit

𝑥𝑛 = 𝑎 · (1 + i)𝑛 + 𝑏 · (1− i)𝑛.

Dosazením 𝑛 = 1 máme 𝑥1 = (1 + i) 𝑎+ (1− i) 𝑏 = 2 s pravou stranou ze zadání. Protože
(1± i)2 = 1± 2 i− 1 = ±2 i, máme pro 𝑛 = 2 ze zadání 𝑥2 = 2 = 2 i 𝑎− 2 i 𝑏. Celkem tak
máme následující soustavu rovnic.

(1 + i) 𝑎 + (1− i) 𝑏 = 2
2 i 𝑎 − 2 i 𝑏 = 2
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Tuto soustavu řešíme v maticovém tvaru. Druhý řádek matice vydělíme dvěma. Následně
jej vynásobíme −i s tím, že −i · i = −(−1) = 1 a (−i)2 = −1.(︃

1 + i 1− i 2
i −i 1

)︃
∼
(︃

1 + i 1− i 2
1 −1 −i

)︃

Od prvního řádku odečítáme (1+i)-násobek druhého. V prvním sloupci máme 0, ve druhém
1− i + (1 + i) = 2 a ve třetím 2 + i (1 + i) = 2 + i− 1 = 1 + i.

∼
(︃

0 2 1 + i
1 −1 −i

)︃

Nový první řádek vydělíme dvěma.

∼
(︃

0 1 1+i
2

1 −1 −i

)︃

Nakonec přičteme první řádek ke druhému. Na pravé straně máme −i+ 1+i
2 = −2 i+1+i

2 = 1−i
2 .

∼
(︃

0 1 1+i
2

1 0 1−i
2

)︃

Vidíme, že 𝑎 = 1−i
2 a 𝑏 = 1+i

2 . Máme tak vztah

𝑥𝑛 = 1− i
2 · (1 + i)𝑛 + 1− i

2 · (1− i)𝑛.

Zajímavé je, že ač máme ve vyjádření komplexní čísla, výsledek bude nejen reálný, ale
dokonce celočíselný. Podívejme se, proč. Nejprve si koeficienty i mocněnce převedeme do
goniometrického tvaru. Vidíme, že |1± i| =

√
2 a že argument mají ±π

4 , což je zřejmé
z obrázku. Máme tak

𝑥𝑛 =
√
2𝑛+1

2 ·
(︂
cos

(︂
−π

4

)︂
+ i sin

(︂
−π

4

)︂)︂
·
(︂
cos 𝑛π4 + i sin 𝑛π4

)︂
+

+
√
2𝑛+1

2 ·
(︂
cos π4 + i sin π

4

)︂
·
(︂
cos

(︂
−𝑛π4

)︂
+ i sin

(︂
−𝑛π4

)︂)︂

=
√
2𝑛+1

2 ·
[︃
cos (𝑛− 1)π

4 + i sin (𝑛− 1)π
4 + cos (1− 𝑛)π

4 + i sin (1− 𝑛)π
4

]︃

což, protože je sinus lichá a kosinus sudá funkce, dává

=
√
2𝑛+1 cos

(︂
𝑛π

4 − π

4

)︂
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následně s použitím součtového vzorce cos(𝑥 − 𝑦) = cos𝑥 cos 𝑦 + sin 𝑥 sin 𝑦 a faktu, že
cos π

4 = sin π
4 = 1√

2 dostáváme

=
√
2𝑛 ·

(︂
cos 𝑛π4 + sin 𝑛π4

)︂
.

Podíváme se na hodnoty kosinu a sinu. Protože jsou funkce 2π-periodické, budou se hod-
noty opakovat pro 𝑛 modulo 8. Máme

• 𝑛 ≡ 0 (mod 8): sinus vyjde 0 a kosinus 1, v součtu 1;

• 𝑛 ≡ 1 (mod 8): sinus i kosinus vyjdou
√
2
2 , v součtu

√
2;

• 𝑛 ≡ 2 (mod 8): sinus vyjde 1 a kosinus 0, v součtu 1;

• 𝑛 ≡ 3 (mod 8): sinus vyjde
√
2
2 a kosinus −

√
2
2 , v součtu 0;

• 𝑛 ≡ 4 (mod 8): sinus vyjde 0 a kosinus −1, v součtu −1;

• 𝑛 ≡ 5 (mod 8): sinus i kosinus vyjdou −
√
2
2 , v součtu −

√
2;

• 𝑛 ≡ 6 (mod 8): sinus vyjde −1 a kosinus 0, v součtu −1;

• 𝑛 ≡ 7 (mod 8): sinus vyjde −
√
2
2 a kosinus

√
2
2 , v součtu 0.

Pro 𝑛 ≡ 3 (mod 4) dostaneme 0, pro 𝑛 sudá až na znaménko sudou mocninu
√
2, tedy

nějakou mocninu 2. Pokud 𝑛 ≡ 1 (mod 4), pak dostáváme
√
24 𝑘+1 ·

√
2 =

√
24 𝑘+2, tedy

opět (až na znaménko) mocninu 2. △

4.2 Markovské procesy
Příklad 4.2.1. Roční Albertek Einsteinů staví se 4 kostkami věž. Ta mu ale každou chvilku
spadne. Když ji má čerstvě spadlou, vezme nějakou kostku a snaží se ji postavit na některou
jinou, což se mu podaří s pravděpodobností 1

2 . Když má věž ze dvou nebo tří kostek, snaží se
postavit další kostku na její vrchol, což se mu opět s pravděpodobností 1

2 podaří. Pokude se
mu to nepodaří, věž spadn a Albertek začne znovu. Pokud má věž ze čtyř kostek, radostně
zatleská a věž zboří. Takto pokračuje pořád dokola. Maminka se na něj po dostatečně
dlouhé době přijde podívat. Jaká je pravděpodobnost, že uvidí stát věž o čtyřech kostkách?

Řešení. Věž se může skládat z jedné, dvou, tří nebo čtyř kostek. Označme tyto stavy čísly
1 až 4. Podívejme se nyní na možné přechody mezi stavy.

1. Můžeme přejít do stavu 2 nebo 1, obojí s pravděpodobností 1
2 .

2. Můžeme přejít do stavu 3 nebo 1, obojí s pravděpodobností 1
2 .

3. Můžeme přejít do stavu 4 nebo 1, obojí s pravděpodobností 1
2 .
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4. Jistě přejdeme do stavu 1.

Mějme přechodovou matici 𝑃 = (𝑝𝑖,𝑗)4𝑖,𝑗=1, kde 𝑝𝑖,𝑗 značí pravděpodobnost přechodu z 𝑗-
-tého stavu do 𝑖-tého. (Sloupce odpovídají vstupním hodnotám, řádky výstupním. To je
proto, že vektory uvažujeme sloupcové a maticemi je násobíme zleva.)

𝑃 =

⎛⎜⎜⎜⎜⎜⎝
1
2

1
2

1
2 1

1
2 0 0 0
0 1

2 0 0
0 0 1

2 0

⎞⎟⎟⎟⎟⎟⎠
Ta má automaticky dominantní vlastní číslo 1, nebudeme to ověřovat. Spočítáme k němu
vlastní vektor.

2 (𝑃 − 𝐸) =

⎛⎜⎜⎜⎝
−1 1 1 2
1 −2 0 0
0 1 −2 0
0 0 1 −2

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
−1 1 1 2
0 −1 1 2
0 0 −1 2
0 0 0 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
−1 0 0 8
0 −1 0 4
0 0 −1 2
0 0 0 0

⎞⎟⎟⎟⎠
Máme pravděpodobnostní vlastní vektor p =

(︁
8
15 ,

4
15 ,

2
15 ,

1
15

)︁
. Pravděpodobnost, že ma-

minka uvidí věž se čtyřmi kostkami je 1
15 .

Můžeme také spočítat střední výšku věže. To bude průměr všech možných výšek váže-
ných pravděpodobnostmi jejich výskytu.

𝐸 = 8
15 · 1 + 4

15 · 2 + 2
15 · 3 + 1

15 · 4 = 28
15 = 1,86 ≈ 1,87 △

Poznámka. Řešení by šlo rozšířit na úlohu o 𝑛 kostkách. Přechodová matice měla rozměry
𝑛 × 𝑛 a byla definována podobně jako v úloze. Její pravděpodobnostní vlastní vektor by
byl (︃

2𝑛−1

2𝑛 − 1 ,
2𝑛−2

2𝑛 − 1 , . . . ,
1

2𝑛 − 1

)︃
.

Nyní chceme spočítat střední výšku věže. Jistě platí, že pravděpodobnost výskytu věže
výšky 𝑘 je 2𝑛−𝑘

2𝑛−1 . Potom počítáme střední výšku věže.

𝐸 =
𝑛∑︁

𝑘=1

2𝑛−𝑘 · 𝑘
2𝑛 − 1 = 2𝑛−1

2𝑛 − 1 ·
𝑛∑︁

𝑘=1

𝑘

2𝑘−1

Po vytknuti konstanty získáme napravo částečný součet aritmeticko-geometrické řady s kvo-
cientem 1

2 . Podívejme se, jak ji sečíst. Máme

𝑆 = 1 + 2 𝑞 + 3 𝑞2 + · · ·+ 𝑛 𝑞𝑛−1

Po vynásobení 𝑞 dostaneme druhou rovnici.

𝑞 · 𝑆 = 𝑞 + 2 𝑞2 + · · ·+ (𝑛− 1) 𝑞𝑛−1 + 𝑛 𝑞𝑛
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Odečtením získáme částečný součet geometrické řady.

(1− 𝑞)𝑆 = 1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛−1 − 𝑛 𝑞𝑛

= 1− 𝑞𝑛

1− 𝑞
− 𝑛 𝑞𝑛

Odtud již získáme potřebný vzorec.

𝑆 = 1− 𝑞𝑛

(1− 𝑞)2 − 𝑛 𝑞𝑛

1− 𝑞

= 1− (𝑛+ 1) 𝑞𝑛 + 𝑛 𝑞𝑛+1

(1− 𝑞)𝑛

V našem případě je 𝑞 = 1
2 = 2−1. Dosazením do vzorce tedy spočítáme střední hodnotu.

𝐸 = 2𝑛−1

2𝑛 − 1 · 1− (𝑛+ 1) 2−𝑛 + 𝑛 2−𝑛−1(︁
1− 1

2

)︁2
= 2𝑛+1 · (1− 2 · 2−𝑛−1 − 2𝑛 · 2−𝑛−1 + 𝑛 · 2−𝑛−1)

2𝑛 − 1

= 2𝑛+1 − 𝑛− 2
2𝑛 − 1

Zajímavostí je, že při limitním přechodu 𝑛→ ∞ bychom dostali pravděpodobnostní vektor(︂1
2 ,

1
4 ,

1
8 , . . .

)︂
a střední hodnota výšky věže budou 2 kostky.

Příklad 4.2.2. Roztržitý profesor s sebou nosí deštník, ale s pravděpodobností 1
2 jej za-

pomene tam, odkud zrovna odchází. Ráno odchází do práce. V poledne chodí z práce do
restaurace, z ní se vrací zpět do práce a večer jde domů. Pro jednoduchost uvažujeme,
že nikam jinam po dlouhou dobu nechodí a že v restauraci zůstává deštník na místě od-
kud si ho příště může zase vzít. Uvažujte tuto situaci jako Markovovův proces a napište
jeho matici. Jaká je pravděpodobnost, že po mnoha dnech bude deštník po ránu nalézat
v restauraci? (Uvažujte časovou jednotku jeden den – od rána do rána.)

Řešení. Označme si stavy postupně D (deštník se nachází doma), P (v práci) a R (v restau-
raci). Rozdělme si den na podúseky určenými místy, mezi kterými se profesor pohybuje.
Platí, že pokud se deštník na jeho začátku nachází na stejném místě jako profesor, se stej-
nou pravděpodobností odejde na následující místo nebo zde zůstane. Nachází-li se deštník
na jiném místě než profesor, setrvá zde s jistotou.

Uvažujme nejprve, že je deštník ráno doma. Nakresleme si graf, kde jednotlivé úrovně
představují shora dolů denní doby – ráno před odchodem do práce, před obědem, po obědě,
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před odchodem domů a po příchodu domů. Šipky v grafu pak odpovídají přechodům mezi
stavy, jejich popisky pak pravděpodobnostem.

D

D P

P R

P R

D P

1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
2

Pravděpodobnost přechodu po dané cestě je součinem ohodnocení jednotlivých šipek. Prav-
děpodobnost, že deštník skončí na daném místě je rovna součtu pravděpodobností cest
v onom místě končících. Máme tedy pravděpodobnosti

• D → D: 1
2 +

1
8 +

1
16 = 11

16 ;

• D → P: 1
8 +

1
16 = 3

16 ;

• D → R: 1
8 .

Obdobné grafy si můžeme kreslit i pro stavy, kdy je deštník ráno v práci. Protože však
musí být v práci minimálně do profesorova odchodu na oběd, stav ráno v grafu vynecháme.

P

P R

P R

D P

1
2

1
2

1
1
2

1
2

1
21

2

Stejně si napíšeme i pravděpodobnosti přechodů.

• P → D: 1
8 +

1
4 = 3

8

• P → P: 1
4 +

1
8 = 3

8

• P → R: 1
4
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Nakonec si situaci rozepíšeme pro případ, kdy je deštník ráno v restauraci, kde musí
zůstat nejméně do profesorova odchodu z restaurace.1

R

P R

D P

1
21

2

1
2

1
2

Máme také pravděpodobnosti přechodů: R → D i R → P s pravděpodobností 1
4 a R → R

s pravděpodobností 1
2 . Celkem tedy můžeme psát matici přechodu. Stavy máme seřazené

1. D, 2. P a 3. R a (𝑖, 𝑗)-tá složka odpovídá pravděpodobnosti přechodu z 𝑗-tého stavu do
𝑖-tého.

𝑃 =

⎛⎜⎜⎝
11
16

3
8

1
4

3
16

3
8

1
4

1
8

1
4

1
2

⎞⎟⎟⎠
Pro nalezení vlastního vektoru příslušného jedničce řádkově upravujeme matici 16 (𝑃 −𝐸).

16 (𝑃 − 𝐸) =

⎛⎜⎝ −5 6 4
3 −10 4
2 4 −8

⎞⎟⎠ ∼

⎛⎜⎝ 1 −14 12
3 −10 4
2 4 −8

⎞⎟⎠ ∼

∼

⎛⎜⎝ 1 −14 12
0 32 −32
0 32 −32

⎞⎟⎠ ∼

⎛⎜⎝ 1 0 −2
0 1 −1
0 0 0

⎞⎟⎠
Pravděpodobnostní vlastní vektor je p =

(︁
1
2 ,

1
4 ,

1
4

)︁
, deštník se tedy ráno nachází doma

s pravděpodobností 1
2 , v práci respektive v restauraci pak s pravděpodobností 1

4 . △

Příklad 4.2.3. Rodina Novákova každoročně jezdí na celý srpen na dovolenou. Buď naloží
auto kempingovým vybavením a cestuje po Evropě, nebo naloží kola a jedou k babičce na
Vysočinu. Každý rok se rozhodují podle toho, jak trávili dovolenou poslední dva roky, a to
částečně náhodně za použití klasické kostky. Rozhodují se podle následujících pravidel.

• Pokud byli poslední dva roky kempovat po Evropě, jedou na Vysočinu.

• Pokud byli poslední dva roky na Vysočině, tak jedou po Evropě.

• Pokud byli loni kempovat po Evropě a předloni u babičky, pak hází kostkou, a když
padne liché číslo, tak jedou po Evropě, a když sudé číslo, tak jedou na Vysočinu.

• Pokud byli loni na Vysočině a předloni po Evropě, pak hází kostkou. Když padne 1
nebo 2, pak jedou na Vysočinu, jinak jedou po Evropě.

1Samozřejmě jsme mohli psát všechny případy do jednoho grafu, ale tento postup je přehlednější.
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Tímto způsobem se o dovolené rozhodují celý život. V srpnu letošního roku je přijel do
místa jejich bydliště navštívit kamarád, s kterým se neviděli po mnoho let. Soused, který
věděl, že jsou buď na Vysočině nebo cestují po Evropě, ale nevěděl, kde byli poslední roky,
jej poslal na Vysočinu. Určete, jaká je pravděpodobnost, že tam rodinu Novákovu najde.

Řešení. Označme si E stav, že Novákovi jedou kempovat po Evropě a V stav, že pojedou
k babičce na Vysočinu. Díky tomu, že se Novákovi rozhodují podle předchozích dvou let,
musíme uvažovat uspořádané dvojice těchto stavů. Zjistíme si přechodovou matici.

• Ze stavu EE přejdeme jistě do stavu EV (tedy napřed jeli kempovat a poté na Vy-
sočinu).

• Ze stavu VV jistě přejdeme do stavu VE.

• Ze stavu EV jedou se stejnou pravděpodobností 1
2 (pro sudá a lichá čísla na kostce)

do stavu buď VE nebo VV.

• Ze stavu VE přecházejí do stavu EV s pravděpodobností 1
3 (na kostce padla 1 nebo

2) nebo do stavu EE s pravděpodobností 2
3 .

Stavy si seřadíme EE, EV, VE, VV. Pak máme matici přechodu.

𝑃 =

⎛⎜⎜⎜⎜⎜⎝
0 0 1

2 0
1 0 1

2 0
0 2

3 0 1
0 1

3 0 0

⎞⎟⎟⎟⎟⎟⎠
Protože je proces Markovský, má matice přechodu dominantní vlastní číslo 1. Spočítejme
k němu vlastní vektor. (Při první úpravě si vynásobíme první dva řádky dvěma a druhé
dva třemi.)

𝑃 − 𝐸 ∼

⎛⎜⎜⎜⎝
−2 0 1 0
2 −2 1 0
0 2 −3 3
0 1 0 −3

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
−2 0 1 0
0 −2 2 0
0 2 −3 3
0 1 0 −3

⎞⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
−2 0 1 0
0 −1 1 0
0 0 −1 3
0 0 1 −3

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
2 0 0 −3
0 1 0 −3
0 0 1 −3
0 0 0 0

⎞⎟⎟⎟⎠
Jako (celočíselný) vlastní vektor můžeme vzít například v = (3, 6, 6, 2)𝑇 , pravděpodob-
nostní vektor pak bude p = 1

17 v. Pravděpodobnost, že pojedou na vysoučinu pak bude
součtem pravděpodobností, že jedou na Vysočinu za předpokladu, že loni jeli také na Vy-
sočinu, a za předpokladu, že loni jeli kempovat po Evropě, tedy součtem pravděpodobností
stavů EV a VV, což je 6

17 +
2
17 = 8

17 . △
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Příklad 4.2.4. Které z matic jsou primitivní, tj. některá její mocnina obsahuje pouze
kladné členy?

𝐴 =
(︃

0 1
7

1 6
7

)︃
𝐵 =

⎛⎜⎜⎝
1
2 0 1

3
0 1 1

2
1
2 0 1

6

⎞⎟⎟⎠ 𝐶 =

⎛⎜⎜⎝
0 1 0
1
4 0 1

2
3
4 0 1

2

⎞⎟⎟⎠
Řešení. Spočítejme si 𝐴2.

𝐴2 =
(︃

0 1
7

1 6
7

)︃
·
(︃

0 1
7

1 6
7

)︃
=
(︃ 1

7
6
49

6
7

43
49

)︃

Matice 𝐴 je tedy primitivní. Jak to ale poznat obecněji? Představme si matici 𝑀 typu
𝑛× 𝑛, která popisuje Markovský proces na 𝑛 stavech, které si označíme 1 až 𝑛. Matici 𝑀
můžeme přiřadit ohodnocený orientovaný graf 𝐺𝑀 , jehož vrcholy budou stavy 1 až 𝑛, a
hrana z 𝑖 do 𝑗 bude ohodnocena 𝑚𝑗,𝑖. Hrany ohodnocené 0 pro přehlednost vynecháme.
Cesta je pak ohodnocena součinem ohodnocení jednotlivých hran. Nyní si vzpomeneme na
příklad 1.5.4. V matici 𝑀𝑘 je prvek 𝑚𝑗,𝑖 součtem ohodnocení všech cest délky 𝑘 vedoucích
z 𝑖 do 𝑗. Platí, že toto číslo je nenulové právě tehdy, když nějaká taková cesta existuje.
Pokud mezi každými dvěma vrcholy grafu existuje orientovaná cesta, nazýváme takový
graf silně souvislým. Dále máme následující tvrzení: Matice 𝑀 je primitivní právě tehdy,
když 𝐺𝑀 je silně souvislý a délky orientovaných kružnic jsou nesoudělné.2 Ukážeme si to
pro případ matice 𝐴.

1 2
1

6
7

1
7

Vidíme, že mezi libovolnými dvěma vrcholy existují cesty a cykly mají délky 1 a 2, matice
𝐴 je proto primitivní. Nyní můžeme přejít k matici 𝐵, která zadává následující graf.

1 2

3

1
2

1
2

1

1
3

1
6

1
2

Vidíme, že například ze stavu 2 neexistují cesty do stavů 1 a 3, matice 𝐵 proto nemůže
2https://www.sciencedirect.com/science/article/pii/S0024379514001062
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být primitivní. Nakonec vyřešme úlohu pro matici 𝐶.

1 2

3

1
4

3
4

1

1
2

1
2

Vidíme, že mezi každými dvěma vrcholy vede cesta a máme smyčku, tedy matice 𝐶 je
primitivní, což si můžeme ověřit počítáním.

𝐶2 =

⎛⎜⎜⎝
0 1 0
1
4 0 1

2
3
4 0 1

2

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
0 1 0
1
4 0 1

2
3
4 0 1

2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
4 0 1

2
3
8

1
4

1
4

3
8

3
4

1
4

⎞⎟⎟⎠

𝐶3 =

⎛⎜⎜⎝
1
4 0 1

2
3
8

1
4

1
4

3
8

3
4

1
4

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
0 1 0
1
4 0 1

2
3
4 0 1

2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
3
8

1
4

1
4

1
4

3
8

1
4

3
8

3
8

1
2

⎞⎟⎟⎠ △

4.3 Leslieho populační model
Příklad 4.3.1. Farmář chová ovce. Jejich porodnost je dána pouze věkem a je průměrně
2 ovce na jednu ovci mezi jedním a dvěma lety věku, 4 ovce na jednu ovci mezi dvěma a
třemi lety věku a 2 ovce na jednu ovci mezi třemi a čtyřmi roky věku. Ovce do jednoho
roku nerodí. Z roku na rok umře vždy polovina ovcí a to rovnoměrně ve všech věkových
skupinách. Po 4 letech posílá farmář ovce na jatka. Jakou část jehňátek může každý rok
prodat, aby mu velikost stáda zůstávala stejná? V jakém věkovém poměru budou rozděleny
počty ovcí v jednotlivých věkových skupinách?

Řešení. Máme stavy 0 až 3 podle toho, kolika let se již ovce dožily. Následně určíme matici
přechodu. Ze stavů 0, 1 a 2 vždy přejde 1

2 ovcí do stavu o jedna vyššího. Pro ovce ve stavech
1 a 3 vždy přibude jejich dvojnásobek do stavu 0, do stavu 0 také vždy přibude čtyřnásobek
ovcí ve stavu 2. Navíc ještě chceme prodávat roční ovce řekněme 𝑝 ∈

[︁
0, 12

]︁
z celkového

počtu tak, aby byl chov stabilní. (Hodnota 𝑝 je shora ohraničena 1
2 , protože pouze tolik

ovcí se dožije druhého věku.) To znamená, že ze stavu 0 do stavu 1 ve skutečnosti bude
přecházet 1

2 − 𝑝 celkového počtu ovcí.

𝐿 =

⎛⎜⎜⎜⎜⎝
0 2 4 2

1
2 − 𝑝 0 0 0
0 1

2 0 0
0 0 1

2 0

⎞⎟⎟⎟⎟⎠
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Populace bude stagnovat, bude-li mít Leslieho matice vlastní číslo 1. Musí tedy platit
det(𝐿 − 𝐸) = 0. Spočítejme tento determinant například Laplaceovým rozvojem podle
posledního sloupce.

det(𝐿− 𝐸) = det

⎛⎜⎜⎜⎜⎝
−1 2 4 2

1
2 − 𝑝 −1 0 0

0 1
2 −1 0

0 0 1
2 −1

⎞⎟⎟⎟⎟⎠

= −2 · det

⎛⎜⎝
1
2 − 𝑝 −1 0
0 1

2 −1
0 0 1

2

⎞⎟⎠− det

⎛⎜⎝ −1 2 4
1
2 − 𝑝 −1 0

0 1
2 −1

⎞⎟⎠
První matice je horní trojúhelníková. Pro determinant druhé matice použijeme opět La-
placeův rozvoj podle posledního sloupce.

= −2
4 ·
(︂1
2 − 𝑝

)︂
− 4 · det

(︃ 1
2 − 𝑝 −1
0 1

2

)︃
+ det

(︃
−1 2

1
2 − 𝑝 −1

)︃

= 𝑝

2 − 1
4 − 1 + 2 𝑝+ 1− 1 + 2 𝑝 = 9

2 𝑝−
5
4 = 0

Vidíme, že poslední rovnost nastane pro 𝑝 = 5
18 , tedy farmář by měl prodávat 5

18 ročních
ovcí. △

Příklad 4.3.2. Populační model je dán Leslieho maticí 𝐿.

𝐿 =

⎛⎜⎝ 0 1 2
1
2 0 0
0 𝑎 0

⎞⎟⎠
Pro která 𝑎 ∈ (0, 1] populace expanduje, pro která směřuje k vyhynutí a pro která se
stabilizuje?

Řešení. Hledáme vlastní čísla matice 𝐿. Položíme tedy determinant matice 𝐿− 𝜆𝐸 roven
nule. Počítáme například Laplaceovým rozvojem podle posledního sloupce.

det(𝐿− 𝜆𝐸) = det

⎛⎜⎝ −𝜆 1 2
1
2 −𝜆 0
0 𝑎 −𝜆

⎞⎟⎠
= 2 det

(︃ 1
2 −𝜆
0 𝑎

)︃
− 𝜆 · det

(︃
−𝜆 1

1
2 −𝜆

)︃

= 2 · 𝑎2 − 𝜆 ·
(︂
𝜆2 − 1

2

)︂
= −𝜆3 + 1

2 𝜆+ 𝑎 = 0
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Průběh det(𝐿 − 𝜆𝐸) jako funkce 𝜆 v závislosti na parametru 𝑎 je možné vidět například
v souboru pro Geogebru.3 Odtud je vidět, že dominantní vlastní číslo bude pro 𝑎 ∈ (0, 1]
kladné.

Vidíme, že má-li být det(𝐿 − 𝜆𝐸) = 0, musí být samozřejmě 𝑎 = 𝜆3 − 1
2 𝜆. Pokud

populace stagnuje, je kořen 𝜆 = 1, tedy 𝑎 = 1
2 . Pro 𝜆 > 1 populace roste a 𝑎 > 1

2 . Jestliže
populace klesá, je 𝜆 < 1 a 𝑎 < 1

2 . Obrácené implikace platí také (například z analýzy
protože derivace 𝑎 jako funkce 𝜆 je na okolí 1 nenulová, nebo si stačí uvědomit, že pro
𝑎 > 1

2 stačí přírůstky na stagnaci a ještě máme něco navíc), můžeme tedy říci, že pro
𝑎 ∈

(︁
0, 12

)︁
populace klesá, pro 𝑎 = 1

2 stagnuje a pro 𝑎 ∈
(︁
1
2 , 1

]︁
roste. △

Příklad 4.3.3. V jezeru žije populace bílých ryb. Předpokládáme, že druhého roku se
dožije 20% plůdku a od tohoto věku jsou ryby schopné se reprodukovat. Z mladých ryb
přežije do třetího roku do stadia velké ryby 60%. Úmrtnost velkých ryb je zanedbatelná.
Dále předpokládáme, že roční přírustek ryb je trojnásobkem počtu ryb schopných repro-
dukce.

Tato populace by evidentně jezírko přeplnila. Rovnováhu chceme dosáhnout nasazením
štik. Každá štika sní ročně 500 velkých ryb. Kolik štik máme do jezera nasadit, aby populace
ryb stagnovala?

Řešení. Předpokládejme, že štiky jedí pouze velké ryby a že jejich populace bude kon-
stantní. Stavy si označíme P (plůdky), M (malé ryby) a V (velké ryby). Zjistíme Leslieho
matici.

• Z P do M přejde 1
5 populace.

• Z M do V přejdou 3
5 populace a vytvoří se trojnásobek populace nových plůdků, tedy

z M do P přejdou 3 populace.

• Z V štiky snědí neznámé množství, 𝑝, populace, do V tedy přejde 1 − 𝑝 populace.
Z V do P přejdou opět 3 populace.

Máme tak Leslieho matici.

𝐿 =

⎛⎜⎝ 0 3 3
1
5 0 0
0 3

5 1− 𝑝

⎞⎟⎠
Chceme, aby měla vlastní číslo 1, tedy aby det(𝐿−𝐸) = 0. Determinant spočítáme napří-
klad Laplaceovým rozvojem podle posledního sloupce, který začíná kladným znaménkem.

det(𝐿− 𝐸) =

⎛⎜⎝ −1 3 3
1
5 −1 0
0 3

5 −𝑝

⎞⎟⎠
= 3 det

(︃ 1
5 −1
0 3

5

)︃
− 𝑝 · det

(︃
−1 3

1
5 −1

)︃
3https://math.muni.cz/˜prochazka/vyuka/11 6.ggb
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= 9
25 − 2

5 𝑝 = 0

Vidíme, že musí platit 𝑝 = 9
10 . Štiky tedy musí sníst každý rok 90% velkých ryb. Jestliže

jedna štika sní každý rok 500 velkých ryb, musíme nasadit jednu štiku na

10
9 · 500 = 555,5 ≈ 556

velkých ryb.4 △

4.4 Lineární programování
Příklad 4.4.1. Firma plánuje reklamní kampaň, ve které chce použít inzerci v rádiu,
televizi a novinách. Cena jednoho uvedení reklamy v rádiu je 10 000Kč, v televizi 30 000Kč,
v novinách 20 000Kč. Firma může za reklamní kampaň utratit nejvýše 350 000Kč. Počet
uvedení reklamy v televizi chce omezit na nejvýše 5. Dále firma chce, aby v novinách
byla nejvýše čtvrtina z celkového počtu uvedení ve všech mediích. Počet lidí zasažených
reklamou je následující: jedno uvedení reklamy v rádiu slyší 10 000 lidí, jedno uvedení
reklamy v televizi vidí 60 000 lidí a jeden inzerát v novinách přečte 30 000 lidí. Firma
předpokládá, že nikdo není reklamou zasažen vícekrát.

Při kolika uvedeních reklamy v rádiu, televizi a novinách maximalizuje firma počet lidí
zasažených reklamou? Jaký tento počet bude? Zformulujte problém jako úlohu lineární
optimalizace a pak úlohu vyřešte.

Řešení. Všechna čísla v zadání vydělíme 10 000. Počty uvedení postupně v radiu, televizi
a novinách, označme postupně 𝑥1, 𝑥2 a 𝑥3. V úloze jde o maximalizaci funkce

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 6𝑥2 + 3𝑥3

za podmínek

𝑥1 + 3𝑥2 + 2𝑥3 ≤ 35, 𝑥2 ≤ 5, 𝑥3 ≤
𝑥1 + 𝑥2 + 𝑥3

4 .

Poslední podmínku můžeme pomocí vynásobení 4 a převedení na levou stranu přepsat do
tvaru 4𝑥3−𝑥1−𝑥2−𝑥3 = −𝑥1−𝑥2+3𝑥3 ≤ 0. Přidáním nových proměnných 𝑡1, 𝑡2, 𝑡3 ≥ 0
můžeme podmínky přepsat do tvaru rovnic.

𝑥1 + 3𝑥2 + 2𝑥3 + 𝑡1 = 35, 𝑥2 + 𝑡2 = 5, −𝑥1 − 𝑥2 + 3 𝑥3 + 𝑡3 = 0.

Úlohu zapíšeme do simplexové tabulky, kde čísla odpovídají koeficientům u proměnných
v rovnicích. V prvním řádku máme funkci, kterou minimalizujeme (tedy −𝑓). Ostatní řádky

4Při tomto zaokrouhlování by populace mírně klesala. Pro korekce bychom museli nasadit jednu štiku
na 556 > 555,5 velkých ryb, ale jakmile by rozdíl přesáhl 555,5, štiku bychom nenasadili, atd.
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pak odpovídají rovnicím.
𝑥1 𝑥2 𝑥3 𝑡1 𝑡2 𝑡3
−1 −6 −3 0 0 0 0
1 3 2 1 0 0 35
0 1 0 0 1 0 5

−1 −1 3 0 0 1 0
Evidentně je možným řešením 𝑥1 = 𝑥2 = 𝑥3 = 0, 𝑡1 = 35, 𝑡2 = 5 a 𝑡3 = 0. Chceme najít
řešení pomocí proměnných 𝑥1, 𝑥2 a 𝑥3. Snažíme se postupně vynulovat záporná čísla v zá-
hlaví prvních tří sloupců. Za vedoucí koeficient (pivot) v daném sloupci (postupujeme zleva
doprava) určíme kladné číslo takové, že poměr posledního čísla jeho řádku a tohoto čísla
je minimální (pokud bychom nemohli použít první sloupec, použili bychom následující).
Pomocí řádku s pivotem vynulujeme řádkovými úpravami ostatní čísla v prvním sloupci.
Takto pokračujeme s dalšími dvěma sloupci. Pivot je pro daný sloupec je označen červeně.
⎛⎜⎜⎜⎝

−1 −6 −3 0 0 0 0
1 3 2 1 0 0 35
0 1 0 0 1 0 5

−1 −1 3 0 0 1 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 −3 −1 1 0 0 35
1 3 2 1 0 0 35
0 1 0 0 1 0 5
0 2 5 1 0 1 35

⎞⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
0 0 −1 1 3 0 50
1 0 2 1 −3 0 20
0 1 0 0 1 0 5
0 0 5 1 −2 1 25

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎜⎝
0 0 0 6

5 −2
5

1
5 55

1 0 0 3
5 0 0 10

0 1 0 0 1 0 5
0 0 1 1

5 −2
5

1
5 5

⎞⎟⎟⎟⎟⎠
Řešení je 𝑥1 = 10, 𝑥2 = 5, 𝑥3 = 5. Maximální počet diváků zasažených reklamou je 550 000,
tedy deseti tisíci násobek hodnoty funkce 𝑓 . △

Příklad 4.4.2. Květinářství odebírá každý týden květiny od dvou stálých dodavatelů
Anny a Bořivoje. Pro tento týden má smysl brát nejvýše jednu dodávku od Anny a jednu
od Bořivoje. Při jedné dodávce doveze Anna maximálně 50 svazků květin, přičemž nabízí
dovoz růží a tulipánů. Také Bořivoj doveze při jedné dodávce nejvýše 50 svazků květin a
nabízí rovněž růže a tulipány. Květinářství může uskladnit maximálně 70 svazků růží a 60
svazků tulipánů. Vedoucí ví, že prodá všechny dodané květiny. Zisk z jednoho svazku růží
od Anny je 60 Kč, z jednoho svazku tulipánů od Anny 80 Kč, z jednoho svazku růží od
Bořivoje je 100Kč a z jednoho svazku tulipánů od Bořivoje 110Kč.

Kolik a jakých svazků má vedoucí pro tento týden objednat, aby maximalizoval svůj
zisk? A jaký tento zisk bude? Zformulujte problém jako úlohu lineární optimalizace a pak
úlohu vyřešte.

Řešení. Částky můžeme vydělit deseti. Označme počty svazků růží, resp. tulipánů, od
Anny 𝑎1, resp. 𝑎2. Obdobně pro Bořivoje máme 𝑏1 a 𝑏2. Pak maximalizujeme funkci

𝑓(𝑎1, 𝑎2, 𝑏1, 𝑏2) = 6 𝑎1 + 8 𝑎2 + 10 𝑏1 + 11 𝑏2
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(tedy minimalizujeme funkci −𝑓) za podmínek

𝑎1 + 𝑎2 ≤ 50 𝑏1 + 𝑏2 ≤ 50

(pouze tolik mohou Anna i Bořivoj dodat)

𝑎1 + 𝑏1 ≤ 70 𝑎2 + 𝑏2 ≤ 60

(tolik svazků květin daného druhu může květinářství uskladnit). Přidáme si nové proměnné
𝑡1, 𝑡2, 𝑡3 a 𝑡4 ≥ 0, abychom z nerovností v podmínkách dostali rovnosti. Nyní již můžeme
postupovat jako v příkladu 4.4.1 simplexovou metodou, snažíme se vynulovat záporná čísla
v prvním řádku. Pivot pro daný sloupec je opět označen červeně. (Všimněte si, že pivot pro
první i druhý sloupce vyšel v témž řádku, nejedná se tedy o klasickou Gaußovu eliminaci.)⎛⎜⎜⎜⎜⎜⎜⎝

−6 −8 −10 −11 0 0 0 0 0
1 1 0 0 1 0 0 0 50
0 0 1 1 0 1 0 0 50
1 0 1 0 0 0 1 0 70
0 1 0 1 0 0 0 1 60

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎜⎜⎜⎝
0 −2 −10 −11 6 0 0 0 300
1 1 0 0 1 0 0 0 50
0 0 1 1 0 1 0 0 50
0 −1 1 0 0 −1 1 0 20
0 1 0 1 0 0 0 1 60

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 −10 −11 8 0 0 0 400
1 1 0 0 1 0 0 0 50
0 0 1 1 0 1 0 0 50
1 0 1 0 0 0 1 0 70

−1 0 0 1 −1 0 0 1 10

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0 −1 8 0 0 0 900
1 1 0 0 1 0 0 0 50
0 0 1 1 0 1 0 0 50
1 0 0 −1 0 −1 1 0 20

−1 0 0 1 −1 0 0 1 10

⎞⎟⎟⎟⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0 0 7 10 0 0 910
1 1 0 0 1 0 0 0 50
0 0 1 0 1 1 0 −1 40
0 0 0 0 −1 −1 1 1 30

−1 0 0 1 −1 0 0 1 10

⎞⎟⎟⎟⎟⎟⎟⎠
V prvním řádku máme v prvním sloupci 2, proto 𝑎1 = 0. Dále 𝑎2 = 50, 𝑏1 = 40 a 𝑏2 = 10.
Odebíráme tedy 50 tulipánů od Anny a 40 růží a 10 tulipánů od Bořivoje. Maximální zisk
bude 9 100Kč. △
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Příklad 4.4.3. Firma Defekt vyrábějící jízdní kola chce naplánovat optimální měsíční
výrobu. Produkuje tři typy kol: silniční, horská a zimní. Výroba je rozdělená na montáž
a testování kvality, přičemž firma má k dispozici 520 hodin provozu montážní linky a
100 hodin testovací laboratoře za jeden měsíc. Pro výrobu silničního kola jsou potřeba 4
hodiny montáže, pro výrobu jednoho horského kola 5 hodin montáže a pro výrobu jednoho
zimního kola 6 hodin montáže. Pro každé kolo je potřeba 1 hodina testování. Firma chce,
aby zimní kola tvořila maximálně polovinu měsíční produkce všech kol. Zisk z prodeje
jednoho silničního kola je 4 000Kč, z prodeje jednoho horského kola 6 000Kč a z prodeje
jednoho zimního kola 7 000Kč. Firma vždy prodá všechna vyrobená kola.

Při jakém počtu vyrobených silničních, horských a zimních kol za jeden měsíc maxi-
malizuje firma svůj zisk? A jaký tento zisk bude? Zformulujte problém jako úlohu lineární
optimalizace a úlohu vyřešte.

Řešení. Částky vydělíme 1 000. Označíme si proměnné 𝑠 (počet silničních kol), ℎ (počet
horských kol) a 𝑧 (počet zimních kol). Maximalizujeme funkci

𝑓(𝑠, ℎ, 𝑧) = 4 𝑠+ 6ℎ+ 7 𝑧

(minimalizujeme −𝑓). Máme omezení

4 𝑠+ 5ℎ+ 6 𝑧 ≤ 520 𝑠+ ℎ+ 𝑧 ≤ 100

pro hodinovou dotaci na výrobu a testování a

𝑧 ≤ 𝑠+ ℎ+ 𝑧

2

aby zimní kola tvořila maximálně polovinu produkce. Poslední nerovnice je ekvivalentní
s −𝑠 − ℎ + 𝑧 ≤ 0. Přidáním pomocných proměnných 𝑡1, 𝑡2 a 𝑡3 ≥ 0 docílíme toho, aby
podmínky měly tvar rovnic. Nyní již můžeme postupovat simplexovou metodou pomocí
tabulky. Pivota opět značíme červeně.
⎛⎜⎜⎜⎝

−4 −6 −7 0 0 0 0
4 5 6 1 0 0 520
1 1 1 0 1 0 100

−1 −1 1 0 0 1 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 −2 −3 0 4 0 400
0 1 2 1 −4 0 120
1 1 1 0 1 0 100
0 0 2 0 1 1 100

⎞⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
2 0 −1 0 6 0 600

−1 0 1 1 −5 0 20
1 1 1 0 1 0 100
0 0 2 0 1 1 100

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
1 0 0 1 1 0 620

−1 0 1 1 −5 0 20
2 1 0 −1 6 0 80
2 0 0 −2 11 1 60

⎞⎟⎟⎟⎠
V prvním sloupci máme v prvním řádku kladné číslo, tedy 𝑠 = 0. Dále ℎ = 80 a 𝑧 = 20,
měsíčně tedy budeme vyrábět 80 horských kol a 20 zimních. Zisk pak bude 620 000Kč za
měsíc. △
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Příklad 4.4.4. Truhlářství vyrábí stoly, židle a poličky. Na výrobu jednoho stolu potřebuje
3 hodiny, jedné židle 2 hodiny a jedné poličky 1 hodinu. Výrobní kapacita truhlářství je
60 hodin a celkově lze vyrobit nejvýše 40 výrobků. Poliček vyrobí nejvýše tolik, kolik
dohromady vyrobí stolů a židlí. Zisk z jednoho stolu je 1 000 Kč, z jedné židle 800Kč a z
jedné poličky 600Kč.

Zformulujte problém jako úlohu lineárního programování. Určete optimální skladbu
výroby a spočtěte maximální zisk simplexovou metodou.
Řešení. Částky vydělíme stem. Označme si 𝑠, 𝑧 a 𝑝 počty vyrobených stolů, židlí a polic.
Maximalizujeme funkci

𝑓(𝑠, 𝑧, 𝑝) = 10 𝑠+ 8 𝑧 + 6 𝑝
za podmínek

3 𝑠+ 2 𝑧 + 𝑝 ≤ 60 𝑠+ 𝑧 + 𝑝 ≤ 40 𝑝 ≤ 𝑠+ 𝑧

což si za pomocí pomocných nezáporných proměnných zapíšeme jako rovnice.

3 𝑠+ 2 𝑧 + 𝑝+ 𝑡1 = 60 𝑠+ 𝑧 + 𝑝+ 𝑡2 = 40 −𝑠− 𝑧 + 𝑝+ 𝑡3 = 0

Následně řešíme úlohu pomocí simplexového algoritmu. Pivota značíme červeně.⎛⎜⎜⎜⎝
−10 −8 −6 0 0 0 0

3 2 1 1 0 0 60
1 1 1 0 1 0 40

−1 −1 1 0 0 1 0

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎜⎝
0 −4

3 −8
3

10
3 0 0 200

3 2 1 1 0 0 60
0 1

3
2
3 −1

3 1 0 20
0 −1

3
4
3

1
3 0 1 20

⎞⎟⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
2 0 −2 4 0 0 240
3 2 1 1 0 0 60

−1 0 1 −1 2 0 20
1 0 3 1 0 2 60

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 0 0 2 0 0 280
4 2 0 2 −2 0 40

−1 0 1 −1 2 0 20
4 0 0 4 0 2 0

⎞⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
0 0 0 2 0 0 280
0 2 0 −2 −2 −2 40
0 0 1 0 2 1

2 20
2 0 0 2 0 1 0

⎞⎟⎟⎟⎠
(Poslední krok je Gaußova eliminace pro skladbu výroby. To, že 𝑠 = 0 vidíme již z před-
posledního kroku. Použili-li bychom modrého pivota, vyšlo by v prvním řádku v prvním
sloupci kladné číslo.) Optimálně bychom neměli vyrábět žádné stoly a vyrábět po dvaceti
židlích a policích. Zisk bude 28 000Kč. △

Příklad 4.4.5. Rádio vysílá hudbu, moderátora nebo pohádku a potřebuje zaplnit hodinu
vysílacího času. Alespoň 50% času musí být hudba, alespoň 10 minut pohádka. Náklady
na minutu vysílání jsou u hudby 200Kč, u moderátora 100 Kč, u pohádky 150Kč. Zisk
rádia za minutu vysílání je 300 Kč.

Zformulujte příklad jako úlohu lineárního programování. Užitím simplexového algo-
ritmu určete optímální skladbu programu a celkový zisk.
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Řešení. Hudba má zabírat nejméně polovinu programu, což je z 60 minut 30. Pohádka má
zabírat minimálně 10 minut. Jediným jiným omezením je, že celkově vysíláme 60 minut
(ticho nevysíláme). Čisté zisky za minutu vysílání zjistíme odečtením nákladů:

• 300− 200 = 100Kč za hudbu;

• 300− 150 = 150Kč za pohádku;

• 300− 100 = 100Kč za moderátora.

Vzhledem k omezením bychom intuitivně odhadli, že nejvyšších zisků dosáhneme, když
budeme vysílat 30 minut hudby a 10 minut pohádek (tedy předepsaná minima) a zbytek
(20 minut) vyplníme moderátorem, jehož náklady jsou nejnižší. Pak výdělek za hodinu
bude 30 · 100 + 10 · 150 + 20 · 200 = 8 500Kč.

Zjistěme, zda je náš odhad správný pomocí lineárního programování. Označme ℎ, 𝑝 a
𝑚 počty minut vysílání hudby, pohádek a moderátora. Maximalizujeme funkci

𝑓(ℎ, 𝑝,𝑚) = 100ℎ+ 150 𝑝+ 200𝑚

za omezení

ℎ+ 𝑝+𝑚 = 60 ℎ ≥ 30 𝑝 ≥ 10

přičemž druhé dvě podmínky si změníme na rovnice odečtením nových kladných proměn-
ných.

ℎ− 𝑡1 = 30 𝑝− 𝑡2 = 10

Můžeme úlohu řešit pomocí simplexového algoritmu. Pivota značíme červeně.
⎛⎜⎜⎜⎝

−100 −150 −200 0 0 0
1 1 1 0 0 60
1 0 0 −1 0 30
0 1 0 0 −1 10

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 −150 −200 −100 0 3 000
0 1 1 1 0 30
1 0 0 −1 0 30
0 1 0 0 −1 10

⎞⎟⎟⎟⎠ ∼

∼

⎛⎜⎜⎜⎝
0 0 −200 −100 −150 4 500
0 0 1 1 1 20
1 0 0 −1 0 30
0 1 0 0 −1 10

⎞⎟⎟⎟⎠ ∼

⎛⎜⎜⎜⎝
0 0 0 100 50 8 500
0 0 1 1 1 20
1 0 0 −1 0 30
0 1 0 0 −1 10

⎞⎟⎟⎟⎠
Vidíme, že optimálního zisku za daných podmínek dosáhneme vysíláním 30 minut hudby,
10 minut pohádky a 20 minut moderátora a maximální zisk bude opravdu 8 500Kč. △
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